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Abstract 

Emitters that exhibit thermally activated delayed fluorescence (TADF) are of interest for commercial 
applications in organic light-emitting diodes (OLEDs) due to their ability to achieve internal quantum 
efficiency of 100%. However, beyond the intrinsic properties of these materials it is important to 
understand how the molecules interact with each other and when these interactions may occur. Such 
interactions lead to a significant red shift in the photoluminescence and electroluminescence, making 
them less practicable for commercial use. Through summarizing the literature, covering solid-state 
solvation effects and aggregate effects in organic emitters, this mini review outlines a framework for 
the complete study of TADF emitters formed from the current-state-of-the-art techniques.  

1 Introduction 

Increasing the efficiency and stability of organic light-emitting diodes (OLEDs) is a focus of significant 
attention for researchers and one aspect of improving these systems is to produce novel emitters that 
have internal quantum efficiencies (IQEs) above the 25% dictated by spin statistics.(Baldo, O’Brien, 
and Forrest 1999) Thermally activated delayed fluorescence (TADF) (Uoyama et al. 2012; Dias et al. 
2013) is one phenomenon that is used to achieve 100% IQE. (Y. Liu et al. 2018; Zeng et al. 2018; Lin et 
al. 2016) This significant increase arises from the molecule being able to promote non-emissive triplet 
states to the emissive singlet state via reverse intersystem crossing (rISC). The rISC process requires a 
small energy gap between the singlet and triplet state and this can be achieved in a variety of ways 
and through a variety of molecular designs: exciplex systems where the donor (D) and acceptor (A) 
are non-identical molecules;(Tang et al. 2020; Sarma and Wong 2018; Colella, Danos, and Monkman 
2019) organometallic systems;(Di et al. 2017; Conaghan et al. 2018; Yersin et al. 2018; Mahoro et al. 
2020) metal halide perovskites;(Zhou and Yan 2019; Qin et al. 2020) and fully organic systems where 
the D and A are covalently bonded.(Uoyama et al. 2012; Dias et al. 2013) The subjects of this review 
are fully organic covalently bonded donor – acceptor (D – A) systems or donor – acceptor – donor (D 
– A – D) systems. D – A and D – A – D systems have the highest occupied molecular orbital (HOMO) 
and lowest unoccupied molecular orbital (LUMO) localized on the D and A units respectively to 
produce charge-transfer (CT) states and the required small singlet – triplet gap. This localization is 
achieved through control of the dihedral angle between the D and A moieties and the relative electron 
donating and accepting strengths of the D and A units.  

TADF systems typically emit from singlet charge-transfer states (1CT), which are almost isoenergetic 
with triplet charge-transfer states (3CT), however intersystem crossing, and rISC, between these two 
states is prohibited. (Lim and Kedzierski 1973) This limitation can be overcome by coupling to a third 
state that does not have CT character. For most TADF systems this third state is a close-lying locally 



excited triplet state (3LE). Through spin-vibronic coupling of the 3LE state with the 3CT state the rISC 
process between 3CT and 1CT is enhanced. This was demonstrated theoretically by Gibson et al. 
(Gibson, Monkman, and Penfold 2016) and experimentally by Etherington et al. (Etherington et al. 
2016). The need for proximity of the 3LE state with the 3CT state provides a new criterion for the 
molecular design of TADF systems. One major impact of this result is that to design a TADF emitter 
with a particular emission wavelength, the choice of D and A units is now limited by their 3LE energy. 

Most work on TADF systems, through photophysical studies and within devices, is performed either 
in the solution state or dilute concentrations within small molecule or polymer hosts, meaning that 
the measurements are in an ideal scenario and relate predominantly to a single, isolated molecule. 
However, the CT states are also susceptible to solvent polarity or solid-state host rigidity, which can 
influence the emissive and functional behavior of the compound and there are many research articles 
and reviews on this topic. (dos Santos, Etherington, and Monkman 2018; Haseyama et al. 2017; dos 
Santos, Ward, Bryce, et al. 2016; Chatterjee and Wong 2019; Hung et al. 2019; Etherington et al. 2016; 
dos Santos, Ward, Data, et al. 2016; Wong and Zysman-Colman 2017) Although it must be noted that 
there is an extensive field of research into exciplex systems and controlling fluorescence behavior 
through host – guest interactions, where intermolecular interactions are embraced. This literature 
considers the interactions between non-identical molecules to achieve the small exchange energies 
and high rISC rates required for TADF(Chatterjee and Wong 2019; K. H. Kim, Yoo, and Kim 2016; 
Nakanotani et al. 2016; Tang et al. 2020; Sarma and Wong 2018) and it has been observed that host – 
guest interactions can also imbue functional properties.(Matsunaga and Yang 2015; Feng et al. 2017; 
Ono et al. 2018) 

Equally important is a molecule’s interaction with identical molecules. There is extensive literature 
concerning aggregation-induced emission (AIE) of organic systems, (Hong, Lam, and Tang 2009; Mei 
et al. 2014; Luo et al. 2001) and these effects need to be considered for TADF systems. This review will 
give an overview of the phenomena that occur when we consider TADF emitters beyond the ideal of 
the single molecule as well as the techniques used to study them. This review will focus on novel 
compounds that are designed or used for their behavior in aggregates and how studying the 
molecules’ mechanochromism, thermochromism and concentration effects in doped films facilitate 
the understanding of new functional behaviors. The review will also reflect on the discovery of 
functional behavior in existing compounds, especially 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-
dicyanobenzene (4CzIPN) – an archetypal TADF emitter,(Uoyama et al. 2012) and how this may 
influence the interpretation of previous results highlighting the two effects related to the red shifting 
of emission with concentration: solid-state solvation effect (SSSE) and aggregation.  

2 Concentration and Aggregation in Organic Emitters 

Aggregation-caused quenching,(Thomas, Joly, and Swager 2007) and AIE (Hong, Lam, and Tang 2009; 
Mei et al. 2014; Luo et al. 2001) are two phenomena that provide a framework for the study of organic 
emitters beyond the single molecule in neat films, organic crystals and doped matrices. The basis of 
the AIE field is to understand the interaction between the molecules in these systems and establish 
the causes of enhancements or reductions in emission, shifts in emission color, mechanochromism or 
thermochromism. Recent publications and reviews in the area include (H. Zhang et al. 2017; Sturala 
et al. 2017; H. Zhang et al. 2019, 2020; Mei et al. 2014; Hong, Lam, and Tang 2009; H. Liu et al. 2018; 
Furue et al. 2016; Gan et al. 2016; Yu et al. 2020), which demonstrate that phenyl rings should not be 
considered as entirely inert spacer units in the design of organic emitters and that the aggregation 
effects can be controlled through photoexcitation. These results have far-reaching implications for 
molecular design of organic emitters as researchers now need to take care in their choice of moieties 
during synthesis.  

 



2.1 Novel TADF Emitters Exhibiting Functional Behavior 

Implementing the techniques found in the works mentioned above to TADF systems becomes 
somewhat more complicated as there is now not just the behavior of the prompt singlet emission to 
explain but also the processes and energetics underlying rISC and delayed emission. Functional 
phenomena in TADF systems as a result of intermolecular interactions have been observed for a range 
of D – A and D – A – D systems (Zheng et al. 2019; Hladka et al. 2018; Skuodis et al. 2018; Bhatia and 
Ray 2019; Huang et al. 2018; Shi et al. 2018; Pashazadeh et al. 2018; Klimash et al. 2018). These works 
provide methodologies and insights in understanding the influence that intermolecular interactions 
have on TADF emitters including their photophysical properties. The compounds discussed in this 
review are shown in Figure 1a. 

Skuodis et al. (Skuodis et al. 2018) observed changes in emission behavior as a function of 
concentration, the host molecule, mechanical force and thermal annealing in 4,6-Di(9,9-
dimethylacridan-10-yl)isophthalonitrile (DAcIPN). The researchers found the photoluminescence 
quantum yield (PLQY) of DAcIPN decreased from 83% at 15 wt% in 1,3-Bis(N-carbazolyl)benzene 
(mCP) to 47% in a film of neat DAcIPN – they attribute this result to a decrease in TADF contribution 
in the neat films. The energy of the emission red shifted with increasing concentration and was 2.32 
eV (533 nm) in the mCP matrix and 2.19 eV (565 nm) in the neat film, a trend that was observed for a 
variety of different hosts (Figure 1b-e). The authors considered two explanations for this red shift in 
emission for the compound in solid-state hosts: SSSE (Bulović et al. 1999) and aggregation. They found 
that the red shifts did not correlate with the solid-state polarizabilities of the hosts and therefore 
aggregation was the dominant effect in these systems, with concomitant changes in the dihedral angle 
of the DAcIPN. During thermal annealing of the films at 130 °C the authors observed a significant blue 
shift in the emission of both the doped and non-doped films: the doped film blue shifted from 2.19 eV 
(565 nm) to 2.40 eV (517 nm), which was attributed to the thermal energy allowing the molecules to 
disaggregate. This disaggregation allowed the dihedral angle to increase, restoring the higher energy 
emission. The disaggregation also caused an increase in the PLQY of the neat film from 47% to 64%.  

A similar study by Hladka et al. (Hladka et al. 2018) from the same group focused on these phenomena 
in sky-blue emitters based on perfluorobiphenyls (PFBP). The researchers studied four systems known 
as PFBP-1a, PFBP-1b, PFBP-2a and PFBP-2b and showed that PFBP-2a, contrary to the other 
compounds, showed a blue shift in emission when a thermally-evaporated film of the compound was 
fumed with toluene vapor. This blue shift was attributed to polymorphism of the compound and 
shows that very small changes in structure between a set of similar compounds can have significant 
effects on their aggregation properties. As polymorphism is a common explanation for many of these 
observed properties in the solid-state, knowledge of polymorphism and crystallography is crucial to 
understanding the fundamental origins of this functional behavior.(Levesque, Maris, and Wuest 2020; 
Bernstein 2020; Chung and Diao 2016) The importance of knowing the crystal structures of the 
compounds for understanding the packing and intermolecular interactions is demonstrated in the 
work by Klimash et al. (Klimash et al. 2018) In this work they uncovered differences in the molecular 
crystal structures and how these relate to differences in the TADF efficiency. 



Figure 1. (a) The chemical structures of the compounds discussed in the review. (b-e) The effects of 
host and concentration on the emission profile of DAcIPN showing the significant red shifts observed 
when increasing the compound concentration. In (b) the shift in emission of DAcIPN in 15 wt% films 
of hosts of different polarizability showing that the red shift trend does not follow according to the 
polarizability of the host. (c-e) Red shifts in the emission occur across three different hosts, mCP, 
TCz1(Tsai et al. 2007) and zeonex respectively with increasing concentration. Adapted with permission 
from Elsevier from Figure 4 in (Skuodis et al. 2018) (f,g) The different emission profiles of PTZ-AQ as a 
function of solid-state environment from Y-solid to R-solid. Adapted with permission from John Wiley 
and Sons from Figure 1 in (Huang et al. 2018)  (h) The different forms and the methods of obtaining 
them for PTZ-DBPHZ-PTZ and (i) how the quasi-equatorial (eq) and quasi-axial (ax) conformers of 
phenothiazine influence the solid-state emission of PTZ-DBPHZ-PTZ. Adapted from Figures 4 and 8 in 
(Okazaki et al. 2017) (Published by The Royal Society of Chemistry) 
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Polymorphism as one of the causes of different TADF behavior in crystalline films/powders is reported 
by Zheng et al.(Zheng et al. 2019) in 4,4’-(6-(9,9-dimethylacridin-10(9H)-yl)quinoxaline- 2,3-
diyl)dibenzonitrile (DMAC-CNQ) and 4,4’-(6-(9,9-dime- thylacridin-10(9H)-yl)-7-fluoroquinoxaline-2,3-
diyl)dibenzo- nitrile (FDMAC-CNQ). The authors reported two different polymorphs for DMAC-CNQ, 
which they termed Y-crystal and O-crystal and three polymorphs for FDMAC-CNQ termed Y-crystal, 
O-crystal and R-crystal based on the emission color (Yellow, Orange and Red). The changes in emission 
color between the crystals are due to different conformations of the DMAC moiety that then has a 
resultant effect on the π-π interactions in the crystal. The trend for both systems is that, going from 
yellow to red, the number of π-π interactions increases as a function of the DMAC conformation. 
Similarly, a trend of decreasing TADF contribution and PLQY was observed going from Y-crystal to R-
crystal, again related to the conformations of the compound. These single crystal studies which are 
linked to the molecular structure has allowed the authors to interpret the mechanochromism 
behavior they observed from the pristine, ground and fumed states of the compound. Single crystal 
X-ray diffraction and powder X-ray diffraction studies provide an important tool for the study of TADF 
beyond the single molecule and are a key part of the framework in determining aggregation effects. 

Huang et al.(Huang et al. 2018) demonstrated the significant accumulation of functional behavior that 
can be obtained in TADF D – A molecules. In the compound 2-(phenothiazine-10-yl)-anthraquinone 
(PTZ-AQ) they observed TADF, aggregation-induced emission and mechanochromism alongside 
polymorphism. They comment on the effect that aggregation has on the TADF behavior arguing that 
TADF can even be tuned by the aggregation state. Figures 1f and 1g show the different emission 
profiles that can be obtained as a function of solid-state environment. The crystals and solids, which 
the authors categorize into five different aggregation states, facilitate emission energies from the 
green to the red: a yellow solid (Y-solid), a red solid (R-solid), a yellow rod-like crystal (Y-crystal), an 
orange flake-like crystal (O-crystal) and a red flake-like crystal (R-crystal) with the R-crystal showing 
the smallest singlet-triplet gap and high PLQY. 

In general, the idea of molecular conformation affecting the TADF and mechanochromism properties 
of a compound is in agreement with the work of Okazaki et al. (Okazaki et al. 2017) In 2017 the 
researchers compared phenoxazine – dibenzo[a,j]phenazine – phenoxazine (POZ – DBPHZ – POZ) and 
the phenothiazine analogue with tert-butyl groups (tBu-PTZ – DBPHZ – tBu-PTZ) and (PTZ – DBPHZ – 
PTZ) without tert-butyl groups. Although two polymorphs of PTZ – DBPHZ – PTZ were found only one 
of tBu-PTZ – DBPHZ – tBu-PTZ was discovered. In this study the emission of both compounds red 
shifted with grinding. Upon heating the emission of tBu-PTZ – DBPHZ – tBu-PTZ continued to red shift 
however, the emission of PTZ – DBPHZ – PTZ blue shifted (Figure 1h). The particular mechanochromic 
behavior of PTZ – DBPHZ – PTZ is linked to the tendency for PTZ to form as one of two conformers 
(Figure 1i): quasi-axial (ax) or quasi-equatorial (eq).(Bodea and Silberg 1968; Malrieu and Pullman 
1964; Etherington et al. 2017; dos Santos, Etherington, and Monkman 2018; Coubeils and Pullman 
1972) The red emission comes from the highly twisted equatorial-equatorial conformer, the orange 
from the axial-equatorial and the yellow emission from the axial-axial conformer which allows 
formation of a higher energy 1LE state. This again demonstrates the importance of linking 
mechanochromic and TADF behaviors to the molecular structure through single crystal X-ray 
diffraction techniques. Mechanochromism is a useful tool and part of the framework for studying 
intermolecular effects in TADF systems. The work by Pashazadeh et al. (Pashazadeh et al. 2018) shows 
how TADF can be turned on and off with grinding and how the intermolecular interactions helped 
mediate the singlet triplet gaps and control the fundamental emission phenomena.  

2.2 Uncovering Intermolecular Effects in Existing Motifs 

As noted in the work by Skuodis et al. (Skuodis et al. 2018) there are two proposed origins for the red 
shift with increasing concentration in solid-state hosts: the SSSE effect (Cotts et al. 2017; Delor et al. 
2017; Han and Kim 2019) and aggregation (dimer or intermolecular) effects. (D. Zhang et al. 2019; 



Skaisgiris et al. 2019)  In this section of the review, literature surrounding an existing and widely-used 
motif, 4CzIPN, (Uoyama et al. 2012) will be used to contextualize this red shift in emission.  

In 2017 Kim et al.(H. S. Kim, Park, and Suh 2017) studied the effects of concentration on the emission 
profile and TADF characteristics of 4CzIPN. They observed a significant redshift in the emission with 
increasing concentration (Figure 2a-e) and a decrease in the TADF lifetime. These red shifts, both in 
photoluminescence and electroluminescence, have been observed by a range of researchers. (Niwa 
et al. 2018; B. S. Kim and Lee 2014; Wang et al. 2016; Zhu et al. 2017; Nakanotani et al. 2013; Komatsu 
et al. 2015; Li et al. 2018). Kim, Park and Suh (H. S. Kim, Park, and Suh 2017) attributed these red shifts 
and the consequential change in TADF behavior to the changing dipole moment of the surrounding 
matrix as the host molecules are subsequently replaced with more 4CzIPN molecules (Figure 2a). 
4CzIPN is more polar than the host 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP) and therefore as the 
concentration increases, the dipole moment and polarizability of the environment increases 
producing a red shift in the emission. This is the effect known as SSSE.(Bulović et al. 1999)  

 

Figure 2. (a) A diagram showing the effect of increasing concentration on the processes of 4CzIPN. 
The dipole moment of 4CzIPN is larger than CBP and affects the emission color of neighboring 4CzIPN 
molecules through SSSE. (b-e) Photophysical studies of 4CzIPN in evaporated films of CBP with 
increasing concentration. (b) There is a reduction in intensity and a bathochromic shift in the emission 
color and (c) a reduction in the intermolecular distance that leads to (d-e) a reduction in the delayed 
fluorescence lifetime (τDF). Figures adapted with permission from Kim, Hyung Suk, So-Ra Park, and Min 
Chul Suh. 2017. “Concentration Quenching Behavior of Thermally Activated Delayed Fluorescence in 
a Solid Film.” The Journal of Physical Chemistry C 121 (26): 13986–97. 
https://doi.org/10.1021/acs.jpcc.7b02369. Copyright 2017 American Chemical Society.(H. S. Kim, 
Park, and Suh 2017) (f) The effects of dimers on the emission color of 4CzIPN that was demonstrated 
under UV illumination in a sublimation tube. (g) The appearance of the absorption band of the dimer 
species with increasing concentration in a zeonex film and (h) the resultant effect on 
photoluminescence. The presence of the new absorption band allows direct excitation of the dimer 
species, which has characteristic emission (shaded area) that appears in (i) the photoluminescence of 



evaporated films of  3,3′-Di(9H-carbazol-9-yl)-1,1′-biphenyl (mCBP) and (j) the electroluminescence of 
devices using a proprietary material from Merck as the host. Figures adapted from (Etherington et al. 
2019) 

Performing measurements in solid-state hosts with different polarities like Skuodis et al. (Skuodis et 
al. 2018) is one way of deconvoluting SSSE and aggregation effects, however to completely 
characterize these systems a diverse framework of measurements is required. In 2019, Etherington et 
al. (Etherington et al. 2019) performed a study on 4CzIPN, incorporating techniques used in the 
majority of investigations mentioned in section 2.1, including mechanochromism, thermochromism, 
single-crystal X-ray diffraction and combined them with time-resolved photoluminescence 
spectroscopy. This framework uncovered the dimer species of 4CzIPN present in certain 
environments. The effects of these intermolecular interactions were seen during sublimation of 
4CzIPN and Etherington et al. observed that crystals and solid-state powders with different emission 
colors were produced along the sublimation tubing (See Figure 2f). This emission color was found to 
be changeable through thermal annealing and the introduction of mechanical energy. The fact that in 
neat films there were changes in emission color without a change in polarizability of the surrounding 
media suggests that SSSE is not the sole, or even dominant, effect in determining the emission 
properties of 4CzIPN. Indeed, the related material 2,3,5,6-Tetra(carbazol-9-yl)benzene-1,4-
dicarbonitrile (4CzTPN)(Uoyama et al. 2012) is known to give emission of orange-red within the solid-
state but only yellow emission in one of the most polar solvents dimethyl sulfoxide (DMSO). This result 
strongly suggests that polarizability is not the most crucial effect for the emission properties of these 
materials in the solid-state. Theoretical work by Northey, Stacey and Penfold (Northey, Stacey, and 
Penfold 2017) shows that the SSSE, while present in TADF systems, can be restricted due to rigidity of 
the host molecule in a solid-state environment.  

The dimer/aggregate species observed in 4CzIPN through excitation at 2.33 eV (532 nm), significantly 
below the band gap of the monomer absorption band (Figure 2g), has an emission profile that almost 
exactly matches the neat film (Figures 2i and 2j). This gives unequivocal evidence that intermolecular 
interactions play a key role in determining the emission properties, color purity and TADF efficiency 
of these systems. The framework Etherington et al. established (Etherington et al. 2019), which builds 
upon techniques in the wider literature (Section 2.1) provides the means to deconvolute SSSE from 
intermolecular effects. This is an important aspect to build the complete picture of TADF behavior 
beyond the single molecule while highlighting the need for researchers to be acutely aware of 
intermolecular interactions in future studies. 

3 Conclusion and Outlook 

While there has been vast development of new TADF emitters and our understanding of the 
fundamental processes of rISC and the spin states has developed, it is now time to look towards 
understanding these processes in non-ideal situations using the techniques and framework discussed 
above. This framework will facilitate the development and understanding of functional materials that 
are sensitive to mechanical and thermal energy while opening up pathways to AIE-based, non-doped 
OLEDs.(Furue et al. 2016; H. Liu et al. 2018; Cai et al. 2020; Yang et al. 2020) It will also help unify the 
study of intramolecular TADF emitters with the studies of polymorphism,(Levesque, Maris, and Wuest 
2020; Bernstein 2020; Chung and Diao 2016) exciplexes,(Tang et al. 2020; Sarma and Wong 2018; K. 
H. Kim, Yoo, and Kim 2016) and host – guest interactions.(Ono et al. 2018; Feng et al. 2017; Matsunaga 
and Yang 2015) 

The framework should continually incorporate new experimental techniques that are sensitive to the 
environmental changes underpinning this behavior to be controlled. So far, the framework includes 
single crystal studies and controlled mechanochromic and thermochromic analyses. This framework 
will then allow for the control and use of these properties as demonstrated in the work by Bhatia and 



Ray.(Bhatia and Ray 2019) The researchers utilized the dimer/aggregate state, not to improve TADF 
but rather, to introduce room temperature phosphorescence. A combination of the emission profiles 
of the monomer, dimer and aggregated species produces a wide band white afterglow. 

Future work will specifically link molecular structure to the desired properties. Sussardi et al. have 
begun this progress linking the crystal structure of a compound directly to the emission profile as a 
function of pressure. (Sussardi et al. 2020) This work allows a systematic way to study and correlate 
the intermolecular interactions and the photophysics. Etherington et al. (Etherington et al. 2019) 
showed that the addition of tert-butyl groups do little to prevent the intermolecular interactions and 
thus we must look to bulkier spacer units or alternative methods to control these effects. High-
pressure crystallography, similar to the work of Sussardi et al.,(Sussardi et al. 2020) would be able to 
test the limit of these bulky units.  The techniques and studies mentioned in this review provide a basis 
to develop future frameworks and criteria for inhibiting or enhancing intermolecular interactions. This 
will help to provide high color purity compounds for OLED commercialization and unlock new 
functional behavior for applications beyond OLEDs. 
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