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Abstract 

In the present study, numerical simulations have been carried out on thermal characteristics and 

second law analysis of turbulent Cu-H2O nanofluid flow with the nanoparticle volume fraction of 

0 1.5%   inside heat exchangers fitted by transverse-cut twisted tapes (TCTTs) with 

alternates’ axis. The transverse cut ratios are in the range of 0.7<b/c<0.9 and 2<s/c<2.5 and the 

Reynolds number is varied between 5000 and 15000.  The impacts of the design variables on the 

turbulent kinetic energy, temperature distribution, thermal and frictional entropy generations, and 

Bejan number have been evaluated. The simulations show that the TCTTs with b/c=0.7 generate 

higher turbulent kinetic energy compared to the b/c=0.9 due to higher swirl generation and flow 

disturbance. The additional recirculating flow produced near the alternate edges is another main 

physical factor for heat transfer augmentation. It is found that raising the nanoparticles volume 

concentration reduces the thermal entropy generation which is attributed to the thermal 

conductivity enhancement of nanofluids. Besides, raising the nanoparticles volume concentration 

from 0 to 1.5% reduces the ,g thermalN by 23%. 
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1. Introduction 

Thermal management is one of the most challenging tasks in the manufacturing of heat 

exchanger pipes and other thermal equipment such as solar systems, food industries, and 

refrigeration. Entropy generation analysis is essential in the design of thermal systems because 

the first law analysis of heat transfer of turbulent flows only considers energy conservation and it 

is not able to predict the available work and the destruct of the useful work in the thermal design 

of a system. Entropy generation examination is an essential aspect of the management of the 

thermohydraulic industries for performance optimization. Passive techniques are effective 

methods to improve the heat transfer rate inside heat exchangers without changing the primary 

geometry of them. Several passive strategies have been employed by researchers in the past 

years to intensify the heat transfer and thermal efficiency parameter of those systems, like 

twisted tapes [1-4], wavy and grooved surfaces [5-7], hollow cylinders [8], baffles [9], 

nanofluids [10-13] and twisted transverse baffles [14].  

Twisted tapes are one of the most popular vortex generators in the design of thermal equipment 

because of their simple design and low manufacturing costs [1]. Twisted tapes can significantly 

improve the fluids mixing among the heat exchanger walls and the core. Several improved 

twisted tapes were employed in the past decade on thermohydraulic performance augmentation 

of heat exchanger equipment such as square-cut twisted tapes [15], twisted tape with perforations 

[16], twin twisted tapes [17], serrated Twisted tapes [18], short-length twisted tapes [19], delta-

winglet twisted tapes [20], center-cleared twisted tape [21] and twisted tapes with alternates axis 

[22]. Eiamsa-ard et al. [23] experimentally evaluated the impacts of peripherally-cut twisted 
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tapes on the thermal efficiency of heat exchangers under laminar and turbulent flow conditions. 

They found that the Nusselt number could be around 2.6 times of that in the circular tubes 

without inserts. Hajabdollahi et al. [24] numerically examined the temperature distributions 

inside a fin and tube heat exchanger enhanced with twisted tapes. The outcome revealed that the 

twisted tape could significantly improve the heat transfer of the system compared to the circular 

ducts without turbulators under the same mass flow rates.  They also performed a design 

optimization to maximize the efficiency of the heat exchangers tube by twisted tapes vortex 

generators.  

Nanofluids have been widely employed as an efficient method for improving the thermophysical 

properties of working fluid by adding various nanoparticles [10, 25, 26]. Using nanoparticles can 

significantly augment the thermohydraulic performance of the heat exchanger system. Several 

researchers in the past few years suggested that a combination of nanofluids and twisted tape 

vortex generators can significantly improve the thermohydraulic efficiency of heat exchangers 

[27]. Twisted tapes could intensify the turbulent flow disturbance and flow severity between the 

tube surface and the central region, while the nanofluids could improve the thermophysical 

properties of the fluid. Maddah et al. [28] analyzed the effects of 2 3Al O nanoparticles on the 

thermohydraulic efficiency improvement of heat exchangers enhanced by geometrical 

progression ratio (GPR) TTs. They observed that of RGPR twisted tape together with nanofluids 

increase heat transfer rate by 12%.  

Entropy generation analysis of thermal systems is very important in the design of heat transfer 

equipment and has obtained considerable attention in the past few years [29, 30]. In other words, 

entropy generation evaluation is a powerful technique to examine the performance of a thermal 

system. The systems with the least entropy generations could be taken into consideration as an 



4 

 

optimal system. Shamsabadi et al. [31] carried out a numerical study on the entropy generation 

of nanofluids flows inside a channel equipped by porous baffles. They found that raising the 

number of baffles from 4 to 16, decreases the thermal and frictional entropy generations by 14 

and 32%, respectively. In another analytical research, Ellahi et al. [32] evaluated the impact of 

Cu nanoparticles shape on entropy generation of the MHD flows over vertical cone through 

numerical simulations. They concluded that the velocity of the fluid decreases by raising the 

nanoparticles volume fractions. They also revealed that increasing the diameter of the Cu 

nanoparticles could increase the entropy generation rate. 

According to the literature survey, twisted tapes with cut edges can remarkably intensify the 

thermal performance of the heat exchangers compared to typical ones by increasing the fluid 

mixing and flow disturbance near the cuts. This kind of vortex generators has several industrial 

applications, mostly in boiling units of thermal power plans. However, there are no numerical or 

experimental investigations regarding the combined effects of nanofluids and transverse-cut 

twisted tapes to take advantage of both passive methods on thermal performance and entropy 

generation analysis. Moreover, entropy generation analysis needs to be provided to show the 

effects of the cut edges of the turbulators on the Bejan number, thermal and frictional entropy 

production of turbulent nanofluid flows in these systems. Entropy generation examinations could 

help to amend the thermal management of heat exchanger systems equipped with transverse-cut 

twisted tape.  

2. Physical model 

Fig. 1 illustrates the schematics of the transverse-cut twisted tapes by alternates’ axis inside a 

circular duct. The geometrical parameters are also presented. The tube length (L) and diameter 
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(D) kept constant at 1100 mm and 20 mm. The width of the cuts (b) and the depth of them (s) are 

in the range of 14-18 mm and 40-50 mm, respectively. The dimensionless design parameters 

selected to investigate the effects of transverse-cut geometry on entropy generations are 

0.7<b/c<0.9, and 2<s/c<2.5, in which c is the width of a typical TT, and it is equal to the tube 

diameter in the present study (Table 1). Six different transverse-cut twisted tapes were employed 

to examine the effects of Cu nanoparticles volume concentration and the design criterion in the 

thermal and frictional entropy generations in heat exchangers with the turbulent flow regime. 

The inlet velocity  iu  is kept identical and the Reynolds number   Re /iu D   is varied 

between 5,000 and 15,000. Constant wall heat flux is imposed on the tube walls in the current 

CFD study, and the Cu-water nanofluid inlet temperature  inT is also assumed to be 300K.   
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Fig. 1 Schematic of heat exchanger enhanced by transverse-cut twisted tapes with alternating 

axes 

Table 1 Geometrical and physical parameters inside the pipe fitted with TCTT vortex generators 

Parameter Symbol Value 

Duct length (L) 1100 mm 

Duct diameter (D) 20 mm 

cut width (b) 14-18 mm 

Twist width (c) 20 mm 

Cut depth (s) 40-50 mm 

TCTT thickness (t) 1 mm 

Tube thickness (δ) 2 mm 

TCTT width ratio b/c 0.7-0.9 

TCTT depth ratio s/c 2-2.5 

Reynolds number Re 5,000-15000 

 

3. Mathematical modeling 

The partial differential equations of turbulent nano fluid flows for the present work are expressed 

by:  
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were i ju ur ¢ ¢ and  t  are expressed by: 
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The RNG k-ò  model is a well-known model to predict the vortex generations of turbulent flows 

inside heat exchangers fitted by turbulators [33]. The governing transport equations are defined 

as: 
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The thermophysical properties of Cupper-H2O nanofluids are evaluated by employing these 

correlations: 

 Effective density: 

 1eff f p       (8) 

 Effective specific heat: 
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 Effective viscosity [34]: 
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 Effective thermal conductivity [35]: 
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where  , f , p and eff are volume concentration of nano particles,  main fluid (H2O), particles, 

and effective nano fluid, respectively. The thermophysical properties of Cu nanoparticles based 

on the average diameter of 50 nm are
38300 kg mp
 , 

1420 J kg KpC  and 

1 1401 W m  Kpk   . The volume concentration of nano particles is between 0% and 1.5% in 

the present numerical simulations. 

The local volumetric entropy generations, considered for thermal and frictional impacts are 

expressed by [36]: 
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and u, v and w were accounted for velocity vectors in different directions, respectively. t  

denotes turbulence viscosity and tk  attributes the thermal conductivity. The above formulations 

may be converted to the dimensionless forms of entropy production with employing these 

formulations:  
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The Bejan number is expressed by: 
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3.1. Mesh generation 

Ansys ICEM 19.3 is utilized for mesh generation inside the heat exchanger pipe enhanced by 

transverse-cut TT insert. Fig. 2 depicts the mesh used in the present numerical simulations. As 

can be observed, the mesh is generated based on the non-uniform adaptive method and smaller 

mesh size is employed near the cut edges to measure the turbulent kinetic energy and severity 

disturbance in these regions.   

The detailed view of the tube inlet mesh illustrates that the inflated grid is employed near the 

pipe walls ensuring that y values are kept less than one in the whole body to resolve the sub-

layer effects near the boundaries under turbulent flow regime. The finite volume method is 

employed to resolve the 3D Navier-Stokes governing equations. The second order upwind 
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scheme is utilized for the discretization of the mathematical equations. The residuals of the Eqs. 

(1-3) are recorded to confirm that the convergence of computations, in which the convergence 

criteria is assumed to be 710 . Ansys Fluent 19.3 is utilized for the computations and the 

SIMPLE algorithm is used for pressure--velocity couplings. 

 

 

Fig. 2 Mesh generation through heat exchanger pipe enhanced by Transverse-cut TTs with 

alternating axes and the detailed view of the inlet  

Table 2 displays the grid independency test performed for the average Nusselt number 

 / nfNu hD k of turbulent Cu-water nanofluids  1.5%  flows through the heat exchanger 

duct equipped by transverse-cut TTs by alternating axis with b/c=0.7 and s/c=2 at Re=15000 

(extreme case). Four different grid numbers (506221, 925380, 1412903 and 2103556 elements) 



11 

 

were selected to perform the CFD calculations. It can be seen that the deviation between 

1412903 and 2103556 elements is around 0.3%. Therefore, 1412903 grid numbers are selected 

for further calculations. 

Table 2 Grid independence study for b/c=0.7 and s/c=2 at Re 15,000  and 1.5%  . 

Element number Nu Dev. % 

506221 186.91 - 

925380 200.42 7.2 

1412903 208.67 4.1 

2103556 209.20 0.3 

 

3.2. Validation of numerical results 

Before further simulations, it is necessary to check the accuracy of the present turbulent model 

used for the numerical simulations. Several turbulent models (k- ε, k-ω, SST-k-ω, and 

Renormalization Group k- ε models) were utilized and the outputs of each model were validated 

with the empirical data existing in the previous studies. Among the turbulent models, the RNG k- 

ε model has more accurate results compared with the experimental data. For this purpose, the 

numerical results of turbulent flows inside channels fitted by typical twisted tape inserts are 

validated with the experimental data of Manglik and Bergles [37] for turbulent flow heat transfer 

in heat exchangers inserted by conventional TTs without cut edges in Fig. 3. The comparison 

illustrates that the numerical results of the current study match well with the experimental 

results. Consequently, RNG k-ò  model is utilized for further computations. It is seen that the Nu 
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number enhances by raising the Re number that is attributed to the stronger velocity gradients of 

turbulent flow at higher Re numbers.  

 

Fig. 3 Validating of numerical calculations with experiments of Manglik and Bergles [37] for 

conventional twisted tapes 

It also should be pointed out that additional checks were also performed to validate the accuracy 

of the selected turbulence model with nanofluids with respect to experimental data. The details 

of the validations for various Reynolds numbers can be found in [38]. 

4. Results and discussion 

Fig. 4 depicts the turbulent flow streamlines of nanofluid flows in a plain pipe and a duct 

equipped by TCTTs with an alternating axis. The flow streamlines are plotted as functions of the 

turbulent kinetic energy (TKE). The results demonstrate that TCTT significantly intensifies the 

flow severity between the pipe wall and the core areas. The primary advantage of this type of 

modified twisted tape compared to typical ones is that the cut area could considerably increase 
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the flow perturbations and the mixing of hot and cold flows between the pipe surfaces and the 

core area. It is also observed that the turbulent kinetic energy near the alternate axis is greater 

than the other regions. The alternate axis of the twisted tape changes the swirl flow direction and 

intensifies the turbulent kinetic energy in this area. 

 

 

a) Plain tube 

 

b) Transverse-cut twisted tape (b/c=0.7, s/c=2) 

Fig. 4 Streamlines of turbulent nanofluids flow  0.5%   in the plain pipe and the pipe fitted 

by TC twisted tape (Re=9,000, s/c=2, b/c=0.7) 

Fig. 5 illustrates the cross-section views of turbulent kinetic energy contours of nanofluids 

current inside heat exchangers enhanced by TCTTs with two different b/w ratios. The results 

show that the TTs with b/c=0.7 generate higher turbulent kinetic energy compared to the b/c=0.9 

case. Physically speaking, using transverse-cut TCTTs with thicker cut edges (b/c=0.7) are able 

Strong flow disturbance 

near the alternate axis 
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to generate stronger swirl flow and flow disturbance compared to the modified TTs by thin edges 

(b/w=0.9). As depicted below, for both cases, the rate of TKE significantly increases near the 

alternate axis junction. The alternate axis creates secondary flows in the form of additional 

vortex flows. 

 

 
a) b/c=0.7 

 
b) b/c=0.9 

Fig. 5 Kinetic energy contour plot of turbulence flows through tubes fitted by TC twisted tapes 

with an alternate axis (Re=9,000, s/c=2, 0.5%  ) 

Fig. 6 depicts the influence of TCTT geometry on the temperature distributions of turbulent Cu-

water nanofluids flow through heat exchangers. The Re number is constant (9,000) and the Cu 

nano particles volume fraction is 0.5% . The results show that the TC twisted tapes with smaller 

width ratios (b/c) have better heat transfer and the temperature of nanofluid enhances faster than 

of the cases with larger width ratios (b/c=0.9). Generally, twisted tapes thicker edges generate 
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stronger flow disturbance due to the higher number of twists. It also can be seen that temperature 

augmentation near the alternate axis is strong for all of the test cases. As discussed earlier, the 

additional recirculating flows produced near the alternate edges, is the primary physical factor 

for heat transfer intensification.  

 

 
a) b/c=0.7 , s/c=2.25 

 
b) b/c=0.7 , s/c=2.5 

 
c) b/c=0.9, s/c=2.25 

 
d) b/c=0.9, s/c=2.5 

Fig. 6 Temperature distribution of nanofluid flow inside tubes fitted by transverse-cut twisted 

tapes with various geometries at Re=9,000, 0.5%  . 

The effect of Cu nanoparticles on the temperature enhancement of turbulent nanofluids flow in 

heat exchangers with T-C twisted tapes with various cut ratios and cut ratios are presented in Fig. 

7. The cross-section contours are plotted at z=0.18m and the nanoparticles volume concentration 

is changed from 0% (pure water) to 1.5 %. The results show that the temperature of nanofluid 
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flow enhances by increasing . The most important physical reason for temperature 

augmentation by adding Cu nanoparticle additives to the base fluid is that the thermophysical 

properties of the working fluid can considerably be improved by increasing  (see Eqs. 9-12). It 

also can be deduced that the temperature enhancement for b/c=2, s/w=0.7 is better than the other 

geometries. As discussed in Fig. 5, TCTTs with thicker width intensify the turbulent kinetic 

energy production due to stronger flow disturbance near the cut edges.   

 

 
 

 

Geometry 0.5%   1%   1.5%   

 

   

b/c=2, s/w=0.7 

 

   

b/c=2, s/w=0.9 

 

   

b/c=2.25, s/w=0.7 

 

   

b/c=2.25, s/w=0.9 

 

   

Increasing   
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b/c=2.5, s/w=0.7 

 
 

b/c=2.5, s/w=0.9 

   
Fig. 7 The effects of cut ratios and nanoparticles volume fraction of temperature distribution 

inside heat exchangers fitted by TCTT  Re 9,000  

Fig. 8 displays the thermal entropy generations of nanofluids flows inside heat exchangers 

equipped by TC twisted tapes with various nanoparticle volume fraction. According to the 

description of the thermal entropy generation (Eq. 13), temperature gradients are the main reason 

for the augmentation of this parameter. The results show that the rate of thermic entropy 

production near the pipe surface is much higher in comparison with the tube center for all of the 

cases. Strong recirculation flow near the tube walls in the existence of TTs interrupts the thermal 

B-L and the temperatures gradient increases. In addition, the alternate axis of the TC twisted tape 

generates strong swirl flow in those regions and intensifies the thermal entropy generation. It 

also can be seen that increasing the nanoparticles volume fraction reduces the thermal entropy 

production.  This reduction is attributed to the thermal conductivity augmentation of nanofluids 

that improves the thermal performance and decreases the dissipations. 

 

 
a) Pure water  0   
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b) 0.5%   

 
c) 1%   

 
d) 1.5%   

Fig. 8 Thermal entropy generations of nanofluid flows inside heat exchangers enhanced by TC 

twisted tapes with b/c=0.9 and s/c=2.25. 

The impacts of Cu nano particles volume concentration on the frictional entropy production of 

turbulent flows inside the tubes enhanced by transverse-cut twisting tapes with b/c=0.7 and 

s/c=2.25 at Re=9,000 are depicted in Fig. 9. The results are presented at six different cross-

sections. It is noticed that the viscous entropy production significantly increases near the 

alternate axis of the TC twisted tape. The main physical reason for this augmentation is strong 

turbulent velocity gradients in this region generated by the sudden change in the swirl flow 

direction. It is observed that raising the nanoparticles volume concentration increases the 

frictional entropy production. As the volume fraction of the nanoparticles    is improved, the 
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fluid velocity must be increased to keep the Re number constant. Therefore, the frictional 

entropy generation goes up. Besides, the viscosity of the nanofluid goes up by raising . As a 

consequence, the frictional (viscous) entropy production increases (see Eq. 14) 

 

  
a) Pure water  0   b) 0.5%   

  
c) 1%   d) 1.5%   

Fig. 9 Viscous entropy production contour plots of nanofluids flow in heat exchangers fitted by 

TCTTs with b/c=0.9 and s/c=2.25. 

Fig. 10 depicts the dimensionless entropy generation of turbulent nanofluid flows inside heat 

exchanger pipes fitted by TCTTs with (b/c=0.7 and s/c=2.25) at various Re numbers. The results 

show that the thermal entropy production decreases by raising the Reynolds number from 5,000 

to 15000. Physically speaking, the heat transfer rates augment with raising the Re number which 

means that the rate of thermal dissipations would be decreased. In addition, increasing the 

nanoparticles volume concentration from 0 to 1.5% reduces the ,g thermalN around 23% at 

Re=5,000. As discussed earlier, increasing the Cu nanoparticles   improves the thermal 

conductivity and other thermophysical properties of working fluid and improves the heat transfer 
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rate (entropy production reduction).  As presented in Fig. 10-b viscous entropy production rises 

with raising the Reynolds number. The frictional entropy generations are depending on the 

velocity gradients. As the Reynolds number rises, the velocity gradients of nanofluid flow go up 

and the frictional entropy generation augments. It also can be deduced that the ,g viscousN enhances 

around 57% as the Cu nanoparticles volume concentration is raised from 0 to 1.5%. 

 

 
a) Dimensionless thermal entropy generation  
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b) Dimensionless viscous entropy generation 

Fig. 10 Effects of the nanoparticle volume concentration on thermal and viscous entropy 

production 

Fig. 11 shows the contours of Bejan number inside heat exchanger tubes equipped by transverse-

cut twisted tapes with various cut ratios. It can be observed that the frictional entropy production 

at the inlet of the tube is dominant for all of the test cases. Physically speaking, at the hydraulic 

entry region of the heat exchangers, the velocity gradients are high and as a consequence, the 

viscous entropy production intensifies. However, after passing the entrance area, the thermal 

entropy generation becomes dominant, and the Bejan number tens to unity. This indicates that 

the temperature gradients due to the strong swirl generation near the TCTTs can significantly 

increase the generation of thermal entropy in these areas. The results illustrate that the Bejan 

number for the b/c=0.7 is generally superior to b/c=0.9 cases. This means that the transverse-cut 

twisted tapes with thicker cut edges can produce more intense vortex generations.   



22 

 

 

 
a) b/c=0.7, s/c=2.25 

 
b) b/c=0.7, s/c=2. 

 
c) b/c=0.9, s/c=2.25 

 
d) b/c=0.9, s/c=2.5 

Fig. 11 Bejan number contours of nanofluid flows in heat exchangers equipped by TC twisted 

tapes with Re=15,000. 

Fig. 12 displays the impacts of nano particles volume fractions on the Bejan number values 

inside the heat exchangers fitted by TCTTs with b/c=0.7 and s/c=2. The Cu nanoparticles 

volume fraction is between 0 and 1.5% and the Reynolds number is maintained at Re=15,000. It 

can be seen that the Bejan number slightly decreases with increasing  . Based on the definition 

of this parameter, it means that the effects of the nanoparticle volume concentration on frictional 

entropy production  "'viscousS are higher than that on thermal entropy generation  "'thermalS . The 

cross-section contours illustrate that the viscous entropy generations near the alternate axis (blue 

color contours) is higher than the other regions. This indicates that the strong flow disturbance 
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and vortex generation due to the sudden turn at the junction of the TTs is the primary reason for 

friction factor augmentation due to the strong velocity gradients.  

 

  

a)  b)  

  

c)  d)  

Fig. 12 The impacts of nanoparticles volume concentration on the Bejan number contours 

5. Conclusion 

The impacts of transverse-cut twisted tapes on the thermal characteristics and entropy production 

analysis of Cu-water nanofluids flow inside heat exchangers with uniform wall heat flux were 

numerically investigated. The Reynolds number, cut width ratio, cut depth ratio and 

nanoparticles volume fraction were between 5000 Re 15000  , 0.7 / 0.9b c  , 

2.0 / 2.5s c  and 0 1.5%  , respectively. The most important conclusions of the present 

work are as follows: 

 Transverse-cut twisted tapes with thicker cut edges (b/c=0.7) can generate stronger swirl 

flow and flow disturbance compared to the modified TTs with thin margins (b/w=0.9). 

The rate of TKE also significantly increases near the alternate axis junction.  
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 The rate of thermic entropy production near the pipe surface is much higher in 

comparison with the tube center for all of the cases. Strong recirculation flow near the 

tube walls in the existence of TTs interrupts the thermal B-L and the temperatures 

gradient increases. 

 Increasing the nanoparticles volume concentration from 0 to 1.5% reduces the ,g thermalN  

around 23% at Re=5,000.  

 ,g viscousN  rises up to 57% as the Cu nanoparticles volume concentration increases from 

0% to 1.5%, while ,g thermalN  reduces around 23% with similar conditions. 

 At the entry region of the heat exchangers, the velocity gradients are high and as a result, 

the viscous entropy generation intensifies. 
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