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Abstract

As a combination of robotic motion planning and Chinese calligraphy cul-

ture, robotic calligraphy plays a significant role in the inheritance and edu-

cation of Chinese calligraphy culture. Most existing calligraphy robots focus

on enabling the robots to learn writing through human participation, such as

human-robot interactions and manually designed evaluation functions. How-

ever, because of the subjectivity of art aesthetics, these existing methods require

a large amount of implementation work from human engineers. In addition, the

written results cannot be accurately evaluated. To overcome these limitations,

in this paper, we propose a robotic calligraphy model that combines a gener-

ative adversarial network (GAN) and deep reinforcement learning to enable a

calligraphy robot to learn to write Chinese character strokes directly from im-

ages captured from Chinese calligraphic textbooks. In our proposed model, to

automatically establish an aesthetic evaluation system for Chinese calligraphy,

a GAN is first trained to understand and reconstruct stroke images. Then, the

discriminator network is independently extracted from the trained GAN and

embedded into a variant of the reinforcement learning method, the “actor-critic
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model”, as a reward function. Thus, a calligraphy robot adopts the improved

actor-critic model to learn to write multiple character strokes. The experimental

results demonstrate that the proposed model successfully allows a calligraphy

robot to write Chinese character strokes based on input stroke images. The per-

formance of our model, compared with the state-of-the-art deep reinforcement

learning method, shows the efficacy of the combination approach. In addition,

the key technology in this work shows promise as a solution for robotic au-

tonomous assembly.

Keywords: Robotic calligraphy, motion planning, deep reinforcement

learning, generative adversarial nets, robot control

2010 MSC: 00-01, 99-00

1. Introduction

Calligraphic robots, as an integration of intelligent robots and human cul-

ture, have broad applications in cultural inheritance and education [1]. In the

task of robotic calligraphy, a robot must plan and execute writing actions ac-

cording to signals given by humans or the environment. To achieve this task,5

the model must have many abilities, such as perceiving environmental infor-

mation [2], planning and executing complex actions [3], and evaluating writing

results [4]. To implement these capabilities, many technologies, such as robot

motion planning [5], human-computer interaction [6, 7], and evaluation method

construction [8], are required. In particular, these abilities are fundamental10

technologies for autonomous robots in industrial and daily-life applications.

Therefore, if a method can successfully enable robots to learn human callig-

raphy automatically, such a method can also be applied to other complex tasks

for robots [9], such as robot-based product assembly systems [10, 11].

Researchers have studied the field of robots learning calligraphy from various15

points of view. The primary issue in this field is determining how to evaluate the

writing quality of robotic calligraphy. In response to this problem, several re-

searchers use human aesthetic feedback as the evaluation criterion [12, 13]. For
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example, Chao et al. developed a human-robot interaction model to evaluate

writing results [14, 15]. Other researchers manually designed evaluation meth-20

ods to evaluate the quality of calligraphy [16, 17, 18]. For example, Zhou et al.

developed a probability-based evaluation method to evaluate the quality of Chi-

nese Calligraphy [19]. Another important issue in the field of robotic calligraphy

is how robots learn to write calligraphy. Within the methods proposed in recent

years, researchers mainly used the following two ways to solve this problem [20]25

[21] [22]: (1) Humans teach robots calligraphy through human demonstrations

and human-computer interactions [23] [24]; and (2) Robots learn calligraphy by

using calligraphy data to train themselves [25] [26] [27].

The human-robot interaction method leads robots to write and avoids the

problem of evaluating the results of the writing; however, humans must par-30

ticipate in the entire training phase, and such participation greatly increases

the human workload [28] [29]. In addition, human-robot interaction is mostly

based on visual information, which requires robots to accurately recognize hu-

man actions through visual information [30, 31]. However, this type of method

makes the learning effect dependent on the success rate of action recognition35

[32, 33]. The data used by the robot to learn to write are a set of pictures of

characters or a set of writing motion trajectories [34]. In addition, to ensure the

quality and diversity of the writing results of a robot, human engineers must

add as many types of fonts as possible to the training data and even directly

use computer fonts. However, the size of the font data set limits the quality and40

diversity of the writing results [35]. Another drawback of this type of method

is that a human must also design evaluation rules to assess the learning effects

of the robots.

In response to the problems in the above methods, and inspired by the

process of humans learning to write calligraphy, we propose a new learning45

model to enable a calligraphy robot to learn to write Chinese character strokes

by using images of Chinese character strokes. The process used by humans

to learn writing is divided into two steps: First, humans must understand a

character image from a textbook and mentally reproduce the character. Second,
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humans learn to write a target character based on the mentally reproduced50

image and improve the quality of the writing by comparing the writing results

with reference images. The advantage of this learning procedure is as follows:

without any guidance or evaluations from other persons, a human can still

learn writing by himself or herself. Inspired by this human learning process,

we propose an approach that, based on input stroke images, enables a robot55

to simulate how to learn to write Chinese strokes. Thus, the first step of the

learning process can be regarded as an image reconstruction task. In particular,

generative adversarial networks (GANs) are very suitable for handling this type

of task. The second step can be seen as an action-evaluation-improving action

process. This process is also the working mechanism of reinforcement learning.60

Therefore, this study combines GAN and deep reinforcement learning methods

to simulate the calligraphy learning process of humans. The GAN model is used

to simulate the process of human understanding and reproduce input stroke

images. The deep reinforcement learning method is used to simulate the second

process in which humans learn to write based on mentally reproduced images. In65

addition, we apply the GAN model to the reinforcement learning algorithm as a

reward function to assist in the training of the robot. To reduce the complexity

of the method, the writing behaviour of the robot is modelled as a continuous

control problem. Therefore, the deep reinforcement learning model is optimized

by the deep deterministic policy gradient (DDPG) algorithm.70

Our method differs from the traditional methods in that no human guidance

is required and that the evaluation function is learned from the training data.

Comparative experiments reveal that the proposed approach requires neither

human guidance nor human-designed evaluation rules. Additionally, the size of

the data set does not limit the quality and diversity of the strokes generated by75

the method. Even if the data set is small, the method still enables the robot

to achieve high-quality writing results. The main contributions of this work

are as follows: (1) The GAN method is used as a reward function to train the

deep reinforcement learning methods. (2) The writing behaviour of the robot is

modelled as a continuous control problem; thus, the DDPG algorithm is applied80
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to optimize the integration models of the GAN and deep reinforcement learning.

The remainder of this paper is organized as follows: Section 2 introduces

the related background knowledge of the proposed model. Section 3 describes

the proposed model, which writes strokes according to specified stroke labels

and styles. Section 4 specifies the experimental procedures and discusses the85

experimental results. Section 5 concludes the work and points out directions for

future work.

2. Background

2.1. Generative Adversarial Network

Real?
or

Fake?

z G(Z)

Noise Fake data

x

Real data

Generator G Discriminator D

Update

Figure 1: The flowchart of the GAN model.

The GAN model is a combination of a generative model and a discriminative90

model. The GAN consists of two networks: a generator network and a discrim-

inator network [36]. The function of the discriminator is to determine whether

the input sample lies within the distribution of the real data set. The goal of

the generator is to generate samples within the distribution of the real data set.

When the distance between the two distributions of the real data set and the95

generated samples is minimal, the generator is optimal. These two sub-models

play a continuous game where the generator learns to produce increasingly re-

alistic samples, and the discriminator learns to become increasingly powerful in
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distinguishing the generated data from the real data. The original GAN model

is shown in Fig. 1. The generator takes noise as input and generates samples;100

the discriminator receives samples from both the generator and the training data

and then distinguishes between the two sources. These two networks are trained

simultaneously, with the expectation that samples indistinguishable from real

data will be generated.

The properties of the GAN model allow the generator network to generate105

data that does not exist in the real data set but is in the same data distribution

as the real data. As an unsupervised learning method, GAN has been widely

used in many tasks, including image generation, semantic segmentation, video

prediction, etc. Therefore, scholars have proposed many variations of GAN,

including DCGAN [37], Wasserstein GAN [38], SeqGAN [39], etc.110

2.2. Actor-Critic Model

Deep reinforcement learning, which combines the perception ability of deep

learning with the decision-making ability of reinforcement learning [40], directly

outputs corresponding control actions based on the input of high-dimensional

state information [41]. Deep learning has achieved unprecedented performance115

in a variety of contexts due to its ability to automatically learn salient fea-

ture representations without the use of manual feature engineering. However,

a shortcoming of deep learning is that these extracted features are ad hoc,

labour-intensive, and not necessarily generalizable to multiple contexts; thus,

this shortcoming limits the applicability of deep learning. Reinforcement learn-120

ing plays an important role in generating a large quantity of training data with

a low cost. Therefore, deep reinforcement learning has excellent prospects for

application [42, 43]. As an artificial intelligence approach that is closer to the

human developmental model, deep reinforcement learning has surpassed human

players in many tasks [44].125

As a kind of deep reinforcement learning structure, the actor-critic model

(AC model) is applied to many continuous control tasks and, in several tasks,

performs superior to humans [45]. The AC model consists of two modules: the
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actor network and the critic network. The function of the critic network is to

learn the evaluation mechanism of the environment according to the interaction130

results of the agent and the environment. The goal of the actor network is to

find the optimal action strategy for an agent based on the feedback of the critic

network. Unlike the GAN model, to find the optimal strategy, these two sub-

modules cooperate with each other. On the one hand, the actor explores a large

number of experiences to help the critic fit the evaluation mechanism of the135

environment. On the other hand, the critic guides the actor to find the optimal

strategy through a policy update algorithm. Thus, these two sub-modules are

trained simultaneously. The actor model, which does not require an optimal

action sample, finds the optimal action based on the exploration mechanism

and feedback of the critic. Therefore, the AC model can be applied, as an140

efficient algorithm, to the field of robotic automatic control.

3. Proposed approach

3.1. Overview

(a): GAN (b): DDPG (c): Robot writing system

Discriminator

Real Stroke Image

Critic

Image of 
Writing Result 

Real?
or

 Fake?

Noise

Generator 

Stroke Image

Actor Track Points
Robot System

Figure 2: The flowchart of the proposed approach to robotic handwriting. The approach

contains three modules: (a) GAN model, (b) actor-critic model, and (c) robot writing module.

To solve the problems that exist in a robot learning to write Chinese char-

acter strokes from images, an approach combining the GAN model and the145
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actor-critic model is proposed. Shown in Fig. 2 is the flowchart of the proposed

approach, which consists of three modules: (a) GAN module, (b) actor-critic

module, and (c) robot writing module. After pre-training, the GAN module

supports two functions for the actor-critic model: (1) the discriminator per-

forms as an evaluation function for the actor-critic model, and (2) the stroke150

images generated by the generator network are used as the environmental states.

With the assistance of the GAN module, the actor-critic module learns to write

strokes from stroke images. The robotic system performs the writing motions

of these strokes. The robotic system also captures images of the writing results

and passes them to the GAN module to train the actor-critic module.155

The main function of the robot writing module is to write strokes based on

the generated results of the actor. During the training phase of the proposed

approach, the function of the robot writing module is to provide an image of the

writing result to the discriminator for training the critic network. To accomplish

these functions, the robot writing module must complete two tasks: (1) Write160

corresponding strokes on the writing board based on the stroke action generated

by the actor network. (2) Capture the stroke image after the robot arm writes

the stroke.

The GAN model consists of two components: the generator network and

the discriminator network. The goal of the generator is to generate the stroke165

image that is as close as possible to the stroke images in the training data set.

Conversely, the goal of the discriminator is to determine whether an input is real

or produced by the generator network. The process of a robot learning to write

according to an image can be modelled as a reinforcement learning process. The

image generated by the generator network is denoted as the environmental state.170

The writing action of the robot is seen as a reaction to the state. According to

the evaluation of the environment, the robot learns the best action strategy in

this state. Therefore, the actor-critic model is applied in the proposed approach,

which is used for a robot to learn control of continuous motions. Similar to the

GAN model, the actor-critic model consists of two networks: the critic and the175

actor. The critic network learns how to evaluate the agent actions for interacting
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with the environment and provides feedback for the action generated by the

actor module. Then, according to the feedback of the critic network, the actor

learns the optimized action policy of the agent in the environment.

When the actor-critic model is used for the task of robot control, one chal-180

lenge is that the evaluation function is indispensable. Therefore, in the proposed

approach, the discriminator network of the GAN model replaces the evaluation

function. When the GAN model is fully trained, the discriminator approximates

the distribution boundary of the stroke image;thus, the discriminator is quali-

fied to evaluate the writing result of the robot. Based on the evaluation results185

of the discriminator, the actor-critic model learns how to find the optimized

writing actions, which correspond to the input stroke image.

3.2. GAN Model

In the proposed approach, the GAN model is used to generate and evaluate

the quality of stroke images. The input of the generator network is a set of190

Gaussian noises. According to these noises, a stroke image is generated by the

generator network. In addition, the input of the discriminator is a stroke image,

which is from a real data set or generated by the generator. During GAN model

training, the function of the discriminator is to identify the source of the stroke

image.195

In addition, when the GAN model is applied in the training of the actor-

critic model, the structure of the discriminator and the loss function of the model

must be modified. In the vanilla GAN model, the output of the discriminator

is the label of the input data, whose range is from 0 to 1. Moreover, the

sigmoid function is used as the activation function of the output layer in the200

discriminator. Such a sigmoid function brings a nonlinear processing feature into

the network. However, the discriminator is unsuitable as an evaluation function

to properly assess the actions of the agent. To solve this problem, the sigmoid

function is removed from the output layer of the discriminator in the proposed

approach. With this modification, the output range [0, 1] of the discriminator is205

also removed. Thus, the discriminator is better used as an evaluation function

9



to evaluate the actions of the agent.

Due to the modification of the discriminator output layer, the loss functions

of the discriminator and the generator also must be adjusted. In the vanilla

GAN model, the loss functions of the discriminator and generator are calcu-210

lated by the cross entropy between the predicted and real labels. In the GAN

model, the discriminator and the generator are usually denoted as D and G,

respectively. The loss function of the generator is given by Eq. 1. According

to the input noises, z, the generator, G, generates a fake image. Note that z

is usually sampled from a Gaussian noise distribution. Then, the cross entropy215

is calculated based on the output of the discriminator, D. Similarly, the loss

function of the discriminator is defined by Eq. 2.

LG = E [log(D(G(z)))] . (1)

LD = E [log(D(x))] + E [log(1−D(G(z)))] . (2)

Real?
or

Fake?

z

Noise

Generator G Discriminator D

Update(Wasserstein Distance)

Real Stroke Image

Stroke Image

Figure 3: The flowchart for generating stroke images using the GAN model.

Note that, since the architecture of the GAN model is changed, the loss

functions from the original GAN model are no longer suitable for the proposed

approach. Thus, the loss function from the Wasserstein GAN is introduced into220
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the model [38]. Wasserstein GAN is a variant of the GAN model that uses

the Wasserstein distance to replace the K-L divergence to measure the distance

between the two data distributions. Therefore, the loss functions of the GAN

model are presented in Eq. 3 and Eq. 4. The process of generating stroke

images using the GAN model is shown in Fig. 3.225

LG = E [−D(G(z))] . (3)

LD = E [D(G(z))]− E [D(x)] . (4)

In the proposed approach, the discriminator and generator are represented

by two multi-layer neural networks. The discriminator network consists of two

convolutional layers and two fully connected layers. The input and output

layers contain 1,024 and 1 neurons, respectively. In contrast, the generator

network consists of a fully connected layer and two transposed conventional230

layers. The input and output layers of the generator contain 128 and 1,024

neurons, respectively. The activation function of the hidden layers of both

networks is leaky ReLU, except that of the output layer in the discriminator

network.

3.3. Actor-Critic Network235

As shown in part (b) of Fig. 2, the actor-critic model consists of two net-

works: critic and actor. The actor network, A, generates the corresponding

action based on the input environmental states. The critic network, C, predicts

the reward value of the action based on the environmental states and the out-

put action from the actor network. As shown in Fig. 4, in the robot learning240

writing task, the input of the actor network is a Chinese character stroke image

generated by the generator. With this image, the actor network generates a set

of robot actions used to write strokes. The critic network predicts the reward

value of the action according to the action and stroke image generated by the

generator. Then, the critic guides the actor to update its action strategy. Note245
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Image of 
Writing Result 

Noise

Generator 

Stroke Image

Actor Track Points
Robot System

Discriminator

Real?
or

 Fake?
Critic

Q value

Deterministic policy gradient

Figure 4: The flowchart for generating stroke action using the actor-critic model.

that the training of the critic network is based on the discriminator’s evalua-

tion of the stroke action. Before the discriminator network evaluates the action,

the action must be written by the robot writing module and converted into an

image. Therefore, the discriminator calculates a reward for the stroke action

based on this image.250

The evaluation function provided by the discriminator network evaluates

only the quality of the entire stroke; the evaluation function cannot evaluate

the effect of the stroke writing process. Therefore, the minimum action unit of

the writing is to write a complete stroke. In other words, the actor network

must generate complete writing actions for writing a stroke within one genera-255

tion. In this case, the robot writing task is converted to a special type of deep

reinforcement learning task where the robot requires a one-time interaction with

its environment. Similar to the multi-armed bandit problem [46, 47], the robot

writing task becomes a single-step reinforcement learning task, which does not

consider the change process of the environment state task as a Markov decision260

process (MDP). In addition, the actor-critic model is a combination algorithm

of policy iteration and value iteration; i.e., it updates the model parameters

at each step. Thus, the actor-critic model can also be used for the single-step

reinforcement learning task. Since MDP is not a necessary assumption for the
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environment in the single-step reinforcement learning task, its optimal policy is265

to maximize single-step rewards. When the actor-critic model is applied to the

single-step reinforcement learning task, the Bellman equation for dealing with

the MDP character of the environment is redundant. Therefore, the Bellman

equation for calculating the Q value is omitted in our method. Additionally,

the critic network directly predicts the reward value of the action instead of the270

Q value.

In terms of the above considerations, the stroke action generated by the

actor network is composed of a series of stroke trajectory points, which indicate

the end position information of a brush pen. Thus, stroke action, A, is denoted

as A = (a1, a2, a3, · · · , ai), where i denotes the length of the stroke action, and275

ai is denoted as ai = (xi, yi, zi), which indicates that the position of the end of

the brush pen in a Cartesian coordinate system at time i. Therefore, the output

size of the actor network is determined by the length of the stroke action, which

is 3i in this work.

Since the reward value of a stroke action depends on the evaluation function,280

the loss function, LC , of the critic network is defined as follows:

LC =
1

N

N∑
i=1

(yi −D(x̂i))
2, (5)

where yi denotes the real reward of the stroke action, x̂i denotes the stroke

image generated by the robot, and N denotes the size of each training batch.

In addition, the deep deterministic policy gradient (DDPG) algorithm [45]

is used to update the parameters of the actor network. The DDPG algorithm285

updates the parameters of the actor network by applying the chain rule to

the expected return from the start distribution, J , with respect to the actor

parameters [45]. The deterministic policy gradient is calculated as follows:

∇θµJ = Est∼ρβ
[
∇aQ(s, a|θQ)|s = st, a = µ(st)∇θµµ(s|θµ)|s = st

]
, (6)

where µ(s|θµ) denotes the parameterized actor network, Q(s, a|θQ) denotes the

critic network, and θQ denotes the parameterized critic network.290
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Similar to the structure of the discriminator network, the actor network

consists of two convolutional layers and two fully connected layers. Since the

input to both discriminator and actor is stroke images, the discriminator and

the actor share the first two convolutional layers of the discriminator. In the

proposed model, the length of stroke action, i, is set to 6; therefore, the output295

layer of the actor network consists of 18 neurons. The structure of the critic

network is simpler than that of the actor and consists of five fully connected

layers. Because the inputs of the critic are stroke image and stroke action, the

input and output layers contain 1,048 and 1 neurons, respectively. To better

represent stroke action, the output layer of the action network uses a sigmoid300

function as the activation function. Except for that of the output layer in the

actor network, the network layers of the actor-critic model use a leaky ReLU as

the activation function.

3.4. Robot Writing Module

Robot

Pen

Writing Board

Camera

Figure 5: The hardware system of the calligraphy robot.

Fig. 5 shows the hardware system for the experimental robot system. The305

robot system consists of a 4-DOF robotic arm, a calligraphy brush pen, a writing

board, and a camera. The camera is used to capture the written content on the

writing board.

Since the stroke action generated by the actor network is a set of Cartesian

coordinates representing the end position of the brush pen, the robotic arm310

must translate the Cartesian coordinates into the angular values of the robot’s
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Figure 6: The structure of the robotic arm.

four joints. The structure of the robotic arm is shown in Fig. 6. The Cartesian

coordinates of the brush pen, ai, are seen as the Cartesian distance from the

end of calligraphy brush, e, to the origin position, o. When ai is given, the four

joint values of the robotic arm are calculated by inverse kinematics. To reduce315

the complexity of the inverse kinematics calculation, the j4 joint is fixed at the

time of writing, and only the first three joints are used to control the brush

writing.

To reduce noise interference, the image captured by the camera must be

processed before being passed to the discriminator network. The camera in320

the robot writing system is a high-resolution camera. The size of the captured

image is 1920×1080 pixels. Because the original image captured by the camera

is large, the image must be preprocessed by the camera module before being

sent to other models. The image processing module preprocesses the image as

follows: (1) An image of the fixed area of the writing board after the robot has325

finished writing the stroke is captured. (2) The captured image is converted to a

binary image. (3) The binary image is scaled to fit the size of the discriminator

input.

3.5. Model Training

In the proposed model, the two networks of the GAN model and the two330

networks of the actor-critic model must be trained. The GAN model provides

the environmental states and the evaluation function for the actor-critic model;
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therefore, the GAN model must be trained prior to the training of the actor-

critic model. In this case, the training of the entire model is divided into two

steps: (1) Training the GAN model and (2) Training the actor-critic model.335

3.5.1. Training of GAN model

The two networks of the GAN model are trained based on the parameter

updating relations defined in Eq. 3 and Eq. 4. As shown by the dotted line

in Fig. 3, the discriminator is trained according to the input stroke images

and corresponding labels. The generator is trained based on the output of the340

discriminator. To balance the learning speed of these two networks, the training

policy of the GAN model is set where the discriminator is trained once and the

generator is trained twice within a training epoch. The size of the stroke image

is set to 32× 32 pixels.

3.5.2. Training of the actor-critic model345

After the GAN model completes training, the discriminator and the gen-

erator are used for the training of the actor-critic model. As shown by the

dotted line in Fig. 4, the training sample of the critic consists of two parts: the

stroke image generated by the generator and the stroke action generated by the

actor. The corresponding training labels are represented by the evaluation of350

the stroke action by the discriminator. Before the discriminator evaluates the

stroke action, the robot writing system must convert the action into an image.

The actor is trained according to the evaluation of the critic to the actions and

state images. Based on the input action and images, the critic provides a de-

terministic policy gradient to the actor, which is used to update the parameters355

of the actor. Similar to the training policy of the GAN model, to ensure that

the learning speeds of the two networks are balanced, the training policy of the

actor-critic model is set such that the critic network is trained once and the

actor network is trained twice. In addition, to prevent the critic network from

over-fitting when it is learning from the discriminator network, the discrimina-360

tor network still trains itself while the actor-critic model is training. Unlike the

16



training in the GAN model, for every 1,000 training epochs in the training of

the actor-critic model, the discriminator network trains five epochs.

Note that the loss function of the discriminator is also modified. Thus, the

writing images captured by the robot writing module are embedded in the new365

loss function, defined as follows:

LD = E [λD(G(z)) + (1− λ)D(x̂)]− E [D(x)] . (7)

where λ is a hyper-parameter introduced into the loss function, λ is used to

control the weights of the generator and actor networks during the training of

the discriminator network, and x̂ represents the writing result generated by the

robot writing module based on the output of the actor network.370

In the training of the actor-critic model, a terminal threshold, τ , is set to

terminate the training process. The setting of τ is done in consideration of two

factors: (1) whether the critic network converges, and (2) whether, based on the

current critic network, the actor network converges. To determine whether the

actor network converges, we calculated the ratio of the loss value of the critic375

to the loss value before 100 training epochs. The loss value ratio is expressed

as follows:

Rd =

∣∣∣∣Lt−100 − Lt
Lt−100

∣∣∣∣ , (8)

where t denotes the training epochs of the actor-critic model, and Lt denotes the

loss value of the critic network in the i-th training epochs. The discriminator

is used as an evaluation function to assign an evaluation score for each input380

image. Thus, after t epochs of training, the image score is represented as D(x̂t).

Consequently, a score ratio, Rs, of D(x̂t) and D(x̂t−100) measures whether the

actor network converged. The calculation of the score ratio, Rs, is as follows:

Rs =

∣∣∣∣D(x̂t−100)−D(x̂t)

D(x̂t−100)

∣∣∣∣ , (9)

According to Eq. 8 and Eq. 9, the terminal threshold τ is calculated as
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follows:385

τ =

 1 if Rd ≤ τd, and Rs ≤ τs
0 else

, (10)

where τd and τs are two hyper-parameters. When the value of τ is 1, the training

of the actor-critic model is terminated.

To explore continuous control tasks for the calligraphy robot, noises are

added to the generated actions during the training process. The Ornstein-

Uhlenbeck process [45] is also used to generate explored actions. The Ornstein-390

Uhlenbeck process produces temporally correlated explorations in physical con-

trol problems. Since the robot model generates the entire action one time, when

adding noise, multiple actions generated by the actor network share an Ornstein-

Uhlenbeck process. Thus, the Ornstein-Uhlenbeck process is reset every 1,000

training epochs. Finally, the summarized training processes of the proposed395

model are shown in Algorithm 1.

4. Experiments and analysis

4.1. Experimental details

To verify the validity of the proposed model, the model was applied to an

experiment in writing Chinese character strokes. Then, a set of ablation ex-400

periments was designed to verify the performance of each sub-module of the

proposed model. Finally, to compare the performance of the proposed method

with other methods, a set of comparative experiments was designed.

Stroke 1:

Stroke 2:

Stroke 3:

Stroke 4:

Stroke 5:

Stroke 6:

Figure 7: Training samples used in the experiment; six strokes are labelled from stroke 1 to 6.
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Algorithm 1 Training phase of method

Require: Real stroke image data set, X, and random number, Z;

1: Initialize G, D, A, t, and C with random weights;

2: for t in p do

3: Produce a set of random number z;

4: Generate stroke image, xg, through G;

5: Output D(x) and D(xg) according to x and xg;

6: Calculate Gloss and Dloss by Eq. 3 and Eq. 4;

7: Use Gloss to update G parameters;

8: Use Dloss to update D parameters;

9: t+ +

10: end for

11: while τ 6= 1 do

12: Generate stroke image, xg, through G;

13: Generate stroke action, a, according to xg;

14: Robot writes the stroke accumulate to a; get an image x̂;

15: Input a and x̂ into C, and get ∇θµ by Eq. 6;

16: Use ∇θµ to update A parameters;

17: if t mod 2 == 0 then

18: Input x̂ into D, and get D(x̂);

19: Update C parameters by Eq. 5;

20: end if

21: if t mod 1000 == 0 then

22: Generate stroke image, xg, through G;

23: Output D(x), D(xg) and D(x̂) according to x, xg and x̂;

24: Calculate Dloss by Eq. 7;

25: Use Dloss to update D parameters;

26: end if

27: t+ +

28: end while
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In these experiments, the training of all the methods is based on a stroke im-

age data set extracted from a set of simple characters from Chinese Calligraphic405

textbooks. In addition, this stroke data set contains six different types of Chi-

nese character strokes. The data set contains more than 3,500 stroke samples,

with each stroke having more than 500 samples. Fig. 7 illustrates some of the

stroke samples from the training data set.

Figure 8: The stroke image is generated by the generator network after 2000 training epochs.

All the networks in the proposed approach are optimized by the Adam opti-410

mization algorithm [48], and the learning rate is set to 0.001. In the training of

the actor-critic model, the hyper-parameter, λ, is set to 0.05. The two parame-

ters, τd and τs, of the terminal threshold are set to 0.03 and 0.06, respectively.

The hyper-parameters θ and σ of the Ornstein-Uhlenbeck process are set to 0.15

and 0.2, respectively. In addition, the size of the mini-batches is set to 64 for415

all networks. Empirically, the GAN model generates high-quality images after

2,000 training epochs. For example, after 2,000 training epochs, the effect of the

generated stroke image is shown in Fig. 8. Therefore, in this experiment, the

pre-training times of the GAN model, p, are set to 2,000. The values of all pa-

rameters are shown in Table. 1. All neural networks in the proposed approach420

are constructed using TensorFlow 1.5 [49], which is an open-source library for

deep learning. Moreover, the proposed approach is trained on a GPU-based

algorithm computer.
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Hyper-

parameters

Values Hyper-

parameters

Values

learning rate 0.001 τd 0.03

batch size 64 τs 0.06

θ 0.15 σ 0.2

λ 0.05 p 2000

Table 1: The values of hyper-parameters.

4.2. Experimental results

(a) Early Phase (b) Medium Phase (c) Final Phase

Figure 9: Robotic writing results in different training stages.

Fig. 9 shows the writing results of one stroke in three training phases: early,425

medium, and final. In the early phase of the GAN model, the actor-critic model

did not gain any knowledge on stroke writing; therefore, the writing trajectories

shown in Fig. 9a are more like randomly generated lines. As shown in Fig. 9b,

after a number of training epochs, the model writes the approximate contour

of the stroke in the medium stages of training. Then, more writing details are430

obtained by the model; thus, the model successfully learns how to write the

stroke in the final phase. As shown in Fig. 9c, the writing results demonstrate

very high quality.

Fig. 10 shows the process steps of the robotic arm writing a stroke. In

Step 1, the robotic arm controls the brush pen attached to the arm to reach435

a predefined position. Then, from Step 2 to Step 5, the robotic arm moves

the brush pen according to the action trajectory points generated by the actor

21



Step 1 Step 2 Step 3

Step 6 Step 5 Step 4

Figure 10: Robotic arm in action writing a stroke.

network. The arrows in Fig. 10 indicate the sequence of motion of the brush.

Finally, when all the trajectory points of the stroke have been executed, the

brush returns to a predefined position (See Step 6).440

The writing performance of the proposed approach on the stroke data set is

shown in Fig. 11. After the training of the model is complete, the model can

successfully write all six strokes of the stroke data set. Although there are still

a few incorrect strokes, most of the results show the main features of strokes. In

addition, among the results, the quality of several writings has reached the level445

of human writing (e.g., see the strokes marked with a green box in Fig. 11). In

addition, as shown in the strokes marked with a red box in Fig. 11, for each type

of stroke, one batch of stroke action generated by the actor network is different

from the others. This shows that the noise mechanism of the actor-critic model

is effective in exploring stroke action diversity.450

4.3. Ablation experiments

To determine the advantages of the GAN model of our method and to analyse

the writing results using numerical values, in this section, two ablation exper-

iments are introduced: the DDPG method and no-noise method. The DDPG

method is from our previous work [50], in which a typical actor-critic model455

was used. Compared with our current work, the DDPG method merely applied

a manually designed reward function rather than a GAN model. Without the

GAN model, the DDPG method became a purely deep reinforcement learning
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(a) Stroke 1 (b) Stroke 2 (c) Stroke 3

(d) Stroke 4 (e) Stroke 5 (f) Stroke 6

Figure 11: Writing results of all the six strokes.
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approach. In the no-noise experiment, the noise generated by the Ornstein-

Uhlenbeck process was removed during the training of the actor-critic module.460

This ablation experiment was used to evaluate the performance impact of the

exploration mechanism of the proposed model. Note that the DDPG experi-

ment and the no-noise experiment were trained on the same stroke data set as

that of the proposed method.

In the DDPG experiment, the cosine similarity was used as the reward func-465

tion. Cosine similarity is usually used to measure the similarity between two

vectors; if the two vectors are similar, their cosine value is larger and close to

1; otherwise, their cosine distance is smaller. Since the GAN model is replaced

by the cosine similarity, the state image is also replaced by the stroke image

from the data set. In this experiment, the state image from the data set is470

represented by simg, and the image of the writing result captured by the robot

writing module is represented by aimg. The cosine distance, R(a, s), between

simg and aimg is used as the reward value of the generated action. The reward

value combines with the action of the agent and state image, simg, to train the

critic network. Thus, R(a, s) is defined as follows:475

R(a, s) =
simg · aimg
‖simg‖‖aimg‖

, (11)

(a) No-noise method (b) DDPG method (c) Our method

Figure 12: Comparison of the writing results. (a), (b) and (c) represent the writing results of

the no-noise, DDPG and proposed methods, respectively.

Fig. 12 shows the experimental results. Although the no-noise method also

learns to write these six strokes, it can be seen from Fig. 12a that the generated
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results, compared with other methods, lose many local features of the strokes.

This phenomenon is more significant for complex strokes. For example, the

no-noise method cannot generate smooth stroke 5 (shown in the highlighted480

picture in Fig. 12c), which is generated by our proposed method. In addition,

all the writing results are very consistent. In other words, the writing style of

the method lacks diversity. Therefore, through this experiment, the exploration

mechanism is proven to have an impact on the local features and diversity of the

generated results. Moreover, the results generated by the DDPG model (Fig.485

12b) are worse than the results generated in the other two sets of experiments.

Fig. 12b shows that there is a major difference between the experimental results

and the real strokes that still cannot be eliminated. The reason for this difference

may be due to the limitations of the reward function.

To further objectively evaluate the performance of the model and collectively490

measure the similarity between training samples and generated samples, the

Frechet inception distance (FID) [51] was introduced into the experiment; the

more similar two image data sets are, the smaller their FID values are. In this

experiment, the FID values between the training data set and the stroke images

written by the three models to measure their performance were calculated and495

are shown in Table 2.

Writing results DDPG method No-noise

method

Our method

Stroke 1 85.89 64.80 62.14

Stroke 2 91.69 68.04 61.11

Stroke 3 93.70 61.15 55.24

Stroke 4 88.02 72.12 62.45

Stroke 5 92.67 54.58 53.51

Stroke 6 94.39 59.73 56.04

Table 2: FID values of the writing results and baselines.

Each row of Table 2 represents the FID values for a class of stroke over the
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three methods. The scores for the no-noise method are between 54 and 73; the

scores for the DDPG method are between 85 and 95; and the score range of the

proposed method, 53 to 63, is the lowest. From Table 2, the scores between the500

three methods are consistent with the difference in human observation shown

in Fig. 12. For example, the FID values of the DDPG model for each type

of stroke are larger than the FID values of the proposed model, especially for

strokes 3 and 5.

Through this ablation experiment, we found that the GAN model plays a505

key role in the proposed method. Compared with the traditional reinforcement

learning method, the method using the discriminator network as the reward

function leads the model to perform better. Furthermore, compared with the

manually designed reward function, the GAN model has two advantages as

a reward function: (1) The discriminator network evaluates the sample more510

accurately; thus, the GAN model is more suitable for guiding the learning of

the agent. (2) The design of the GAN model is convenient. Compared with the

artificially designed reward functions, the design of the GAN model does not

need to overly consider the details of the sample.

4.4. Comparative analysis515

The proposed method was also compared with another existing GAN-based

calligraphy robot study. This comparison study, proposed by Chao et al. [35],

applies the stochastic policy gradient method to the GAN model. The essence of

the task of robots learning to write through images is the mapping of data from

image space to action space. Therefore, the traditional GAN models cannot520

be used directly in these tasks. To address this problem, Chao et al. use the

policy gradient method in the training of the generator network to implement

the backpropagation of the gradient information.

Similar to the ablation experiment in the previous section, the proposed

method and the GAN method are also compared on the same stroke data set,525

and the FID evaluation method is used to measure the performance of both. The

experimental results, summarized in Table 3, show that our method performs
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Writing results GAN method Our method

Stroke 1 59.62 62.14

Stroke 2 60.82 61.11

Stroke 3 58.49 55.24

Stroke 4 56.19 62.45

Stroke 5 64.89 53.51

Stroke 6 57.77 56.04

Table 3: FID value comparison of our model and the comparison models.

similarly to the method of Chao et al. However, the proposed method generates

better results for strokes 3, 5 and 6.

In the work of Chao et al., the action trajectory points are represented530

in the form of discrete data; therefore, the size of their GAN model is very

large. In contrast, our method represents the action trajectory points in the

form of continuous data; therefore, our GAN model size is much smaller. The

reason is because in the GAN based method, the trajectory point is represented

as discrete data; 804 · i neurons are used to represent a trajectory sequence,535

where i denotes the length of the trajectory sequence. In contrast, our model

uses continuous data to represent the trajectory points, and 3 · i neurons are

used to express a trajectory sequence. Therefore, the network’s size has been

significantly reduced.

In summary, our method successfully solves the learning task of writing Chi-540

nese strokes through stroke images. Compared with the existing methods, our

method has two characteristics: (1) Compared with a method based on re-

inforcement learning, our method has a simple and accurate reward function,

which ensures that our method generates high-quality writing actions and opti-

mizes the learning efficiency of the agent. (2) Compared with a method based545

on the GAN model, in our method, the robot writing action is presented as

a set of continuous values, which simplifies the complexity of the calligraphic

learning.
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5. Conclusion

In this work, a robotic calligraphy learning approach that mimicks a hu-550

man’s learning process was developed. A GAN model simulated the behaviour

of humans recognizing images and re-imaged in their minds. A deep reinforce-

ment learning method simulated the mechanism of a human learning to write.

Finally, we used the trained GAN model to assist in the training of the deep

reinforcement learning method. Without a large number of training samples555

and a manually designed evaluation function, the reinforcement learning auto-

matically learns to write with the assistance of the GAN model. The training

results show that the robot successfully learns how to write strokes.

We conducted a series of ablation experiments to test the importance and

efficiency of the various components of the model. The experimental results560

demonstrate that the addition of the GAN module as a reward function for the

deep reinforcement learning method is a key factor in the successful training of

the model. Moreover, exploration noise played an important role in the learning

speed and learning efficiency of the model. In addition, because our model is

a continuous control structure, the entire GAN model has a simpler network565

architecture.

Although the proposed approach is promising for a robot learning to write

strokes from images, it still has room for improvement. For example, a tradi-

tional GAN model, which is used mainly to deal with image generation problems,

is used in our method. Thus, our model generates and evaluates the entire ac-570

tion directly and does not consider the temporal nature of the writing action.

If we divide the action into a series of sub-actions and train the GAN model to

appropriately evaluate these sub-actions, then the GAN model will provide a

more accurate reward function for the deep reinforcement learning model.
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