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ABSTRACT Wearing inappropriate running shoes may lead to unnecessary injury through continued strain
upon the lower extremities; potentially damaging a runner’s performance. Many technologies have been
developed for accurate shoe recommendation, which centre on running gait analysis. However, these often
require supervised use in the laboratory/shop or exhibit too high a cost for personal use. This work addresses
the need for a deployable, inexpensive product with the ability to accurately assess running shoe-type
recommendation. This was achieved through quantitative analysis of the running gait from 203 individuals
through use of a tri-axial accelerometer and tri-axial gyroscope-basedwearable (Mymo). In combinationwith
a custom neural network to provide the shoe-type classifications running within the cloud, we experience an
accuracy of 94.6% in classifying the correct type of shoe across unseen test data.

INDEX TERMS Deep learning, gait analysis, foot pronation, IMU, running shoes.

I. INTRODUCTION
Running is one of the most common forms of exercise
due to its ease of access, low cost and beneficial health
effects [1], [2]. Moreover, novice and recreational running
is becoming increasingly popular and seen as the obvious
target for those hoping to encourage greater public health
through exercise [3]. In the UK it is driven by the potential of
recreational running as a public health promotion target [4].
Indeed, popularity in novice and recreational running has
been recently fuelled by the global phenomenon of mass
group events [5]. In fact, the latter is perceived to be a
useful mechanism for those inclined to be less physical active
(i.e. novice), enabling them to better engage with the sport
due to the socially orientated-based communities associated
with such events.

With a growing number of novice and recreational par-
ticipant’s, rates of running injuries increases with relatively
long periods (up to 52 weeks) of injury sustained [6]. This
has an obvious economic impact on healthcare utilisation
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(direct costs) and absenteeism from paid and unpaid work
(indirect) [7]. The latter Dutch study examined 1696 partici-
pants and found direct and indirect costs per running related
injury were up to e71.81 and e54.70, respectively. That
can have significant implications for health agencies and
employers due to negative impact on public services and loss
of productivity, respectively. Additionally, running injuries
could cause drop-out from the sport and other activities [6],
creating a downward spiral in health outcomes and quality of
life. Thus, it is important to gain more insight to the impact of
running related injuries and create mechanisms to limit their
occurrence.

Most running injuries develop progressively over the
many kilometres that are ran, i.e. overuse [8]. However, the
aetiology of these injuries is multifactorial [9], implying
that to understand the mechanisms leading to an injury,
a holistic approach is warranted, including the study of
a large set of potential risk factors [8]. The latter study
argues that factors could include activities such as training
characteristics, running mechanics and anatomy of the runner
whereby vertical ground reaction force (VGRF) exerts stress
during those activities on bones, muscles and tendons.
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Thus, as running biomechanics are associated with injury
risk, any effect of the shoe type on the running pattern and
VGRF parameters deserve attention [8].

Running shoes have experienced tremendous changes in
the last 50 years, from very minimal to highly supportive
and cushioned shoes and many other variations [10]. Shoes
with different functionality have been released because of
technological improvements (e.g., material engineering) used
in running shoe development, such as cushioned, stability and
minimalist running shoes [11]. Currently, there are hundreds
of running shoes commercially available for runners with
various nuances to entice customers. Yet, guidance for most
shoppers is non-existent or limited for their specific needs
and requirements. It is important for all runners to be
aware of how their foot is balanced [12] as choosing a
stability-based running shoe would ease excessive pronation
(the degree to which the arch of your foot collapses upon
impact), a possible risk factor of running-related injuries [13].
Furthermore, runners often lack evidence-based approaches
by disregarding retailer advice (and any in-store technology
they may have to aid purchases due to embarrassment
or inexperience) and relying solely on consumer trends
risk alternating between shoe type and increasing risk
of injury [14]. There is a need to enable personalised
approaches to identifying correct running shoe type, whereby
the customer can collect their own data e.g. in the comfort
of their home. This could ensure the customer does not
feel stigmatised or pressurised into purchasing too costly a
product, unsuitable for their needs.

Wearable technologies are rapidly becoming ubiquitous
in our daily lives and viable solutions to provide tailored
approaches to healthy living [15] and/or injury prevention
from running [16]. Wearables offer discrete, high-resolution
data that can be gathered ad-hoc or continuously for
prolonged periods for a range of healthcare applications.
Inertial sensor-basedwearables are perhaps themost common
comprising devices such as fitness trackers that quantify
movement by measuring acceleration (accelerometers) and
angular velocity (gyroscopes). Those sensors are low-cost
and can be applied to a plethora of healthcare activities in
a range of environments that require quantification of fine
motor tasks such as spatial and temporal characteristics of
gait [17] for providing objective, personalised data.

Recently, Mymo Group Ltd proposed a Cloud-based
approach via a smartphone [18] to provide all runners with
better insight to their running mechanics and consequently
recommend shoe type to prevent injury. Their platform
uses a single low-cost inertial-based wearable to provide a
pragmatic solution for all runners that can be used in any
setting. Here, we present (i) the analytical methodology that
is used to identify features of the inertial signals to examine a
runner’s gait and (ii) a custom neural network to provide the
shoe-type classifications within the Cloud.

The rest of the paper is organized as follows. Section II
reviews the underpinning background regarding running
analysis and how running shoes are recommended. Section III

reports the running shoe recommendation system with
2 typical running gait outcomes. Section IV discusses the
wider applicability of the system. Section V concludes the
papers and points out future directions.

II. BACKGROUND
A. TRADITIONAL RUNNING ANALYSIS
Video-based assessment is a useful approach to analyse and
inspect a runner’s gait, such as body alignment and landing
position of the feet [19], [20]. That can be a time-consuming
process, requiring a trained biomechanics expert to sit and
watch the runner from various angles (i.e. front, back, side)
to study how their body transitions through space and how
the feet make contact with the ground and for how long.
Specialist software allows them to study the runner on
a frame-by-frame basis with animations to examine joint
angles for a complete kinematic analysis. With advances
in computer vision and pattern recognition methods, gait
assessment can now be automated [21]. Yet, such approaches
are computationally intensive and cannot be used at scale
given the e.g. requirement for multiple cameras.

FIGURE 1. Basic representation to highlight feet strikes. From left to
right: (A) pronation, neutral, supination; and (B) heel strike, mid foot
strike and fore foot strike.

B. FOOT STRIKE PATTERNS: RECOMMENDING A SHOE
Ambulatory and running gait patterns vary from person to
person and so each runner requires the optimal shoe to fit
their requirements. Typically, a shoe is recommended to an
individual based on how the foot lands and makes contact
with the ground with patterns divided into (i) pronation,
(ii) neutral, and (iii) supination (Fig. 1A). Additionally,
foot strike types can also be categorised based on sagittal
examination and angle of the foot upon initial contact the
ground, (i) heel strike, (ii) mid-foot strike, and (iii) fore
foot strike [22]. Depending on the combination of these gait
characteristics, a shoe type will be recommended. In general,
running shoes are categorised into pronation assisted and
neutral support, with pronation assistance often utilising
cushioning around the heel to reduce roll [23]. For example,
a runner with a mid-neutral profile would receive a neutral
shoe type, i.e. stability shoe with gentle arch from front to
back. Alternatively, a mid-pronation profile would receive a
support shoe, i.e. rigid shoe for increased stability.
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Efforts have been made to utilize wearables to assess
foot strike for running shoe recommendation [24]. However,
the referenced approach is unsuitable, as it requires the
wearable to be attached to the laces of a shoe while
running. Given the runner must use shoes to gather foot
strike data, the resulting recommendations may be flawed as
the shoes worn during data collection may already provide
e.g. cushioning support. Instead, Mymo adopts a bare foot
running approach to achieve the most natural measures of a
person(s) gait, with a wearable attached via a thin neoprene
sock (ensuring firm attachment to the skin and to limit motion
artefact, Fig 2) to better understand the natural strike pattern
of the foot to recommend shoe type.

FIGURE 2. Attachment of the Mymo wearable with neoprene sock.

III. SHOE RECOMMENDATION SYSTEM
A. SYSTEM ARCHITECTURE

FIGURE 3. Flow of Mymo system from wearable to shoe classification.

The Mymo infrastructure primarily consists of four
modules, Fig. 3. The Mymo wearable is worn on the foot
and streams data to a smartphone application (App) via
Bluetooth. Once the capture window is over (1min/foot),
the App transmits the raw data through an API, where
the classification takes place through signal analysis and
feature extraction informing a deep learning model, returning
the individual’s foot strike pattern and their recommended
shoe-type.

The environment architecture for time-series analysis and
deep-learning model training consisted of a Python 3.7 note-
book with an Nvidia K80 GPU backend to greatly increase
the speed of training and visualisation tasks. To interface
with the Python modules, a Django RESTful API is deployed
to a server to listen for data from the mobile application,
where analysis and classification take place; allowing the
majority of processing to be performed away from relatively
low-powered mobile processors.

B. THE MYMO WEARABLE
This is a small (37 × 25 × 13mm) and lightweight (10g)
device, which is worn above the talus joint on the anterior
aspect of the left and right foot. It is hypothesised by the
manufacturers (Mymo Ltd.) that this location provides the
optimal location to determine foot strike pattern (heel, mid,
fore) and degree of pronation (neutral, slight, severe). That is
because the talus best represents rotations at different stages
of the running gait cycle: (i) at heel strike the point of contact
between the ground and hindfoot is lateral to the centre of the
ankle joint creating a valgus thrust on the subtalar joint, where
the calcaneus joint responds by eversion; (ii) that causes
the talus to rotate inwardly the talar head to flex plantarly
and; (iii) when the forefoot contacts the ground there is a
reversal of that motion [25]. The wearable remains in situ
on the foot by use of a stretchable neoprene sock (suitable
for most foot types) that the runner places on his/her bare
foot. A single button on the wearable switches on the device
which automatically connects to the mobile App which has a
procedure/implementation wizzard for ease of use.

The wearable contains both a tri-axial accelerometer and
tri-axial gyroscope, wirelessly transmitting signals to a smart-
phone (60 Hertz, Hz) during each 1min data capture for each
foot, providing approximately 7200 data-points/participant.
Before running, the participant is asked to remain (still)
in a standing posture for approximately 10 seconds (s) to
calibrate inertial sensors to account for individual offsets due
to anatomical differences. Once foot strike pattern data is
collected for one foot the neoprene sock (with wearable) is
removed and placed on the runners other bare foot, to repeat
the entire process, including calibration.

C. DATA COLLECTION
Data collection and video capture for Mymo took place over
multiple sessions at low-resource (community-based) run-
ning clubs and other leisure facilities within the Newcastle-
upon-Tyne region, UK. Ethical approval was granted
by Northumbria University Research Ethics Committee
(Ref: 21603). Adolescent and adult volunteers (n = 203,
91M:112F) participated in donning the wearable and gave
verbal consent before providing data during treadmill-based
testing. All volunteers reported no conditions affecting
overall running performance and all were supervised to run
on the treadmill for 2mins in total (1min each foot) at a set
pace of 5mph/8kph with the Mymo wearable worn on right
and left foot.

D. REFERENCE
Video recording with handheld smartphones were used
to capture foot strike patterns as the reference standard.
Video data (of the runner’s waist and legs only) were
recorded throughout the duration of testing from front, side
and rear views at 120FPS to allow for slow-motion and
high-resolution frame-by-frame analysis. Video data were
used to identify foot strike and degree of pronation for each
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runner by a trained physiotherapist and biomechanics expert,
who is also an elite club runner. Specifically, he labelled
all video data for left and right foot strike type (heel,
mid, fore) and degree of pronation (neutral, slight, severe).
Subsequently, the expert recommended a shoe type (neutral
or support) based on a combination of left and right foot strike
parameters. Video data were also use to inform algorithm
development for preliminary inertial data interpretation.

E. SIGNAL PROCESSING: FILTERING AND SEGMENTATION
To improve the overall accuracy of the system, data were
pre-processed to account for signal noise such as electrical
interference and motion artefact due to any slight size
discrepancies of neoprene sock and participants feet.

1) FILTERING
A band-pass Butterworth filter [26]–[28] was applied to
account for noise and motion artefact [29]. Performing at 60
Hz with a sampling period of 3 Hz and a cut-off frequency
of 5 Hz, we remove extraneous noise from all inertial signals.

2) DYNAMIC SIGNAL SEGMENTATION
We define each gait cycle between two periods, stance
and swing, where stance refers to the duration of time
an individual’s foot is on the ground and the contrary for
swing [28]. Within the gait cycle are various features often
used in gait analysis, the most notable are initial contact (IC)
and toe-off (TO) events, which define initial and final contact
of the foot with the ground. By locating and quantifying
IC/TO events we defined a single cycle of the foot during
running.

FIGURE 4. A graphical example of how Initial contact (IC) points may be
defined by the orange markers.

Utilizing the IC event allowed for the most accurate
definition of a gait cycle, as the foot-mounted accelerometer
is highly sensitive to contact points; resulting in large,
distinguishable regions of interest (ROI) within the signal.
By isolating the vertical axis of the accelerometer data we can
apply a zero-crossing gradient maxima detection algorithm
similar to [30], [31] and successfully isolate the IC events
of a signal, Fig. 4. An IC event is only considered if the
vertex lies above a dynamic threshold, defined as any point

above the 75th percentile range of the smoothed waveform.
This will remove abnormal running strides experienced as
a runner reaches their terminal speed and help to isolate
weak steps if, for example, a runner slightly stumbles.
For further robustness, operating within the notion that the
average healthy stride is comparable in timing [32], [33],
false-positives (IC peaks that are detected too closely together
after filtering) can be removed, such that:(

ICP < ICP+1 −
x
2
→ ICP,valid

)
(1)

where x is the average stride length observed by the individual
and ICP,valid denotes whether the point is a suitable IC data
point.

F. RUNNING GAIT OUTCOMES
To accurately classify the correct shoe type for a runner
we must consider the features of pronation and foot strike
location. Quantifying these features allows for a generalized
observation of the gait cycle during foot contact, where
pronation predominantly effects the runner.

1) PRONATION
Pronation refers to the roll of the foot occurring upon contact
with the ground. Thus, IC events were used to evaluate the
angle of pronation from the vertical axis and ROI (±30 Hz).
Similar to a previous methodology [34], a change-test-repeat
approach to define thresholds, where manually changes were
made until the best accuracy was achieved on all data
in relation to expert raters labelling which was aided by
observing the raw data for each participant, Fig 5 and 6.
By examining the maximum peaks in the traverse plane about
the longitudinal axis within the ROI, we can identify the
major roll events around IC, Fig 7. The further the roll peak
velocity, the more pronation an individual is considered to
experience (neutral ≤0.13s; pronation >0.13s and <0.25s;
severe pronation ≥0.25s). This method is applied for every
identified IC and an average is taken to account for any
occasionally experienced anomalous results.

2) FOOT STRIKE
Foot strike location is the angular position of the foot when
contact is made with the ground, therefore, to quantify the
foot location, one must observe the angle of the foot during
IC. Again, the same ROI is used but this time to examine the
angular velocity in the sagittal plane about the mediolateral
axis to establish the angle of the foot.

G. DEEP LEARNING MODEL: SHOE FINDER
The results of the feature extraction inform a custom
ensemble deep learning model to classify the correct type
of running shoe (neutral or support) based upon the runner’s
combined left and right foot patterns. We chose to optimise
our parameters through random selection based optimisation.
The parameters we chose to observe were the number of
hidden layers, their respective activation functions, learning
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FIGURE 5. Left foot scatter plots strike angles & pronation distances.

FIGURE 6. Right foot scatter plots strike angles & pronation distances.

rate and the total training epochs. By manually optimising
our network parameters, we were able to identify those of the
highest effect and eventually land at our final configuration
of two hidden layers with relu and softmax in each respective
layer in combination with 10,000 epochs and a learning rate

FIGURE 7. Graphical illustration of pronation calculation where the
distance between contact and roll velocity denotes severity of pronation.

of 0.2, optimized for maximum performance. The following
section describes the data preparation and model structure.

1) DATA PREPARATION
Participant IMU data were labelled by the expert assessor via
video to recommend a shoe-type given severity of pronation
and foot-strike location for 203 tests. We split the data into
a common and pragmatic 75/25% train-test ratio [35], [36],
which provided 51 participant’s data for testing the model
for evaluating the overall performance. The model takes
four inputs, left pronation (LP), left foot-strike (LFS), right
pronation (RP) and right foot-strike (RFS) and has a single
output, i.e. shoe type (neutral or support), Fig 8.

FIGURE 8. Network structure of custom classifier.

2) MODEL STRUCTURE
Our final model is comprised of three sub-models; a
multilayer perceptron (MLP) classifier [37], a gradient
boosted classifier and a custom-trained model; utilised in
an ensemble to increase performance. As stated our models
hyper-parameters consists of two hidden layers with relu
and softmax activation functions, respectively. Utilising an
ensemble model has shown to be effective in optimising the
performance of gait recognition and classification [38], [39].
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Through calculating the average result of the three models,
we are able to account for outliers presented by any given
methodology; drastically decreasing false positives in our test
data.

IV. RESULTS
The following section will describe the final results obtained
from each facet of the shoe recommendation system in detail;
with the ensemble model’s summation and optimisation
strategy discussed. All results are evaluated in comparison
to manual classification via the video-based reference
data.

A. GAIT FEATURES: PRONATION AND FOOT STRIKE
Foot pronation and foot-strike location algorithmswere tested
on all 203 datasets, i.e. the algorithm is static and does
not benefit from training data. In comparison to the expert
video-based classification, our results concluded with 92.0%
and 94.3% for pronation and foot-strike respectively. Those
robust foot strike and pronation data were subsequently used
to inform the input layer of our neural network.

B. DEEP LEARNING MODELS: SHOE TYPE
During training, our test dataset (51) is utilised to evaluate
the performance of each model and benchmarked every
1000 epochs for reference; Fig 9 and 10 illustrate accuracy
and loss, respectively.

FIGURE 9. Training accuracy of networks used in ensemble model.

As seen, each individual network presents reasonable
accuracy for shoe recommendation (neutral or support) at
10,000 epochs with the gradient boosting classifier exerting
the lowest accuracy of 86.5%, the custom classifier at 90.5%
and the MLP classifier at 94%. Upon inspecting these results,
it became apparent that in disputed situations, each model
may perform differently dependent on their learning biases.
Therefore, an ensemble summation of all three tested models
is presented in attempt to improve accuracy.

FIGURE 10. Training loss of models in ensemble model.

FIGURE 11. Structure of the ensemble model.

Fig 11 indicates the structural flow of using an ensemble
model for running-shoe recommendation. By averaging
results of all three models when faced with the same data,
we take the average result as our label for shoe-type. Due to
shoe recommendation’s binary output (1/neutral, 0/support),
weightings need not be assigned to any model for bias
reduction. Consequently, our final results with the ensemble
model amount to 97.7% across all test data.

C. COMPLETE SYSTEM TEST: GAIT AND SHOE TYPE
In full-throughput testing wherein the flow follows the
defined Mymo structure of wearable attachment, data cap-
ture, gait feature extraction (pronation: neutral, pronation or
severe pronation; or foot strike: heel, mid or fore), neural
network shoe recommendation (neutral or support), our
summated accuracy is 94.6% across all test participants.
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V. DISCUSSION
The purpose of this study was to develop a signal processing
algorithm for running analysis for use with the Mymo
wearable and Cloud-based system. Mymo is a low-cost, com-
mercial devicemounted on the foot with the intent of allowing
all runners to avoid unnecessary injury through the selection
of a suitable shoe. Our approach here will now enable Mymo
to quantify pronation (neutral, pronated, severely pronated)
and foot-strike (heel, mid, fore, subsequently recommending
appropriate running shoe type (neutral or support).

A. SIGNAL PROCESSING
The rate of data smoothing has shown to potentially affect
the extraction of foot-strike location and by utilizing different
smoothing parameters we can significantlymodify the overall
result. [40], [41]. To ensure this wouldn’t adversely affect the
feature extraction, manual adjustment of parameters within
the Butterworth band-pass filter were performed until optimal
results were achieved. Alternative methods were explored
when deciding on the optimal signal processing technique.
Our preliminary examination of all data to synchronized
videos included moving-average processing to smooth any
noise within the data. However, we found the approaches
far too aggressive, with significant signal-loss in sensitive
domains of the data such as timing of possible IC events,
Fig 12. Our final band-pass parameters were a sample period
of 3 Hz, a cut-off frequency of 5 Hz and a Nyquist frequency,
allowing us to meet an optimal accuracy of 92.0% (pronation)
and 94.3% (foot strike) across all testing data.

FIGURE 12. Examination of data influenced choice of filter.

B. SIGNAL SEGMENTATION
Zero-crossing approaches to gait signal segmentation
have shown to be highly effective across the research
domain [42]–[44]. Here, we adopted the same zero-crossing
methodologies within our dynamic signal segmentation
to identify IC events within an individual’s gait and
subsequently located points of interest through isolation
of the vertical acceleration. Through utilizing a dynamic

threshold based upon the individual’s average peak location
and height, we were able to successfully differentiate the
clearest strikes of the gait cycle; eliminating anomalous
strides such as those when a runner begins to reach maximum
speed on the treadmill or slows down towards the end of the
data-capture period.

Other research has examined the effectiveness of deep
learning for signal segmentation, showing the benefit of arti-
ficial intelligence which outperforms conventional methods
like time series analysis e.g. zero crossing [45], [46]. How-
ever, the potential benefit gained through applying neural
networks to the dynamic segmentation of high resolution
gait data, suffers as a result of the computational complexity
associated with their use [47]. Indeed, the approach may not
be suitable for a mobile platform, of which Mymo primarily
runs.

C. DEEP LEARNING MODEL
Although our features were extracted through conventional
data analysis methodologies, those features inform our deep
learning ensemble model to classify the correct type of
running shoe for an individual. Our initial test results based
upon labels assigned from an expert rater was 97.7% across
all test subjects.

Accumulative testing of the entire throughput of the
system, we were able to obtain an accuracy of 94.6%; proving
the effectiveness of the Mymo wearable for classifying
running shoe type. Although the final results from the
ensemble model were excellent, our test data only consisted
of data from 44 participants. Despite this, the test dataset
consisted of varied and challenging participants, exhibiting
a range of gait kinematics from both neutral and pronated
runners.

As previously discussed, neural networks tend to have
high computational complexity, posing a concern for mobile
deployment. Although our implementation has opted to
utilize a neural network for classifying a running shoe type,
the average throughput duration is only 1.62s per test, still
within a reasonable execution time, which is due to the low
dimensionality of our binary classifier. The neural network
used here is a low-powered binary classifier based upon the
feature-extraction section of our proposed work. The network
helps to streamline the process for mobile development due
to its low-powered nature. Furthermore, some outliers exist
in our labelled data that may not necessarily correspond
to a e.g. ’decision tree’ approach. Since we require an
excellent accuracy, a neural network was suitable to help
detect anomalous results and include them in the modelling
of output data. If neural networks were to be used for
each element of the Mymo infrastructure, execution times
will exponentially increase as a neural network would have
to endure data containing considerably higher resolution
(7200 data points per test) to accurately extract features;
with significantly higher computational complexity than the
binary classifier used for shoe classification.
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1) PRACTICALITIES FOR DEEP LEARNING
ON MOBILE PLATFORMS
Similar to dynamic signal segmentation, gait feature extrac-
tion has shown to be accurate when applied with deep
learning [46]. However, due to utilizing a deep learningmodel
for binary classification of shoe type, overwhelming a mobile
device with multiple models for individual tasks may prove
to exclude those with older hardware.

D. DATA CAPTURE AND LABELLING
Measuring foot pronation is a highly disputed topic in the
bio-mechanic research field [48], [49], with no standardized
method for doing so without the use of sophisticated
equipment [50]. Although our data capture process included
three camera angles and classification from an expert,
this process was still technically valid within the confines
of foot pronation research. For validation in future work
(section V.F), corroboration with gold/reference standard
equipment like pressure sensing and/or 3D motion analysis
may prove more beneficial for greater running insight and
generation of more running features.

E. LIMITATIONS
There is a limitation to the system. The binary output of
shoe recommendation (i.e. neutral or support) excludes the
ability to differentiate supination from neutral observing
runners. As our approach measures the distance between IC
and maximum roll, supination classifications are considered
as neutral due to an opposite roll direction from those
experiencing pronation. Although this presents a limitation
to the labelling of a runners’ pronation severity, major
manufacturers recommend a neutral cushioned running shoe
for those experiencing supination [51], [52]; and as such, will
not affect the overall recommendation of running shoe to the
end-user.

F. FUTURE WORK
Here, we present a methodology for 2 useful running gait
outcomes for use on the Mymo system. Pronation and foot
strike have been useful to inform a running shoe with
excellent accuracy. Next we aim to quantify and validate
additional outcomes such foot contact time with the ground to
3D motion analysis in a laboratory setting. It is hypothesized
that additional outcomes will better inform the Mymo system
for improved runner analysis. Moreover, we will expand shoe
classification methodology to ‘‘neutral with support’’ to aid
classification of runners with supination.

Our model selection and hyper-parameter optimization
followed trial-and-error procedures, with the highest per-
forming model configurations applied to the final ensemble
model structure to achieve the aforementioned accuracy
rates. In future work, streamlining the process through the
application of an autonomous training algorithm such as
Particle Swarm Optimization [53] may prove useful. Such
approaches provide an evolutionary method to maximizing
the accuracy of a network; by training models and assessing

the test accuracy over multiple iterations, we are able to
hand-select the best configuration established by the process.
Other approaches may also be taken in a similar domain
such as an automatic random grid-search [54] and a genetic
algorithm approach [55].

VI. CONCLUSION
The Mymo wearable is a low-cost product, providing shoe
recommendation for runners with the use of an inertial sensor
mounted on the foot. This paper presents a novel approach
for the recommendation of running shoe type through the
use of time-series gait feature extraction techniques to inform
a custom deep learning ensemble model for running shoe
recommendation; with a combined accuracy of 94.6%.

Future work will explore the feasibility of using neural
networks for feature extraction as well as classification in
an attempt to further improve accuracy while maintaining
efficiency. Extraction of different gait parameters may also
help to inform running information for all individuals while
developing the Mymo system.
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