Northumbria Research Link

Citation: Hodnebrog, Ø., Aamas, B., Fuglestvedt, J. S., Marston, George, Myhre, G., Nielsen, C. J., Sandstad, M., Shine, K. P. and Wallington, T. J. (2020) Updated global warming potentials and radiative efficiencies of halocarbons and other weak atmospheric absorbers. Reviews of Geophysics, 58 (3). e2019RG000691. ISSN 8755-1209

Published by: American Geophysical Union

URL: https://doi.org/10.1029/2019RG000691 https://doi.org/10.1029/2019RG000691

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/id/eprint/43834/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)

Updated global warming potentials and radiative efficiencies of 1 2 halocarbons and other weak atmospheric absorbers 3 Ø. Hodnebrog¹, B. Aamaas¹, J. S. Fuglestvedt¹, G. Marston², G. Myhre¹, C. J. Nielsen³, 4 M. Sandstad¹, K. P. Shine⁴, T. J. Wallington⁵ 5 6 7 ¹Center for International Climate Research (CICERO), P.O. Box 1129 Blindern, N-0318 8 Oslo, Norway 9 ²Northumbria University, Newcastle, UK 10 ³Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, 11 Norway ⁴Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading, 12 13 RG6 6BB, Berks, UK 14 ⁵Ford Motor Company, Research & Advanced Eng. Dept., Mail Drop RIC-2122, Dearborn, 15 MI 48121-2053, USA 16 17 Corresponding author: Øivind Hodnebrog (oivind.hodnebrog@cicero.oslo.no) 18 19 **Key Points:** 20 Radiative efficiencies are reassessed for more than 600 compounds, and global 21 warming potentials calculated for around 250 of these 22 42 compounds have >10% different radiative efficiency compared to a comprehensive 23 review in 2013 Present-day radiative forcing due to halocarbons and other weak absorbers is 0.38 24 [0.33-0.43] W m⁻², which is ~18% of the CO₂ forcing 25 26 27 28 29

Abstract

Human activity has led to increased atmospheric concentrations of many gases, including halocarbons, and may lead to emissions of many more gases. Many of these gases are, on a per molecule basis, powerful greenhouse gases, although at present-day concentrations their climate effect is in the so-called weak limit (i.e. their effect scales linearly with concentration). We published a comprehensive review of the radiative efficiencies (RE) and global warming potentials (GWP) for around 200 such compounds in 2013 (Hodnebrog et al., 2013). Here we present updated RE and GWP values for compounds where experimental infrared absorption spectra are available. Updated numbers are based on a revised "Pinnock curve", which gives RE as a function of wavenumber, and now also accounts for stratospheric temperature adjustment (Shine and Myhre, 2020). Further updates include the implementation of around 500 absorption spectra additional to those in the 2013 review, and new atmospheric lifetimes from the literature (mainly from WMO (2019)). In total, values for 60 of the compounds previously assessed are based on additional absorption spectra, and 42 compounds have REs which differ by >10% from our previous assessment. New RE calculations are presented for more than 400 compounds in addition to the previously assessed compounds, and GWP calculations are presented for a total of around 250 compounds. Present-day radiative forcing due to halocarbons and other weak absorbers is 0.38 [0.33-0.43] W m⁻², compared to 0.36 [0.32-0.40] W m⁻² in IPCC AR5 (Myhre et al., 2013), which is about 18% of the current CO₂ forcing.

Plain Language Summary

Human activity has led to increased atmospheric concentrations of many gases, including halocarbons (used, for example, in refrigeration and air conditioning), and may lead to emissions of many other gases. While some halocarbons, such as chlorofluorocarbons (CFCs), are known to deplete stratospheric ozone, they are also powerful greenhouse gases contributing to radiative forcing (the net change in the energy balance of the Earth system) and hence climate change. We find that the present-day contribution from halocarbons and related compounds to radiative forcing is about 18% of the forcing due to increased concentrations of CO₂. By using established methods and available laboratory measurements of absorption of infrared radiation for each gas, we quantify the radiative efficiency (i.e. a compound's strength as a greenhouse gas) for a total of around 600 compounds. For around 250 compounds we provide so-called global warming potentials (GWP), which are used to compare the climate impact of emissions of different gases and are commonly used to inform policy decisions. Results presented here can be used to derive values for emission metrics other than GWP. The present work is the most comprehensive review of the radiative efficiency and GWP of halocarbons and other weak absorbers performed to date.

1. Introduction

77 hur
 78 lev
 79 Wr
 80 stra
 81 gre

Anthropogenic forcing of climate change is one of the most important challenges facing humanity. The largest contributor to radiative forcing of climate change is the increased levels of greenhouse gases such as CO₂, N₂O, CH₄, and halocarbons and related compounds. While many halocarbons, such as chlorofluorocarbons (CFCs), are known for depleting stratospheric ozone (Molina and Rowland, 1974; WMO, 2019), they are also powerful greenhouse gases. Despite the phase-out of several halocarbons through the Montreal Protocol from 1987 and its amendments and adjustments, halocarbons still make an important contribution to radiative forcing of climate change because many have long atmospheric lifetimes. Furthermore, the concentrations of some replacement compounds, such as hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs), are rising. More specifically, Fig. 1 (WMO/GAW, 2019) shows that HCFC-22 has recently become the 2nd most abundant compound (of the greenhouse gases with only anthropogenic sources) after CFC-12. HFC-134a has, in only 20 years, increased from very low abundance to become the 4th most abundant halocarbon. Emissions of HFCs, perfluorocarbons, SF₆ and NF₃ are included in the United Nations Framework Convention on Climate Change (UNFCCC). Controls on emissions of HFCs, in addition to CFCs and HCFCs, are included in the 2016 Kigali Agreement to the Montreal Protocol (see discussion in Kochanov et al. (2019)).

Differences in the intensity and wavelength of infrared (IR) absorption bands lead to distinct radiative forcing efficiencies of various gases. Radiative efficiency (RE) is a measure of the radiative forcing for a unit change in the atmospheric concentration of a gas, and for halocarbons and related compounds is usually reported in units of W m⁻² ppb⁻¹. To provide policy makers with guidance on the relative effectiveness of actions limiting the emissions of different gases, metrics have been developed to place the impact of emissions of different gases on a common scale. The most widely used metric is the Global Warming Potential (GWP) with a 100-year time-horizon (hereafter GWP(100)), which is based on the time-integrated radiative forcing due to a pulse emission of a unit mass of gas, normalized by the reference gas CO₂, and was introduced in the first assessment report of the Intergovernmental Panel on Climate Change (IPCC, 1990) (see section 2.5).

In 2013 we reviewed the literature data and provided a comprehensive and self-consistent set of new calculations of REs and GWPs for halocarbons and related compounds (Hodnebrog et al., 2013, hereafter referred to as H2013). Unlike the major greenhouse gases, current atmospheric concentrations of these compounds are low enough for the forcing to scale almost linearly with abundance, and we will therefore refer to these compounds as weak atmospheric absorbers. Adopting a common method for calculating REs and GWPs provides a more consistent approach to comparing metrics between different compounds than if these metrics are taken from studies that used different methodologies. Our results were incorporated by the IPCC into the 5th assessment report (AR5) (Myhre et al., 2013) and, as a result, they are now used in national and international agreements. The UNFCCC adopted AR5 values for reporting emissions under the Paris Agreement and the U.S. Environmental Protection Agency (EPA) uses GWP values from AR5 in its reports. To ensure that climate policy decisions are based on the latest scientific data it is important to periodically review and update the assessments. Additional infrared absorption spectra and refinements in

estimations of the atmospheric lifetimes of halocarbons and other compounds have become available since our last review. Specifically, we have considered and included absorption spectra given as supplementary material to published papers, and from the HITRAN2016 (Kochanov et al., 2019) and PNNL (Sharpe et al., 2004) databases. Atmospheric lifetimes have recently been updated in WMO (2019) and these estimates have been used here. The provision of GWP(100) values in this paper, and in H2013, should not be seen as an endorsement of that metric, as the choice of metric depends on the policy context (Myhre et al., 2013); the RE and lifetime values presented here can be used to derive values for alternative emission metrics.

We have updated and extended our previous assessment of REs and GWPs for halocarbons and other weak atmospheric absorbers. Updates are based on new absorption spectra for 60 compounds considered in our previous review, the latest estimates of atmospheric lifetimes, and an update to the RE calculation method. The review has been extended to include around 440 additional compounds to bring the total number of compounds considered to more than 600. Included are several isomeric species which have identical empirical formulae but are structurally and spectrally distinct. Therefore, there is no need to consider isomeric compounds together within the context of this review. The radiative forcing contributions of the 40 most abundant halocarbons and related compounds in the atmosphere are estimated. The present work is the most comprehensive review of the radiative efficiencies and global warming potentials of halogenated compounds performed to date.

2. Data and Method

2.1 Absorption Cross Sections

In addition to the experimental spectra included in H2013 we have included, either in the main or supplementary material, all IR absorption spectra available from the HITRAN2016 (Gordon et al., 2017; Kochanov et al., 2019) and PNNL (Sharpe et al., 2004) databases. The vast majority of spectra from PNNL are also available in HITRAN2016 and we have only included data from one of the databases to avoid overlap. The main sources of experimental infrared absorption cross sections in H2013 were the Ford Motor Company (e.g. Sihra et al., 2001), the Spectroscopy and Warming potentials of Atmospheric Greenhouse Gases project (Ballard et al., 2000b; Highwood and Shine, 2000), HITRAN-2008 (Rothman et al., 2009) and GEISA-2009 (Jacquinet-Husson et al., 2011) databases, and data provided by authors of published papers (e.g. Imasu et al., 1995). Several of the spectra used in H2013 were provided in the supplementary material and later included in the HITRAN2016 and GEISA-2015 (Jacquinet-Husson et al., 2016) databases. Many publications now make available their measured absorption cross sections as supplementary material. Since spectra provided as supplementary material are typically not in a standardized data format and need to be converted, we could only carry out RE calculations for a limited number of these supplementary material spectra, and we have prioritized the 40 most atmospherically

abundant compounds. For other studies the reported integrated absorption cross-section and RE value, if available, are listed (Tables S1-S20).

As in H2013, each of the available spectra have been evaluated and if several spectra from the same laboratory group exist, we only use the latest published spectrum. For example, spectra from Sihra et al. (2001) supersede those from Pinnock et al. (1995) and Christidis et al. (1997) due to improvements in the methodology of the Ford laboratory measurements. When more than one spectrum was available from a source, the spectrum that was recorded nearest room temperature and atmospheric pressure was used (see Section 2.2 for a discussion of the temperature dependence of cross-sections). The choices of spectra to be used in RE calculations have been explained for each group of compounds in the Supplementary Material (Text S1-S20).

In contrast to H2013, we only consider experimental absorption cross sections that are measured in a laboratory. As a result, 44 of the compounds included in H2013 have been omitted here because experimental spectra are not available, while 9 of the compounds that only had calculated spectra in H2013 have been updated with RE values based on experimental spectra. Calculated IR spectra have been published for a vast number of compounds (e.g., Davila et al., 2017; Papanastasiou et al., 2018), with some studies including thousands of compounds (Betowski et al., 2016; Kazakov et al., 2012; McLinden et al., 2014) but these have a considerably larger uncertainty than experimental spectra (see Table 1 of H2013).

2.2 Temperature Dependence of Cross-sections

Although absorption cross sections are temperature dependent, integrated absorption cross sections show little dependence on temperature. The origin of the temperature dependence of absorption cross sections is the strong dependence of rotational states on temperature. Consequently, spectral bands are generally broader and have a lower peak intensity when observed at higher temperatures. This effect is illustrated in Fig. 2 for a range of compound types (CFC, halon and sulphur-containing species), temperature range and pressure. The effect is noticeable even for the 20 K temperature difference illustrated in Fig. 2 for CBrClF₂. These small changes in band structure have a negligible effect on calculated REs, and hence GWPs.

However, when molecules exist in two or more distinct conformational forms, the possibility of significant temperature dependence of the integrated cross section exists (Godin et al., 2019). For example, the absorption spectra for CFC-114 reported by McDaniel et al. (1991) indicate that there are bands within the spectrum that show relatively strong positive temperature dependence, bands that show a weak negative temperature dependence and bands that are not temperature dependent. These observations can be rationalised in terms of the temperature dependence of the populations of the two different conformers of CFC-114. However, the integrated cross sections of most molecules show little temperature dependence, and for consistency, we have used spectra obtained at ambient temperatures, where the experimental uncertainties are typically smallest.

205206

2.3 Radiative Efficiency

207208

209210

211

212

213214

215

216217

218

219

220

221

222

223

224

225226

227

228

229

230

231

232233

234235

236

237238

239

240

241

242

In H2013, a common method was used to calculate the RE for most gases. This employed the "Pinnock curve" (Pinnock et al., 1995) where the RE as a function of wavenumber was calculated for a weak absorber absorbing equally at all wavenumbers. Multiplying this curve by the absorption cross-section of a given gas yields its RE. In H2013 the Pinnock curve was updated (Fig. 3, blue line), most notably by increasing its spectral resolution from 10 cm⁻¹ to 1 cm⁻¹ using the Oslo Line-By-Line (OLBL) radiative transfer model run at 0.02 cm⁻¹ resolution (note that there was a typo in the caption of Figure 6 in H2013, wrongly stating a resolution of 0.2 cm⁻¹); the updated calculations also used more refined atmospheric profiles of temperature, cloudiness and greenhouse gas concentrations. For instance, the atmospheric representation was expanded from one global mean profile to two profiles, one for the tropics and one for the extratropics, and the inclusion of refined cloud profiles led to weaker RE in the 800-1200 cm⁻¹ region (see Sections 2.3 and 3.3.1 of H2013 for details). The Pinnock et al. (1995) method, and the H2013 update, yield the instantaneous RE (i.e. the radiative efficiency in the absence of stratospheric temperature adjustment). Since the RE, which includes this adjustment, provides a more accurate representation of a gas's impact on surface temperature, H2013 incorporated a correction to account for this. For most gases, the instantaneous RE was simply increased by 10%. For several gases (CFC-11, CFC-12, HFC-41 and PFC-14) the correction was explicitly calculated using OLBL, either because of the absolute importance of that gas or because, in the case of HFC-41, it was known that the RE is *less* than its instantaneous value. However, this approach was somewhat *ad hoc*, and may not have been applicable to all gases.

Shine and Myhre (2020) have incorporated stratospheric temperature adjustment into the Pinnock curve for the first time, by calculating the impact of absorption by a gas at a given wavenumber on stratospheric temperatures (Fig. 3, red vs. purple line). The calculation of this adjustment is computationally intensive, as the RE due to absorption by a gas at a given wavenumber occurs not only at that wavenumber (as in the case of instantaneous RE) but now depends on the emission by gases (mostly CO₂, H₂O and O₃) at all other wavenumbers. Because of this, Shine and Myhre (2020) calculated the effect of adjustment using a narrow-band (10 cm⁻¹) radiation code, and applied this to updated instantaneous RE calculations using OLBL (which included an improved representation of the water vapor continuum and some changes to the representation of clouds). The new method reproduced detailed calculations for a range of gases (including HFC-41 and CFC-11) to better than 1.5%. Although more complicated in its derivation, it is no more complicated than the original Pinnock method in its application. This new method (which also requires the use of the lifetime correction described in Section 2.4) is applied to all gases here and hence improves the relative consistency of derived REs.

243244245

2.4 Atmospheric Lifetimes and Lifetime-correction

The atmospheric lifetime of a compound is required for calculations of GWPs and Global Temperature-change Potentials (GTPs) (see Section 2.5). The RE value obtained from the method described in Section 2.3 assumes the compound is well-mixed in the atmosphere. Most of the compounds included in this study have a non-uniform vertical and horizontal distribution in the atmosphere, and the lifetime can be used to correct for that. Here we use the method presented in H2013 (their Section 3.3.4), where two approximations are given depending on the primary loss mechanism of the compound. One approximation is used for compounds primarily being lost through photolysis in the stratosphere: the fractional correction f to the RE of $f(\tau) = 1 - 0.1826\tau^{-0.3339}$ is applicable for lifetimes τ of $10 < \tau <$ 10⁴ years. Another approximation is used for compounds primarily lost through reaction with OH in the troposphere: $f(\tau) = \frac{a\tau^b}{1+c\tau^d}$, where a=2.962, b=0.9312, c=2.994, d=0.9302, and is applicable for $10^{-4} < \tau < 10^4$ years. The lifetime corrections for very-short lived compounds should be treated as particularly approximate, as the correction depends on where the emissions take place. Excepted from these approximations are CFC-11, CFC-12 and Halon-1211 because explicit LBL calculations were made in H2013 (see their Section 3.3.3) to derive factors to account for non-uniform mixing. The derived factors were 0.927, 0.970, and 0.937, respectively, and are used here in the RE calculations for these compounds. These factors are less than one, despite being quite long-lived compounds, because of stratospheric loss due to photolysis.

The recent WMO (2019) report gives the most up-to-date and complete overview of atmospheric lifetimes of halocarbons and related compounds, and we rely on these estimates. Explanations and sources for the lifetime estimates in WMO (2019) are given for each compound in their Chapter 1.2 and Table A-1. For some compounds that do not have a lifetime estimate in WMO (2019), lifetime estimates have been taken from previous literature, and sometimes as an average across different estimates if more studies exist (see Table S1-S20 for references to lifetime estimates). For several compounds, we are not aware of any estimates of lifetimes; for these we only present REs assuming a constant horizontal and vertical distribution in the atmosphere, and no estimates of GWPs can be given.

2.5 Description of Metrics

248

249

250251

252

253

254

255

256

257

258259260

261262

263

264

265

266267

268269

270271

272

273

274

275

276277278

279280

281

282

283284

285

286

287

288289

290

The most widely used emission metric in climate policy is the global warming potential (GWP). It was introduced by IPCC (1990) where values for three time horizons (20, 100 and 500 years) were given. The GWP values were updated in following assessment reports. GWP has been widely adopted in climate policies, and the Kyoto Protocol adopted GWPs for a time horizon of 100 years as its metric for implementing a multi-gas approach. At UNFCCC COP24 it was decided to use GWP(100) for reporting national emissions to the Paris Agreement, while parties may in addition use other metrics (e.g. global temperature-change potential) to report supplemental information on aggregate emissions and removals of greenhouse gases, expressed in CO₂ equivalents (UNFCCC, 2019).

The GWP is based on the time-integrated radiative forcing due to a pulse emission of a unit mass of a gas. It can be given as an absolute GWP for gas i (AGWP $_i$) (usually in W m⁻²

kg⁻¹ year) or as a dimensionless value by dividing the AGWP_i by the AGWP of a reference gas, normally CO₂. Thus, the GWP for gas i over a time horizon of H years is defined as:

$$GWP_i(H) = \frac{\int_0^H RF_i(t)dt}{\int_0^H RF_{CO_2}(t)dt} = \frac{AGWP_i(H)}{AGWP_{CO_2}(H)}.$$

293

294295

296

297

298

299

300

301302

303

304

305306

307308

309

310311

312

313

314

315316

317

318319

320321

322

323

324325

326

327328

329

330

IPCC has usually presented GWPs for a time horizon (*H*) of 20, 100, and 500 years (although IPCC AR5 (Myhre et al., 2013) only gave GWPs for 20 and 100 years). We use updated lifetimes and RE values presented in Section 3 to calculate GWPs for 20, 100, and 500 years as in H2013.

The models used to calculate the impulse response function for CO₂ (Joos et al., 2013) include climate-carbon cycle feedbacks, but usually no feedbacks are included for the non-CO₂ gases when metrics are calculated. IPCC AR5 (Myhre et al., 2013) included this feedback tentatively in the metric values (see their Table 8.7 and Supplementary Table 8.SM.16), which increased the GWP(100) values by 10-20%. Gasser et al. (2017) found that accounting for climate-carbon feedback increases the emission metrics of non-CO₂ species but, in most cases, less than indicated in AR5. They also found that when the feedback is removed for both the reference and target gas, the *relative* metric values are generally only modestly different compared to when the feedback is included in both (absolute metric values change more markedly); in the case of GWP(100) the differences are less than 1%. As pointed out by Gasser et al. (2017), including or excluding the climate-carbon feedback ultimately depends on the user's goal, but consistency should be ensured in either case. To resolve the consistency issue, we have excluded the climate-carbon feedback also for CO₂ by using the impulse response function for CO₂ based on the Gasser et al. (2017) simple Earth system model (see their Appendix C); their model shows very good agreement with Joos et al. (2013) when the climate-carbon feedback is included. Our documentation of input data and presentation of calculations allow for the inclusion of the climate-carbon feedback to our results in further studies or applications, both for CO₂ and the non-CO₂ compounds.

Changes to the parameters in AGWP_{CO2} impact all GWP values, and the GWP(100) values presented in Section 3 are about 14% higher than if the old AGWP_{CO2} from AR5 or H2013 had been used. This is due to two changes: (i) the impulse response function for CO₂ is updated as explained above and (ii) the RE of CO₂ is updated using 409.8 ppm for 2019 (Butler and Montzka, 2020) and the simplified expression for CO₂ RF presented in Etminan et al. (2016), which is an update of the formula from Myhre et al. (1998) used in IPCC assessment reports since TAR (IPCC, 2001). Amongst other improvements, Etminan et al. (2016) made more extensive use of line-by-line calculations compared to Myhre et al. (1998). Using the new formula, a 1 ppm change in the CO₂ concentration at current (year 2019) levels of CO₂ (409.8 ppm) and N₂O (331.9 ppb) (Butler and Montzka, 2020) gives a radiative efficiency for CO₂ of 0.012895 W m⁻² ppm⁻¹. The new AGWP_{CO2} values for 20, 100, and 500 year time horizons are 2.290 × 10⁻¹⁴, 8.064 × 10⁻¹⁴, and 2.694 × 10⁻¹³ W m⁻² yr (kgCO₂)⁻¹, respectively. The AGWP_{CO2}(100) value in AR5 (Myhre et al., 2013) and H2013 was about 14% higher, mainly because we updated the impulse response function (accounts for about 8 of the 14% change) and because of a higher atmospheric concentration of CO₂ which lowers

its RE (accounts for \sim 5%), and slightly because of the new formula from Etminan et al. (2016) (accounts for \sim 1%). Accounting for all these changes, but including the climate-carbon feedback for $\rm CO_2$, as has been done in much of the prior literature, would give $\rm AGWP_{\rm CO2}$ values which are 3%, 8% and 13% higher for 20, 100, and 500 year time horizons, respectively.

It is worth highlighting that the impact of increasing CO₂ mixing ratios on GWP values is the net result of two opposing effects. First, many CO₂ absorption features are saturated, or close to saturation, and hence the RE of CO₂ decreases as its mixing ratio increases. Second, the fraction of CO₂ remaining in the atmosphere (measured by the impulse response function) increases with CO₂ mixing ratio (see Figure 8.31 in Myhre et al., 2013). The first effect *decreases* AGWP_{CO2} while the second effect *increases* AGWP_{CO2}. Hence, GWP calculations for optically thin gases which are defined as AGWP_X/AGWP_{CO2} will change with CO₂ mixing ratio.

An alternative, the GTP was introduced by Shine et al. (2005). It uses the change in global mean temperature following a pulse emission for a chosen point in time as the impact parameter. While GWP is a metric integrated over time, the GTP is based on the temperature change per unit emissions for a selected year, t after the pulse emission. As for the GWP, the impact of CO_2 is normally used as reference:

$$GTP(t)_i = AGTP(t)_i / AGTP(t)_{CO2} = \Delta T(t)_i / \Delta T(t)_{CO2},$$

where AGTP (K kg⁻¹) is the absolute GTP. The GTP uses the same input as for GWP but in addition includes a temperature response function that represents the thermal inertia of the climate system. AR5 presented values for both GWP and GTP. Here we follow the method used by AR5 (Myhre et al., 2013) and H2013 for calculating GTPs, except that the impulse response function and RE for CO_2 are updated as explained above and the climate response parameters are updated from Boucher and Reddy (2008) to Geoffroy et al. (2013) (as given in Appendix C of Gasser et al. (2017)), which are based on an ensemble of models from the Coupled Model Intercomparison Project phase 5 (CMIP5) (Taylor et al., 2011) and involve a lower climate sensitivity (0.88 compared to 1.1 K (W m⁻²)⁻¹ in Boucher and Reddy (2008)). The new AGTP_{CO2} values for 20, 50, and 100 year time horizons are 5.413 × 10⁻¹⁶, 4.559 × 10^{-16} , and 4.146×10^{-16} K (kgCO₂)⁻¹, respectively. Including the climate-carbon feedback for CO_2 , but keeping all other parameters the same, would give AGTP_{CO2} values which are 5%, 8% and 11% higher, respectively.

There continues to be a vigorous debate about the applicability of different emission metrics (e.g. Myhre et al., 2013); metric choice depends on the particular policy context in which they are applied, and the degree to which continuity of choice is important in that context (e.g. Allen et al., 2018; Cain et al., 2019; Rogelj and Schleussner, 2019). A specific development has been the suggested use of metrics that compare one-off pulse emissions of long-lived gases (such as CO₂) with step-changes in emissions of short-lived species (e.g. gases with lifetimes less than a few decades), on the basis that this leads to a more informed comparison of their ultimate impact on temperature; such approaches can either adopt GWP values, but adapt their usage (Allen et al., 2016) or more directly compute the pulse-step

equivalence (W J Collins et al., 2019). In the context of this review, the important point is that all such metrics require the same set of inputs (RE and lifetimes).

It is important to note that the RE and GWP(100) calculations presented here only include the direct effect, while indirect effects can be important for several compounds. Some compounds, and particularly CFCs and halons, influence radiative forcing indirectly through depletion of stratospheric ozone as shown in other work (e.g. Daniel et al., 1995; WMO, 2019). The removal of organic compounds by reaction with OH in the troposphere acts as a source of ozone and prolongs the lifetime of methane, and this has been shown to be important for several hydrocarbons (W J Collins et al., 2002; Hodnebrog et al., 2018).

2.6 Uncertainties

An overview of estimated contributions to uncertainties associated with the radiative forcing of halocarbons was given in Table 1 of H2013. A total RE uncertainty of ~13% was estimated for compounds with lifetimes longer than about 5 years, and ~23% for compounds with lifetimes shorter than that. The much higher uncertainty for shorter-lived compounds is caused by the difficulty of estimating non-uniform horizontal and vertical distributions in the atmosphere, which in turn are dependent on the location of emissions (see Section 2.4).

Table 1 gives updated estimates of contributions to the total radiative forcing uncertainties. As in H2013, the uncertainty estimates are based on published literature and subjective judgment and we estimate the total uncertainty to be valid for a 5 to 95% (90%) confidence range. The total RF uncertainty, calculated using the root-sum-square (RSS) method, is ~14% and 24% for compounds with lifetimes longer and shorter than approximately 5 years, respectively. These total RF uncertainties are slightly higher than in H2013 and explanations are given below.

One issue with the use of laboratory data is that it does not always cover the entire spectral range for which radiative forcing is important (see e.g. Fig. 3). For example, the PNNL measurements mostly cover the $600 - 6500 \, \mathrm{cm}^{-1}$ wavenumber range, and so their use would neglect any absorption (and hence forcing) at lower wavenumbers, although in general it extends to much higher wavenumbers than those in other datasets.

The uncertainty due to lack of spectral data at low wavenumbers cannot be assessed for every gas in our analysis, but there is some evidence to indicate its typical size. Highwood and Shine (2000) computed the contribution of wavenumbers less than 700 cm⁻¹ to the RE for HFC-134a and found it contributed around 2% to the forcing. Bravo et al. (2010) presented an analysis of the RE due to a set of 7 perfluorocarbons. They compared the RE calculated for ab initio methods for the wavenumber interval 0-2500 cm⁻¹ with calculations for the wavenumber interval 700-1400 cm⁻¹, chosen because it coincided with the wavenumber range for their associated laboratory measurements. Most of the additional absorption was at wavenumbers below 700 cm⁻¹. They found that the integrated absorption cross-sections and REs for the narrow range were within 2% for the lighter PFCs but this difference increased to 10% for heavier PFCs. Since many of the measured datasets (e.g. the PNNL data) use a broader wavelength range than 700-1400 cm⁻¹, it is unlikely that our estimates are systematically in error by such a large amount. Nevertheless, we introduce an additional

generic uncertainty to our estimates, which was not included in the analysis of H2013, of ~3% due to neglected bands (Table 1); clearly this could be systematically investigated in future work, perhaps by including ab initio calculations outside the range of measured cross-sections.

Another source of uncertainty not considered in H2013 is the contribution to RE from absorption of shortwave (SW), or solar, radiation in the near-infrared (3,000 to 14,000 cm⁻¹). There has been renewed interest in the SW forcing due to methane (e.g. W D Collins et al., 2018; Etminan et al., 2016). Etminan et al. (2016) find the direct effect of methane's near-IR bands enhances its forcing by 6% but there is an additional 9% impact via the effect of this absorption on stratospheric temperatures (and hence on longwave forcing). This contrasts with the impact of the near-IR bands of CO₂ which cause a decrease of a few percent, because much of the additional forcing is at higher altitudes. The contribution of these near-IR bands to RE is further complicated by the fact that it depends strongly on the overlap between these bands and those of water vapour (Etminan et al., 2016), many of which are saturated for typical atmospheric paths, making generic statements difficult.

The potential impact of SW absorption is difficult to constrain for the diverse range of gases discussed here, without much more detailed study, not least because many of the experimental data sets do not extend to such high wavenumbers (the PNNL data is a notable exception). For the heavier halogenated gases, the strongest fundamental and combination bands will generally be at lower wavenumbers, at which SW absorption is less important (see e.g. Bera et al., 2009). The lighter, more hydrogenated, gases, will have more significant absorption bands in the solar near-infrared but, on the other hand, these gases are likely to be much shorter-lived, so that their impact on stratospheric temperatures is likely to be lower. We introduce an additional uncertainty of ~5% due to the potential effect of this shortwave absorption (Table 1).

Since H2013, surface emissivity has been included as a source of uncertainty together with surface temperature and atmospheric temperature, and consequently the estimated contribution to RF uncertainty has been increased from ~3 to ~5% (Table 1). The stratospheric temperature adjustment is now based on a much more sophisticated method compared to the generic 10% increase used in H2013 (see Section 2.3), and we have lowered the uncertainty contribution for this term from ~4 to ~2%. The remaining sources of uncertainties and their estimated contributions given in Table 1 are unchanged and we refer to H2013 for detailed explanations of each term.

Uncertainties in the atmospheric lifetime of the compounds are also important for metric calculations, and since H2013, SPARC (2013) have provided recommended lifetime values and uncertainties for a range of halocarbons. Their estimates are derived using atmospheric chemistry-transport and inverse modelling, and analysis of atmospheric observations and laboratory measurements. Possible uncertainty ranges for most of the compounds in SPARC (2013) have been evaluated in Velders and Daniel (2014; their Table 1) and range from ± 3 to $\pm 33\%$ (one standard deviation), depending on the compound; they are typically in the range from ± 15 to $\pm 20\%$ (or ± 25 to $\pm 33\%$ when converted from one standard deviation to 5-95% (90%) confidence range). However, Velders and Daniel (2014) point out that the possible uncertainty range is likely an overestimation of the true uncertainty

and the most likely range, given for some of the compounds, is substantially lower (± 12 to $\pm 20\%$ when converted from one standard deviation to 5-95% (90%) confidence range).

GWP uncertainties are affected by uncertainties in the compound's lifetime, RE and the AGWP_{CO2}, and uncertainties in GWP and/or GTP have been investigated in previous studies (Boucher, 2012; Hodnebrog et al., 2013; Olivié and Peters, 2012; Reisinger et al., 2010; Velders and Daniel, 2014; Wuebbles et al., 1995). H2013 (see their Section 3.6.4) estimated GWP(100) uncertainties of ±38% and ±34% (5-95% (90%) confidence) for CFC-11 and HFC-134a, respectively. GWP(100) uncertainties for six HFCs in WMO (2015; their Table 5-6) were approximately in the range 30-50%, which is similar to the GWP(100) uncertainties for several ozone-depleting substances given in Velders and Daniel (2014; their Table 4). We estimate that the uncertainties given in H2013, WMO (2015) and Velders and Daniel (2014) (approximately in the range 30-50%) are similar for the GWP(100) values calculated here and are probably also representative for most other halocarbons with similar or longer lifetimes.

3. Results and Discussion

3.1 Updated Spectra, REs, and GWPs for the Most Abundant Halocarbons and Related Compounds

This section broadly follows the structure of Section 4.1 in H2013, where absorption cross sections and radiative efficiency estimates in the literature were reviewed and new RE and GWP calculations were presented. However, we limit this section to only include studies and spectra that were not included in H2013, and only to the 40 most abundant halocarbons presented in Table 7 of Meinshausen et al. (2017) (see Section 3.3 for other compounds). Also, only experimental spectra are used as a basis for our calculations here, unlike H2013 which included RE and GWP calculations for some compounds where only calculated spectra existed. In cases where spectra have been measured at different temperatures, we have used the spectra closest to room temperature (see Section 2.2 for a discussion of temperature dependence of cross sections). All REs are given for all-sky and with stratospheric temperature adjustment included (see Section 2.3). The lifetime-correction method from H2013, to account for a non-homogeneous vertical and horizontal distribution in the atmosphere, has been applied to the calculated REs (see Section 2.4).

Table 2 lists absorption cross sections that are new since H2013 and Tables S1-S6 in the supporting information list all (to the best of our knowledge) absorption cross sections and reported RE values from the literature. Table S1-S6 also include calculations using the Pinnock curve from H2013 for easier identification of possible changes in RE that are due to the updated Pinnock curve from Shine and Myhre (2020). We have followed the International Union of Pure and Applied Chemistry, IUPAC, naming scheme and included the unique Chemical Abstract Service Registry Number, CASRN, for each compound listed in the tables. Table 3 presents updated atmospheric lifetimes, REs and GWP(100) values and discussions of the results are given below for each group of compounds. RE values with more

significant figures, needed to reproduce the GWP(100) values, are given in the supporting information.

504505506

507508

509

510

511

512

513

514

515

516

517

518

519

520521

522

523524

525

526

527528

529

530531

532

533

534535

536537

503

3.1.1 Chlorofluorocarbons

Since H2013, new spectra have been included for the five most-abundant CFCs, but the RE remains unchanged for four of the compounds (Tables 2-3). CFC-115 now has a much larger RE than in H2013 (0.25 compared to 0.20 W m⁻² ppb⁻¹) due to the addition of spectra from the PNNL database (Sharpe et al., 2004). In H2013, and in two out of four previous studies (Jain et al., 2000; Myhre and Stordal, 1997), the CFC-115 spectrum used is that from McDaniel et al. (1991), which has an integrated absorption cross-section of 1.21×10⁻¹⁶ cm² molecule⁻¹ cm⁻¹ and gives an RE of 0.20 W m⁻² ppb⁻¹ in our calculations (Table S1). Recently, Totterdill et al. (2016) measured the IR absorption spectrum of CFC-115 and performed detailed LBL radiative transfer calculations to determine its RE. Their integrated absorption spectrum of 1.19×10⁻¹⁶ cm² molecule⁻¹ cm⁻¹ is in relatively good agreement with McDaniel et al. (1991) and their resulting RE of 0.21 W m⁻² ppb⁻¹ agrees well with H2013. The PNNL spectrum for CFC-115 has a much higher integrated absorption cross-section of 2.01×10⁻¹⁶ cm² molecule⁻¹ cm⁻¹ and our calculations give a RE of 0.32 W m⁻² ppb⁻¹. A comparison between the McDaniel et al. (1991) and PNNL absorption spectra shows that the locations and relative strength of the main absorption bands are similar, but that the overall magnitude of the bands are higher in the PNNL spectrum (not shown). Due to the large difference between the two spectra, we have also inspected the PNNL spectra measured at different temperatures (278 and 323 K), and these have similar integrated absorption crosssections and yield similar RE values as the 296 K PNNL spectrum (Table S1), and so give no indication of error in the 296 K PNNL spectra. A fourth source for CFC-115 spectra is Fisher et al. (1990) who report an integrated absorption cross-section of 1.74×10⁻¹⁶ cm² molecule⁻¹ cm⁻¹, which is higher than McDaniel et al. (1991) and lower than (but nearer to) PNNL. Reasons for the large difference between the spectra remain unknown. We have calculated our new RE value of 0.25 W m⁻² ppb⁻¹ by averaging the RE values based on the three available spectra (McDaniel et al., 1991; Sharpe et al., 2004; Totterdill et al., 2016).

The stratospheric temperature adjustment for the CFCs ranges from 9 to 12% increase of the instantaneous RE, and the generic 10% increase used in H2013 was a relatively good approximation for these compounds (Fig. 4). (Note that the 10% assumption was not used for CFC-11 and CFC-12 in H2013.) The atmospheric lifetimes of the five CFCs have been updated based on WMO (2019) since H2013, most notably for CFC-11 (52 vs. 45 years in H2013) and CFC-115 (540 vs. 1020 years in H2013). A combination of updated lifetimes, REs and the AGWP $_{\rm CO2}$ leads to higher GWP(100) values for all five CFCs (Table 3, Fig. 5).

538539540

541542

3.1.2 Hydrochlorofluorocarbons

Six new spectra have been included for the three most-abundant HCFCs in this category, but their REs are unchanged when rounded to two decimals (Tables 2-3). The updated AGWP_{CO2}, and slightly longer lifetimes for two of the compounds (HCFC-141b and HCFC-142b), contribute to higher GWP(100) (Table 3, Table S2, Fig. 5).

544545546

543

3.1.3 Hydrofluorocarbons

Since H2013, spectra have been added to eight of the 11 most-abundant HFC compounds (Table 2) and in most cases this led to little or no change in the RE (Table 3). For HFC-23, the two new spectra (Harrison, 2013; Sharpe et al., 2004) each have higher integrated absorption cross-sections than the two spectra used in H2013 (Table S3); this leads to a higher RE for this compound (0.19 compared to 0.17 W m⁻² ppb⁻¹ in H2013). Another contributing factor is the stratospheric temperature adjustment. The RE is now 13% higher than the instantaneous RE for HFC-23 (Fig. 4), while in H2013 a generic 10% increase was used. In fact, all 11 HFC compounds have stratospheric temperature adjustments larger than 10% and most of them around 13%.

For HFC-43-10mee, the H2013 RE value of 0.42 W m⁻² ppb⁻¹ was not calculated using new spectra but was based on the RE given in the 4th assessment report (AR4) (Forster et al., 2007), which was again based on Fisher (personal communication) (IPCC, 1994). Recently, Le Bris et al. (2018) measured the absorption cross-section and calculated a much lower RE of 0.36 W m⁻² ppb⁻¹ for HFC-43-10mee when using the method in H2013 (Table S3). They also showed that REs calculated with their spectrum agreed very well with the PNNL spectrum. Here, we have used the spectra from both Le Bris et al. (2018) and the PNNL database and calculated a RE of 0.36 W m⁻² ppb⁻¹ (Table 3), in excellent agreement with Le Bris et al. (2018).

Updated GWP(100) values are higher for all HFCs (Table 3, Fig. 5), and this is due to a combination of updated AGWP $_{\rm CO2}$, higher RE values for several compounds (HFC-43-10mee is a notable exception), and longer lifetime for all compounds except HFC-227ea and HFC-236fa (Table S3).

3.1.4 Chlorocarbons and Hydrochlorocarbons

Nine new spectra have been added for the five most-abundant compounds since H2013 (Table 2). Wallington et al. (2016) made new measurements of the absorption spectra of the chloromethanes CH₃Cl, CH₂Cl₂, CHCl₃, and CCl₄, and provided recommended spectra for these compounds by combining existing and new experimental data. We have used their recommended spectra to calculate REs for all four chloromethanes (see Text S4 for an explanation of the choice of spectra). The resulting RE for CCl₄ of 0.17 W m⁻² ppb⁻¹ is unchanged since H2013 (Table 3; Table S4), where the spectrum from Nemtchinov and Varanasi (2003) was used. The RE of CHCl₃ is lower than in H2013 (0.07 vs. 0.08 W m⁻² ppb⁻¹), where the spectrum from Vander Auwera (2000) was used. For CH₃Cl and CH₂Cl₂, new RE calculations were not carried out for H2013 but retained from IPCC AR4 (Forster et al., 2007). Our calculations using the Wallington et al. (2016) spectrum show that the RE value of 0.03 W m⁻² ppb⁻¹ for CH₂Cl₂ is unchanged since H2013 when rounded to two decimal places. The RE of CH₃Cl is now 0.005 W m⁻² ppb⁻¹, which is lower than the 0.01 W m⁻² ppb⁻¹ value in H2013 (which originated from AR4), but in excellent agreement with the original instantaneous RE value of 0.005 W m⁻² ppb⁻¹ from Grossman et al. (1997).

For CH₃CCl₃, we added the spectrum from the HITRAN 2016 database, which was again adopted from the PNNL database, and calculate a lower RE value compared to H2013 (0.06 vs. 0.07 W m⁻² ppb⁻¹) (Tables 2-3). The addition of the new spectrum did not change the RE, but the updated Pinnock curve and particularly the method to account for stratospheric temperature adjustment (see Section 2.3) led to the lower value (Table S4). For

all five compounds in this group, the stratospheric temperature adjustment is lower than the generic 10% increase used in H2013, and ranges from 0% change to a 9% increase of the instantaneous RE (Fig. 4). GWP(100) values are lower for CH₃Cl, and higher for the remaining four compounds (Table 3, Fig. 5). Lifetime updates for four of the compounds contribute to the changes in GWP 100-year values.

3.1.5 Bromocarbons, Hydrobromocarbons and Halons

Since H2013, absorption spectra from the HITRAN 2016 and PNNL databases have been included in the RE calculations for each of the four most-abundant compounds (Table 2). Changes in RE since H2013 are negligible (<5%) for the three halons, while CH₃Br shows a lower RE (0.004 vs. 0.005 W m⁻² ppb⁻¹) (Table 3), mainly because the stratospheric temperature adjustment is lower (~4%) compared to the generic 10% increase used in H2013 (Fig. 4). Since H2013, lifetimes are longer for Halon-1301 and Halon-2402 while GWP(100) values are higher for all four compounds (Table 3, Table S5, Fig. 5).

3.1.6 Fully Fluorinated Species

For nine of the 12 most-abundant compounds, spectra have been added from the HITRAN 2016 database (where spectra were again adopted from the PNNL database) since H2013 (Table 2). Still, the calculated RE values for all these compounds are relatively similar to those reported in H2013 (Table 3). Sulfuryl fluoride shows the largest change of around 5%, mainly due to a slightly higher integrated absorption cross section in the new PNNL spectrum compared to that of Andersen et al. (2009), which was used in H2013 (Table S6). This is in turn partly because the PNNL spectrum also includes a weak absorption band around 550 cm⁻¹ (not shown).

For NF₃, two new spectra have been added since H2013 and the calculated RE value is now based on three different spectra (Robson et al., 2006; Sharpe et al., 2004; Totterdill et al., 2016) (Tables 2-3; Table S6). The RE value of 0.20 W m⁻² ppb⁻¹ is the same as in H2013, but the RE of 0.25 W m⁻² ppb⁻¹ presented in Totterdill et al. (2016) is substantially higher (>20%). Totterdill et al. (2016) attribute the differences to a higher integrated absorption cross-section compared to Robson et al. (2006) (which was used to calculate the RE value in H2013 and AR5), but our RE calculation differs by less than 5% when using spectra from each of the two studies separately (Table S6) so this is only part of the reason. Other potential reasons include differences between the radiative transfer models, treatment of clouds, and stratospheric temperature adjustment.

The RE of SF₆ has had a relatively wide range in reported literature values from 0.49 W m⁻² ppb⁻¹ (Jain et al., 2000) to 0.68 W m⁻² ppb⁻¹ (H Zhang et al., 2011) (Table S6). Since H2013, Kovács et al. (2017) have made new measurements of the SF₆ absorption spectrum and used a LBL model to calculate a RE value of 0.59 W m⁻² ppb⁻¹. Their spectrum is not included here, but their RE value is close to our calculated RE value of 0.57 W m⁻² ppb⁻¹ using spectra from the HITRAN and PNNL databases; this value was also presented in H2013 and used in AR5.

The stratospheric temperature adjustment for the fully fluorinated species ranges from 8 to 13% increase of the instantaneous RE (Fig. 4). For most of these compounds, the generic

10% increase used in H2013 was a relatively good approximation for stratospheric temperature adjustment (note that the 10% assumption was not used for PFC-14 in H2013).

GWP(100) values are higher than in H2013 for all compounds in this category (Table 3, Table S6, Fig. 5), mainly due to the updated AGWP_{CO2}. The only lifetime change since H2013 is for NF₃, which has a longer lifetime of 569 years compared to the value of 500 years that was used earlier. While we have adopted atmospheric lifetimes from WMO (2019), we note that two recent studies have calculated substantially shorter lifetimes for SF₆ than the widely used estimate of 3,200 years (Ravishankara et al., 1993). If the shorter SF₆ lifetimes of 1,278 [1,120-1,475] years (Kovács et al., 2017) or 850 [580-1,400] years (Ray et al., 2017) would have been used instead of 3,200 years, our GWP(100) value of 26,700 would not have been significantly affected (by less than 5%), but a shorter lifetime could be important for metric calculations using time horizons of several hundred years.

3.2 Present-day Radiative Forcing from Halocarbons and Related Compounds

 Figure 6 shows pre-industrial to present-day radiative forcing for the halocarbons and related compounds discussed in Section 3.1. RF for each group of compounds is compared against that reported in AR5 (Myhre et al., 2013 - see their Table 8.2), when atmospheric concentrations from 2011 were used. We have used the atmospheric concentrations from Meinshausen et al. (2017) for 2014, but updated with 2019 observations from Butler and Montzka (2020) when available (see Table 4 for details). In the RF calculation, we use the pre-industrial concentrations recommended by Meinshausen et al. (2017); these are non-zero for CH₃Cl, CHCl₃, CH₂Cl₂, CH₃Br, and PFC-14/CF₄, and assumed to be zero for the remaining compounds (see Table 4 footnote).

When using the same RE values as in AR5 (from H2013), we see that the change from 2011 to 2014/19 concentrations has led to a decrease in radiative forcing of CFCs (Fig. 6). At the same time, concentrations of the CFC replacement compounds HCFCs and HFCs have increased and this leads to stronger RF for these compound groups, most notably for HFCs with a 83% increase in the RF. In total, RF due to increasing concentrations of HCFCs and HFCs more than outweighs the decrease in RF due to declining concentrations of CFCs. For the present-day (2014/19) RF, nearly all compound groups show slightly higher RF when using new REs compared to using AR5 REs. The total present-day (2014/19) RF due to halocarbons is 0.38 [0.33 to 0.43] W m⁻² compared to 0.36 [0.32 to 0.40] W m⁻² in AR5, and while updated RE values push present-day RF upwards (by ~4 mW m⁻²; green vs. purple bars in Fig. 6), the main reason for the RF increase can be attributed to increased concentrations (yellow vs. green bars in Fig. 6).

Table 4 shows that the main contributors to the ~4 mW m⁻² increase in RF are the updated RE values for CFC-12, HCFC-22 and HFC-134a. Chloromethane has the largest relative change in RF (and RE) with a 53% decrease. While its atmospheric concentration is the highest among the compounds, its high abundance is mainly due to natural sources (WMO, 2019) and its influence on anthropogenic RF is therefore much smaller than would otherwise be expected. Here we have assumed a pre-industrial value of 457 ppt from Meinshausen et al. (2017) who used a simple budget equation for its derivation, and it should

be noted that this number is associated with uncertainties due to a lack of observations. Table 4 further shows that CFC-115 and HFC-43-10mee, respectively, have the second and third largest relative RF change due to new REs. While the new REs of methyl chloride and HFC-43-10mee are lower compared to H2013, the RE of CFC-115 is higher (see Section 3.1).

The RF of 0.38 W m⁻² due to halocarbons and other weak atmospheric absorbers can be put into context by comparison with the RF due to increased CO₂ concentrations. When using the simplified formula from Etminan et al. (2016), and assuming pre-industrial (1750) and 2019 CO₂ concentrations of 278 ppm (Myhre et al., 2013) and 409.8 ppm (Butler and Montzka, 2020), respectively (and of 270 ppb and 331.9 ppb, respectively, for N₂O), the present-day RF due to CO₂ is 2.09 W m⁻². Thus, the RF due to halocarbons and other weak absorbers is 18% of the RF due to increased CO₂ concentrations.

3.3 Updated Spectra, REs, and GWPs for Other Weak Atmospheric Absorbers

This section has a similar structure to Section 3.1 but presents and discusses lifetimes, REs, and GWP(100) values for compounds other than the 40 most abundant halocarbons and related compounds. Table 5 shows results for the compound groups included in our previous review (H2013), and brief discussions of these results are given in Sections 3.3.1-3.3.7 below. Tables S7-S13 in the supporting information provide information on how the RE numbers were derived and list previously published absorption cross sections and reported RE values from the literature. In addition to the compound groups included in H2013, we have made RE calculations for a number of other compounds, mainly based on absorption spectra from the HITRAN 2016 (Kochanov et al., 2019) and PNNL (Sharpe et al., 2004) databases. These results are presented in Tables S14-S20 and a brief discussion of these results is given in Section 3.3.8 below.

3.3.1 Chlorofluorocarbons

The CFC-13 spectrum from the PNNL database was added and led to a higher RE (0.28 W m⁻² ppb⁻¹) compared to H2013 (0.26 W m⁻² ppb⁻¹) (Table 5; Table S7). Since H2013, several CFC compounds have been added. CFC-112, CFC-112a and CFC-113a were detected in the atmosphere recently (Laube et al., 2014) and the atmospheric impact of these compounds have been quantified (Davis et al., 2016; Etminan et al., 2014). We used the spectra from Etminan et al. (2014), Davis et al. (2016), and PNNL, and confirmed the high RE and GWP(100) values for these compounds. Calculations have further been made for three additional potent greenhouse gases (CFC-114a, E-R316c and Z-R316c) using spectra from Davis et al. (2016) and Papadimitriou et al. (2013).

3.3.2 Hydrochlorofluorocarbons

Absorption spectra from the PNNL database were added for four HCFCs in H2013 (HCFC-21, HCFC-123, HCFC-124); the new RE values are in good agreement (difference of 5% or less) with the H2013 values (Table 5; Table S8). The spectrum from Gierczak et al. (2014) has been added for HCFO-1233zd(E), but the increased RE value since

H2013 is mainly due to the longer lifetime and therefore less influence from the lifetime-correction factor.

HCFC-133a has been identified in the atmosphere recently (Laube et al., 2014). RE and GWP(100) values are given for this compound based on absorption spectra from three sources (Etminan et al., 2014; McGillen et al., 2015; Sharpe et al., 2004). Calculations have been made for six additional HCFCs since H2013 and most notable is the relatively long-lived HCFC-124a (lifetime 17 years) with RE and GWP(100) values of 0.25 W m⁻² ppb⁻¹ and 2,170, respectively. In addition to the compounds listed here, Papanastasiou et al. (2018) present GWP(100) values for a large range of HCFCs using theoretically determined absorption spectra.

3.3.3 Hydrofluorocarbons

RE calculations for three HFCs in H2013 (HFC-41, HFC-134, HFO-1141) are now based on additional absorption spectra from PNNL. The RE value for one of these (HFO-1141) in H2013 was only based on a reported RE in the literature (Table 5; Table S9) rather than our calculations. For seven additional compounds, RE values in H2013 were based on reported RE in the literature and not our own calculations. These RE values have been retained here but the GWP(100) values are updated to include the effect of changes in lifetime and the AGWP of CO₂. For most of the HFCs, changes in RE values since H2013 are minor and mostly reflect changes in the method to account for stratospheric temperature adjustment, which, for the HFCs, is generally higher than the 10% assumption used in H2013 (Fig. 4). Additional factors include the revised Pinnock et al. curve (see Section 2.3) and, particularly for the short-lived compounds, changes in lifetime which influence the factor to account for non-uniform distribution in the atmosphere (see Section 2.4). Since H2013, RE values have been added for 14 compounds, of which 4 compounds are based on calculations using absorption spectra from PNNL.

3.3.4 Chlorocarbons and Hydrochlorocarbons

Among the 33 compounds in this category, only one (1,2-dichloroethane) was included in H2013 (Table 5). For all these compounds, RE calculations are based on additional absorption spectra from the PNNL database, and for 1,2-dichloroethane the RE value of 0.01 W m⁻² ppb⁻¹ is the same as in H2013 (when rounded to two decimals) (Table S10). Atmospheric lifetimes for most of the compounds in Table 5 are not available and the RE values listed are most likely upper limits since a uniform distribution in the atmosphere is assumed.

3.3.5 Bromocarbons, Hydrobromocarbons and Halons

Six compounds in this category were also included in H2013 and for two of these (dibromomethane and halon-1202), new spectra from PNNL have been included in the RE calculations (Table 5; Table S11). The RE values remain unchanged for all six compounds (when rounded to two decimals). RE calculations have been made for 10 compounds in addition to those presented in H2013 and these are based on nine absorption spectra from PNNL and one from HITRAN2016.

3.3.6 Fully Fluorinated Species

Among the 10 compounds that were included in H2013, three of the four compounds with a very long lifetime (800 years or more) have new RE values that are less than 5% different from H2013 (Table 5; Table S12). Octafluorocyclopentene was estimated to have a RE of 0.08 W m⁻² ppb⁻¹ in H2013, based on literature instantaneous RE values which were increased by 10% to crudely account for stratospheric temperature adjustment, and further adjusted by applying a lifetime-correction. Since H2013 the lifetime of octafluorocyclopentene has been revised upwards from 31 days to 1.1 years (WMO, 2019). We do not have the absorption spectrum and our recommended RE of 0.25 W m⁻² ppb⁻¹ is from N Zhang et al. (2017) who use a lifetime of 0.715 years. For the five remaining compounds with lifetimes of 31 days or less the new RE values are the same (after rounding) as in H2013 (see Table S12 for RE values with more significant figures).

Eight new compounds have been added since H2013 and one of the new compounds, heptacosafluorotributylamine / PFTBA, was recently observed in the Arctic (Schlabach, 2018). Its absorption spectrum has been measured in three recent studies (Bernard et al., 2018; Godin et al., 2016; Hong et al., 2013) and using the spectra from Hong et al. (2013) and Godin et al. (2016) we calculate a RE value of 0.91 W m⁻² ppb⁻¹. Bernard et al. (2018) measured spectra for three other perfluoroamines and report large RE values also for these compounds (in the range 0.61-0.95 W m⁻² ppb⁻¹). Lifetimes are estimated to be more than 1000 years (WMO, 2019) and therefore these compounds are potent greenhouse gases. Two of the compounds added are based on RE values from the literature and RE for the remaining two compounds have been calculated using absorption spectra from PNNL. Heptafluoroisobutyronitrile is a potential replacement for sulfur hexafluoride and its atmospheric chemistry has been studied by Blazquez et al. (2017) and Andersen et al. (2017). The RE value of 0.25 W m⁻² ppb⁻¹ in Table 5 is an average of the REs from the two studies.

3.3.7 Halogenated Alcohols and Ethers

Most of the 106 compounds in this category were also assessed in H2013. REs for 25 compounds were added in the present review (Table 5, Table S13) based on new absorption spectra or RE values. REs for 30 of the 106 compounds are based on additional absorption spectra from HITRAN2016 (13 spectra), PNNL (14 spectra), and Orkin et al. (2014) (3 spectra), and 10 of these compounds were also included in H2013. New absorption spectra have contributed to RE values that are significantly (>5%) different from H2013 for: HFE-143a, 2,2,3,3,3-pentafluoropropan-1-ol, difluoro(methoxy)methane, vinyl 2,2,2-trifluoroacetate, ethyl 2,2,2-trifluoroacetate, allyl 2,2,2-trifluoroacetate, 2-fluoroethanol, and 2,2,2-trifluoroethanol. For some of these compounds a change in estimated lifetime is the main contributor to the change in RE (through the fractional correction factor).

We note that in H2013, three compounds were accidently listed twice with the same CASRN, but with different lifetime, RE, and GWP(100). The compounds are HG-02, HG-03, and 2,2,3,3,4,4,4-Heptafluoro-1-butanol (CF₃CF₂CF₂CH₂OH), with CAS numbers 205367–61–9, 173350–37–3, and 375–01–9, respectively. This has been corrected in Tables 5 and S13. Six compounds were given slightly erroneous GWP(100) values in H2013: HG-20, HG-30, HG'-02, HG'-03, (CF₃)₂CHOCHO, and HG-04 due to an error in their assigned molecular weights. Their lifetimes and REs were not affected. Their GWP(100) values have

been corrected in Tables 5 and S13 (HG-20 and HG-30 are not included because of missing experimental spectra).

3.3.8 Other compounds

In addition to the seven compound groups listed in Tables 3 and 5, RE values for the following eight compound groups not considered in H2013 are presented in the supporting information: hydrocarbons (Table S14), alcohols, ethers and other oxygenated hydrocarbons (Table S15), iodocarbons and hydroiodocarbons (Table S16), nitriles, amines and other nitrogenated hydrocarbons (Table S17), sulfur containing compounds (Table S18), silicon containing compounds (Table S19), and other compounds (Table S20). In contrast to the compounds presented in Tables S1-13, the previous literature has not been reviewed for these compounds. Rather, RE values presented in Tables S14-S20 are for the most part purely from calculations based on available absorption spectra from the HITRAN2016 and PNNL databases. It is also important to note that the RE values assume, with a few exceptions, constant horizontal and vertical atmospheric distribution and are thus regarded as upper estimates.

4. Summary and Conclusions

We present a comprehensive assessment of the radiative efficiencies and global warming potentials for a large number of halocarbons and other weak atmospheric absorbers. The present work is an update of our review in H2013 where a consistent method for calculating RE was used for all compounds. A major advantage of using a common method for calculating REs is that the RE and GWP values for different compounds can be directly compared. This method has now been updated, and best estimate RE values have been calculated based on approximately 700 experimental absorption cross sections, versus 200 in H2013. The majority of the new spectra have been obtained from the HITRAN2016 and PNNL databases which were not included in our previous review.

Best estimate REs based on experimental spectra are now provided for more than 600 compounds compared to 168 compounds in H2013 (221 compounds when including REs based on calculated spectra). Most of the REs are based on our calculations, while some are based on published values. Figure 7 shows a comparison of our updated RE values with those presented in H2013 (and used in IPCC AR5 (Myhre et al., 2013)) for the 177 compounds included in both studies. For compounds with RE > 0.5 W m⁻² ppb⁻¹, changes are less than 5%. For compounds with RE < 0.5 W m⁻² ppb⁻¹, 61 compounds have RE values which differ by more than 5% from H2013, and 42 differ by more than 10%.

We have adopted recommended atmospheric lifetimes from the literature and, when available, calculated GWP values. In the main part of the paper (Table 3 and 5) we have chosen to show only GWPs for a 100-year time horizon in addition to the lifetimes and RE values. However, many metrics exist, and the choice of metric and time horizon depends on the context in which they are used (see Section 2.5). Table 16 of H2013 presented GWP values for 20, 100, and 500 year time horizons in addition to GTPs for 20, 50, and 100 year time horizons for a selection of compounds. Table 6 shows updated numbers for these

853854

855

856857

858

859

860861

862

863864

865866

867

868

869

870

871872

873

874

875

876877

878

879

880

881

882

883

884 885

886

887

888

889

890

891892

893

894

895

896

compounds, and (A)GWP and (A)GTP values for the same time horizons are given for all compounds in the supporting information.

In principle, and as noted by H2013, it would be desirable to calculate the Effective Radiative Forcing (ERF) (Myhre et al., 2013) which includes rapid adjustments beyond stratospheric temperature; ERF better represents the ultimate impact of a gas on surface temperature. It remains impracticable to calculate ERF for the gases discussed here (see Shine and Myhre (2020) for discussion) because ERF requires computationally-expensive calculations using general circulation models. The radiation codes in these models do not have sufficient spectral resolution to properly represent differences between the many halocarbons presented here, and the model's unforced variability would be much larger than the RF at their current, or likely future, concentrations. Although excellent progress has been made in understanding the generic nature of rapid adjustments and inter-model differences for many climate forcing agents (e.g. Smith et al., 2018), this has not yet extended to the halocarbons in a way that would allow a reliable generic correction to be made to the RFs calculated here.

One interesting potential consequence of revisions in the GWP(100) of halocarbons is the impact on existing legislation. For example, the European Union's legislation on the usage of fluorinated greenhouse gases (EUR-Lex, 2014), in part, puts restrictions on usages of gases based on their GWP(100); it places dates on prohibition of marketing certain equipment which uses products with GWP(100) values exceeding 150, 1500 and 2500. Within that legislation, the GWP(100) values are clearly defined as those mostly originating from AR4 (Forster et al., 2007) but it does not appear to account for the uncertainties inherent in those GWP(100) values. Some of the updates presented here would push gases that were on one side of these GWP(100) boundaries to the other side. For example, HFC-152a has now breached the 150 boundary (172 compared to 138), and HFC-134a has breached the 1500 boundary (1600 compared to 1300). Hence future updates to legislation would either have to stick to using outdated values, amend the boundaries between allowed and prohibited fluorinated gases, or else decide that some gases that were previously accepted for certain usages, are no longer so. Similarly, Japan's "Act on Rational Use and Proper Management of Fluorocarbons" has target values for GWP(100) (at values of 100, 150, 750 and 1500) for different products (MEGJ, 2016) as does Canada's "Ozone-depleting Substances and Halocarbon Alternatives Regulations" (MJGC, 2019), with various products limited at different values of GWP(100) (150, 750, 1400, 1500 and 2200). Table 7 gives an overview of the six (out of the 40 most abundant) compounds that enter a new policy category due to our updated GWP(100) values. All six compounds show higher GWP(100) than in H2013, and updates to lifetimes and the AGWP_{CO2}(100) explain most of the increase for these compounds. A considerable part of the GWP(100) increase due to updated AGWP_{CO2}(100) (around 5 out of the 14%) arises solely because of increasing CO₂ concentrations and thereby reduced radiative efficiency of CO₂ since H2013 (see Section 2.5). Hence, it can be anticipated that continued accumulation of CO₂ in the atmosphere will lead to changes in GWP values for weak atmospheric absorbers also in future updates.

Finally, we have combined our new updated RE values with present-day atmospheric concentrations of halocarbons to determine their radiative forcing. We find that the most abundant halocarbons cause a present-day RF of 0.38 [0.33 to 0.43] W m⁻², compared to 0.36

[0.32 to 0.40] W m⁻² in AR5 (Myhre et al., 2013) and this is almost 20% of the pre-industrial (1750) to present-day (2019) RF due to CO₂. Most of the increase in halocarbon forcing since AR5 can be attributed to increasing concentrations of CFC replacement compounds (HCFCs and HFCs) which more than outweigh the forcing due to decreasing concentrations of CFCs. However, the stronger halocarbon RF is also a consequence of updated RE values, which are slightly higher compared to AR5 for some of the most abundant compounds.

Acknowledgments and Data

Funding from the Research Council of Norway for arranging two workshops on the topic of halocarbon metrics is acknowledged (grant no. 230618 and 240712). The CICERO authors acknowledge funding from the Norwegian Environment Agency. We thank Deborah Ottinger at the United States Environmental Protection Agency (EPA) for letting us know that three compounds in our 2013 review paper were accidently listed twice. KS thanks Raquel Jurado for help in identifying national fluorocarbon legislation which uses particular GWP values. We thank all providers of experimental absorption spectra for making their data available. We further thank the Editor for handling the manuscript and the three anonymous reviewers for valuable comments that helped improve the manuscript. Datasets for this research are included in these papers (and their supplementary information files): Shine and Myhre (2020), Hodnebrog et al. (2013), and those referenced in Table 2. Further datasets for this research are described in these papers: Kochanov et al. (2019), Sharpe et al. (2004), Jacquinet-Husson et al. (2016).

References

- 923 924 925 Allen, M. R., J. S. Fuglestvedt, K. P. Shine, A. Reisinger, R. T. Pierrehumbert, and P. M. Forster (2016), New use of global
- warming potentials to compare cumulative and short-lived climate pollutants, Nat. Clim. Chang., 6(8), 773-+, doi:
- 10.1038/nclimate2998.
- Allen, M. R., K. P. Shine, J. S. Fuglestvedt, R. J. Millar, M. Cain, D. J. Frame, and A. H. Macey (2018), A solution to the
- misrepresentations of CO₂-equivalent emissions of short-lived climate pollutants under ambitious mitigation, npj Clim.
- Atmos. Sci., 1, 8, doi: 10.1038/s41612-018-0026-8.
- Andersen, M. P. S., D. R. Blake, F. S. Rowland, M. D. Hurley, and T. J. Wallington (2009), Atmospheric Chemistry of
- 929 930 931 Sulfuryl Fluoride: Reaction with OH Radicals, CI Atoms and O3, Atmospheric Lifetime, IR Spectrum, and Global Warming
- Potential, Environ. Sci. Technol., 43(4), 1067-1070, doi: 10.1021/es802439f.
- Andersen, M. P. S., M. Kyte, S. T. Andersen, C. J. Nielsen, and O. J. Nielsen (2017), Atmospheric Chemistry of
- 932 933 934 (CF₃)₂CFCN: A Replacement Compound for the Most Potent Industrial Greenhouse Gas, SF6, Environ. Sci. Technol., 51(3),
- 1321-1329, doi: 10.1021/acs.est.6b03758.
- 935 936 937 Ballard, J., R. J. Knight, D. A. Newnham, J. Vander Auwera, M. Herman, G. Di Lonardo, G. Masciarelli, F. M. Nicolaisen,
- J. A. Beukes, L. K. Christensen, R. McPheat, G. Duxbury, R. Freckleton, and K. P. Shine (2000a), An intercomparison of
- laboratory measurements of absorption cross-sections and integrated absorption intensities for HCFC-22, J. Quant.
- 938 Spectrosc. Radiat. Transf., 66(2), 109-128, doi: 10.1016/s0022-4073(99)00211-3.
- 939 Ballard, J., R. J. Knight, D. A. Newnham, J. Vander Auwera, M. Herman, G. DiLonardo, G. Masciarelli, F. M. Nicolaisen, J.
- 940 A. Buekes, L. K. Christiansen, G. Duxbury, R. McPheat, K. P. Shine, E. J. Highwood, R. Freckleton, C. Bruning, and Swagg
- 941 (2000b), SWAGG Project - Introduction, J. Quant. Spectrosc. Radiat. Transf., 66(2), 107-108.
- 942 Bera, P. P., J. S. Francisco, and T. J. Lee (2009), Identifying the Molecular Origin of Global Warming, J. Phys. Chem. A,
- 943 113(45), 12694-12699, doi: 10.1021/jp905097g.
- 944 Bernard, F., D. K. Papanastasiou, V. C. Papadimitriou, and J. B. Burkholder (2018), Infrared absorption spectra of
- 945 $N(C_xF_{2x}+1)_3$ x=2-5 perfluoroamines, J. Quant. Spectrosc. Radiat. Transf., 211, 166-171, doi: 10.1016/j.jqsrt.2018.02.039.
- 946 Betowski, D., C. Bevington, and T. C. Allison (2016), Estimation of Radiative Efficiency of Chemicals with Potentially
- 947 Significant Global Warming Potential, Environ. Sci. Technol., 50(2), 790-797, doi: 10.1021/acs.est.5b04154.
- 948 Blazquez, S., M. Antinolo, O. J. Nielsen, J. Albaladejo, and E. Jimenez (2017), Reaction kinetics of (CF₃)₂CFCN with OH
- 949 radicals as a function of temperature (278-358 K): A good replacement for greenhouse SF₆?, Chem. Phys. Lett., 687, 297-
- 950 302, doi: 10.1016/j.cplett.2017.09.039.
- Boucher, O. (2012), Comparison of physically-and economically-based CO₂-equivalences for methane, Earth Syst. Dynam.,
- 951 952 3(1), 49-61, doi: 10.5194/esd-3-49-2012.
- 953 Boucher, O., and M. S. Reddy (2008), Climate trade-off between black carbon and carbon dioxide emissions, *Energy Policy*,
- 954 193-200, doi: DOI 10.1016/j.enpol.2007.08.039.
- 955 Bravo, I., A. Aranda, M. D. Hurley, G. Marston, D. R. Nutt, K. P. Shine, K. Smith, and T. J. Wallington (2010), Infrared
- 956 957 absorption spectra, radiative efficiencies, and global warming potentials of perfluorocarbons: Comparison between
- experiment and theory, J. Geophys. Res.-Atmos., 115(D24317), doi: 10.1029/2010jd014771.
- 958 Butler, J. H., and S. A. Montzka (2020), The NOAA Annual Greenhouse Gas Index (AGGI),
- 959 https://www.esrl.noaa.gov/gmd/aggi/aggi.html, last access: June 11, 2020Rep.
- 960 Cain, M., J. Lynch, M. R. Allen, J. S. Fuglestvedt, D. J. Frame, and A. H. Macey (2019), Improved calculation of warming-
- 961 equivalent emissions for short-lived climate pollutants, npj Clim. Atmos. Sci., 2, 7, doi: 10.1038/s41612-019-0086-4.
- 962 Christidis, N., M. D. Hurley, S. Pinnock, K. P. Shine, and T. J. Wallington (1997), Radiative forcing of climate change by
- 963 CFC-11 and possible CFC-replacements, J. Geophys. Res.-Atmos., 102(D16), 19597-19609, doi: 10.1029/97jd01137.
- 964 Collins, W. D., D. R. Feldman, C. Kuo, and N. H. Nguyen (2018), Large regional shortwave forcing by anthropogenic
- 965 methane informed by Jovian observations, Sci. Adv., 4(9), 9, doi: 10.1126/sciadv.aas9593.
- 966 Collins, W. D., V. Ramaswamy, M. D. Schwarzkopf, Y. Sun, R. W. Portmann, Q. Fu, S. E. B. Casanova, J. L. Dufresne, D.
- 967 W. Fillmore, P. M. D. Forster, V. Y. Galin, L. K. Gohar, W. J. Ingram, D. P. Kratz, M. P. Lefebvre, J. Li, P. Marquet, V.

- 968 Oinas, Y. Tsushima, T. Uchiyama, and W. Y. Zhong (2006), Radiative forcing by well-mixed greenhouse gases: Estimates
- 969 from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), J.
- 970 Geophys. Res.-Atmos., 111(D14), doi: 10.1029/2005jd006713.
- 971 972 Collins, W. J., R. G. Derwent, C. E. Johnson, and D. S. Stevenson (2002), The oxidation of organic compounds in the
- troposphere and their global warming potentials, Clim. Change, 52(4), 453-479, doi: 10.1023/a:1014221225434.
- Collins, W. J., D. J. Frame, J. Fuglestvedt, and K. P. Shine (2019), Stable climate metrics for emissions of short and long-
- 973 974 lived species – combining steps and pulses, Environmental Research Letters.
- 975 976 Daniel, J. S., S. Solomon, and D. L. Albritton (1995), On the evaluation of halocarbon radiative forcing and global warming
- potentials, J. Geophys. Res.-Atmos., 100(D1), 1271-1285, doi: 10.1029/94jd02516.
- 977 Davila, K. L., L. E. Seijas, R. Almeida, and L. Rincon (2017), The performance of HF and DFT/B3LYP in the estimation of
- the radiative efficiencies of greenhouse gases, Journal of Computational Methods in Sciences and Engineering, 17(1), 187-
- 978 979 197, doi: 10.3233/jcm-160672.
- 980 Davis, M. E., F. Bernard, M. R. McGillen, E. L. Fleming, and J. B. Burkholder (2016), UV and infrared absorption spectra,
- 981 982 983 atmospheric lifetimes, and ozone depletion and global warming potentials for CCl2FCCl2F (CFC-112), CCl3CClF2 (CFC-
- 112a), CCl3CF3 (CFC-113a), and CCl2FCF3 (CFC-114a), Atmos. Chem. Phys., 16(12), 8043-8052, doi: 10.5194/acp-16-
- 8043-2016.
- 984 Etminan, M., G. Myhre, E. J. Highwood, and K. P. Shine (2016), Radiative forcing of carbon dioxide, methane, and nitrous
- 985 oxide: A significant revision of the methane radiative forcing, Geophys. Res. Lett., 43(24), 12614-12623, doi:
- 986 10.1002/2016gl071930.
- 987 Etminan, M., E. Highwood, J. Laube, R. McPheat, G. Marston, K. Shine, and K. Smith (2014), Infrared Absorption Spectra,
- Radiative Efficiencies, and Global Warming Potentials of Newly-Detected Halogenated Compounds: CFC-113a, CFC-112
- 988 989 and HCFC-133a, Atmosphere, 5(3), 473.
- 990 EUR-Lex (2014), Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on
- 991 fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006 Text with EEA relevance, https://eur-
- 992 lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32014R0517Rep.
- 993 Fisher, D. A., C. H. Hales, W. C. Wang, M. K. W. Ko, and N. D. Sze (1990), Model-calculations of the relative effects of
- 994 CFCs and their replacements on global warming, *Nature*, 344(6266), 513-516, doi: 10.1038/344513a0.
- 995 Forster, P. M., J. B. Burkholder, C. Clerbaux, P. F. Coheur, M. Dutta, L. K. Gohar, M. D. Hurley, G. Myhre, R. W.
- 996 Portmann, K. P. Shine, T. J. Wallington, and D. Wuebbles (2005), Resolution of the uncertainties in the radiative forcing of
- 997 HFC-134a, J. Quant. Spectrosc. Radiat. Transf., 93(4), 447-460, doi: 10.1016/j.jqsrt.2004.08.038.
- 998 Forster, P. M., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre,
- 999 J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland (2007), Changes in Atmospheric Constituents and in Radiative
- 1000 Forcing, In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment
- 1001 1002 Report of the Intergovernmental Panel on Climate Change eds. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis et
- al. Rep., 129-234 pp, Cambridge, United Kingdom and New York, NY, USA.
- 1003 Freckleton, R. S., E. J. Highwood, K. P. Shine, O. Wild, K. S. Law, and M. G. Sanderson (1998), Greenhouse gas radiative
- 1004 forcing: Effects of averaging and inhomogeneities in trace gas distribution, Quarterly Journal of the Royal Meteorological
- 1005 Society, 124(550), 2099-2127, doi: 10.1256/smsqj.55013.
- 1006 Gasser, T., G. P. Peters, J. S. Fuglestvedt, W. J. Collins, D. T. Shindell, and P. Ciais (2017), Accounting for the climate-
- 1007 carbon feedback in emission metrics, Earth Syst. Dynam., 8(2), 235-253, doi: 10.5194/esd-8-235-2017.
- 1008 Geoffroy, O., D. Saint-Martin, D. J. L. Olivie, A. Voldoire, G. Bellon, and S. Tyteca (2013), Transient Climate Response in
- 1009 a Two-Layer Energy-Balance Model. Part I: Analytical Solution and Parameter Calibration Using CMIP5 AOGCM
- 1010 Experiments, J. Clim., 26(6), 1841-1857, doi: 10.1175/jcli-d-12-00195.1.
- 1011 Gierczak, T., M. Baasandorj, and J. B. Burkholder (2014), OH + (E)- and (Z)-1-Chloro-3,3,3-trifluoropropene-1
- 1012 (CF3CH=CHCl) Reaction Rate Coefficients: Stereoisomer-Dependent Reactivity, The Journal of Physical Chemistry A,
- 1013 118(46), 11015-11025, doi: 10.1021/jp509127h.

- 1014 Godin, P. J., H. Johnson, R. Piunno, K. Le Bris, and K. Strong (2019), Conformational analysis and global warming
- 1015 potentials of 1,1,1,2,3,3-hexafluoropropane and 1,1,2,2,3-pentafluoropropane from absorption spectroscopy, J. Quant.
- 1016 Spectrosc. Radiat. Transf., 225, 337-350, doi: 10.1016/j.jqsrt.2019.01.003.
- 1017 Godin, P. J., A. Cabaj, S. Conway, A. C. Hong, K. Le Bris, S. A. Mabury, and K. Strong (2016), Temperature-dependent
- 1018 absorption cross-sections of perfluorotributylamine, J. Mol. Spectrosc., 323(Supplement C), 53-58, doi:
- 1019 https://doi.org/10.1016/j.jms.2015.11.004.
- $\frac{1020}{1021}$ Gohar, L. K., G. Myhre, and K. P. Shine (2004), Updated radiative forcing estimates of four halocarbons, J. Geophys, Res.-
- Atmos., 109(D01107), doi: 10.1029/2003jd004320.
- $\frac{1022}{1023}$ Gordon, I. E., L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V.
- Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.
- 1024 A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J.
- Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T.
- Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey,
- 1024 1025 1026 1027 1028 1029 M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcislo, S.
- Yu, and E. J. Zak (2017), The HITRAN2016 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf., 203, 3-
- 69, doi: 10.1016/j.jqsrt.2017.06.038.
- 1030 Grossman, A. S., K. E. Grant, W. E. Blass, and D. J. Wuebbles (1997), Radiative forcing calculations for CH₃Cl and CH₃Br,
- 1031 J. Geophys. Res.-Atmos., 102(D12), 13651-13656, doi: 10.1029/97jd00611.
- $\begin{array}{c} 1032 \\ 1033 \end{array}$ Harrison, J. J. (2013), Infrared absorption cross sections for trifluoromethane, J. Quant. Spectrosc. Radiat. Transf., 130, 359-
- 364, doi: 10.1016/j.jqsrt.2013.05.026.
- 1034 Harrison, J. J. (2015a), New and improved infrared absorption cross sections for dichlorodifluoromethane (CFC-12),
- 1035 Atmospheric Measurement Techniques, 8(8), 3197-3207, doi: 10.5194/amt-8-3197-2015.
- 1036 Harrison, J. J. (2015b), Infrared absorption cross sections for 1,1,1,2-tetrafluoroethane, J. Quant. Spectrosc. Radiat. Transf.,
- 1037 151, 210-216, doi: 10.1016/j.jqsrt.2014.09.023.
- $\begin{array}{c} 1038 \\ 1039 \end{array}$ Harrison, J. J. (2016), New and improved infrared absorption cross sections for chlorodifluoromethane (HCFC-22),
- Atmospheric Measurement Techniques, 9(6), 2593-2601, doi: 10.5194/amt-9-2593-2016.
- 1040 Harrison, J. J. (2019), Infrared absorption cross sections for air-broadened 1,1-dichloro-1-fluoroethane (HCFC-141b),
- 1041 Journal of Quantitative Spectroscopy and Radiative Transfer, 238, 106489, doi: https://doi.org/10.1016/j.jqsrt.2019.04.041.
- 1042 Harrison, J. J., C. D. Boone, and P. F. Bernath (2017), New and improved infra-red absorption cross sections and ACE-FTS
- 1043 retrievals of carbon tetrachloride (CCl4), Journal of Quantitative Spectroscopy and Radiative Transfer, 186(Supplement C),
- 1044 139-149, doi: https://doi.org/10.1016/j.jqsrt.2016.04.025.
- 1045 Highwood, E. J., and K. P. Shine (2000), Radiative forcing and global warming potentials of 11 halogenated compounds, J.
- 1046 Quant. Spectrosc. Radiat. Transf., 66(2), 169-183, doi: 10.1016/s0022-4073(99)00215-0.
- 1047 Hodnebrog, Ø., S. B. Dalsoren, and G. Myhre (2018), Lifetimes, direct and indirect radiative forcing, and global warming
- potentials of ethane (C2H6), propane (C3H8), and butane (C4H10), Atmospheric Science Letters, 19(2), 7, doi:
- 1048 1049 10.1002/asl.804.
- 1050 Hodnebrog, Ø., M. Etminan, J. S. Fuglestvedt, G. Marston, G. Myhre, C. J. Nielsen, K. P. Shine, and T. J. Wallington
- 1051 1052 (2013), Global Warming Potentials and Radiative Efficiencies of Halocarbons and Related Compounds: A Comprehensive
- Review, Reviews of Geophysics, 51(2), 300-378, doi: 10.1002/rog.20013.
- 1053 Hong, A. C., C. J. Young, M. D. Hurley, T. J. Wallington, and S. A. Mabury (2013), Perfluorotributylamine: A novel long-
- 1054 lived greenhouse gas, Geophys. Res. Lett., 40(22), 6010-6015, doi: 10.1002/2013GL058010.
- 1055 Imasu, R., A. Suga, and T. Matsuno (1995), Radiative effects and halocarbon global warming potentials of replacement
- 1056 compounds for chlorofluorocarbons, Journal of the Meteorological Society of Japan, 73(6), 1123-1136.
- 1057 IPCC (1990), Climate Change: The IPCC Scientific Assessment, edited by J. T. Houghton, G. J. Jenkins and J. J. Ephraums,
- 1058 p. 410, Cambridge University Press, Cambridge.

- 1059 IPCC (1994), Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission
- 1060 Scenarios, edited by: J.T. Houghton, L.G. Meira Filho, J. Bruce, Hoesung Lee, B.A. Callander, E.F. Haites, N. Harris and K.
- 1061 Maskell. Rep., Cambridge University Press, Cambridge, United Kingdom.
- 1062 1063 IPCC (2001), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report
- of the Intergovernmental Panel on Climate Change, edited by: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der
- 1064 Linden, P. J., Dai, X., Maskell, K., and Johnson, C.A. Rep., 881 pp, Cambridge University Press, Cambridge, United
- 1065 Kingdom and New York, NY, USA.
- 1066 Jacquinet-Husson, N., R. Armante, N. A. Scott, A. Chedin, L. Crepeau, C. Boutammine, A. Bouhdaoui, C. Crevoisier, V.
- 1067 Capelle, C. Boonne, N. Poulet-Crovisier, A. Barbe, D. C. Benner, V. Boudon, L. R. Brown, J. Buldyreva, A. Campargue, L.
- 1068 H. Coudert, V. M. Devi, M. J. Down, B. J. Drouin, A. Fayt, C. Fittschen, J. M. Flaud, R. R. Gamache, J. J. Harrison, C. Hill,
- 1069 O. Hodnebrog, S. M. Hu, D. Jacquemart, A. Jolly, E. Jimenez, N. N. Lavrentieva, A. W. Liu, L. Lodi, O. M. Lyulin, S. T.
- 1070 Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. Nikitin, C. J. Nielsen, J. Orphal, V. I. Perevalov, A. Perrin, E.
- 1071 1072 1073 Polovtseva, A. Predoi-Cross, M. Rotger, A. A. Ruth, S. S. Yu, K. Sung, S. A. Tashkun, J. Tennyson, V. I. G. Tyuterev, J. V.
- Auwera, B. A. Voronin, and A. Makie (2016), The 2015 edition of the GEISA spectroscopic database, J. Mol. Spectrosc.,
- 327, 31-72, doi: 10.1016/j.jms.2016.06.007.
- 1074 Jacquinet-Husson, N., L. Crepeau, R. Armante, C. Boutammine, A. Chedin, N. A. Scott, C. Crevoisier, V. Capelle, C.
- Boone, N. Poulet-Crovisier, A. Barbe, A. Campargue, D. C. Benner, Y. Benilan, B. Bezard, V. Boudon, L. R. Brown, L. H.
- $\begin{array}{c} 1075 \\ 1076 \end{array}$ Coudert, A. Coustenis, V. Dana, V. M. Devi, S. Fally, A. Fayt, J. M. Flaud, A. Goldman, M. Herman, G. J. Harris, D.
- Jacquemart, A. Jolly, I. Kleiner, A. Kleinbohl, F. Kwabia-Tchana, N. Lavrentieva, N. Lacome, L. H. Xu, O. M. Lyulin, J. Y.
- 1077 1078 1079 Mandin, A. Maki, S. Mikhailenko, C. E. Miller, T. Mishina, N. Moazzen-Ahmadi, H. S. P. Muller, A. Nikitin, J. Orphal, V.
- Perevalov, A. Perrin, D. T. Petkie, A. Predoi-Cross, C. P. Rinsland, J. J. Remedios, M. Rotger, M. A. H. Smith, K. Sung, S.
- 1080 Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera (2011), The 2009 edition of the GEISA
- 1081 spectroscopic database, J. Quant. Spectrosc. Radiat. Transf., 112(15), 2395-2445, doi: 10.1016/j.jqsrt.2011.06.004.
- 1082 Jain, A. K., B. P. Briegleb, K. Minschwaner, and D. J. Wuebbles (2000), Radiative forcings and global warming potentials
- 1083 of 39 greenhouse gases, J. Geophys. Res.-Atmos., 105(D16), 20773-20790, doi: 10.1029/2000jd900241.
- 1084 Joos, F., R. Roth, J. S. Fuglestvedt, G. P. Peters, I. G. Enting, W. von Bloh, V. Brovkin, E. J. Burke, M. Eby, N. R. Edwards,
- 1085 T. Friedrich, T. L. Frölicher, P. R. Halloran, P. B. Holden, C. Jones, T. Kleinen, F. Mackenzie, K. Matsumoto, M.
- Meinshausen, G. K. Plattner, A. Reisinger, J. Segschneider, G. Shaffer, M. Steinacher, K. Strassmann, K. Tanaka, A.
- 1086 1087 Timmermann, and A. J. Weaver (2013), Carbon dioxide and climate impulse response functions for the computation of
- 1088 greenhouse gas metrics: a multi-model analysis, Atmos. Chem. Phys., 13, 2793-2825, doi: 10.5194/acp-13-2793-2013.
- 1089 Kazakov, A., M. O. McLinden, and M. Frenkel (2012), Computational Design of New Refrigerant Fluids Based on
- 1090 Environmental, Safety, and Thermodynamic Characteristics, Industrial & Engineering Chemistry Research, 51(38), 12537-
- 1091 12548, doi: 10.1021/ie3016126.
- 1092 Kochanov, R. V., I. E. Gordon, L. S. Rothman, K. P. Shine, S. W. Sharpe, T. J. Johnson, T. J. Wallington, J. J. Harrison, P.
- 1093 F. Bernath, M. Birk, G. Wagner, K. Le Bris, I. Bravo, and C. Hill (2019), Infrared absorption cross-sections in
- 1094 HITRAN2016 and beyond: Expansion for climate, environment, and atmospheric applications, J. Quant. Spectrosc. Radiat.
- 1095 Transf., 230, 172-221, doi: 10.1016/j.jgsrt.2019.04.001.
- 1096 Kovács, T., W. Feng, A. Totterdill, J. M. C. Plane, S. Dhomse, J. C. Gómez-Martín, G. P. Stiller, F. J. Haenel, C. Smith, P.
- 1097 M. Forster, R. R. García, D. R. Marsh, and M. P. Chipperfield (2017), Determination of the atmospheric lifetime and global
- 1098 warming potential of sulfur hexafluoride using a three-dimensional model, Atmos. Chem. Phys., 17(2), 883-898, doi:
- 1099 10.5194/acp-17-883-2017.
- 1100 Laube, J. C., M. J. Newland, C. Hogan, C. A. M. Brenninkmeijer, P. J. Fraser, P. Martinerie, D. E. Oram, C. E. Reeves, T.
- 1101 Rockmann, J. Schwander, E. Witrant, and W. T. Sturges (2014), Newly deteted ozone-depleting substances in the
- 1102 atmosphere, Nat. Geosci., 7(4), 266-269, doi: 10.1038/ngeo2109.
- 1103 Le Bris, K., and K. Strong (2010), Temperature-dependent absorption cross-sections of HCFC-142b, J. Quant. Spectrosc.
- 1104 Radiat. Transf., 111(3), 364-371, doi: 10.1016/j.jqsrt.2009.10.005.
- 1105 Le Bris, K., and L. Graham (2015). Quantitative comparisons of absorption cross-section spectra and integrated intensities of
- 1106 HFC-143a, Journal of Quantitative Spectroscopy and Radiative Transfer, 151(Supplement C), 13-17, doi:
- 1107 https://doi.org/10.1016/j.jqsrt.2014.09.005.
- 1108 Le Bris, K., J. McDowell, and K. Strong (2012), Measurements of the infrared absorption cross-sections of HCFC-141b
- 1109 (CH3CFCl2), J. Quant. Spectrosc. Radiat. Transf., 113(15), 1913-1919, doi: 10.1016/j.jqsrt.2012.05.004.

Confidential manuscript submitted to Reviews of Geophysics. Revised version: 2020-06-26

- Le Bris, K., J. DeZeeuw, P. J. Godin, and K. Strong (2018), Infrared absorption cross-sections, radiative efficiency and
- $\begin{array}{c} 1110 \\ 1111 \end{array}$ global warming potential of HFC-43-10mee, J. Mol. Spectrosc., 348, 64-67, doi: 10.1016/j.jms.2017.06.004.
- 1112 Massie, S. T., A. Goldman, A. H. McDaniel, C. A. Cantrell, J. A. Davidson, R. E. Shetter, and J. G. Calvert (1991),
- 1113 1114 Temperature dependent infrared cross sections for CFC-11, CFC-12, CFC-13, CFC-14, CFC-22, CFC-113, CFC-114, and
- CFC-115Rep., 67 pp, NCAR Tech. Note NCAR/TN-358+STR, Nat. Cent. for Atmos. Res., Boulder, Colorado.
- 1115 McDaniel, A. H., C. A. Cantrell, J. A. Davidson, R. E. Shetter, and J. G. Calvert (1991), The temperature-dependent,
- 1116 1117 infrared-absorption cross-sections for the chlorofluorocarbons - CFC-11, CFC-12, CFC-13, CFC-14, CFC-22, CFC-113,
- CFC-114, and CFC-115, Journal of Atmospheric Chemistry, 12(3), 211-227, doi: 10.1007/bf00048074.
- 1118 1119 McGillen, M. R., F. Bernard, E. L. Fleming, and J. B. Burkholder (2015), HCFC-133a (CF3CH2Cl): OH rate coefficient,
- UV and infrared absorption spectra, and atmospheric implications, Geophys. Res. Lett., 42(14), 6098-6105, doi:
- 1120 10.1002/2015GL064939.
- 1121 McLinden, M. O., A. F. Kazakov, J. S. Brown, and P. A. Domanski (2014), A thermodynamic analysis of refrigerants:
- 1122 1123 Possibilities and tradeoffs for Low-GWP refrigerants, Int. J. Refrig.-Rev. Int. Froid, 38, 80-92, doi:
- 10.1016/j.ijrefrig.2013.09.032.
- 1124 1125 MEGJ (2016), Act on Rational Use and Proper Management of Fluorocarbons, Ministry of the Environment Government of
- Japan, http://www.env.go.ip/en/earth/ozone/laws/ozone4.pdfRep.
- Meinshausen, M., E. Vogel, A. Nauels, K. Lorbacher, N. Meinshausen, D. M. Etheridge, P. J. Fraser, S. A. Montzka, P. J.
- Rayner, C. M. Trudinger, P. B. Krummel, U. Beyerle, J. G. Canadell, J. S. Daniel, I. G. Enting, R. M. Law, C. R. Lunder, S.
- 1126 1127 1128 1129 O'Doherty, R. G. Prinn, S. Reimann, M. Rubino, G. J. M. Velders, M. K. Vollmer, R. H. J. Wang, and R. Weiss (2017),
- Historical greenhouse gas concentrations for climate modelling (CMIP6), Geoscientific Model Development, 10(5), 2057-
- 1130 2116, doi: 10.5194/gmd-10-2057-2017.
- 1131 MJGC (2019), Ozone-depleting Substances and Halocarbon Alternatives Regulations by Ministry of Justice Government of
- 1132 Canada, SOR/2016-137, https://laws-lois.justice.gc.ca/eng/regulations/SOR-2016-137/Rep.
- Molina, M. J., and F. S. Rowland (1974), Stratospheric Sink for Chlorofluoromethanes Chlorine Atomic-Catalysed
- 1133 1134 Destruction of Ozone, Nature, 249(5460), 810-812, doi: 10.1038/249810a0.
- 1135 Myhre, G., and F. Stordal (1997), Role of spatial and temporal variations in the computation of radiative forcing and GWP,
- 1136 J. Geophys. Res.-Atmos., 102(D10), 11181-11200, doi: 10.1029/97jd00148.
- 1137 Myhre, G., E. J. Highwood, K. P. Shine, and F. Stordal (1998), New estimates of radiative forcing due to well mixed
- 1138 greenhouse gases, Geophys. Res. Lett., 25(14), 2715-2718, doi: 10.1029/98gl01908.
- 1139 Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T.
- 1140 Nakajima, A. Robock, G. Stephens, T. Takemura, and H. Zhang (2013), Anthropogenic and Natural Radiative Forcing, in
- 1141 Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
- 1142 Intergovernmental Panel on Climate Change, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J.
- 1143 1144 Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, pp. 659-740, Cambridge University Press, Cambridge, United
- Kingdom and New York, NY, USA.
- 1145 Nemtchinov, V., and P. Varanasi (2003), Thermal infrared absorption cross-sections of CCl₄ needed for atmospheric remote
- 1146 sensing, J. Quant. Spectrosc. Radiat. Transf., 82(1-4), 473-481, doi: 10.1016/s0022-4073(03)00171-7.
- 1147 Olivié, D. J. L., and G. P. Peters (2012), The impact of model variation in CO2 and temperature impulse response functions
- 1148 on emission metrics, Earth Syst. Dynam. Discuss., 3(2), 935-977, doi: 10.5194/esdd-3-935-2012.
- 1149 Oreopoulos, L., E. Mlawer, J. Delamere, T. Shippert, J. Cole, B. Fomin, M. Iacono, Z. H. Jin, J. N. Li, J. Manners, P.
- 1150 Raisanen, F. Rose, Y. C. Zhang, M. J. Wilson, and W. B. Rossow (2012), The Continual Intercomparison of Radiation
- 1151 Codes: Results from Phase I, J. Geophys. Res.-Atmos., 117, doi: 10.1029/2011jd016821.
- Orkin, V. L., V. G. Khamaganov, and A. G. Guschin (2014), Photochemical Properties of Hydrofluoroethers CH₃OCHF₂,
- 1152 1153 1154 CH₂OCF₃, and CHF₂OCH₂CF₃: Reactivity toward OH, IR Absorption Cross Sections, Atmospheric Lifetimes, and Global
- Warming Potentials, The Journal of Physical Chemistry A, 118(45), 10770-10777, doi: 10.1021/jp506377w.
- 1155 1156 Papadimitriou, V. C., M. R. McGillen, S. C. Smith, A. M. Jubb, R. W. Portmann, B. D. Hall, E. L. Fleming, C. H. Jackman,
- and J. B. Burkholder (2013), 1,2-Dichlorohexafluoro-cyclobutane (1,2-c-C₄F₆Cl₂, R-316c) a Potent Ozone Depleting
- 1157 Substance and Greenhouse Gas: Atmospheric Loss Processes, Lifetimes, and Ozone Depletion and Global Warming

Confidential manuscript submitted to Reviews of Geophysics. Revised version: 2020-06-26

- 1158 1159 Potentials for the (E) and (Z) Stereoisomers, The Journal of Physical Chemistry A, 117(43), 11049-11065, doi:
- 10.1021/jp407823k.
- 1160 Papanastasiou, D. K., A. Beltrone, P. Marshall, and J. B. Burkholder (2018), Global warming potential estimates for the C-1-
- 1161 1162 C-3 hydrochlorofluorocarbons (HCFCs) included in the Kigali Amendment to the Montreal Protocol, Atmos. Chem. Phys.,
- 18(9), 6317-6330, doi: 10.5194/acp-18-6317-2018.
- 1163 Pinnock, S., M. D. Hurley, K. P. Shine, T. J. Wallington, and T. J. Smyth (1995), Radiative forcing of climate by
- 1164 hydrochlorofluorocarbons and hydrofluorocarbons, J. Geophys. Res.-Atmos., 100(D11), 23227-23238, doi:
- 1165 10.1029/95jd02323.
- 1166 Ravishankara, A. R., S. Solomon, A. A. Turnipseed, and R. F. Warren (1993), Atmospheric lifetimes of long-lived
- 1167 halogenated species, Science, 259(5092), 194-199, doi: 10.1126/science.259.5092.194.
- 1168 Ray, E. A., F. L. Moore, J. W. Elkins, K. H. Rosenlof, J. C. Laube, T. Rockmann, D. R. Marsh, and A. E. Andrews (2017),
- 1169 Ouantification of the SF6 lifetime based on mesospheric loss measured in the stratospheric polar vortex, J. Geophys. Res.-
- 1170 Atmos., 122(8), 4626-4638, doi: 10.1002/2016jd026198.
- Reisinger, A., M. Meinshausen, M. Manning, and G. Bodeker (2010), Uncertainties of global warming metrics: CO2 and 1171
- 1172 CH₄, Geophys. Res. Lett., 37, doi: L14707 10.1029/2010gl043803.
- 1173 Robson, J. I., L. K. Gohar, M. D. Hurley, K. P. Shine, and T. J. Wallington (2006), Revised IR spectrum, radiative efficiency
- 1174 and global warming potential of nitrogen trifluoride, Geophys. Res. Lett., 33(10), doi: 10.1029/2006gl026210.
- 1175 Rogelj, J., and C.-F. Schleussner (2019), Unintentional unfairness when applying new greenhouse gas emissions metrics at
- 1176 country level, Environmental Research Letters, 14(11), 114039, doi: 10.1088/1748-9326/ab4928.
- 1177 Rothman, L. S., I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P.
- 1178 Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D.
- 1179 Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-
- 1180 Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger,
- 1181 1182 1183 M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera
- (2009), The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf., 110(9-10), 533-572, doi:
- 10.1016/j.jqsrt.2009.02.013.
- 1184 Schlabach, M. e. a. (2018), Screening Programme 2017 - AMAP Assessment Compounds, Report funded by The
- 1185 Norwegian Environment Agency, ISBN: 978-82-425-2940-4Rep.
- 1186 Sharpe, S. W., T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson (2004), Gas-phase databases for
- 1187 quantitative infrared spectroscopy, Applied Spectroscopy, 58(12), 1452-1461, doi: 10.1366/0003702042641281.
- 1188 Shine, K. P., and G. Myhre (2020), The Spectral Nature of Stratospheric Temperature Adjustment and its Application to
- 1189 Halocarbon Radiative Forcing, Journal of Advances in Modeling Earth Systems, 12(3), e2019MS001951, doi:
- 1190 10.1029/2019MS001951.
- 1191 1192 1193 Shine, K. P., J. S. Fuglestvedt, K. Hailemariam, and N. Stuber (2005), Alternatives to the global warming potential for
- comparing climate impacts of emissions of greenhouse gases, Clim. Change, 68(3), 281-302, doi: 10.1007/s10584-005-
- 1146-9.
- 1194 Sihra, K., M. D. Hurley, K. P. Shine, and T. J. Wallington (2001), Updated radiative forcing estimates of 65 halocarbons and
- 1195 nonmethane hydrocarbons, J. Geophys. Res.-Atmos., 106(D17), 20493-20505, doi: 10.1029/2000jd900716.
- 1196 Smith, C. J., R. J. Kramer, G. Myhre, P. M. Forster, B. J. Soden, T. Andrews, O. Boucher, G. Faluvegi, D. Flaschner, O.
- 1197 Hodnebrog, M. Kasoar, V. Kharin, A. Kirkevag, J. F. Lamarque, J. Mulmenstadt, D. Olivie, T. Richardson, B. H. Samset, D.
- 1198 Shindell, P. Stier, T. Takemura, A. Voulgarakis, and D. Watson-Parris (2018), Understanding Rapid Adjustments to Diverse
- 1199 Forcing Agents, Geophys. Res. Lett., 45(21), 12023-12031, doi: 10.1029/2018g1079826.
- $\frac{1200}{1201}$ SPARC (2013), Report on the Lifetimes of Stratospheric Ozone-Depleting Substances, Their Replacements, and Related
- Species, M. Ko, P. Newman, S. Reimann, S. Strahan (Eds.), SPARC Report No. 6, WCRP-15/2013Rep.
- $\begin{array}{c} 1202 \\ 1203 \end{array}$ Taylor, K. E., R. J. Stouffer, and G. A. Meehl (2011), An Overview of CMIP5 and the Experiment Design, Bulletin of the
- American Meteorological Society, 93(4), 485-498, doi: 10.1175/BAMS-D-11-00094.1.

- $\frac{1204}{1205}$ Totterdill, A., T. Kovacs, W. H. Feng, S. Dhomse, C. J. Smith, J. C. Gomez-Martin, M. P. Chipperfield, P. M. Forster, and J.
- M. C. Plane (2016), Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of
- 1206 NF₃ and CF₃CF₂CI (CFC-115), Atmos. Chem. Phys., 16(17), 11451-11463, doi: 10.5194/acp-16-11451-2016.
- 1207 1208 UNFCCC (2019), Report of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement on the
- third part of its first session, held in Katowice from 2 to 15 December 2018Rep. PA/CMA/2018/3/Add.2,
- 1209 https://unfccc.int/sites/default/files/resource/cma2018 3 add2 new advance.pdf.
- 1210 1211 Vander Auwera, J. (2000), Infrared absorption cross-sections for two substituted ethanes: 1.1-difluoroethane (HFC-152a)
- and 1,2-dichloroethane, J. Quant. Spectrosc. Radiat. Transf., 66(2), 143-151.
- 1212 1213 Velders, G. J. M., and J. S. Daniel (2014), Uncertainty analysis of projections of ozone-depleting substances: mixing ratios,
- EESC, ODPs, and GWPs, Atmos. Chem. Phys., 14(6), 2757-2776, doi: 10.5194/acp-14-2757-2014.
- 1214 Wallington, T. J., B. P. Pivesso, A. M. Lira, J. E. Anderson, C. J. Nielsen, N. H. Andersen, and Ø. Hodnebrog (2016),
- 1215 CH₃Cl, CH₂Cl₂, CHCl₃, and CCl₄: Infrared spectra, radiative efficiencies, and global warming potentials, Journal of
- 1216 Quantitative Spectroscopy and Radiative Transfer, 174(Supplement C), 56-64, doi:
- 1217 https://doi.org/10.1016/j.jqsrt.2016.01.029.
- 1218 1219 WMO (2011), Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project - Report
- No. 50, 572 pp., World Meteorological Organization, Geneva, Switzerland Rep.
- $\frac{1220}{1221}$ WMO (2015), Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project — Report
- No. 55, 416 pp., World Meteorological Organization, Geneva, Switzerland Rep.
- 1222 1223 WMO (2019), Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project — Report
- No. 58, 588 pp., World Meteorological Organization, Geneva, Switzerland Rep.
- 1224 WMO/GAW (2019), WMO Greenhouse Gas Bulletin. Number 15, 25 November 2019.
- 1225 https://library.wmo.int/doc_num.php?explnum_id=10100Rep.
- 1226 1227 Wuebbles, D. J., A. K. Jain, K. O. Patten, and K. E. Grant (1995), Sensitivity of Direct Global Warming Potentials to Key
- Uncertainties, Clim. Change, 29(3), 265-297, doi: 10.1007/bf01091865.
- Zhang, H., J. X. Wu, and Z. P. Shen (2011), Radiative forcing and global warming potential of perfluorocarbons and sulfur
- 1228 1229 hexafluoride, Science China-Earth Sciences, 54(5), 764-772, doi: 10.1007/s11430-010-4155-0.
- Zhang, N., T. Uchimaru, Q. Guo, F. Qing, L. Chen, and J. Mizukado (2017), Atmospheric chemistry of
- perfluorocyclopentene (cyc-CF₂CF₂CF₂CF=CF-): Kinetics, products and mechanism of gas-phase reactions with OH
- 1230 1231 1232 1233 radicals, and atmospheric implications, Atmos. Environ., 160(Supplement C), 46-54, doi:
- https://doi.org/10.1016/j.atmosenv.2017.04.012.

1235

1234

Supporting Information References

- 1238 1239 1240 Acerboni, G., J. A. Beukes, N. R. Jensen, J. Hjorth, G. Myhre, C. J. Nielsen, and J. K. Sundet (2001), Atmospheric
- degradation and global warming potentials of three perfluoroalkenes, Atmos. Environ., 35(24), 4113-4123, doi:
- 10.1016/s1352-2310(01)00209-6.

- Allen, G., J. J. Remedios, D. A. Newnham, K. M. Smith, and P. S. Monks (2005), Improved mid-infrared cross-sections for
- $\begin{array}{c} 1241 \\ 1242 \end{array}$ peroxyacetyl nitrate (PAN) vapour, Atmos. Chem. Phys., 5, 47-56, doi: 10.5194/acp-5-47-2005.
- 1243 1244 1245 Anastasi, C., A. E. Heathfield, G. P. Knight, and F. Nicolaisen (1994), Integrated absorption-coefficients of CHCIF₂ (HCFC-
- 22) and CH₃Br in the atmospheric infrared window region, Spectrochimica Acta Part a-Molecular and Biomolecular
- Spectroscopy, 50(10), 1791-1798, doi: 10.1016/0584-8539(94)00132-4.
- 1246 1247 Andersen, L. L., F. F. Østerstrøm, O. J. Nielsen, M. P. S. Andersen, and T. J. Wallington (2014), Atmospheric chemistry of
- (CF3)2CFOCH3, Chem. Phys. Lett., 607(Supplement C), 5-9, doi: https://doi.org/10.1016/j.cplett.2014.05.036.
- 1248 1249 Andersen, L. L., F. F. Østerstrøm, M. P. Sulbaek Andersen, O. J. Nielsen, and T. J. Wallington (2015), Atmospheric
- chemistry of cis-CF3CHCHCl (HCFO-1233zd(Z)): Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O3,
- 1250 Chem. Phys. Lett., 639(Supplement C), 289-293, doi: https://doi.org/10.1016/j.cplett.2015.09.008.
- 1251 1252 1253 Andersen, M. P. S., S. B. Svendsen, F. F. Osterstrom, and O. J. Nielsen (2017a), Atmospheric Chemistry of CH3CH2OCH3:
- Kinetics and Mechanism of Reactions with Cl Atoms and OH Radicals, Int. J. Chem. Kinet., 49(1), 10-20, doi:
- 10.1002/kin.21051.
- Andersen, M. P. S., M. D. Hurley, V. F. Andersen, O. J. Nielsen, and T. J. Wallington (2010a), CHF₂OCHF₂ (HFE-134): IR
- 1254 1255 1256 Spectrum and Kinetics and Products of the Chlorine-Atom-Initiated Oxidation, J. Phys. Chem. A, 114(14), 4963-4967, doi:
- 10.1021/jp101507f.
- 1257 1258 1259 Andersen, M. P. S., V. F. Andersen, O. J. Nielsen, S. P. Sander, and T. J. Wallington (2010b), Atmospheric Chemistry of
- HCF₂O(CF₂CF₂O)_xCF₂H (x=2-4): Kinetics and Mechanisms of the Chlorine-Atom-Initiated Oxidation, Chemphyschem,
- 11(18), 4035-4041, doi: 10.1002/cphc.201000438.
- 1260 1261 Andersen, M. P. S., O. J. Nielsen, T. J. Wallington, B. Karpichev, and S. P. Sander (2012a), Assessing the Impact on Global
- Climate from General Anesthetic Gases, Anesthesia and Analgesia, 114(5), 1081-1085, doi:
- 1262 10.1213/ANE.0b013e31824d6150.
- 1263 1264 1265 Andersen, M. P. S., R. L. Waterland, S. P. Sander, O. J. Nielsen, and T. J. Wallington (2012b), Atmospheric chemistry of
- CxF2x+1CH=CH2 (x=1, 2, 4, 6 and 8): Radiative efficiencies and global warming potentials, J. Photochem. Photobiol. A-
- Chem., 233, 50-52, doi: 10.1016/j.jphotochem.2012.02.020.
- Andersen, M. P. S., E. J. K. Nilsson, O. J. Nielsen, M. S. Johnson, M. D. Hurley, and T. J. Wallington (2008), Atmospheric
- 1266 1267 chemistry of trans-CF₃CHCHCl: Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O₃, Journal of
- 1268 Photochemistry and Photobiology A: Chemistry, 199(1), 92-97, doi: 10.1016/j.jphotochem.2008.05.013.
- 1269 1270 Andersen, M. P. S., S. P. Sander, O. J. Nielsen, D. S. Wagner, T. J. Sanford, and T. J. Wallington (2010c), Inhalation
- anaesthetics and climate change, British Journal of Anaesthesia, 105(6), 760-766, doi: 10.1093/bja/aeq259.
- Andersen, M. P. S., M. D. Hurley, T. J. Wallington, F. Blandini, N. R. Jensen, V. Librando, and J. Hjorth (2004),
- 1271 1272 1273 Atmospheric chemistry of CH₃O(CF₂CF₂O)_nCH₃ (n=1-3): Kinetics and mechanism of oxidation initiated by Cl atoms and
- OH radicals, IR spectra, and global warmin potentials, J. Phys. Chem. A, 108(11), 1964-1972, doi: 10.1021/jp036615a.
- Antinolo, M., I. Bravo, E. Jimenez, B. Ballesteros, and J. Albaladejo (2017), Atmospheric Chemistry of E- and Z-
- 1274 1275 1276 CF₃CH=CHF (HFO-1234ze): OH Reaction Kinetics as a Function of Temperature and UV and IR Absorption Cross
- Sections, J. Phys. Chem. A, 121(43), 8322-8331, doi: 10.1021/acs.jpca.7b06174.
- 1277 1278 1279 Antinolo, M., R. del Olmo, I. Bravo, J. Albaladejo, and E. Jimenez (2019), Tropospheric fate of allyl cyanide
- (CH₂=CHCH₂CN): Kinetics, reaction products and secondary organic aerosol formation, Atmos. Environ., 219, 12, doi:
- 10.1016/j.atmosenv.2019.117041.
- 1280 Antiñolo, M., E. Jimenez, and J. Albaladejo (2011), UV absorption cross sections between 230 and 350 nm and pressure
- dependence of the photolysis quantum yield at 308 nm of CF₃CH₂CHO, Phys. Chem. Chem. Phys., 13(35), 15936-15946,
- $\begin{array}{c} 1\overline{281} \\ 1282 \end{array}$ doi: 10.1039/c1cp21368g.

- Antiñolo, M., E. Jimenez, and J. Albaladejo (2012a), Photochemistry of CF₃(CH₂)₂CHO in air: UV absorption cross sections
- 1283 1284 1285 between 230 and 340 nm and photolysis quantum yields at 308 nm, J. Photochem. Photobiol. A-Chem., 231(1), 33-40, doi:
- 10.1016/j.jphotochem.2011.12.023.
- Antiñolo, M., S. González, B. Ballesteros, J. Albaladejo, and E. Jiménez (2012b), Laboratory Studies of CHF₂CF₂CH₂OH
- and CF₃CF₂CH₂OH: UV and IR Absorption Cross Sections and OH Rate Coefficients between 263 and 358 K, The Journal
- 1286 1287 1288 of Physical Chemistry A, doi: 10.1021/jp2111633.
- 1289 1290 Antiñolo, M., A. J. Ocaña, J. P. Aranguren, S. I. Lane, J. Albaladejo, and E. Jiménez (2017), Atmospheric degradation of 2-
- chloroethyl vinyl ether, allyl ether and allyl ethyl ether: Kinetics with OH radicals and UV photochemistry, Chemosphere,
- 1291 181(Supplement C), 232-240, doi: https://doi.org/10.1016/j.chemosphere.2017.04.053.
- 1292 1293 Baasandorj, M., and J. B. Burkholder (2016), Rate Coefficient for the Gas-Phase OH + CHF=CF2 Reaction between 212 and
- 375 K. Int. J. Chem. Kinet., 48(11), 714-723, doi: 10.1002/kin.21027.
- Baasandori, M., A. R. Ravishankara, and J. B. Burkholder (2011), Atmospheric Chemistry of (Z)-CF₃CH=CHCF₃: OH
- 1294 1295 Radical Reaction Rate Coefficient and Global Warming Potential, J. Phys. Chem. A, 115(38), 10539-10549, doi:
- 1296 10.1021/jp206195g.
- 1297 1298 1299 Baasandorj, M., P. Marshall, R. L. Waterland, A. R. Ravishankara, and J. B. Burkholder (2018), Rate Coefficient
- Measurements and Theoretical Analysis of the OH + (E)-CF3CH=CHCF3 Reaction, J. Phys. Chem. A, 122(19), 4635-4646,
- doi: 10.1021/acs.jpca.8b02771.
- 1300 Baasandorj, M., G. Knight, V. C. Papadimitriou, R. K. Talukdar, A. R. Ravishankara, and J. B. Burkholder (2010), Rate
- 1301 Coefficients for the Gas-Phase Reaction of the Hydroxyl Radical with CH₂=CHF and CH₂= CF₂, J. Phys. Chem. A, 114(13),
- 1302 4619-4633, doi: 10.1021/jp100527z.
- 1303 Ballard, J., R. J. Knight, and D. A. Newnham (2000a), Infrared absorption cross-sections and integrated absorption
- 1304 intensities of perfluoroethane and cis-perfluorocyclobutane, J. Quant. Spectrosc. Radiat. Transf., 66(2), 199-212, doi:
- 1305 10.1016/s0022-4073(99)00217-4.
- 1306 Barrera, J. A., P. R. Dalmasso, J. P. Aranguren Abrate, R. A. Taccone, and S. I. Lane (2015), Kinetic study of the OH and
- 1307 Cl-initiated oxidation, lifetimes and atmospheric acceptability indices of three halogenated ethenes, RSC Advances, 5(90),
- 1308 73501-73509, doi: 10.1039/C5RA13589C.
- 1309 Barrow, G. M., and D. C. McKean (1952), The intensities of absorption bands in the methyl halides, Proceedings of the
- 1310 Royal Society of London Series a-Mathematical and Physical Sciences, 213(1112), 27-41, doi: 10.1098/rspa.1952.0108.
- 1311 Barry, J., G. Locke, D. Scollard, H. Sidebottom, J. Treacy, C. Clerbaux, R. Colin, and J. Franklin (1997), 1,1,1,3,3,-
- 1312 1313 pentafluorobutane (HFC-365mfc): Atmospheric degradation and contribution to radiative forcing, Int. J. Chem. Kinet.,
- 29(8), 607-617, doi: 10.1002/(sici)1097-4601(1997)29:8<607::aid-kin6>3.0.co;2-y.
- 1314 Bernard, F., D. K. Papanastasiou, V. C. Papadimitriou, and J. B. Burkholder (2017), Infrared absorption spectra of linear (L-
- 1315 1316 2-L-5) and cyclic (D-3-D-6) permethylsiloxanes, J. Quant. Spectrosc. Radiat. Transf., 202, 247-254, doi:
- 10.1016/j.jqsrt.2017.08.006.
- 1317 1318 Bravo, I., Y. Diaz-de-Mera, A. Aranda, K. Smith, K. P. Shine, and G. Marston (2010a), Atmospheric chemistry of
- C₄F₉OC₂H₅ (HFE-7200), C₄F₉OCH₃ (HFE-7100), C₃F₇OCH₃ (HFE-7000) and C₃F₇CH₂OH: temperature dependence of the
- 1319 kinetics of their reactions with OH radicals, atmospheric lifetimes and global warming potentials, Phys. Chem. Chem. Phys.,
- 1320 12(19), 5115-5125, doi: 10.1039/b923092k.
- Bravo, I., A. Rodríguez, D. Rodríguez, Y. Diaz-de-Mera, A. Notario, and A. Aranda (2013), Atmospheric Chemistry and
- $\begin{array}{c} 1321 \\ 1322 \end{array}$ Environmental Assessment of Inhalational Fluroxene, ChemPhysChem, 14(16), 3834-3842, doi: 10.1002/cphc.201300559.
- 1323 1324 Brodbeck, C., I. Rossi, H. Strapelias, and J. P. Bouanich (1980), Infrared spectral absorption intensities in the v₃ and v₄
- regions of SF₆, Chemical Physics, 54(1), 1-7, doi: 10.1016/0301-0104(80)80029-2.
- $\begin{array}{c} 1325 \\ 1326 \end{array}$ Brown, L. R., C. B. Farmer, C. P. Rinsland, and R. A. Toth (1987), Molecular line parameters for the atmospheric trace
- molecule spectroscopy experiment, Applied Optics, 26(23), 5154-5182.
- Cappellani, F., and G. Restelli (1992), Infrared band strengths and their temperature-dependence of the hydrohalocarbons
- HFC-134a, HFC-152a, HCFC-22, HCFC-123 and HCFC-142b, Spectrochimica Acta Part a-Molecular and Biomolecular
- Spectroscopy, 48(8), 1127-1131, doi: 10.1016/0584-8539(92)80122-d.

- 1330 1331 1332 Cavalli, F., M. Glasius, J. Hjorth, B. Rindone, and N. R. Jensen (1998), Atmospheric lifetimes, infrared spectra and
- degradation products of a series of hydrofluoroethers, Atmos. Environ., 32(21), 3767-3773, doi: 10.1016/s1352-
- 2310(98)00106-x.
- 1333 1334 Chapados, C. (1988), Infrared-absorption of SF₆ from 32-cm⁻¹ to 3000-cm⁻¹ in the gaseous and liquid states, J. Mol.
- Spectrosc., 132(2), 323-351, doi: 10.1016/0022-2852(88)90329-3.
- 1335 Charmet, A. P., N. Tasinato, P. Stoppa, A. Baldacci, and S. Giorgianni (2008), Jet-cooled diode laser spectrum and FTIR
- integrated band intensities of CF_3Br : rovibrational analysis of $2\nu_5$ and $\nu_2+\nu_3$ bands near 9 μm and cross-section
- 1336 1337 measurements in the 450-2500 cm⁻¹ region, *Molecular Physics*, 106(9-10), 1171-1179, doi: 10.1080/00268970802026709.
- 1338 1339 Charmet, A. P., P. Stoppa, N. Tasinato, A. Baldan, S. Giorgianni, and A. Gambi (2010), Spectroscopic study of CHBrF₂ up
- to 9500 cm⁻¹: Vibrational analysis, integrated band intensities, and ab initio calculations, J. Chem. Phys., 133(4), doi:
- 1340 10.1063/1.3460922.
- $\begin{array}{c} 1341 \\ 1342 \end{array}$ Charmet, A. P., P. Stoppa, N. Tasinato, S. Giorgianni, V. Barone, M. Biczysko, J. Bloino, C. Cappelli, I. Carnimeo, and C.
- Puzzarini (2013), An integrated experimental and quantum-chemical investigation on the vibrational spectra of
- 1343 chlorofluoromethane, J. Chem. Phys., 139(16), 15, doi: 10.1063/1.4825380.
- 1344 Christensen, L. K., T. J. Wallington, A. Guschin, and M. D. Hurley (1999), Atmospheric degradation mechanism of
- 1345 CF₃OCH₃, J. Phys. Chem. A, 103(21), 4202-4208, doi: 10.1021/jp984455a.
- 1346 1347 Christensen, L. K., J. Sehested, O. J. Nielsen, M. Bilde, T. J. Wallington, A. Guschin, L. T. Molina, and M. J. Molina
- (1998), Atmospheric chemistry of HFE-7200 (C₄F₉OC₂H₅): Reaction with OH radicals and fate of C₄F₉OCH₂CH₂O(•) and
- 1348 C₄F₉OCHO(•)CH₃ radicals, J. Phys. Chem. A, 102(25), 4839-4845, doi: 10.1021/jp981128u.
- 1349 Chu, P. M., F. R. Guenther, G. C. Rhoderick, and W. J. Lafferty (1999), The NIST quantitative infrared database, J. Res.
- 1350 Natl. Inst. Stand. Technol., 104(1), 59-81, doi: 10.6028/jres.104.004.
- 1351 1352 Clerbaux, C., and R. Colin (1994), Determination of the infrared cross-sections and global warming potentials of 1,1,2-
- trifluoroethane (HFC-143), Geophys. Res. Lett., 21(22), 2377-2380, doi: 10.1029/94gl02365.
- 1353 1354 Clerbaux, C., R. Colin, P. C. Simon, and C. Granier (1993), Infrared cross-sections and global warming potentials of 10
- alternative hydrohalocarbons, J. Geophys. Res.-Atmos., 98(D6), 10491-10497, doi: 10.1029/93jd00390.
- 1355 Cometto, P. M., R. A. Taccone, J. D. Nieto, P. R. Dalmasso, and S. I. Lane (2010), Kinetic Study of OH Radical Reactions
- with CF₃CCl=CCl₂, CF₃CCl=CClCF₃ and CF₃CF=CFCF₃, Chemphyschem, 11(18), 4053-4059, doi:
- 1356 1357 10.1002/cphc.201000430.
- 1358 1359 D'Anna, B., S. R. Sellevag, K. Wirtz, and C. J. Nielsen (2005), Photolysis study of perfluoro-2-methyl-3-pentanone under
- natural sunlight conditions, Environ. Sci. Technol., 39(22), 8708-8711, doi: 10.1021/es048088u.
- 1360 Dalmasso, P. R., R. A. Taccone, J. D. Nieto, M. A. Teruel, and S. I. Lane (2006), CH₃OCF₂CHFCl and CHF₂OCF₂CHFCl:
- 1361 1362 Reaction with Cl atoms, atmospheric lifetimes, ozone depletion and global warming potentials, Atmos. Environ., 40(38),
- 7298-7307, doi: 10.1016/j.atmosenv.2006.06.031.
- 1363 Di Lonardo, G., and G. Masciarelli (2000), Infrared absorption cross-sections and integrated absorption intensities of HFC-
- 1364 125 and HFC-143a, J. Quant. Spectrosc. Radiat. Transf., 66(2), 129-142.
- 1365 Diaz-de-Mera, Y., A. Aranda, A. Notario, A. Rodriguez, D. Rodriguez, and I. Bravo (2015), Photolysis study of fluorinated
- 1366 ketones under natural sunlight conditions, Phys. Chem. Chem. Phys., 17(35), 22991-22998, doi: 10.1039/C5CP03527A.
- 1367 Dickson, A. D., I. M. Mills, and B. Crawford (1957), Vibrational Intensities .8. CH3 and CD3 Chloride, Bromide, and
- 1368 Iodide, J. Chem. Phys., 27(2), 445-455, doi: 10.1063/1.1743744.
- 1369 Dillon, T. J., A. Horowitz, and J. N. Crowley (2008), The atmospheric chemistry of sulphuryl fluoride, SO₂F₂, Atmos. Chem.
- 1370 *Phys.*, 8(6), 1547-1557.
- 1371 Drage, E. A., D. Jaksch, K. M. Smith, R. A. McPheat, E. Vasekova, and N. J. Mason (2006), FTIR spectroscopy and
- 1372 estimation of the global warming potential of CF₃Br and C₂F₄, J. Quant. Spectrosc. Radiat. Transf., 98(1), 44-56, doi:
- 1373 10.1016/j.jqsrt.2005.05.071.

- 1374 1375 Dunn, D. S., K. Scanlon, and J. Overend (1982), The absolute intensities of the binary combination bands in the infrared-
- spectrum of SF₆, Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 38(8), 841-847, doi:
- 1376 10.1016/0584-8539(82)80103-7.
- Elkins, J. W., R. H. Kagann, and R. L. Sams (1984), Infrared band strengths for methyl-chloride in the regions of
- 1377 1378 atmospheric interest, J. Mol. Spectrosc., 105(2), 480-490, doi: 10.1016/0022-2852(84)90235-2.
- 1379 1380 1381 Garland, N. L., L. J. Medhurst, and H. H. Nelson (1993), Potential chlorofluorocarbon replacements - OH reaction-rate
- constants between 250 and 315-K and infrared-absorption spectra, J. Geophys. Res.-Atmos., 98(D12), 23107-23111, doi:
- 10.1029/93jd02550.
- 1382 1383 Gierczak, T., R. K. Talukdar, J. B. Burkholder, R. W. Portmann, J. S. Daniel, S. Solomon, and A. R. Ravishankara (1996),
- Atmospheric fate and greenhouse warming potentials of HFC 236fa and HFC 236ea, J. Geophys. Res.-Atmos., 101(D8),
- 1384 12905-12911, doi: 10.1029/96jd00059.
- 1385 Godin, P. J., K. Le Bris, and K. Strong (2017a), Conformational analysis and global warming potentials of 1,1,1,3,3,3-
- 1386 hexafluoro-2-propanol from absorption spectroscopy, J. Quant. Spectrosc. Radiat. Transf., 203, 522-529, doi:
- 1387 10.1016/j.jqsrt.2017.04.031.
- 1388 1389 Godin, P. J., A. Cabaj, L.-H. Xu, K. Le Bris, and K. Strong (2017b), A study of the temperature dependence of the infrared
- absorption cross-sections of 2.2.3.3.3-pentafluoropropanol in the range of 298–362K, Journal of Quantitative Spectroscopy
- 1390 and Radiative Transfer, 186(Supplement C), 150-157, doi: https://doi.org/10.1016/j.jqsrt.2016.05.031.
- 1391 Golden, W. G., D. A. Horner, and J. Overend (1978), Intensities of binary overtone and combination bands in IR-spectrum
- 1392 of CCIF₃, J. Chem. Phys., 68(3), 964-969, doi: 10.1063/1.435835.
- 1393 González, S., E. Jiménez, and J. Albaladejo (2016), Assessment of the atmospheric loss processes initiated by OH radicals
- 1394 and sunlight, and the radiative efficiency for a series of hydrofluoroolefins, CF3(CF2)x=1.3.5CHCH2, Chemosphere,
- 1395 151(Supplement C), 45-54, doi: https://doi.org/10.1016/j.chemosphere.2016.02.025.
- 1396 González, S., E. Jiménez, B. Ballesteros, E. Martínez, and J. Albaladejo (2015), Hydroxyl radical reaction rate coefficients
- 1397 as a function of temperature and IR absorption cross sections for CF3CH=CH2 (HFO-1243zf), potential replacement of
- 1398 CF3CH2F (HFC-134a), Environmental Science and Pollution Research, 22(7), 4793-4805, doi: 10.1007/s11356-014-3426-
- 1399
- 1400 Good, D. A., J. S. Francisco, A. K. Jain, and D. J. Wuebbles (1998), Lifetimes and global warming potentials for dimethyl
- 1401 ether and for fluorinated ethers: CH₃OCF₃ (E143a), CHF₂OCHF₂ (E134), CHF₂OCF₃ (E125), J. Geophys. Res.-Atmos.,
- 1402 103(D21), 28181-28186, doi: 10.1029/98jd01880.
- 1403 Goto, M., Y. Inoue, M. Kawasaki, A. G. Guschin, L. T. Molina, M. J. Molina, T. J. Wallington, and M. D. Hurley (2002),
- 1404 Atmospheric chemistry of HFE-7500 n-C3F7CF(OC2H5)CF(CF3)(2): Reaction with OH radicals and Cl atoms and
- 1405 atmospheric fate of n-C3F7CF(OCHO center dot)CF(CF3)(2) and n-C3F7CF(OCH2CH2O center dot)CF(CF3)(2) radicals,
- 1406 Environ. Sci. Technol., 36(11), 2395-2402, doi: 10.1021/es0113798.
- 1407 Graner, G. (1981), The methyl-bromide molecule - a critical consideration of perturbations in spectra, J. Mol. Spectrosc.,
- 1408 90(2), 394-438, doi: 10.1016/0022-2852(81)90136-3.
- 1409 Guo, Q., N. Zhang, T. Uchimaru, L. Chen, H. Quan, and J. Mizukado (2019), Atmospheric chemistry for gas-phase reactions
- 1410 of cyc-CF2CF2CHXCHX- (X = H or F) with OH radicals in the temperature range of 253-328 K, Atmos. Environ., 215,
- 1411 8, doi: 10.1016/j.atmosenv.2019.116895.
- 1412 Hansen, J., M. Sato, and R. Ruedy (1997), Radiative forcing and climate response, J. Geophys. Res.-Atmos., 102(D6), 6831-
- 1413
- 1414 Harrison, J. J., and P. F. Bernath (2010), Infrared absorption cross sections for propane (C3H8) in the 3 mu m region, J.
- 1415 Quant. Spectrosc. Radiat. Transf., 111(9), 1282-1288, doi: 10.1016/j.jqsrt.2009.11.027.
- $\begin{array}{c} 1416 \\ 1417 \end{array}$ Harrison, J. J., and P. F. Bernath (2012), Mid- and long-wave infrared absorption cross sections for acetonitrile, J. Quant.
- Spectrosc. Radiat. Transf., 113(3), 221-225, doi: 10.1016/j.jqsrt.2011.11.003.
- 1418 Harrison, J. J., N. D. C. Allen, and P. F. Bernath (2010), Infrared absorption cross sections for ethane (C2H6) in the 3 mu m
- 1419 region, J. Quant. Spectrosc. Radiat. Transf., 111(3), 357-363, doi: 10.1016/j.jqsrt.2009.09.010.

- Harrison, J. J., N. D. C. Allen, and P. F. Bernath (2011), Infrared absorption cross sections for acetone (propanone) in the 3
- 1420 1421 mu m region, J. Quant. Spectrosc. Radiat. Transf., 112(1), 53-58, doi: 10.1016/j.jqsrt.2010.08.011.
- Hashikawa, Y., M. Kawasaki, R. L. Waterland, M. D. Hurley, J. C. Ball, T. J. Wallington, M. P. S. Andersen, and O. J.
- Nielsen (2004), Gas phase UV and IR absorption spectra of CxF2x+1CHO (x=1-4), J. Fluor. Chem., 125(12), 1925-1932,
- 1422 1423 1424 doi: 10.1016/j.jfluchem.2004.07.006.
- 1425 1426 1427 Heathfield, A. E., C. Anastasi, A. McCulloch, and F. M. Nicolaisen (1998), Integrated infrared absorption coefficients of
- several partially fluorinated ether compounds: CF₃OCF₂H, CF₃HOCF₂H, CH₃OCF₂CF₂H, CH₃OCF₂CFCIH,
- CH₂CF₂CF₂H, CF₃CH₂OCF₂CF₂H and CH₂=CHCH₂OCF₂CF₂H, Atmos. Environ., 32(16), 2825-2833, doi:
- 1428 10.1016/s1352-2310(97)00462-7.
- 1429 Herath, T. N., E. C. Clinch, I. Orozco, E. L. Raign, and P. Marshall (2016), Relative Rate and Product Studies of the
- 1430 Reactions of Atomic Chlorine with Tetrafluoroethylene, 1,2-Dichloro-1,2-difluoroethylene, 1,1-Dichloro-2,2-
- 1431 difluoroethylene, and Hexafluoro-1,3-butadiene in the Presence of Oxygen, The Journal of Physical Chemistry A, 120(37),
- 1432 7311-7319, doi: 10.1021/acs.jpca.6b05305.
- Highwood, E. J., K. P. Shine, M. D. Hurley, and T. J. Wallington (1999), Estimation of direct radiative forcing due to non-
- 1433 1434 methane hydrocarbons, Atmos. Environ., 33(5), 759-767, doi: 10.1016/s1352-2310(98)00220-9.
- 1435 Hurley, M. D., J. C. Ball, and T. J. Wallington (2007), Atmospheric chemistry of the Z and E isomers of CF₂CF=CHF:
- 1436 1437 Kinetics, mechanisms, and products of gas-phase reactions with Cl atoms, OH radicals, and O₃, J. Phys. Chem. A, 111(39),
- 9789-9795, doi: 10.1021/jp0753530.
- 1438 1439 Hurley, M. D., T. Wallington, G. Buchanan, L. Gohar, G. Marston, and K. Shine (2005), IR spectrum and radiative forcing
- of CF₄ revisited, J. Geophys. Res.-Atmos., 110(D2), doi: 10.1029/2004jd005201.
- 1440 Inoue, Y., M. Kawasaki, T. J. Wallington, and M. D. Hurley (2008), Atmospheric chemistry of CF₃CH₂CF₂CH₃ (HFC-
- 1441 365mfc): Kinetics and mechanism of chlorine atom initiated oxidation, infrared spectrum, and global warming potential,
- 1442 Chem. Phys. Lett., 462(4-6), 164-168, doi: 10.1016/j.cplett.2008.07.054.
- 1443 Ivy, D. J., M. Rigby, M. Baasandorj, J. B. Burkholder, and R. G. Prinn (2012), Global emission estimates and radiative
- 1444 impact of C_4F_{10} , C_5F_{12} , C_6F_{14} , C_7F_{16} and C_8F_{18} , Atmos. Chem. Phys., 12, 7635-7645, doi: 10.5194/acp-12-7635-2012.
- 1445 Jain, A. K., Z. J. Li, V. Naik, D. J. Wuebbles, D. A. Good, J. C. Hansen, and J. S. Francisco (2001), Evaluation of the
- 1446 atmospheric lifetime and radiative forcing on climate for 1,2,2,2-Tetrafluoroethyl Trifluoromethyl Ether (CF₃OCHFCF₃), J.
- 1447 Geophys. Res.-Atmos., 106(D12), 12615-12618, doi: 10.1029/2001jd900013.
- 1448 Jara-Toro, R. A., J. A. Barrera, J. P. Aranguren-Abrate, R. A. Taccone, and G. A. Pino (2020), Rate Coefficient and
- 1449 Mechanism of the OH-Initiated Degradation of 1-Chlorobutane: Atmospheric Implications, J. Phys. Chem. A, 124(1), 229-
- 1450 239, doi: 10.1021/acs.jpca.9b10426.
- 1451 Javadi, M. S., O. J. Nielsen, T. J. Wallington, M. D. Hurley, and J. G. Owens (2007), Atmospheric chemistry of 2-ethoxy-
- 1452 1453 3,3,4,4,5-pentafluorotetra-hydro-2,5-bis 1,2,2,2-tetrafluoro-1- (trifluoromethyl)ethyl -furan: Kinetics, mechanisms, and
- products of Cl atom and OH radical initiated oxidation, Environ. Sci. Technol., 41(21), 7389-7395, doi: 10.1021/es071175c.
- Jia, X., L. Chen, J. Mizukado, S. Kutsuna, and K. Tokuhashi (2013), Rate constants for the gas-phase reactions of cyclo-
- 1454 1455 CXCXCF2CF2- (X=H, F) with OH radicals at a temperature range of 253-328K, Chem. Phys. Lett., 572(Supplement C),
- 1456 21-25, doi: https://doi.org/10.1016/j.cplett.2013.04.020.
- 1457 Jimenez, E., M. Antinolo, B. Ballesteros, E. Martinez, and J. Albaladejo (2010), Atmospheric Lifetimes and Global
- 1458 Warming Potentials of CF₃CH₂CH₂OH and CF₃(CH₂)₂CH₂OH, Chemphyschem, 11(18), 4079-4087, doi:
- 1459 10.1002/cphc.201000365.
- 1460 Jiménez, E., S. González, M. Cazaunau, H. Chen, B. Ballesteros, V. Daële, J. Albaladejo, and A. Mellouki (2016),
- 1461 Atmospheric Degradation Initiated by OH Radicals of the Potential Foam Expansion Agent, CF3(CF2)2CH=CH2 (HFC-
- 1462 1447fz): Kinetics and Formation of Gaseous Products and Secondary Organic Aerosols, Environ. Sci. Technol., 50(3), 1234-
- 1463 1242, doi: 10.1021/acs.est.5b04379.
- 1464 Johnson, T. J., L. T. M. Profeta, R. L. Sams, D. W. T. Griffith, and R. L. Yokelson (2010), An infrared spectral database for
- 1465 detection of gases emitted by biomass burning, Vib. Spectrosc., 53(1), 97-102, doi: 10.1016/j.vibspec.2010.02.010.

- 1466 Jubb, A. M., T. Gierczak, M. Baasandorj, R. L. Waterland, and J. B. Burkholder (2014), Methyl-Perfluoroheptene-Ethers
- 1467 (CH3OC7F13): Measured OH Radical Reaction Rate Coefficients for Several Isomers and Enantiomers and Their
- 1468 Atmospheric Lifetimes and Global Warming Potentials, Environ. Sci. Technol., 48(9), 4954-4962, doi: 10.1021/es500888v.
- 1469 Kagann, R. H., J. W. Elkins, and R. L. Sams (1983), Absolute band strengths of halocarbons F-11 and F-12 in the 8-mu-mu
- 1470 to 16-mu-m region, Journal of Geophysical Research-Oceans and Atmospheres, 88(NC2), 1427-1432, doi:
- 1471 10.1029/JC088iC02p01427.
- 1472 Kim, K., and W. T. King (1984), Infrared intensities in chloroform, J. Chem. Phys., 80(3), 978-982, doi: 10.1063/1.446792.
- Kim, K., R. S. McDowell, and W. T. King (1980), Integrated infrared intensities and transition moments in SF₆, J. Chem.
- 1473 1474 Phys., 73(1), 36-41, doi: 10.1063/1.439883.
- 1475 Ko, M., R. L. Shia, N. D. Sze, H. Magid, and R. G. Bray (1999), Atmospheric lifetime and global warming potential of
- 1476 HFC-245fa, J. Geophys. Res.-Atmos., 104(D7), 8173-8181, doi: 10.1029/1998jd100097.
- $\begin{array}{c} 1477 \\ 1478 \end{array}$ Ko, M., N. D. Sze, W. C. Wang, G. Shia, A. Goldman, F. J. Murcray, D. G. Murcray, and C. P. Rinsland (1993),
- Atmospheric sulfur-hexafluoride sources, sinks and greenhouse warming, J. Geophys. Res.-Atmos., 98(D6), 10499-10507,
- 1479 doi: 10.1029/93jd00228.
- 1480 Le Bris, K., R. Pandharpurkar, and K. Strong (2011), Mid-infrared absorption cross-sections and temperature dependence of
- 1481 CFC-113, J. Quant. Spectrosc. Radiat. Transf., 112(8), 1280-1285, doi: 10.1016/j.jqsrt.2011.01.023.
- Le Bris, K., J. DeZeeuw, P. J. Godin, and K. Strong (2017), Cis- and trans-perfluorodecalin: Infrared spectra, radiative
- 1482 1483 efficiency and global warming potential, J. Ouant. Spectrosc. Radiat. Transf., 203, 538-541, doi:
- 1484 10.1016/j.jqsrt.2017.01.011.
- 1485 Le Bris, K., J. DeZeeuw, P. J. Godin, and K. Strong (2020), Radiative efficiency and global warming potential of the
- 1486 hydrofluoroether HFE-356mec3 (CH3OCF2CHFCF3) from experimental and theoretical infrared absorption cross-sections,
- 1487 J. Mol. Spectrosc., 367, 5, doi: 10.1016/j.jms.2019.111241.
- 1488 Li, Z. H., and P. Varanasi (1994), Measurement of the absorption cross-sections of CFC-11 at conditions representing
- 1489 various model atmospheres, J. Quant. Spectrosc. Radiat. Transf., 52(2), 137-144, doi: 10.1016/0022-4073(94)90002-7.
- 1490 Lindenmaier, R., S. D. Williams, R. L. Sams, and T. J. Johnson (2017), Quantitative Infrared Absorption Spectra and
- 1491 Vibrational Assignments of Crotonaldehyde and Methyl Vinyl Ketone Using Gas-Phase Mid-Infrared, Far-Infrared, and
- 1492 Liquid Raman Spectra: s-cis vs s-trans Composition Confirmed via Temperature Studies and ab Initio Methods, The Journal
- 1493 of Physical Chemistry A, 121(6), 1195-1212, doi: 10.1021/acs.jpca.6b10872.
- 1494 Lindsay, L. P., and P. N. Schatz (1964), Absolute infrared intensities in CHBr3(1), CHBr3(g) and CCl4(g), Spectrochimica
- 1495 Acta, 20(9), 1421-1429, doi: 10.1016/0371-1951(64)80123-5.
- 1496 Liu, D., S. Qin, W. Li, D. Zhang, and Z. Guo (2016), Atmospheric Chemistry of 1H-Heptafluorocyclopentene (cyc-
- 1497 CF2CF2CF=CH-): Rate Constant, Products, and Mechanism of Gas-Phase Reactions with OH Radicals, IR Absorption
- 1498 Spectrum, Photochemical Ozone Creation Potential, and Global Warming Potential, The Journal of Physical Chemistry A,
- 1499 120(48), 9557-9563, doi: 10.1021/acs.jpca.6b10348.
- 1500 M.S.F./R.A.L. Molecular Spectroscopy Facility / Rutherford Appleton Laboratory, http://www.msf.rl.ac.uk.
- 1501 Mashino, M., M. Kawasaki, T. J. Wallington, and M. D. Hurley (2000), Atmospheric degradation of CF₃OCF=CF₂: Kinetics
- 1502 and mechanism of its reaction with OH radicals and Cl atoms, J. Phys. Chem. A, 104(13), 2925-2930, doi:
- 1503 10.1021/jp9942264.
- 1504 Massie, S. T., A. Goldman, D. G. Murcray, and J. C. Gille (1985), Approximate absorption cross-sections of F12, F11,
- 1505 C10NO₂, N₂O₅, HNO₃, CCl₄, CF₄, F21, F113, F114, and HNO₄, Applied Optics, 24(21), 3426-3427.
- 1506 May, R. D., and R. R. Friedl (1993), Integrated band intensities of HO2NO2 at 220-K, J. Quant. Spectrosc. Radiat. Transf.,
- 1507 50(3), 257-266, doi: 10.1016/0022-4073(93)90076-t.
- 1508 McDowell, R. S., B. J. Krohn, H. Flicker, and M. C. Vasquez (1986), Vibrational levels and anharmonicity in SF₆.1.
- 1509 Vibrational band analysis, Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 42(2-3), 351-369, doi:
- 1510 10.1016/0584-8539(86)80199-4.

- McPheat, R., and G. Duxbury (2000), Infrared absorption cross-sections and integrated absorption intensities of chloroform
- $\begin{array}{c} 1511 \\ 1512 \end{array}$ and fluoroform vapour, J. Quant. Spectrosc. Radiat. Transf., 66(2), 153-167, doi: 10.1016/s0022-4073(99)00214-9.
- 1513 1514 Mills, I. M., W. B. Person, J. R. Scherer, and B. Crawford (1958), Vibrational intensities .9. C₂F₆ - extension and revision, J.
- Chem. Phys., 28(5), 851-853, doi: 10.1063/1.1744282.
- 1515 Minschwaner, K., R. W. Carver, B. P. Briegleb, and A. E. Roche (1998), Infrared radiative forcing and atmospheric lifetimes
- of trace species based on observations from UARS, J. Geophys. Res.-Atmos., 103(D18), 23243-23253, doi:
- 1516 1517 10.1029/98jd02116.
- Molina, L. T., P. J. Woolridge, and M. J. Molina (1995), Atmospheric reactions and ultraviolet and infrared absorptivities of
- 1518 1519 nitrogen trifluoride, Geophys. Res. Lett., 22(14), 1873-1876, doi: 10.1029/95gl01669.
- 1520 Morcillo, J., L. J. Zamorano, and J. M. V. Heredia (1966), Infra-red intensities in CH₂F₂, CH₂Cl₂ and CF₂Cl₂,
- 1521 Spectrochimica Acta, 22(12), 1969-1980, doi: 10.1016/0371-1951(66)80048-6.
- 1522 1523 Moreno, A., M. P. Gallego-Iniesta, R. Taccone, M. P. Martín, B. Cabañas, and M. S. Salgado (2014), FTIR gas-phase kinetic
- study on the reactions of some acrylate esters with OH radicals and Cl atoms, Environmental Science and Pollution
- 1524 Research, 21(19), 11541-11551, doi: 10.1007/s11356-014-3112-4.
- Myhre, G., C. J. Nielsen, D. L. Powell, and F. Stordal (1999), Infrared absorption cross section, radiative forcing, and GWP
- 1525 1526 of four hydrofluoro(poly)ethers, Atmos. Environ., 33(27), 4447-4458, doi: 10.1016/s1352-2310(99)00208-3.
- Myhre, G., F. Stordal, I. Gausemel, C. J. Nielsen, and E. Mahieu (2006), Line-by-line calculations of thermal infrared
- radiation representative for global condition: CFC-12 as an example, J. Quant. Spectrosc. Radiat. Transf., 97(3), 317-331,
- 1527 1528 1529 doi: 10.1016/j.jqsrt.2005.04.015.
- Naik, V., A. K. Jain, K. O. Patten, and D. J. Wuebbles (2000), Consistent sets of atmospheric lifetimes and radiative forcings
- on climate for CFC replacements: HCFCs and HFCs, J. Geophys. Res.-Atmos., 105(D5), 6903-6914, doi:
- 1530 1531 1532 10.1029/1999jd901128.
- Nanes, R., P. M. Silvaggio, and R. W. Boese (1980), Temperature-dependence of intensities of the 8-12 μm bands of CFCl₃,
- 1533 1534 J. Quant. Spectrosc. Radiat. Transf., 23(2), 211-220, doi: 10.1016/0022-4073(80)90008-4.
- 1535 Nemtchinov, V., and P. Varanasi (2004), Absorption cross-sections of HFC-134a in the spectral region between 7 and 12
- 1536 μm, J. Quant. Spectrosc. Radiat. Transf., 83(3-4), 285-294, doi: 10.1016/s0022-4073(02)00356-4.
- Newnham, D., J. Ballard, and M. Page (1996), Infrared band strengths of HFC-134a vapour, J. Quant. Spectrosc. Radiat.
- 1537 1538 Transf., 55(3), 373-381, doi: 10.1016/0022-4073(95)00164-6.
- 1539 1540 Nielsen, O. J., F. M. Nicolaisen, C. Bacher, M. D. Hurley, T. J. Wallington, and K. P. Shine (2002), Infrared spectrum and
- global warming potential of SF₅CF₃, Atmos. Environ., 36(7), 1237-1240, doi: 10.1016/s1352-2310(01)00551-9.
- 1541 Nielsen, O. J., M. S. Javadi, M. P. S. Andersen, M. D. Hurley, T. J. Wallington, and R. Singh (2007), Atmospheric chemistry
- 1542 1543 of CF₃CF=CH₂: Kinetics and mechanisms of gas-phase reactions with Cl atoms, OH radicals, and O₃, Chem. Phys. Lett.,
- 439(1-3), 18-22, doi: 10.1016/j.cplett.2007.03.053.
- 1544 1545 Nilsson, E. J. K., O. J. Nielsen, M. S. Johnson, M. D. Hurley, and T. J. Wallington (2009), Atmospheric chemistry of cis-
- CF₃CHCHF: Kinetics of reactions with OH radicals and O₃ and products of OH radical initiated oxidation, Chem. Phys.
- 1546 Lett., 473(4-6), 233-237, doi: 10.1016/j.cplett.2009.03.076.
- Ninomiya, Y., M. Kawasaki, A. Guschin, L. T. Molina, M. J. Molina, and T. J. Wallington (2000), Atmospheric chemistry
- 1547 1548 of n-C₃F₇OCH₃: Reaction with OH radicals and Cl atoms and atmospheric fate of n-C₃F₇OCH₂O(•) radicals, *Environ. Sci.*
- 1549 Technol., 34(14), 2973-2978, doi: 10.1021/es991449z.
- 1550 Olliff, M. P., and G. Fischer (1994), Integrated absorption intensities of haloethanes and halopropanes, Spectrochimica Acta
- 1551 Part a-Molecular and Biomolecular Spectroscopy, 50(13), 2223-2237, doi: 10.1016/0584-8539(93)e0027-t.
- Orkin, V. L., L. E. Martynova, and A. N. Ilichev (2010), High-Accuracy Measurements of OH Reaction Rate Constants and
- 1552 1553 IR Absorption Spectra: CH₂=CF-CF₃ and trans-CHF=CH-CF₃, J. Phys. Chem. A, 114(19), 5967-5979, doi:
- 1554 10.1021/jp9092817.

- Orkin, V. L., L. E. Martynova, and M. J. Kurylo (2014a), Photochemical Properties of trans-1-Chloro-3,3,3-trifluoropropene
- 1555 1556 (trans-CHCl=CHCF3): OH Reaction Rate Constant, UV and IR Absorption Spectra, Global Warming Potential, and Ozone
- Depletion Potential, The Journal of Physical Chemistry A, 118(28), 5263-5271, doi: 10.1021/jp5018949.
- 1558 1559 1560 Orkin, V. L., E. Villenave, R. E. Huie, and M. J. Kurylo (1999), Atmospheric lifetimes and global warming potentials of
- hydrofluoroethers: Reactivity toward OH, UV spectra, and IR absorption cross sections, J. Phys. Chem. A, 103(48), 9770-
- 9779, doi: 10.1021/jp991741t.
- 1561 1562 1563 Orkin, V. L., A. G. Guschin, I. K. Larin, R. E. Huie, and M. J. Kurylo (2003), Measurements of the infrared absorption
- cross-sections of haloalkanes and their use in a simplified calculational approach for estimating direct global warming
- potentials, J. Photochem. Photobiol. A-Chem., 157(2-3), 211-222, doi: 10.1016/s1010-6030(03)00057-1.
- Orlando, J. J., G. S. Tyndall, A. Huang, and J. G. Calvert (1992), Temperature-dependence of the infrared-absorption cross-
- 1564 1565 sections of carbon-tetrachloride, Geophys. Res. Lett., 19(10), 1005-1008, doi: 10.1029/91g101036.
- 1566 Ovaro, N., S. R. Sellevag, and C. J. Nielsen (2004), Study of the OH and Cl-initiated oxidation, IR absorption cross-section,
- 1567 radiative forcing, and global warming potential of four C₄-hydrofluoroethers, Environ. Sci. Technol., 38(21), 5567-5576, doi:
- 1568 10.1021/es0497330.
- Oyaro, N., S. R. Sellevag, and C. J. Nielsen (2005), Atmospheric chemistry of hydrofluoroethers: Reaction of a series of
- 1569 1570 1571 hydrofluoro ethers with OH radicals and Cl atoms, atmospheric lifetimes, and global warming potentials, J. Phys. Chem. A,
- 109(2), 337-346, doi: 10.1021/jp047860c.
- Papadimitriou, V. C., and J. B. Burkholder (2016), OH Radical Reaction Rate Coefficients, Infrared Spectrum, and Global
- 1572 1573 1574 Warming Potential of (CF3)2CFCH=CHF (HFO-1438ezy(E)), The Journal of Physical Chemistry A, 120(33), 6618-6628,
- doi: 10.1021/acs.jpca.6b06096.
- 1575 Papadimitriou, V. C., R. K. Talukdar, R. W. Portmann, A. R. Ravishankara, and J. B. Burkholder (2008a), CF₂CF=CH₂ and
- 1576 1577 (Z)-CF₃CF=CHF: temperature dependent OH rate coefficients and global warming potentials, *Phys. Chem. Phys.*,
- 10(6), 808-820, doi: 10.1039/b714382f.
- Papadimitriou, V. C., R. W. Portmann, D. W. Fahey, J. Muhle, R. F. Weiss, and J. B. Burkholder (2008b), Experimental and
- 1578 1579 1580 Theoretical Study of the Atmospheric Chemistry and Global Warming Potential of SO₂F₂, J. Phys. Chem. A, 112(49),
- 12657-12666, doi: 10.1021/jp806368u.
- Papadimitriou, V. C., C. S. Spitieri, P. Papagiannakopoulos, M. Cazaunau, M. Lendar, V. Daele, and A. Mellouki (2015),
- 1581 1582 Atmospheric chemistry of (CF3)2C[double bond, length as m-dash]CH2: OH radicals, Cl atoms and O3 rate coefficients,
- 1583 oxidation end-products and IR spectra, Phys. Chem. Phys., 17(38), 25607-25620, doi: 10.1039/C5CP03840E.
- Peirone, S. A., J. A. Barrera, R. A. Taccone, P. M. Cometto, and S. I. Lane (2014), Relative rate coefficient measurements of
- 1584 1585 OH radical reactions with (Z)-2-hexen-1-ol and (E)-3-hexen-1-ol under simulated atmospheric conditions, Atmos. Environ.,
- 1586 85(Supplement C), 92-98, doi: https://doi.org/10.1016/j.atmosenv.2013.11.076.
- Person, W. B., and S. R. Polo (1961), Infrared intensities of the fundamental frequencies of CF₃Br, Spectrochimica Acta,
- 1587 1588 17(1), 101-111, doi: 10.1016/0371-1951(61)80016-7.
- 1589 1590 Rajakumar, B., R. W. Portmann, J. B. Burkholder, and A. R. Ravishankara (2006), Rate coefficients for the reactions of OH
- with CF₃CH₂CH₃ (HFC-263fb), CF₃CHFCH₂F (HFC-245eb), and CHF₂CHFCHF₂ (HFC-245ea) between 238 and 375 K, J.
- 1591 Phys. Chem. A, 110(21), 6724-6731, doi: 10.1021/jp056248y.
- 1592 1593 Ramanathan, V., R. J. Cicerone, H. B. Singh, and J. T. Kiehl (1985), Trace gas trends and their potential role in climate
- change, J. Geophys. Res.-Atmos., 90(ND3), 5547-5566, doi: 10.1029/JD090iD03p05547.
- 1594 1595 Ren, Y. G., F. Bernard, V. Daele, and A. Mellould (2019), Atmospheric Fate and Impact of Perfluorinated Butanone and
- Pentanone, Environ. Sci. Technol., 53(15), 8862-8871, doi: 10.1021/acs.est.9b02974.
- 1596 Rinsland, C. P., S. W. Sharpe, and R. L. Sams (2003), Temperature-dependent absorption cross-sections in the thermal
- 1597 infrared bands of SF₅CF₃, J. Quant. Spectrosc. Radiat. Transf., 82(1-4), 483-490, doi: 10.1016/s0022-4073(03)00172-9.
- 1598 1599 Rinsland, C. P., V. M. Devi, T. A. Blake, R. L. Sams, S. Sharpe, and L. Chiou (2008), Quantitative measurement of
- integrated band intensities of benzene vapor in the mid-infrared at 278, 298, and 323 K, J. Quant. Spectrosc. Radiat. Transf.,
- 1600 109(15), 2511-2522, doi: 10.1016/j.jqsrt.2008.04.007.

- 1601 Rodriguez, A., I. Bravo, D. Rodriguez, M. Tajuelo, Y. Diaz-de-Mera, and A. Aranda (2016), The environmental impact of
- 1602 unsaturated fluoroesters: atmospheric chemistry towards OH radicals and Cl atoms, radiative behavior and cumulative ozone
- 1603 creation, RSC Advances, 6(26), 21833-21843, doi: 10.1039/C6RA00630B.
- 1604 Rodríguez, A., D. Rodríguez, A. Moraleda, I. Bravo, E. Moreno, and A. Notario (2014), Atmospheric chemistry of HFE-
- 1605 7300 and HFE-7500: Temperature dependent kinetics, atmospheric lifetimes, infrared spectra and global warming potentials,
- 1606 Atmos. Environ., 96(Supplement C), 145-153, doi: https://doi.org/10.1016/j.atmosenv.2014.07.033.
- 1607 Roehl, C. M., D. Boglu, C. Bruhl, and G. K. Moortgat (1995), Infrared band intensities and global warming potentials of
- 1608 CF₄, C₂F₆, C₃F₈, C₄F₁₀, C₅F₁₂, and C₆F₁₄, Geophys. Res. Lett., 22(7), 815-818, doi: 10.1029/95gl00488.
- 1609 Rogers, J. D., and R. D. Stephens (1988), Absolute infrared intensities for F-113 and F-114 and an assessment of their
- 1610 greenhouse warming potential relative to other chlorofluorocarbons, J. Geophys. Res.-Atmos., 93(D3), 2423-2428, doi:
- 1611 10.1029/JD093iD03p02423.
- 1612 Ryan, S. M., and C. J. Nielsen (2010), Global Warming Potential of Inhaled Anesthetics: Application to Clinical Use,
- 1613 Anesthesia and Analgesia, 111(1), 92-98, doi: 10.1213/ANE.0b013e3181e058d7.
- 1614 Schatz, P. N., and D. F. Hornig (1953), Bond moments and derivatives in CF₄, SIF₄, and SF₆ from infrared intensities, J.
- 1615 Chem. Phys., 21(9), 1516-1530, doi: 10.1063/1.1699291.
- Sellevag, S. R., T. Kelly, H. Sidebottom, and C. J. Nielsen (2004a), A study of the IR and UV-Vis absorption cross-sections,
- 1616 1617 photolysis and OH-initiated oxidation of CF₃CHO and CF₃CH₂CHO, Phys. Chem. Chem. Phys., 6(6), 1243-1252, doi:
- 1618 10.1039/b315941h.
- 1619 Sellevag, S. R., C. J. Nielsen, O. A. Sovde, G. Myhre, J. K. Sundet, F. Stordal, and I. S. A. Isaksen (2004b), Atmospheric
- 1620 gas-phase degradation and global warming potentials of 2-fluoro ethanol, 2,2-difluoroethanol, and 2,2,2-trifluoroethanol,
- 1621 Atmos. Environ., 38(39), 6725-6735, doi: 10.1016/j.atmosenv.2004.09.023.
- Sellevåg, S. R., B. D'Anna, and C. J. Nielsen (2007), Infrared Absorption Cross-Sections and Estimated Global Warming
- Potentials of CF₃CH₂CH₂OH, CHF₂CF₂CH₂OH, CF₃CF₂CH₂OH, CF₃CF₂CH₂OH, and CF₃CF₂CF₂CH₂OH, Asian
- 1622 1623 1624 Chemistry Letters(11), 33-40.
- 1625 1626 1627 Shine, K. P., L. K. Gohar, M. D. Hurley, G. Marston, D. Martin, P. G. Simmonds, T. J. Wallington, and M. Watkins (2005),
- Perfluorodecalin: global warming potential and first detection in the atmosphere, Atmos. Environ., 39(9), 1759-1763, doi:
- 10.1016/j.atmosenv.2005.01.001.
- Smith, K., D. Newnham, M. Page, J. Ballard, and G. Duxbury (1996), Infrared band strengths and absorption cross-sections
- 1628 1629 of HFC-32 vapour, J. Quant. Spectrosc. Radiat. Transf., 56(1), 73-82, doi: 10.1016/0022-4073(96)00019-2.
- 1630 Smith, K., D. Newnham, M. Page, J. Ballard, and G. Duxbury (1998), Infrared absorption cross-sections and integrated
- 1631 absorption intensities of HFC-134 and HFC-143a vapour, J. Quant. Spectrosc. Radiat. Transf., 59(3-5), 437-451, doi:
- 1632 10.1016/s0022-4073(97)00114-3.
- 1633 1634 Stoppa, P., A. P. Charmet, N. Tasinato, S. Giorgianni, and A. Gambi (2009), Infrared Spectra, Integrated Band Intensities,
- and Anharmonic Force Field of H₂C=CHF, J. Phys. Chem. A, 113(8), 1497-1504, doi: 10.1021/jp808556e.
- Sturges, W. T., T. J. Wallington, M. D. Hurley, K. P. Shine, K. Sihra, A. Engel, D. E. Oram, S. A. Penkett, R. Mulvaney,
- and C. A. M. Brenninkmeijer (2000), A potent greenhouse gas identified in the atmosphere: SF₅CF₃, Science, 289(5479),
- 1635 1636 1637 611-613, doi: 10.1126/science.289.5479.611.
- Suga, A., Y. Mochizuki, N. Nagasaki, Y. Gotoh, H. Ito, S. Yamashita, T. Uchimaru, M. Sugie, A. Sekiya, S. Kondo, and M.
- 1638 1639 Aoyagi (1994), Estimation of total infrared intensities of fluorinated ethyl methyl ethers, Chemistry Letters (12), 2365-2368,
- 1640 doi: 10.1246/cl.1994.2365.
- 1641 Søndergaard, R., O. J. Nielsen, M. D. Hurley, T. J. Wallington, and R. Singh (2007), Atmospheric chemistry of trans-CF₃CH
- 1642 = CHF: Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O₃, Chem. Phys. Lett., 443(4-6), 199-204, doi:
- 1643 10.1016/j.cplett.2007.06.084.
- 1644 Takahashi, K., Y. Matsumi, T. J. Wallington, and M. D. Hurley (2002), Atmospheric chemistry of CF₃CFHOCF₃: Reaction
- 1645 with OH radicals, atmospheric lifetime, and global warming potential, J. Geophys. Res.-Atmos., 107(D21), doi:
- 1646 10.1029/2002jd002125.

- 1647 Tanabe, K., and S. Saeki (1970), Calculation of infrared band intensities of various chlorinated methanes, Spectrochimica
- 1648 Acta Part a-Molecular Spectroscopy, A 26(7), 1469-&, doi: 10.1016/0584-8539(70)80208-2.
- 1649 Tereszchuk, K. A., and P. F. Bernath (2011), Infrared absorption cross-sections for acetaldehyde (CH3CHO) in the 3 mu m
- 1650 region, J. Quant. Spectrosc. Radiat. Transf., 112(6), 990-993, doi: 10.1016/j.jqsrt.2010.12.003.
- 1651 Thomsen, D. L., V. F. Andersen, O. J. Nielsen, and T. J. Wallington (2011), Atmospheric chemistry of C₂F₅CH₂OCH₃
- 1652 (HFE-365mcf), Phys. Chem. Chem. Phys., 13(7), 2758-2764.
- 1653 1654 Tokuhashi, K., K. Takizawa, and S. Kondo (2018), Rate constants for the reactions of OH radicals with CF3CX=CY2 (X =
- H, F, CF3, Y = H, F, Cl), Environmental Science and Pollution Research, 25(15), 15204-15215, doi: 10.1007/s11356-018-
- 1655 1700-4.
- 1656 Vanthanh, N., I. Rossi, A. Jeanlouis, and H. Rippel (1986), Infrared band shapes and band strengths of CF₂Cl₂ from 800 to
- 1657 1200 cm⁻¹ at 296 and 200 K, J. Geophys. Res.-Atmos., 91(D3), 4056-4062.
- 1658 1659 Varanasi, P., and F. K. Ko (1977), Intensity measurements in freon bands of atmospheric interest, J. Quant. Spectrosc.
- Radiat. Transf., 17(3), 385-388, doi: 10.1016/0022-4073(77)90116-9.
- 1660 Varanasi, P., and S. Chudamani (1988a), Infrared intensities of some chlorofluorocarbons capable of perturbing the global
- 1661 climate, J. Geophys. Res.-Atmos., 93(D2), 1666-1668, doi: 10.1029/JD093iD02p01666.
- 1662 Varanasi, P., and S. Chudamani (1988b), Remeasurement of the absolute intensities of CFC-11 (CFCl₃) and CFC-12
- 1663 (CF₂Cl₂), J. Quant. Spectrosc. Radiat. Transf., 39(3), 193-195, doi: 10.1016/s0022-4073(88)90026-x.
- 1664 Varanasi, P., and V. Nemtchinov (1994), Thermal infrared-absorption coefficients of CFC-12 at atmospheric conditions, J.
- 1665 Ouant. Spectrosc. Radiat. Transf., 51(5), 679-687, doi: 10.1016/0022-4073(94)90124-4.
- 1666 Varanasi, P., Z. Li, V. Nemtchinov, and A. Cherukuri (1994), Spectral absorption-coefficient data on HCFC-22 and SFs for
- 1667 remote-sensing applications, J. Quant. Spectrosc. Radiat. Transf., 52(3-4), 323-332, doi: 10.1016/0022-4073(94)90162-7.
- 1668 Vasekova, E., E. A. Drage, K. M. Smith, and N. J. Mason (2006), FTIR spectroscopy and radiative forcing of
- 1669 octafluorocyclobutane and octofluorocyclopentene, J. Quant. Spectrosc. Radiat. Transf., 102(3), 418-424, doi:
- 1670 10.1016/j.jgsrt.2006.02.023.
- 1671 1672 Vlachogiannis, D., A. Sfetsos, A. K. Stubos, R.-E. P. Sotiropoulou, E. Tagaris, C. Pilinis, W. Zhong, J. D. Haigh, D. O.
- Eriksen, S. K. Hartvig, C. Chatzichristos, J. Muller, R. Kleven, and I. Nielssen (2005), Assessment of the impact of SF₆ and
- 1673 PFC reservoir tracers on global warming, the AEOLOS study, Environmental Sciences, 2(2-3), 263-272, doi:
- 1674 10.1080/15693430500396170.
- 1675 Vollmer, M. K., F. Bernard, B. Mitrevski, L. P. Steele, C. M. Trudinger, S. Reimann, R. L. Langenfelds, P. B. Krummel, P.
- 1676 1677 J. Fraser, D. M. Etheridge, M. A. J. Curran, and J. B. Burkholder (2019), Abundances, emissions, and loss processes of the
 - long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, c-C4F8O) in the atmosphere, Atmos.
- 1678 Chem. Phys., 19(6), 3481-3492, doi: 10.5194/acp-19-3481-2019.
- 1679 Wagner, G., and A. Birk (2003), New infrared spectroscopic database for chlorine nitrate, J. Quant. Spectrosc. Radiat.
- 1680 Transf., 82(1-4), 443-460, doi: 10.1016/s0022-4073(03)00169-9.
- 1681 Wagner, G., and M. Birk (2016), New infrared spectroscopic database for bromine nitrate, J. Mol. Spectrosc., 326, 95-105,
- 1682 doi: 10.1016/j.jms.2016.03.007.
- 1683 Wallington, T. J., M. D. Hurley, and O. J. Nielsen (2009), The radiative efficiency of HCF₂OCF₂OCF₂CF₂OCF₂H (H-
- 1684 Galden 1040x) revisited, Atmos. Environ., 43(27), 4247-4249, doi: 10.1016/j.atmosenv.2009.05.046.
- 1685 Wallington, T. J., M. D. Hurley, O. J. Nielsen, and M. P. S. Andersen (2004), Atmospheric chemistry of CF₃CFHCF₂OCF₃
- 1686 1687 and CF₃CFHCF₂OCF₂H: Reaction with Cl atoms and OH radicals, degradation mechanism, and global warming potentials,
- J. Phys. Chem. A, 108(51), 11333-11338, doi: 10.1021/jp046454q.
- 1688 Wallington, T. J., M. D. Hurley, J. C. Ball, T. Ellermann, O. J. Nielsen, and J. Sehested (1994), Atmospheric chemistry of
- 1689 HFC-152 - UV absorption-spectrum of CH₂FCFHO₂ radicals, kinetics of the reaction CH₂FCFHO₂+NO->
- 1690 CH₂FCHFO+NO₂, and fate of the alkoxy radical CH₂FCFHO, Journal of Physical Chemistry, 98(21), 5435-5440, doi:
- 1691 10.1021/j100072a008.

- 1692 Wallington, T. J., A. Guschin, T. N. N. Stein, J. Platz, J. Sehested, L. K. Christensen, and O. J. Nielsen (1998), Atmospheric
- 1693 chemistry of CF₃CH₂OCH₂CF₃: UV spectra and kinetic data for CF₃CH(•)OCH₂CF₃ and CF₃CH(OO•)OCH₂CF₃ radicals
- 1694 and atmospheric fate of CF₃CH₂(O•)OCH₂CF₃ radicals, *J. Phys. Chem. A*, 102(7), 1152-1161, doi: 10.1021/jp972933w.
- 1695 Wallington, T. J., W. F. Schneider, J. Sehested, M. Bilde, J. Platz, O. J. Nielsen, L. K. Christensen, M. J. Molina, L. T.
- 1696 1697 Molina, and P. W. Wooldridge (1997), Atmospheric chemistry of HFE-7100 (C₄F₉OCH₃): Reaction with OH radicals, UV
- spectra and kinetic data for C₄F₉OCH₂• and C₄F₉CH₂O₂• radicals, and the atmospheric fate of C₄F₉OCH₂O center dot
- 1698 radicals, J. Phys. Chem. A, 101(44), 8264-8274, doi: 10.1021/jp971353w.
- 1699 Waterland, R. L., M. D. Hurley, J. A. Misner, T. J. Wallington, S. M. L. Melo, K. Strong, R. Dumoulin, L. Castera, N. L.
- 1700 Stock, and S. A. Mabury (2005), Gas phase UV and IR absorption spectra of CF₃CH₂CH₂OH and F(CF₂CF₂), CH₂CH₂OH
- 1701 (x=2, 3, 4), J. Fluor. Chem., 126(9-10), 1288-1296, doi: 10.1016/j.jfluchem.2005.06.010.
- 1702 Wetzel, G., H. Oelhaf, O. Kirner, R. Ruhnke, F. Friedl-Vallon, A. Kleinert, G. Maucher, H. Fischer, M. Birk, G. Wagner,
- 1703 and A. Engel (2010), First remote sensing measurements of ClOOCl along with ClO and ClONO2 in activated and
- 1704 deactivated Arctic vortex conditions using new ClOOCl IR absorption cross sections, Atmos. Chem. Phys., 10(3), 931-945,
- 1705 doi: 10.5194/acp-10-931-2010.
- 1706 Young, C. J., M. D. Hurley, T. J. Wallington, and S. A. Mabury (2006), Atmospheric lifetime and global warming potential
- 1707 of a perfluoropolyether, Environ. Sci. Technol., 40(7), 2242-2246, doi: 10.1021/es052077z.
- 1708 Young, C. J., M. D. Hurley, T. J. Wallington, and S. A. Mabury (2009a), Atmospheric chemistry of CF₃CF₂H and
- 1709 CF₃CF₂CF₂CF₂H: Kinetics and products of gas-phase reactions with Cl atoms and OH radicals, infrared spectra, and
- 1710 formation of perfluorocarboxylic acids, Chem. Phys. Lett., 473(4-6), 251-256, doi: 10.1016/j.cplett.2009.04.001.
- 1711 Young, C. J., M. D. Hurley, T. J. Wallington, and S. A. Mabury (2009b), Atmospheric chemistry of perfluorobutenes
- 1712 (CF₃CFCFCF₃ and CF₃CF₂CFCF₂): Kinetics and mechanisms of reactions with OH radicals and chlorine atoms, IR spectra,
- 1713 global warming potentials, and oxidation to perfluorocarboxylic acids, Atmos. Environ., 43(24), 3717-3724, doi:
- 1714 10.1016/j.atmosenv.2009.04.025.
- 1715 Zander, R., C. P. Rinsland, C. B. Farmer, and R. H. Norton (1987), Infrared spectroscopic measurements of halogenated
- 1716 1717 source gases in the stratosphere with the ATMOS instrument, J. Geophys. Res.-Atmos., 92(D8), 9836-9850, doi:
- 10.1029/JD092iD08p09836.
- 1718 Zhang, H., J. X. Wu, and P. Luc (2011b), A study of the radiative forcing and global warming potentials of
- 1719 hydrofluorocarbons, J. Quant. Spectrosc. Radiat. Transf., 112(2), 220-229, doi: 10.1016/j.jqsrt.2010.05.012.
- 1720 Zhang, N., L. Chen, T. Uchimaru, F. Qing, J. Mizukado, H. Quan, and H. Suda (2015), Kinetics of gas-phase reactions of
- 1721 1722 cyc-CF2CF2CHFCH2 and trans-cyc-CF2CF2CHFCHF with OH radicals between 253 and 328K, Chem. Phys. Lett.,
- 639(Supplement C), 199-204, doi: https://doi.org/10.1016/j.cplett.2015.09.020.
- 1723 1724 Zou, Q., C. Sun, V. Nemtchinov, and P. Varanasi (2004), Thermal infrared cross-sections of C₂F₆ at atmospheric
- temperatures, J. Quant. Spectrosc. Radiat. Transf., 83(2), 215-221, doi: 10.1016/s0022-4073(02)00353-9.
- 1725 1726 Østerstrøm, F. F., O. J. Nielsen, and T. J. Wallington (2016), Atmospheric chemistry of CF3CF2OCH3, Chem. Phys. Lett.,
- 653(Supplement C), 149-154, doi: https://doi.org/10.1016/j.cplett.2016.04.086.
- Østerstrøm, F. F., O. J. Nielsen, M. P. S. Andersen, and T. J. Wallington (2012), Atmospheric chemistry of CF₃CH₂OCH₃:
- Reaction with chlorine atoms and OH radicals, kinetics, degradation mechanism and global warming potential, Chem. Phys.
- 1727 1728 1729 Lett., 524, 32-37, doi: 10.1016/j.cplett.2011.12.047.
- 1730 Østerstrøm, F. F., T. J. Wallington, M. P. Sulbaek Andersen, and O. J. Nielsen (2015), Atmospheric Chemistry of
- $\begin{array}{c} 1731 \\ 1732 \end{array}$ (CF3)2CHOCH3, (CF3)2CHOCHO, and CF3C(O)OCH3, The Journal of Physical Chemistry A, 119(42), 10540-10552, doi:
- 10.1021/acs.jpca.5b08204.
- 1733 1734 1735 Østerstrøm, F. F., S. T. Andersen, T. I. Solling, O. J. Nielsen, and M. P. Sulbaek Andersen (2017), Atmospheric chemistry of
- Z- and E-CF3CH[double bond, length as m-dash]CHCF3, Phys. Chem. Chem. Phys., 19(1), 735-750, doi:
- 10.1039/C6CP07234H.
- 1736
- 1737

Table 1. Estimated contributions to the total radiative forcing uncertainty.

Source of uncertainty	Estimated contribution to total	References used as basis for
	RF uncertainty	uncertainty estimates
Experimental absorption cross-sections	~5%	(Ballard et al., 2000a; Bravo et al.,
- neglected far infrared bands	~3%	2010; Forster et al., 2005)
 neglected shortwave bands 	~5%	
Radiation scheme	~5%	(W D Collins et al., 2006; Forster et
		al., 2005; Oreopoulos et al., 2012)
Clouds	~5%	(Forster et al., 2005; Gohar et al., 2004)
Spectral overlap and water vapor	~3%	(Forster et al., 2005; Jain et al.,
distribution		2000; Pinnock et al., 1995)
Surface emissivity and temperature, and	~5%	(Forster et al., 2005)
atmospheric temperature		
Tropopause level	~5%	(Forster et al., 2005; Freckleton et
		al., 1998; Myhre and Stordal, 1997)
Temporal and spatial averaging	~1%	(Freckleton et al., 1998; Myhre and
		Stordal, 1997)
Stratospheric temperature adjustment	~2%	(Forster et al., 2005; Gohar et al.,
		2004; Shine and Myhre, 2020)
Non-uniform vertical profile	\sim 5% for lifetimes > \sim 5 years,	(Hodnebrog et al., 2013; Sihra et
-	~20% for lifetimes < ~5 years	al., 2001)
Total (RSS)	~14% for lifetimes > ~5 years	
	~24% for lifetimes < ~5 years	

Table 2. Integrated infrared absorption cross-section updates (*S*) since the H2013 review for the 40 most abundant halocarbons and related compounds in the atmosphere.

Spectra used in the present RE calculations are indicated in bold (see Tables S1-S6 for a complete list of spectra used in RE calculations).

Name	CASRN	Identifier	Formula ¹	T(K)	Wn. range (cm ⁻¹)	S^2	Reference	Database ³	New ⁴
Chlorofluorocarbons									
Trichlorofluoromethane	75_69_4	CFC-11	CCl₃F	298	570 - 3000	10.1	(Sharpe et al., 2004)	H16	S
Dichlorodifluoromethane		CFC-11 CFC-12	CCl ₂ F ₂	294	800 - 1270		(Harrison, 2015a)	H16	S
Dichiorodiffuoromethalie	75-71-0	CPC-12	CC1 ₂ 1 ₂	294	600 - 3000		(Sharpe et al., 2004)	P	S
1,1,2-Trichloro-1,2,2-trifluoroethane	76 13 1	CFC-113	CCl ₂ FCClF ₂	298	620 - 3000		(Sharpe et al., 2004)	H16	S
1,2-Dichloro-1,1,2,2-tetrafluoroethane		CFC-113 CFC-114	CCl ₂ r-CClr ₂ CClF ₂ CClF ₂	298	600 - 3000		(Sharpe et al., 2004)	H16	S
1-Chloro-1,1,2,2-tetrariuoroethane		CFC-114 CFC-115	CCIF ₂ CCIF ₂ CCIF ₂ CF ₃	296	946 - 1368		(Totterdill et al., 2016)	1110	В
1-Choro-1,1,2,2,2-pentariuoroethane	70-13-3	CrC-113	CCII 2CI 3	296	525 - 3000		(Sharpe et al., 2004)	P	S
Hydrochlorofluorocarbons									
Chlorodifluoromethane	75-45-6	HCFC-22	CHClF ₂	295	730 - 1380	10.5	(Harrison, 2016)	H16	S
		-	- 2	296	550 - 3000		(Sharpe et al., 2004)	P	S
1,1-Dichloro-1-fluoroethane	1717-00-6	HCFC-141b	CH3CCl2F	295	705 - 1280		(Harrison, 2019)		Ĺ
,			- 32	283	570 - 1470	8.0	(Le Bris et al., 2012)		S
				298	550 - 3000		(Sharpe et al., 2004)	H16	S
1-Chloro-1,1-difluoroethane	75-68-3	HCFC-142b	CH ₃ CClF ₂	283	650 - 1500		(Le Bris and Strong, 2010)	H16	S
			2 32 2	298	600 - 3000		(Sharpe et al., 2004)	H16	S
Hydrofluorocarbons									
Trifluoromethane	75-46-7	HFC-23	CHF ₃	294	950 - 1500	12.3	(Harrison, 2013)	H16	S
				296	600 - 3000	12.7	(Sharpe et al., 2004)	P	S
Difluoromethane	75-10-5	HFC-32	CH_2F_2	298	510 - 3000		(Sharpe et al., 2004)	H16	S
1,1,1,2,2-Pentafluoroethane	354-33-6	HFC-125	CHF ₂ CF ₃	298	510 - 3000	17.4	(Sharpe et al., 2004)	H16	S
1,1,1,2-Tetrafluoroethane	811-97-2	HFC-134a	CH ₂ FCF ₃	296	750 - 1600	13.2	(Harrison, 2015b)	H16	S
				296	600 - 3000	14.2	(Sharpe et al., 2004)	P	S
1,1,1-Trifluoroethane	420-46-2	HFC-143a	CH ₃ CF ₃	296	570 - 1500	13.8	(Le Bris and Graham, 2015)	H16	В
				298	500 - 3000	13.9	(Sharpe et al., 2004)	H16	S
1,1-Difluoroethane	75-37-6	HFC-152a	CH_3CHF_2	298	525 - 3000	8.0	(Sharpe et al., 2004)	H16	S
1,1,1,2,3,3,3-Heptafluoropropane	431-89-0	HFC-227ea	CF ₃ CHFCF ₃	298	500 - 3000	25.3	(Sharpe et al., 2004)	H16	S
1,1,1,2,2,3,4,5,5,5-Decafluoropentane	138495-42-8	HFC-43-10mee	CF ₃ CHFCHFCF ₂ CF ₃	305	550 - 1600		(Le Bris et al., 2018)		В
				298	500 - 3000	30.4	(Sharpe et al., 2004)	H16	S
Chlorocarbons and Hydrochlorocarbons									
1,1,1-Trichloroethane		Methyl chloroform	CH ₃ CCl ₃	298	500 - 3000		(Sharpe et al., 2004)	H16	S
Tetrachloromethane	56-23-5	Carbon tetrachloride	CCl ₄	296	700 - 860		(Harrison et al., 2017)	H16	S
				295-8	730 - 825		(Wallington et al., 2016)		В
				298	730 - 825		(Sharpe et al., 2004)	P	L
Chloromethane	74-87-3	Methyl chloride	CH₃Cl	295-8	660 - 1620		(Wallington et al., 2016)		В
				296	600 - 3000		(Sharpe et al., 2004)	P	S
Dichloromethane	75-09-2	Methylene chloride	CH_2Cl_2	295-8	650 - 1290		(Wallington et al., 2016)		В
				298	600 - 3000		(Sharpe et al., 2004)	H16	S
Trichloromethane	67-66-3	Chloroform	CHCl ₃	295-8	720 - 1245	4.4	(Wallington et al., 2016)		В

Confidential manuscript submitted to Reviews of Geophysics. Revised version: 2020-06-26

			298	580 - 3000	5.0	(Sharpe et al., 2004)	H16	S
Bromocarbons, Hydrobromocarbons and Halons								
Bromomethane	74-83-9 Methyl bromide	CH₃Br	296	550 - 3000	1.1	(Sharpe et al., 2004)	P	S
Bromochlorodifluoromethane	353-59-3 Halon-1211	$CBrClF_2$	298	600 - 3000	13.2	(Sharpe et al., 2004)	H16	S
Bromotrifluoromethane	75-63-8 Halon-1301	CBrF ₃	298	510 - 3000	16.1	(Sharpe et al., 2004)	H16	S
1,2-Dibromo-1,1,2,2-tetrafluoroethane	124-73-2 Halon-2402	CBrF ₂ CBrF ₂	298	550 - 3000	16.1	(Sharpe et al., 2004)	H16	S
Fully Fluorinated Species								
Nitrogen trifluoride	7783-54-2	NF_3	296	600 - 1970	7.3	(Totterdill et al., 2016)		В
			298	600 - 3000	7.2	(Sharpe et al., 2004)	H16	S
Sulfur hexafluoride	2551-62-4	SF_6	295	650 - 2000	24.0	(Kovács et al., 2017)		L
			298	560 - 3000	21.2	(Sharpe et al., 2004)	H16	S
Sulfuryl fluoride	2699-79-8	SO_2F_2	298	500 - 3000	14.0	(Sharpe et al., 2004)	H16	S
Tetrafluoromethane	75-73-0 PFC-14	CF_4	298	570 - 3000	19.8	(Sharpe et al., 2004)	H16	S
Hexafluoroethane	76-16-4 PFC-116	C_2F_6	298	500 - 3000	23.1	(Sharpe et al., 2004)	H16	S
Octafluoropropane	76-19-7 PFC-218	C_3F_8	298	600 - 3000	27.5	(Sharpe et al., 2004)	H16	S
Octafluorocyclobutane	115-25-3 PFC-C 318	cyc (-CF ₂ CF ₂ CF ₂ CF ₂ -)	298	550 - 3000	21.7	(Sharpe et al., 2004)	H16	S
Decafluorobutane	355-25-9 PFC-31-10	$n-C_4F_{10}$	298	500 - 3000	32.4	(Sharpe et al., 2004)	H16	S
Dodecafluoropentane	678-26-2 PFC-41-12	$n-C_5F_{12}$	278	500 - 3000	37.3	(Sharpe et al., 2004)	H16	S

¹⁷⁴⁵ Teyc, cyclic compound.
1746 Integrated absorption cr
1747 Absorption cross-section
1748 New data since H2013:

² Integrated absorption cross-section given in units of 10⁻¹⁷ cm² molecule⁻¹ cm⁻¹.

³ Absorption cross-section downloaded from database: H16, HITRAN 2016; P, PNNL.

⁴ New data since H2013: L, Literature; S, Spectrum; B, Both.

Table 3. Lifetimes (τ), radiative efficiencies and direct effect GWPs (relative to CO₂) for the 40 most abundant halocarbons and related compounds in the atmosphere. Compounds where the radiative efficiencies are based on new spectra since the H2013 review are marked in bold. Recommended RE and GWP(100) values are indicated in bold. Lifetimes are taken from WMO (2019). Note that RE values with more significant digits have been used to calculate GWP(100) and that these are available in the supporting information.

			τ			m ⁻² ppb ⁻¹)		P(100)
Identifier / name	Formula	CASRN	H2013 ^a	WMO (2019)	H2013	This work	H2013	This work
Chlorofluorocarbons								
CFC-11	CCl ₃ F	75-69-4	45.0	52.0	0.26	0.26	4,660	5,870
CFC-12	CCl_2F_2	75-71-8	100.0	102.0	0.32	0.32	10,200	11,800
CFC-113	CCl ₂ FCClF ₂	76-13-1	85.0	93.0	0.30	0.30	5,820	6,900
CFC-114	CCIF ₂ CCIF ₂	76-14-2	190.0	189.0	0.31	0.31	8,590	9,990
CFC-115	CClF ₂ CF ₃	76-15-3	1020.0	540.0	0.20	0.25	7,670	10,200
Hydrochlorofluorocarbo								
HCFC-22	CHCIF ₂	75-45-6	11.9	11.9	0.21	0.21	1,770	2,060
HCFC-141b	CH₃CCl₂F	1717-00-6	9.2	9.4	0.16	0.16	782	903
HCFC-142b	CH₃CClF₂	75-68-3	17.2	18.0	0.19	0.19	1,980	2,410
Hydrofluorocarbons	CHE	75.46.7	222.0	220.0	0.17	0.40	12 100	4 = =0
HFC-23	CHF ₃	75-46-7	222.0	228.0	0.17	0.19	12,400	15,500
HFC-32	CH ₂ F ₂	75-10-5	5.2	5.4	0.11	0.11	677	809
HFC-125	CHF ₂ CF ₃	354-33-6	28.2	30.0	0.23	0.23	3,170	3,940
HFC-134a	CH ₂ FCF ₃	811-97-2	13.4	14.0	0.16	0.17	1,300	1,600
HFC-143a	CH ₃ CF ₃	420-46-2	47.1	51.0	0.16	0.17	4,800	6,130
HFC-152a	CH ₃ CHF ₂	75-37-6	1.5	1.6	0.10	0.10	138	172
HFC-227ea	CF ₃ CHFCF ₃	431-89-0	38.9	36.0	0.26	0.27	3,350	3,800
HFC-236fa	CF ₃ CH ₂ CF ₃	690-39-1	242.0	213.0	0.24	0.25	8,060	9,210
HFC-245fa	CHF ₂ CH ₂ CF ₃	460-73-1	7.7	7.9	0.24	0.24	858	1,010
HFC-365mfc HFC-43-10mee	CH ₃ CF ₂ CH ₂ CF ₃ CF ₃ CHFCHFCF ₂ CF ₃	406-58-6 138495-42-8	8.7 16.1	8.9 17.0	0.22 0.42	0.23 0.36	804 1,650	959 1,680
Chlore and one and Hod								
Chlorocarbons and Hydr 1,1,1-Trichloroethane	CH ₃ CCl ₃	71-55-6	5.0	5.0	0.07	0.06	160	169
Tetrachloromethane	CCl ₄	56-23-5	26.0	32.0	0.07	0.00	1,730	2,310
Chloromethane	CH ₃ Cl	74-87-3	1.0	0.9	0.010	0.005	1,730	2,310
Dichloromethane	CH ₂ Cl ₂	75-09-2	0.4	0.5	0.010	0.03	9	12
Trichloromethane	CHCl ₃	67-66-3	0.4	0.5	0.08	0.07	16	22
Bromocarbons, Hydrobro	omocarbons and Halons							
Bromomethane	CH₃Br	74-83-9	0.8	0.8	0.005	0.004	2	3
Halon-1211	CBrClF ₂	353-59-3	16.0	16.0	0.29	0.30	1,750	2,030
Halon-1301	CBrF ₃	75-63-8	65.0	72.0	0.30	0.30	6,290	7,600
Halon-2402	CBrF ₂ CBrF ₂	124-73-2	20.0	28.0	0.31	0.31	1,470	2,280
Fully Fluorinated Specie	es							
Nitrogen trifluoride	NF_3	7783-54-2	500.0	569.0	0.20	0.20	16,100	18,500
Sulfur hexafluoride	SF_6	2551-62-4	3200.0	3200.0	0.57	0.57	23,500	26,700
Sulfuryl fluoride	SO_2F_2	2699-79-8	36.0	36.0	0.20	0.21	4,100	4,880
PFC-14	CF_4	75-73-0	50000.0	50000.0	0.10	0.10	6,630	7,830
PFC-116	C_2F_6	76-16-4	10000.0	10000.0	0.25	0.26	11,100	13,200
PFC-218	C_3F_8	76-19-7	2600.0	2600.0	0.28	0.27	8,900	9,850
PFC-C-318	$c-C_4F_8$	115-25-3	3200.0	3200.0	0.32	0.31	9,550	10,800
PFC-31-10	$n-C_4F_{10}$	355-25-9	2600.0	2600.0	0.36	0.37	9,200	10,60
PFC-41-12	$n-C_5F_{12}$	678-26-2	4100.0	4100.0	0.41	0.41	8,550	9,780
PFC-51-14	$n-C_6F_{14}$	355-42-0	3100.0	3100.0	0.44	0.45	7,910	9,140
PFC-61-16	$n-C_7F_{16}$	335-57-9	3000.0	3000.0	0.50	0.50	7,820	8,920
PFC-71-18	$n-C_8F_{18}$	307-34-6	3000.0	3000.0	0.55	0.56	7,620	8,760

^a Lifetimes in H2013 were from WMO (2011) except for PFC-71-18

Table 4. Concentrations (ppt) and radiative forcing (mW m⁻²) for the 40 most abundant halocarbons and related compounds in the atmosphere. Concentrations in italic are from 2014 (Meinshausen et al., 2017) and the remaining from 2019 (Butler and Montzka, 2020). The REs used to calculate RF are both from H2013 and from this study. Note that RE values with more significant digits than given in Table 3 have been used to calculate RF for each compound and that these are available in the supporting information.

Identifier / name Concentral Chlorofluorocarbons CFC-11 CFC-12 CFC-113 CFC-114 CFC-115 Hydrochlorofluorocarbons HCFC-22 HCFC-141b HCFC-142b	226.50 501.60 69.70 16.31 8.43	246.16 58.89 159.51 21.05 5.01 1.70	Updated REs 247.47 58.76 160.50 21.01 5.13 2.08	% difference
CFC-11 CFC-12 CFC-113 CFC-114 CFC-115 Hydrochlorofluorocarbons HCFC-22 HCFC-141b	501.60 69.70 16.31 8.43	58.89 159.51 21.05 5.01 1.70	58.76 160.50 21.01 5.13	
CFC-11 CFC-12 CFC-113 CFC-114 CFC-115 Hydrochlorofluorocarbons HCFC-22 HCFC-141b	501.60 69.70 16.31 8.43	58.89 159.51 21.05 5.01 1.70	58.76 160.50 21.01 5.13	
CFC-12 CFC-113 CFC-114 CFC-115 Hydrochlorofluorocarbons HCFC-22 HCFC-141b	501.60 69.70 16.31 8.43	159.51 21.05 5.01 1.70	160.50 21.01 5.13	
CFC-113 CFC-114 CFC-115 Hydrochlorofluorocarbons HCFC-22 HCFC-141b	69.70 16.31 8.43	21.05 5.01 1.70	21.01 5.13	
CFC-114 CFC-115 Hydrochlorofluorocarbons HCFC-22 HCFC-141b	16.31 8.43	5.01 1.70	5.13	
CFC-115 Hydrochlorofluorocarbons HCFC-22 HCFC-141b	8.43	1.70		
Hydrochlorofluorocarbons HCFC-22 HCFC-141b			2.08	2
HCFC-22 HCFC-141b	246.80	=		2
HCFC-141b	246.80	59.44	60.95	
		51.33	52.78	
HCFC-142b	24.39	3.95	3.92	-
	22.00	4.16	4.25	
Hydrofluorocarbons		35.61	37.26	
HFC-23	30.00	5.25	5.73	
HFC-32	8.34	0.92	0.93	
HFC-125	29.10	6.58	6.80	
HFC-134a	107.77	17.35	18.01	
HFC-134a HFC-143a	23.83	3.77	4.00	
HFC-143a HFC-152a	6.92	0.68	0.70	
HFC-227ea	1.01	0.26	0.28	
HFC-236fa	0.13	0.03	0.03	
IFC-245fa	2.05	0.50	0.50	
HFC-365mfc	0.77	0.17	0.18	
HFC-43-10mee	0.25	0.11	0.09	-1
Chlorocarbons and Hydrochlorocarbons		15.50	14.67	
1,1,1-Trichloroethane	1.60	0.11	0.10	
Tetrachloromethane	78.50	13.35	13.04	
Chloromethane	539.54	0.83	0.38	-4
Dichloromethane	36.35	0.91	0.85	
Frichloromethane	9.90	0.30	0.29	
Bromocarbons, Hydrobromocarbons and Halons		2.07	2.09	
Bromomethane	6.69	0.01	0.01	-1
Halon-1211	3.25	0.96	0.98	•
Halon-1301	3.28	0.98	0.98	
Halon-2402	0.40	0.13	0.12	
Fully Fluorinated Species		12.83	13.06	
Vitrogen trifluoride	1.24	0.25	0.25	
Sulfur hexafluoride	9.96	5.65	5.64	
Sulfuryl fluoride	9.96 2.04	0.41	0.43	
PFC-14		4.47	4.64	
	81.09			
PFC-116	4.40	1.10	1.15	
PFC-218	0.60	0.17	0.16	
PFC-C-318	1.34	0.42	0.42	
PFC-31-10	0.18	0.07	0.07	
PFC-41-12	0.13	0.05	0.05	
PFC-51-14	0.28	0.12	0.13	
PFC-61-16	0.13	0.07	0.07	
PFC-71-18 Fotal	0.09	0.05 371.60	0.05 375.49	1

^a Pre-industrial values are zero except for chloromethane (457 ppt), dichloromethane (6.9 ppt), trichloromethane (6 ppt), bromomethane (5.3 ppt) and PFC-14/CF₄ (34.05 ppt), see Meinshausen et al. (2017).

Table 5. Lifetimes (τ) , radiative efficiencies and direct GWPs (relative to CO_2) for less abundant compounds. Compounds where the radiative efficiencies are based on new spectra since the H2013 review are marked in bold. Recommended RE and GWP(100) values are indicated in bold. Lifetimes are from WMO (2019) except those in italic (see text and Tables S7-S13 for details). RE values in parentheses are based on a constant horizontal and vertical distribution because of missing information about the lifetime of the compound. RE and GWP values in italic are based on previous publications (see text and Tables S7-S13 for details). Note that RE values with more significant digits have been used to calculate GWP(100) and that these are available in the supporting information.

supporting information.				RE (W m	-2 nnh-1)	GWP	(100)
The second	F 13	CAGDN					
Identifier / name	Formula ^a	CASRN	τ (yr)	H2013	This work	H2013	This work
Chlorofluorocarbons							
CFC-13	CCIF ₃	75-72-9	640.0	0.26	0.28	13,900	17,200
CFC-112	CCl ₂ FCCl ₂ F	76-12-0	63.6		0.28		4,880
CFC-112a	CCl ₃ CClF ₂	76-11-9	52.0		0.25		3,740
CFC-113a	CCl ₃ CF ₃	354-58-5	55.0		0.24		4,140
CFC-114a	CCl ₂ FCF ₃	374-07-2	105.0		0.30		7,850
E-R316c	trans cyc (-CClFCF ₂ CF ₂ CClF-) #	3832-15-3	75.0		0.27		4,470
Z-R316c	cis cyc (-CClFCF ₂ CF ₂ CClF-) #	3934-26-7	114.0		0.30		5,990
CFC 1112	CCIF=CCIF	598-88-9	7.1 days		0.01		<1
CFC 1112a	CCl ₂ =CF ₂	79-35-6	2.3 days		0.01		<1
1,1,2-trichloro-2-fluoroethene	CCl ₂ =CClF	359-29-5	2.5 4475		(0.13)		
Chlorotrifluoroethylene	CF ₂ =CCIF	79-38-9			(0.11)		
Hydrochlorofluorocarbons							
HCFC-21	CHCl ₂ F	75-43-4	1.7	0.14	0.15	148	168
HCFC-31	CH₂CIF	593-70-4	1.2		0.07		83
HCFC-121	CHCl ₂ CCl ₂ F	354-14-3	1.1		0.15		61
HCFC-122	CHCl ₂ CClF ₂	354-21-2	0.9	0.17	0.16	59	59
HCFC-122a	CHCIFCCl ₂ F	354-15-4	3.1	0.21	0.20	258	257
HCFC-123	CHCl ₂ CF ₃	306-83-2	1.3	0.15	0.16	79	95
HCFC-123a	CHCIFCCIF ₂	354-23-4	4.0	0.23	0.23	370	415
HCFC-123a HCFC-124	CHCIFCF ₃	2837-89-0	5.9	0.20	0.23	527	627
HCFC-124a	CHF ₂ CCIF ₂	354-25-6	17.0	3.20	0.25	321	2,170
HCFC-124a HCFC-132	CHCIFCHCIF	431-06-1	1.7		0.14		128
HCFC-132a	CHCl ₂ CHF ₂	471-43-2	1.1		0.14		74
HCFC-132a HCFC-132c	CH ₂ FCCl ₂ F	1842-05-3	4.1	0.17	0.13	338	359
HCFC-133a		75-88-7		0.17	0.17	336	407
HCFC-135a HCFC-141	CH ₂ CICF ₃		4.6				
	CH ₂ CICHCIF	430-57-9	1.1	0.22	0.07	107	49
HCFC-225ca	CHCl ₂ CF ₂ CF ₃	422-56-0	1.9	0.22	0.22	127	143
HCFC-225cb	CHCIFCF ₂ CCIF ₂	507-55-1	5.9	0.29	0.29	525	596
HCFO-1233zd(E)	(E)-CF ₃ CH=CHCl	102687-65-0	42.5 days	0.04	0.07	1	4
HCFO-1233zd(Z)	(Z)-CF ₃ CH=CHCl	99728-16-2	13.0 days		0.02		<1
(E/Z)-1-chloro-2-fluoro-ethene	(E/Z)-CHCl=CHF	460-16-2	1.8 days		0.001		<1
Hydrofluorocarbons HFC-41	CH₃F	593-53-3	2.8	0.02	0.02	116	142
	-	359-35-3	10.0				
HFC-134	CHF ₂ CHF ₂			0.19	0.19	1,120	1,330
HFC-143	CH ₂ FCHF ₂	430-66-0	3.6	0.13	0.13	328	382
HFC-152	CH ₂ FCH ₂ F	624-72-6	0.5	0.04	0.05	16	23
HFC-161	CH ₃ CH ₂ F	353-36-6	80.0 days	0.02	0.02	4	5
HFC-227ca	CF ₃ CF ₂ CHF ₂	2252-84-8	30.0	0.27	0.26	2,640	3,140
HFC-236cb	CH ₂ FCF ₂ CF ₃	677-56-5	13.4	0.23	0.23	1,210	1,420
HFC-236ea	CHF ₂ CHFCF ₃	431-63-0	11.4	0.30	0.30	1,340	1,570
HFC-245ca	CH ₂ FCF ₂ CHF ₂	679-86-7	6.6	0.24	0.24	716	827
HFC-245cb	CF ₃ CF ₂ CH ₃	1814-88-6	39.9	0.24	0.25	4,620	4,790
HFC-245ea	CHF ₂ CHFCHF ₂	24270-66-4	3.2	0.16	0.16	235	267
HFC-245eb	CH ₂ FCHFCF ₃	431-31-2	3.2	0.20	0.20	290	341
HFC-263fb	CH ₃ CH ₂ CF ₃	421-07-8	1.1	0.10	0.10	76	78
HFC-272ca	CH ₃ CF ₂ CH ₃	420-45-1	9.0	0.07	0.08	144	629
HFC-329p	CHF ₂ CF ₂ CF ₂ CF ₃	375-17-7	32.0	0.31	0.31	2,360	3,040
HFO-1123	CHF=CF ₂	359-11-5	1.4 days		0.002		<1
HFO-1132a	CH ₂ =CF ₂	75-38-7	4.6 days	0.004	0.004	<1	<1
HFO-1141	CH ₂ =CHF	75-02-5	2.5 days	0.002	0.002	<1	<1
HFO-1225ye(Z)	(Z)-CF ₃ CF=CHF	5528-43-8	10.0 days	0.02	0.02	<1	<1
HFO-1225ye(E)	(E)-CF ₃ CF=CHF	5595-10-8	5.7 days	0.01	0.02	<1	<1
HFO-1234ze(Z)	(Z)-CF₃CH=CHF	29118-25-0	10.0 days	0.02	0.02	<1	<1
HFO-1234ze(E)	(E)-CF ₃ CH=CHF	29188-24-9	19.0 days	0.04	0.05	1	1
HFO-1234yf	CF ₃ CF=CH ₂	754-12-1	12.0 days	0.02	0.03	<1	<1
HFO-1336mzz(E)	(E)-CF ₃ CH=CHCF ₃	N/A	0.3		0.13		19
HFO-1336mzz(Z)	(Z)-CF ₃ CH=CHCF ₃	692-49-9	27.0 days	0.07	0.07	2	2
HFO-1243zf	CF ₃ CH=CH ₂	677-21-4	9.0 days	0.01	0.02	<1	<1
HFC-1345zfc	CF ₃ CF ₂ CH=CH ₂	374-27-6	9.0 days	0.01	0.02	<1	<1
3,3,4,4,5,5,6,6,6-Nonafluorohex-1-ene	n-C ₄ F ₉ CH=CH ₂	19430-93-4	9.0 days	0.03	0.03	<1	<1
3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooct-1-ene	n-C ₆ F ₁₃ CH=CH ₂	25291-17-2	9.0 days	0.03	0.03	<1	<1
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-	n-C ₆ F ₁₇ CH=CH ₂	21652-58-4	9.0 days	0.03	0.03	<1	<1
Heptadecafluorodec-1-ene 1-Propene, 3,3,3-trifluoro-2-(trifluoromethyl)-	(CF ₃) ₂ C=CH ₂	382-10-5	10.3 days	3.03	0.03	~*	<1
1,1,2,2,3,3-hexafluorocyclopentane	cyc (-CF2CF2CF2CH2CH2-)	123768-18-3	1.6		0.20		126
1,1,2,2,3,3,4-heptafluorocyclopentane	cyc (-CF ₂ CF ₂ CF ₂ CHFCH ₂ -)	15290-77-4	2.8		0.24		243
1,3,3,4,4,5,5-heptafluorocyclopentene	cyc (-CF ₂ CF ₂ CF ₂ CF+CH ₂ -) cyc (-CF ₂ CF ₂ CF-CH-)	1892-03-1	0.6		0.24		47
	trans-eye (-CF ₂ CF ₂ CF ₂ CF=CH-) [#]						271
(4R,5R)-1,1,2,2,3,3,4,5-octafluorocyclopentane	trans-cyc (-CF ₂ CF ₂ CF ₂ CHFCHF-) "	158389-18-5	3.2		0.26		2/1

TTT0 4400 (T)	an (an) anarr arm	4440440					
HFO-1438ezy(E)	(E)-(CF ₃) ₂ CFCH=CHF	14149-41-8	0.3		0.08		9
HFO-1447fz	CF ₃ (CF ₂) ₂ CH=CH ₂	355-08-8	9.0 days		0.03		<1
1,3,3,4,4-pentafluorocyclobutene	cyc (-CH=CFCF ₂ CF ₂ -)	374-31-2	0.7		0.27		97
3,3,4,4-tetrafluorocyclobutene	cyc (-CH=CHCF ₂ CF ₂ -)	2714-38-7	84.0 days		0.21		27
3-Fluoro-1-propene	CH ₂ =CHCH ₂ F	818-92-8			(0.06)		
1-Fluorohexane	n-C ₆ H ₁₃ F	373-14-8			(0.04)		
Fluorobenzene	C ₆ H ₅ -F	462-06-6			(0.07)		
Chlorocarbons and Hodrochlorocarbons							
Chlorocarbons and Hydrochlorocarbons Chloroethane	CH₃CH₂Cl	75-00-3	48.0 days		0.004		<1
1,1-Dichloroethane	CH ₃ CHCl ₂ CH ₃ CHCl ₂	75-34-3	46.0 days		(0.03)		(1
			92.0.1	0.01			
1,2-Dichloroethane	CH ₂ ClCH ₂ Cl	107-06-2	82.0 days	0.01	0.01	1	1
1,1,2-Trichloroethane	CH ₂ CICHCl ₂	79-00-5			(0.05)		
1,1,1,2-Tetrachloroethane	CH ₂ CICCl ₃	630-20-6			(0.10)		
1,1,2,2-Tetrachloroethane	CHCl ₂ CHCl ₂	79-34-5 79-01-6	5 6 days		(0.10)		
1,1,2-Trichloroethene	CHCl=CCl ₂		5.6 days		0.01		<1
1,1,2,2-Tetrachloroethene	CCl ₂ =CCl ₂	127-18-4	0.3		0.05		7
2-Chloropropane	CH₃CHCICH₃	75-29-6	22.0 days		0.004		<1
Chloromethyl benzene	C ₆ H ₅ -CH ₂ Cl	100-44-7			(0.02)		
3-Chloro-1-propene	CH ₂ =CHCH ₂ Cl	107-5-1			(0.05)		
1-Chloro-4-methylbenzene	p-Cl-C ₆ H ₄ -CH ₃	106-43-4			(0.05)		
3,4-Dichloro-1-butene	CH ₂ CICHCICH=CH ₂	760-23-6			(0.06)		
1-Chloro-3-methylbenzene	m-Cl-C ₆ H ₄ -CH ₃	108-41-8			(0.05)		
2,3-Dichloropropene	CH ₂ CICCI=CH ₂	78-88-6			(0.05)		
1-Chloro-2-methylbenzene	o-Cl-C ₆ H ₄ -CH ₃	95-49-8			(0.04)		
1,2-Dichloropropene	CHCl=CClCH ₃	563-54-2			(0.03)		
1-Chloropentane	CH ₃ (CH ₂) ₃ CH ₂ Cl	543-59-9	45 1		(0.02)		
1-Chloro 2 mothelesses	CH ₃ (CH ₂) ₂ CH ₂ Cl	109-69-3	4.5 days		0.001		<1
1-Chloro-2-methylpropane	(CH ₃) ₂ CHCH ₂ Cl	513-36-0			(0.02)		
Chloroethene	CH ₂ =CHCl	75-01-4			(0.04)		
1,2-Dichloroethene (E)	(E)-CHCl=CHCl	156-60-5			(0.09)		
Hexachloro-1,3-butadiene	CCl ₂ =CClCCl=CCl ₂	87-68-3			(0.14)		
1,3-Dichloropropene (E)	(E)-CHCl=CHCH ₂ Cl	10061-02-6			(0.06)		
1,3-Dichloropropene (Z)	(Z)-CHCl=CHCH ₂ Cl	10061-01-5			(0.06)		
1,3-Dichloropropane	CH ₂ ClCH ₂ CH ₂ Cl	142-28-9			(0.03)		
Chlorobenzene	C ₆ H ₅ -Cl	108-90-7			(0.04)		
1,4-Dichlorobenzene	p-Cl-C ₆ H ₄ -Cl	106-46-7			(0.08)		
1,3-Dichlorobenzene	m-Cl-C ₆ H ₄ -Cl	541-73-1			(0.08)		
1,2-Dichlorobenzene	o-Cl-C ₆ H ₄ -Cl	95-50-1			(0.05)		
1,2-Dichloroethylene (Z)	(Z)-CHCl=CHCl	156-59-2			(0.04)		
Hexachloro-1,3-cyclopentadiene	C ₅ Cl ₆	77-47-4			(0.11)		
3-Chloro-1-propyne	CH ₂ ClC≡CH	624-65-7			(0.02)		
Bromocarbons, Hydrobromocarbons and Halons							
· •	CH.Br.	74-05-3	0.4	0.01	0.01	1	2
Dibromomethane	CH ₂ Br ₂ CHBrF-	74-95-3 1511-62-2	0.4	0.01	0.01	1 376	2 308
Dibromomethane Halon-1201	CHBrF ₂	1511-62-2	4.9	0.15	0.15	376	398
Dibromomethane Halon-1201 Halon-1202	CHBrF ₂ CBr ₂ F ₂	1511-62-2 75-61-6	4.9 2.5	0.15 0.27	0.15 0.27	376 231	398 226
Dibromomethane Halon-1201 Halon-1202 Halon-2301	CHBrF ₂ CBr ₂ F ₂ CH ₂ BrCF ₃	1511-62-2 75-61-6 421-06-7	4.9 2.5 3.2	0.15 0.27 0.14	0.15 0.27 0.14	376 231 173	398 226 186
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane)	CHBrF ₂ CBr ₂ F ₂ CH ₂ BrCF ₃ CHBrClCF ₃	1511-62-2 75-61-6 421-06-7 151-67-7	4.9 2.5 3.2 1.0	0.15 0.27 0.14 0.13	0.15 0.27 0.14 0.13	376 231 173 41	398 226 186 47
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401	CHBrF ₂ CBr ₂ F ₂ CH ₂ BrCF ₃ CHBrCICF ₃ CHBrFCF ₃	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1	4.9 2.5 3.2 1.0 2.9	0.15 0.27 0.14	0.15 0.27 0.14 0.13 0.19	376 231 173	398 226 186 47 211
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane	CHBrF ₂ CBr ₂ F ₃ CH ₃ BrCF ₃ CHBrCICF ₃ CHBrFCF ₅ CHBr ₅	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2	4.9 2.5 3.2 1.0 2.9 57.0 days	0.15 0.27 0.14 0.13	0.15 0.27 0.14 0.13 0.19 0.01	376 231 173 41	398 226 186 47 211 <1
Dibromomethane Halon-1201 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011	CHBrF ₂ CBr ₂ F ₂ CH ₃ BrCF ₃ CHBrClCF ₃ CHBrFCF ₃ CHBr ₃ CHBr ₄ CHBr ₅ CHBr ₅	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5	0.15 0.27 0.14 0.13	0.15 0.27 0.14 0.13 0.19 0.01 0.02	376 231 173 41	398 226 186 47 211 <1 5
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane	CHBrF ₂ CBr ₂ F ₂ CH ₂ BrCF ₃ CHBrClCF ₃ CHBrFCF ₃ CHBr ₃ CHBr ₃ CH ₂ BrCl CH ₃ CH ₂ Br	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days	0.15 0.27 0.14 0.13	0.15 0.27 0.14 0.13 0.19 0.01 0.02	376 231 173 41	398 226 186 47 211 <1 5
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane	CHBrF ₂ CBr ₂ F ₂ CH ₂ BrCF ₃ CHBrClCF ₃ CHBrFCF ₃ CHBr ₃ CHBr ₃ CH ₂ BrCl CH ₂ CH ₂ BrCl CH ₂ CH ₂ Br	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days	0.15 0.27 0.14 0.13	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.01	376 231 173 41	398 226 186 47 211 <1 5 <1
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1-Bromopropane	CHBrF ₂ CBr ₂ F ₂ CH ₂ BrCF ₃ CHBrClCF ₃ CHBrFCF ₃ CHBr ₃ CH ₂ BrCl CH ₃ CH ₂ Br CH ₂ BrCH ₂ Br CH ₃ CH ₂ Br CH ₃ CH ₂ Br CH ₃ CH ₂ CH ₂ Br	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-94-5	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days	0.15 0.27 0.14 0.13	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.01	376 231 173 41	398 226 186 47 211 <1 5 <1 1 <1
Dibromomethane Halon-1201 Halon-2202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane	CHBrF ₂ CBr ₂ F ₃ CH ₂ BrCF ₃ CHBrClCF ₃ CHBrFCF ₃ CHBr ₃ CH ₂ BrCl CH ₃ CH ₂ Br CH ₂ BrCh ₂ Br CH ₂ BrCH ₂ Br CH ₃ CH ₅ Br CH ₅ CH ₅ CH ₅ Br CH ₃ CHBrCH ₃	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-94-5 75-26-3	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days	0.15 0.27 0.14 0.13	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.01 0.002 0.004	376 231 173 41	398 226 186 47 211 <1 5 <1
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene	CHBrF2 CBr ₂ F2 CH ₂ BrCF ₃ CHBrClCF3 CHBrFCF5 CHBr3 CH ₂ BrCl CH ₃ CH ₂ Br CH ₂ BrCl CH ₃ CH ₂ Br CH ₂ BrCH ₂ Br CH ₃ CH ₂ CH ₂ Br CH ₃ CH ₂ CH ₂ Br CH ₃ CH ₂ CH ₂ Br CH ₃ CHBrCH ₃ C ₆ H ₅ -CH ₂ Br	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-94-5 75-26-3 100-39-0	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days	0.15 0.27 0.14 0.13	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.03)	376 231 173 41	398 226 186 47 211 <1 5 <1 1 <1
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene	CHBrF ₂ CBr ₂ F ₂ CH ₂ FCF ₃ CHBrClCF ₃ CHBrFCF ₃ CHBr ₃ CH ₂ BrCl CH ₂ CH ₂ Br CH ₂ BrCl CH ₂ CH ₂ Br CH ₂ CH ₂ Br CH ₃ CH ₂ CH ₂ Br	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days	0.15 0.27 0.14 0.13	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.01 0.002 0.004 (0.03)	376 231 173 41	398 226 186 47 211 <1 5 <1 1 <1
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene	CHBrF2 CBr ₂ F2 CH ₂ BrCF ₃ CHBrClCF3 CHBrFCF5 CHBr3 CH ₂ BrCl CH ₃ CH ₂ Br CH ₂ BrCl CH ₃ CH ₂ Br CH ₂ BrCH ₂ Br CH ₃ CH ₂ CH ₂ Br CH ₃ CH ₂ CH ₂ Br CH ₃ CH ₂ CH ₂ Br CH ₃ CHBrCH ₃ C ₆ H ₅ -CH ₂ Br	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-94-5 75-26-3 100-39-0	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days	0.15 0.27 0.14 0.13	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.03)	376 231 173 41	398 226 186 47 211 <1 5 <1 1 <1
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate	CHBrF2 CBr ₂ F2 CH ₂ BrCF ₃ CHBrCICF ₃ CHBrFCF ₃ CHBr ₃ CHB ₃ CH ₂ BrCl CH ₃ CH ₂ Br CH ₂ BrCH ₂ Br CH ₃ CH ₂ CH ₂ Br	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days	0.15 0.27 0.14 0.13	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.01 0.002 0.004 (0.03) (0.04)	376 231 173 41	398 226 186 47 211 <1 5 <1 1 <1
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate	CHBrF2 CBr ₂ F2 CH ₂ BrCF ₃ CHBrCICF ₃ CHBrFCF ₃ CHBr ₃ CHB ₃ CH ₂ BrCl CH ₃ CH ₂ Br CH ₂ BrCH ₂ Br CH ₃ CH ₂ CH ₂ Br	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days	0.15 0.27 0.14 0.13	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.01 0.002 0.004 (0.03) (0.04)	376 231 173 41	398 226 186 47 211 <1 5 <1 1 <1
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene	CHBrF2 CBr ₂ F2 CH ₂ BrCF ₃ CHBrCICF ₃ CHBrFCF ₃ CHBr ₃ CHB ₃ CH ₂ BrCl CH ₃ CH ₂ Br CH ₂ BrCH ₂ Br CH ₃ CH ₂ CH ₂ Br	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days	0.15 0.27 0.14 0.13	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.01 0.002 0.004 (0.03) (0.04)	376 231 173 41	398 226 186 47 211 <1 5 <1 1 <1
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species	CHBrF2 CBr ₂ F ₂ CH ₂ BrCF ₃ CHBrCICF ₃ CHBrFCF ₃ CHBr ₃ CH ₂ BrCl CH ₃ CH ₂ BrCl CH ₃ CH ₂ Br CH ₂ BrCl CH ₃ CH ₂ Br CH ₃ CH ₂ Br CH ₃ CH ₂ CH ₂ Br CH ₃ CHCH ₂ Br BrONO ₂ CH ₂ =CHBr	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days	0.15 0.27 0.14 0.13	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.03) (0.04) (0.10)	376 231 173 41	398 226 186 47 211 <1 5 <1 1 <1
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine	CHBrF2 CBr ₂ F2 CH ₂ FCF ₃ CHBrCCF ₃ CHBrFCF ₃ CHBr ₃ CH ₂ BrCl CH ₃ CH ₂ Br CH ₂ BrCl CH ₃ CH ₂ Br CH ₃ CH ₂ CHCH ₂ Br CH ₃ CHCH ₂ Br CH ₃ CHCH ₂ Br BrONO ₂ CH ₂ =CHBr	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days	0.15 0.27 0.14 0.13	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.03) (0.04)	376 231 173 41	398 226 186 47 211 <1 5 <1 1 <1 <1
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotripropylamine, PTPA	CHBrF2 CBr ₂ F2 CH ₂ BrCF ₃ CHBrCICF ₃ CHBrFCF ₃ CHBr ₅ CHBr ₅ CH ₂ Br ₂ CH ₃ Br ₂ CH ₃ Br ₄ CH ₃ Br ₄ CH ₃ Br ₄ CH ₃ Br ₄ CH ₂ Br ₅ CH ₃ CH ₂ Br ₄ CH ₃ CH ₂ CH ₂ Br ₄ CH ₃ CH ₂ CH ₂ Br ₄ CH ₃ CH ₄ CH ₂ Br ₅ CH ₃ CHCH ₂ Br ₅ CH ₃ CHCH ₂ Br ₆ CH ₂ CHCH ₂ Br ₇ CH ₂ CHCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days	0.15 0.27 0.14 0.13	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.04) (0.10) (0.04)	376 231 173 41	398 226 186 477 2111 <1 5 <1 1 <1 <1
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotripropylamine, PTPA Heptacosafluorotributylamine Heptafluoroisobutyronitrile	CHBrF2 CBr ₂ F2 CH ₂ BrCF ₃ CHBrClCF3 CHBrFCP3 CHBr ₃ CH ₂ BrCl CH ₃ CH ₂ Br CH ₂ BrCH ₂ Br CH ₃ CH ₃ Br CH ₂ =CHCH ₂ Br BrONO ₂ CH ₂ =CHBr N(C ₂ F ₃) ₃ N(CF ₂ CF ₂ CF ₃) ₃ N(CF ₂ CF ₂ CF ₃ CF ₃) ₃	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days	0.15 0.27 0.14 0.13	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.03) (0.04) 0.04	376 231 173 41	398 226 186 47 211 <1 5 <1 1 <1 <1
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotripropylamine, PTPA Heptacosafluorotributylamine, PFTBA Perfluorotripentylamine Heptafluoroisobutyronitrile (Trifluoromethyl)sulfur pentafluoride	CHBrF2 CBr2F2 CH2BrCF3 CHBrCICF3 CHBrCCF3 CHBrFCF3 CHBr3 CH2BrC CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2CH3Br CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3C	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7 338-84-1	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days	0.15 0.27 0.14 0.13	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.03) (0.04) (0.10) 0.04)	376 231 173 41	398 226 186 477 2111 <1 5 <1 1 <1 <1
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotripropylamine, PTPA Heptacosafluorotributylamine Heptafluoroisobutyronitrile	CHBrF2 CBr ₂ F2 CH ₂ FCF ₃ CHBrCCF ₃ CHBrFCF ₃ CHBr ₅ CF ₃ CHBr ₅ CF ₃ CHBr ₅ CH ₂ BrCI CH ₃ CH ₂ Br CH ₂ CH ₂ Br CH ₃ CH ₂ CHCH ₂ Br CH ₃ CHCH ₂ Br BrONO ₂ CH ₂ =CHBr N(C ₂ F ₃) ₃ N(CF ₂ CF ₂ CF ₃) ₃ N(CF ₂ CF ₂ CF ₂ CF ₃) ₃ N(CF ₃ CF ₂ CF ₂ CF ₃) ₃ (CF ₃) ₂ CFCN	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7 338-84-1 42532-60-5 373-80-8 697-11-0	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days 1000.0 1000.0 1000.0 1000.0 1000.0 34.5	0.15 0.27 0.14 0.13 0.19	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.04) (0.04) 0.04 0.04 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06	376 231 173 41 184	398 226 186 47 211 <1 5 <1 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2301 Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotripropylamine, PTPA Heptacosafluorotributylamine, PFTBA Perfluorotripentylamine Heptafluoroisobutyronitrile (Trifluoromethyl)sulfur pentafluoride Hexafluorocyclobutene Pentafluoro-2-(trifluoromethyl)-1-propene, PFIB	CHBrF2 CBr3F2 CH2BrCF3 CHBrCCF3 CHBrFCF3 CHBr5CF3 CHBr3 CH3CH2BrC CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH3Br CH3CH3Br CH3CH3Br CH3CH3Br CH2CH4Br BrONO2 CH2CHBr N(C2F3)3 N(CF2CF2CF3)3 N(CF2CF2CF2CF3)3 N(CF3CF2CF2CF3)3 V(CF3CF2CF2CF3)3 V(CF3CF3CF3 VCC-CFCCF3CCF3 VCC(CF3CCF3 VCC(CF3CCF3 VCC(CF3CCF3 VCC(CF3CCF2 VCCCCCCCCF2 VCC(CF3CCF2	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7 338-84-1 42532-60-5 373-80-8 697-11-0 382-21-8	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1.0 1	0.15 0.27 0.14 0.13 0.19	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.03) (0.04) 0.04)	376 231 173 41 184	398 226 186 47 211 <1 5 <1 <1 <1 <1 10,900 9,580 9,000 7,700 2,900 19,600
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotripropylamine, PTPA Heptacosafluorotributylamine, PFTBA Perfluorotripentylamine Heptafluoroisobutyronitrile (Trifluoromethyl)sulfur pentafluoride Hexafluoro-2-(trifluoromethyl)-1-propene, PFIB Octafluorocyclobentene	CHBrF2 CBr ₂ F2 CH ₂ FCF3 CHBrCF3 CHBrCCF3 CHBrFCF3 CHBr ₃ CH ₂ FCF3 CHBr ₃ CH ₂ FCF3 CHBr ₃ CH ₂ FCF3 CH ₂ FCF3 CH ₂ FCF3 CH ₂ FCF3 CH ₂ FCH3 CH ₃ FCH3 CH ₃ CH ₂ FC CH ₃ CH ₂ CH3 CH ₃ CH2 Br CH ₂ CH2 Br BrONO ₂ CH ₂ =CHBr N(C ₂ F ₃) ₃ N(CF ₂ CF ₂ CF ₃) ₃ N(CF ₂ CF ₂ CF ₂ CF ₃) ₃ (CF ₃) ₂ CFCN SF ₃ CF3 cyc (-CF=CFCF ₂ CF ₂ -) (CF ₃) ₂ C=CF ₂ cyc (-CF ₂ CF ₂ CF ₂ -)	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-96-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7 338-84-1 42532-60-5 373-80-8 697-11-0 382-21-8 559-40-0	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days 1000.0 1000.0 1000.0 1000.0 1000.0 34.5 800.0	0.15 0.27 0.14 0.13 0.19	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.03) (0.04) (0.10) (0.04) 0.61 0.75 0.91 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	376 231 173 41 184	398 226 186 477 2111 <1 5 <1 1 1 <1 <1 <1 <1 <1 <1 0900 9,580 9,000 7,700 2,900 19,600
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotriporyylamine, PTPA Heptacosafluorotributylamine Heptafluoroisobutyronitrile (Trifluoromethyl)sulfur pentafluoride Hexafluorocyclobutene Pentafluoro-2-(trifluoromethyl)-1-propene, PFIB Octafluorocyclopentene Hexafluorobenzene	CHBrF2 CBr3F2 CH2BrCF3 CHBrCCF3 CHBrCCF3 CHBrCCF3 CHBr3 CHBr3 CH2BrC CH2BrC CH2BrC CH2BrC CH2BrC CH2BrC CH2BrC CH2BrC CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CHC	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-96-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7 338-84-1 42532-60-5 373-80-8 697-11-0 382-21-8 559-40-0 392-56-3	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days 1.0 0.0 1000.0 1000.0 1000.0 1000.0 1.0 1	0.15 0.27 0.14 0.13 0.19	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.10) (0.04) (0.10) (0.04) 0.05 0.	376 231 173 41 184	398 226 186 477 2111 <1 5 <1 1 1, 1 <1 <1 <1 <1 <1 <1 2, 1 3, 1 9,000 9,580 9,000 7,700 19,600 132
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotripropylamine, PTPA Heptacosafluorotributylamine, PFTBA Perfluorotripentylamine Heptafluoroisobutyronitrile (Trifluoromethylsulfur pentafluoride Hexafluorocyclopentene Pentafluoro-2-(trifluoromethyl)-1-propene, PFIB Octafluorocyclopentene Hexafluorobenzene Perfluorodecalin (mixed), PFC-91-18	CHBrF2 CBr ₂ F2 CH ₂ BrCF ₃ CHBrCICF ₃ CHBrCICF ₃ CHBr ₅ CH ₂ Br CH ₂ BrC CH ₂ BrC CH ₃ BrC CH ₂ BrCH ₂ Br CH ₃ CH ₂ Br CH ₂ CHCH ₂ Br CH ₂ CHCH ₂ Br BrONO ₂ CH ₂ =CHBr N(C ₃ F ₅) ₃ N(CF ₂ CF ₂ CF ₃) ₃ N(CF ₂ CF ₂ CF ₂ CF ₃) ₃ N(CF ₂ CF ₂ CF ₂ CF ₃) ₃ N(CF ₃ CF ₂ CF ₂ CF ₂ CF ₃) ₃ C(F ₃) ₂ CFCN SF ₃ CF ₃ cyc (-CF=CFCF ₂ CF ₂ CF ₂) (CF ₃) ₂ CFCD CF ₃ CFC CF ₃ CFC CF ₃ CFC CF ₄ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₃ CF ₄ CF ₄ CF ₅	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-96-4 106-93-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7 338-84-1 42532-60-5 373-80-8 697-11-0 382-21-8 559-40-0 392-56-3 306-94-5	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days 15.0 days 15.0 days 15.0 days 15.0 days 15.0 days 15.1 days 16.1 days 17.1 days 17	0.15 0.27 0.14 0.13 0.19 0.59	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.04) (0.10) (0.04) 0.04 0.05 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.04 0.03 0.04 0.04 0.05	376 231 173 41 184 17,400 2 7,190	398 226 186 47 2111 <1 5 <1 1 1 1 1 <1 <1 <1 <1 <1 2 1 9,000 9,580 9,000 7,700 2,900 19,600 132 82
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotripropylamine, PTPA Heptacosafluorotributylamine, PFTBA Perfluorotripentylamine Heptafluoroisobutyronitrile (Trifluoromethyl)sulfur pentafluoride Hexafluorocyclobutene Pentafluoro-2-(trifluoromethyl)-1-propene, PFIB Octafluorocyclopentene Hexafluorodecalin (mixed), PFC-91-18 Perfluorodecalin (mixed), PFC-91-18	CHBrF2 CBr ₂ F2 CH ₂ BrCF ₃ CHBrCICF ₃ CHBrCICF ₃ CHBr ₅ CH ₂ Br CH ₂ BrCI CH ₃ CH ₂ Br CH ₂ BrCH ₂ Br CH ₃ CH ₃ Br CH ₂ CH ₂ Br CH ₂ CHCH ₂ Br BrONO ₂ CH ₂ =CHCH ₂ Br N(C ₂ F ₂ S ₃) ₃ N(CF ₂ CF ₂ CF ₃ S ₃) ₃ N(CF ₂ CF ₂ CF ₂ CF ₃ S ₃) ₃ N(CF ₂ CF ₂ CF ₂ CF ₃ CF ₃ S ₃) C(F ₃ CF ₂ CF ₂ CF ₂ CF ₃ S ₃) C(F ₃ CF ₂ CF ₃	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7 338-84-1 42532-60-5 373-80-8 697-11-0 382-21-8 559-40-0 392-56-3 306-94-5 60433-11-6	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 15.0 days 20.0 days 15.0 days 20.0 days 15.1 days 20.0 days 15.1 days 20.0 days 20.0 days 20.0 days	0.15 0.27 0.14 0.13 0.19 0.59 0.08 0.55 0.56	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.03) (0.04) 0.61 0.75 0.91 0.95 0.25 0.34 0.25 (0.14) 0.25 0.34	376 231 173 41 184 17,400 2 7,190 7,240	398 226 186 47 211 <1 5 <1 1 1,5 <1 <1 <1 <1 <1 <1 21 3,7 800 2,900 19,600 132 82 7,940 8,270
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotirpropylamine, PTPA Heptacosafluorotributylamine, PFTBA Perfluorotirpentylamine Heptafluoroisobutyronitrile (Trifluoromethyl)sulfur pentafluoride Hexafluorocyclobutene Pentafluoro-2-(trifluoromethyl)-1-propene, PFIB Octafluorocyclopentene Hexafluorobenzene Perfluorodecalin (mixed), PFC-91-18 Perfluorodecalin (mixed), PFC-91-18 Perfluorodecalin (trans)	CHBrF2 CBr ₂ F2 CH ₂ FCF3 CHBrCCF3 CHBrCCF3 CHBrCCF3 CHBrSCF3 CHBr3 CH ₂ BrCl CH ₃ CH ₂ Br CH ₂ BrCl CH ₃ CH ₂ Br N(C ₂ F ₃) ₃ N(CF ₂ CF ₂ CF ₃) ₃ N(CF ₂ CF ₂ CF ₃ CF ₃) ₃ N(CF ₃ CF ₂ CF ₂ CF ₃) ₃ N(CF ₃ CF ₂ CF ₂ CF ₂ CF ₃) ₃ (CF ₃) ₂ CFCN SF ₃ CF3 cyc (-CF-CFCF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₃) ₂ C(F ₃) ₂ C=CF ₂ cyc (-CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₃	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-93-4 106-93-5 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7 338-84-1 42532-60-5 373-80-8 697-11-0 382-21-8 559-40-0 392-56-3 306-94-5 60433-12-7	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days 15.0 days 15.0 days 15.0 days 15.0 days 15.0 days 1000.0 1000.0 1000.0 1000.0 11000.0 11000.0 1.0 1	0.15 0.27 0.14 0.13 0.19 0.59 0.08 0.55 0.56 0.48	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.03) (0.04) (0.10) (0.04) 0.61 0.75 0.91 0.95 0.25 0.30 0.34 0.25 (0.15)	376 231 173 41 184 17,400 2 7,190 7,240 6,290	398 226 186 47 211 <1 5 <1 1 1,4 1 <1 21 21 21 21 21 21 21 21 21 21 21 21 21
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1,3-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotripropylamine, PTPA Heptacosafluorotributylamine, PTPA Perfluorotripentylamine Heptafluorosiobutyronitrile (Trifluoromethyl)sulfur pentafluoride Hexafluorocyclopentene Hexafluorodecalin (mixed), PFC-91-18 Perfluorodecalin (mixed) Perfluorodecalin (trans) PFC-1114	CHBrF2 CBr ₂ F2 CH ₂ FCF3 CHBrCCF3 CHBrFCF3 CHBrFCF3 CHBr ₃ CH ₃ CH ₂ Br CH ₃ CH ₂ CH ₂ Br BrONO ₂ CH ₂ =CHBr N(C ₂ F ₅) ₃ N(CF ₂ CF ₂ CF ₃) ₃ N(CF ₂ CF ₂ CF ₂ CF ₃) ₃ N(CF ₂ CF ₂ CF ₂ CF ₂ CF ₃) ₃ (CF ₃) ₂ CFCN SF ₃ CF3 eye (-CF=CFCF ₂ CF	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-96-4 106-93-4 106-93-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7 338-84-1 42532-60-5 373-80-8 697-11-0 382-21-8 559-40-0 392-56-3 306-94-5 60433-11-6 60433-12-7 116-14-3	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days 1.0 1000.0 1000.0 1000.0 1000.0 1000.0 1.0 1	0.15 0.27 0.14 0.13 0.19 0.59 0.08 0.55 0.56 0.48 0.002	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.10) (0.04) 0.03 0.04 0.03 0.04 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.05	376 231 173 41 184 17,400 2 7,190 7,240 6,290 <1	398 226 186 477 2111 <1 5 <1 1 1,41 <1 <1 <1 10,900 9,580 9,000 7,700 19,600 132 82 7,940 8,270 7,560 <1
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotripropylamine, PTPA Heptacosafluorotributylamine, PFTBA Perfluorotripentylamine (Trifluoromethyl)sulfur pentafluoride Hexafluorocyclobutene Pentafluoro-2-(trifluoromethyl)-1-propene, PFIB Octafluorocyclopentene Hexafluorodecalin (mixed), PFC-91-18 Perfluorodecalin (mixed), PFC-91-18 Perfluorodecalin (trans) PFC-1114 PFC-1216	CHBrF2 CBr3F2 CH2BrCF3 CHBrCCF3 CHBrCCF3 CHBrCCF3 CHBr3 CH3BrCl CH3CH2Br CH3CHCH3Br BrONO2 CH2=CHBr N(C2F5)3 N(CF2CF2CF2CF3)3 N(CF2CF2CF2CF3)3 N(CF3CF2CF2CF2CF3)3 (CF3)2FCN SF3CF3 cyc (-CF=CF2CF2CF2-) (CF3)2C=CF2 cyc (-CF2CF2CF2CF2-) CF6 C10F18 # Z-C-10F18 # E-C-10F18 # CF2=CF2 CF3CF=CF2 CF3CF=CF3 CF3CFT=CF3 CF3CFT=CF3 CF3CFT=CF3 CF3CFT=CF3 C	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-96-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7 338-84-1 42532-60-5 373-80-8 697-11-0 382-21-8 559-40-0 392-56-3 306-94-5 60433-11-6 60433-12-7 116-14-3 116-15-4	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days 1.0 1000.0 1000.0 1000.0 1000.0 1000.0 1.0 1	0.15 0.27 0.14 0.13 0.19 0.59 0.08 0.55 0.48 0.002 0.01	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.03) (0.04) (0.10) (0.04) 0.61 0.75 0.91 0.95 0.25 0.58 0.30 (0.34) 0.25 (0.15) 0.54 0.56 0.51 0.002 0.01	376 231 173 41 184 17,400 2 7,190 7,240 6,290 <1 <1	398 226 186 477 2111 <1 5 <1 1 1, 1 <1 <1 <1 <1 <1 <1 <1 2, 1 (1) 2, 1 2, 1 2, 1 3, 1 4, 1 4, 1 4, 1 4, 1 4, 1 4, 1 4
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,3-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotripropylamine, PTPA Heptacosafluorotributylamine, PFTBA Perfluorotripentylamine Heptafluoroisobutyronitrile (Trifluoromethyl)sulfur pentafluoride Hexafluorocyclobutene Pentafluoro-2-(trifluoromethyl)-1-propene, PFIB Octafluorocyclopentene Hexafluorodecalin (mixed), PFC-91-18 Perfluorodecalin (mixed), PFC-91-18 Perfluorodecalin (trans) PFC-1114 PFC-1216 Hexafluorobunza-1,3-diene	CHBrF2 CBr3F2 CH3FCF3 CHBrCCF3 CHBrCCF3 CHBrFCF3 CHBr3 CH3FCH3BrC CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH3Br CH3CH2Br CH3CH3Br CH3CH3Br CH4CH2Br CH4CH2Br CH4CH2Br CH4CH2Br CH2CH2Br N(C3F5)3 N(CF2CF2CF3)3 N(CF2CF2CF2CF3)3 N(CF2CF2CF2CF3)3 N(CF3CF3 cyc (-CF2CF2CF2CF2) (CF3)2CFCN SF3CF3 cyc (-CF2CF2CF2CF2-) (CF3)2CFCN CF3CF3 CYC (-CF2CF2CF2CF2-) CGF3CFCB CYGF1 CYG	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7 338-84-1 42532-60-5 373-80-8 697-11-0 382-21-8 559-40-0 392-56-3 306-94-5 60433-11-6 60433-12-7 116-14-3 116-15-4 685-63-2	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days 15.0 days 15.0 days 20.0 days 15.0 days 20.0 days 1.0 1.000.0 1.000.0 1.000.0 1.000.0 1.000.0 1.000.0 1.1 2000.0 2000.0 2000.0 1.2 days 5.5 days 1.1 days	0.15 0.27 0.14 0.13 0.19 0.59 0.08 0.55 0.56 0.48 0.002 0.01 0.003	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.03) (0.04) (0.10) (0.04) 0.61 0.75 0.91 0.95 0.25 0.58 0.30 (0.34) 0.25 (0.15) 0.54 0.56 0.51 0.002 0.001	376 231 173 41 184 17,400 2 7,190 7,240 6,290 <1 <1 <1	398 226 186 477 2111 <1 5 <1 1 1, 1 <1 <1 <1 <1 3 10,900 9,580 9,000 7,700 2,900 19,600 132 82 7,940 8,270 7,560 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2301 Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,3-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotripropylamine, PTPA Heptacosafluorotributylamine, PFTBA Perfluorotripentylamine Heptafluoroisobutyronitrile (Trifluoromethylsulfur pentafluoride Hexafluorocyclobutene Pentafluoro-2-(trifluoromethyl)-1-propene, PFIB Octafluorocyclopentene Hexafluorodecalin (mixed), PFC-91-18 Perfluorodecalin (mixed), PFC-91-18 Perfluorodecalin (trans) PFC-1114 PFC-1216 Hexafluoro-1-butene	CHBrF2 CBr ₂ F2 CH ₂ FCF3 CH ₂ FCF3 CHBrCCF3 CHBrCCF3 CHBrSCF3 CHBrSCF3 CHBr3 CH ₂ BrCl CH ₂ CH ₂ Br CH ₃ CH ₂ CH ₂ Br BrONO ₂ CH ₂ -CHBr N(C ₂ F ₃) ₃ N(CF ₂ CF ₂ CF ₃) ₃ N(CF ₂ CF ₂ CF ₃ CF ₃) ₃ N(CF ₂ CF ₂ CF ₂ CF ₃) ₃ (CF ₃) ₂ CFCN SF ₃ CF3 cyc (-CF-CFC ₂ CF ₂ CF ₂) Cyc (-CF-CF ₂ CF ₂ CF ₂) Cyc (-CF-CF ₂ CF ₂ CF ₂ CF ₂) Cyc (-CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₃	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-93-4 106-93-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7 338-84-1 42532-60-5 373-80-8 697-11-0 382-21-8 559-40-0 392-56-3 306-94-5 60433-12-7 116-14-3 116-15-4 685-63-2 357-26-6	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days 15.0 days 15.0 days 20.0 days 15.0 days 20.0 days 11.1 2000.0 2000.0 2000.0 1.2 days 1.1 days 1.1 days 1.0 days	0.15 0.27 0.14 0.13 0.19 0.59 0.08 0.55 0.56 0.48 0.002 0.01	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.03) (0.04) (0.10) (0.04) 0.61 0.75 0.91 0.95 0.25 0.58 0.30 (0.34) 0.25 (0.154 0.56 0.51 0.002 0.01 0.003	376 231 173 41 184 17,400 2 7,190 7,240 6,290 <1 <1 <1 <1 <1	398 226 186 47 211 <1 5 <1 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,3-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotripropylamine, PTPA Heptacosafluorotributylamine, PFTBA Perfluorotripentylamine Heptafluoroisobutyronitrile (Trifluoromethyl)sulfur pentafluoride Hexafluorocyclobutene Pentafluoro-2-(trifluoromethyl)-1-propene, PFIB Octafluorocyclopentene Hexafluorodecalin (mixed), PFC-91-18 Perfluorodecalin (mixed), PFC-91-18 Perfluorodecalin (trans) PFC-1114 PFC-1216 Hexafluorobunza-1,3-diene	CHBrF2 CBr3F2 CH3FCF3 CHBrCCF3 CHBrCCF3 CHBrFCF3 CHBr3 CH3FCH3BrC CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH3Br CH3CH2Br CH3CH3Br CH3CH3Br CH4CH2Br CH4CH2Br CH4CH2Br CH4CH2Br CH2CH2Br N(C3F5)3 N(CF2CF2CF3)3 N(CF2CF2CF2CF3)3 N(CF2CF2CF2CF3)3 N(CF3CF3 cyc (-CF2CF2CF2CF2) (CF3)2CFCN SF3CF3 cyc (-CF2CF2CF2CF2-) (CF3)2CFCN CF3CF3 CYC (-CF2CF2CF2CF2-) CGF3CFCB CYGF1 CYG	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7 338-84-1 42532-60-5 373-80-8 697-11-0 382-21-8 559-40-0 392-56-3 306-94-5 60433-11-6 60433-12-7 116-14-3 116-15-4 685-63-2	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days 15.0 days 15.0 days 20.0 days 15.0 days 20.0 days 1.0 1.000.0 1.000.0 1.000.0 1.000.0 1.000.0 1.000.0 1.1 2000.0 2000.0 2000.0 1.2 days 5.5 days 1.1 days	0.15 0.27 0.14 0.13 0.19 0.59 0.08 0.55 0.56 0.48 0.002 0.01 0.003	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.03) (0.04) (0.10) (0.04) 0.61 0.75 0.91 0.95 0.25 0.58 0.30 (0.34) 0.25 (0.15) 0.54 0.56 0.51 0.002 0.001	376 231 173 41 184 17,400 2 7,190 7,240 6,290 <1 <1 <1	398 226 186 477 2111 <1 5 <1 1 1, 1 <1 <1 <1 <1 3 10,900 9,580 9,000 7,700 2,900 19,600 132 82 7,940 8,270 7,560 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1,3-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotriproylamine, PTPA Heptacosafluorotributylamine Heptafluoroisobutynoitrile (Trifluoromethyl)sulfur pentafluoride Hexafluorocyclobutene Pentafluoro-2-(trifluoromethyl)-1-propene, PFIB Octafluorocyclopentene Hexafluorodecalin (mixed), PFC-91-18 Perfluorodecalin (mixed), PFC-91-18 Perfluorodecalin (trans) PFC-1114 PFC-1216 Hexafluoro-1-butene Octafluoro-2-buene	CHBrF2 CBr ₂ F2 CH ₂ FCF3 CH ₂ FCF3 CHBrCCF3 CHBrCCF3 CHBrSCF3 CHBrSCF3 CHBr3 CH ₂ BrCl CH ₂ CH ₂ Br CH ₃ CH ₂ CH ₂ Br BrONO ₂ CH ₂ -CHBr N(C ₂ F ₃) ₃ N(CF ₂ CF ₂ CF ₃) ₃ N(CF ₂ CF ₂ CF ₃ CF ₃) ₃ N(CF ₂ CF ₂ CF ₂ CF ₃) ₃ (CF ₃) ₂ CFCN SF ₃ CF3 cyc (-CF-CFC ₂ CF ₂ CF ₂) Cyc (-CF-CF ₂ CF ₂ CF ₂) Cyc (-CF-CF ₂ CF ₂ CF ₂ CF ₂) Cyc (-CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₃	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-93-4 106-93-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7 338-84-1 42532-60-5 373-80-8 697-11-0 382-21-8 559-40-0 392-56-3 306-94-5 60433-12-7 116-14-3 116-15-4 685-63-2 357-26-6	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days 15.0 days 15.0 days 20.0 days 15.0 days 20.0 days 11.1 2000.0 2000.0 2000.0 1.2 days 1.1 days 1.1 days 1.0 days	0.15 0.27 0.14 0.13 0.19 0.59 0.08 0.55 0.56 0.48 0.002 0.01	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.03) (0.04) (0.10) (0.04) 0.61 0.75 0.91 0.95 0.25 0.58 0.30 (0.34) 0.25 (0.154 0.56 0.51 0.002 0.01 0.003	376 231 173 41 184 17,400 2 7,190 7,240 6,290 <1 <1 <1 <1 <1	398 226 186 47 211 <1 5 <1 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotripropylamine, PTPA Heptacosafluorotributylamine, PFTBA Perfluorotripentylamine Heptafluoroisobutyronitrile (Trifluoromethyl)sulfur pentafluoride Hexafluorocyclobutene Pentafluoro-2-(trifluoromethyl)-1-propene, PFIB Octafluorocyclopentene Hexafluorodecalin (mixed), PFC-91-18 Perfluorodecalin (mixed), PFC-91-118 Perfluorodecalin (trans) PFC-1114 PFC-1216 Hexafluoro-1-butene Octafluoro-2-buene Halogenated Alcohols and Ethers	CHBrF2 CBr3F2 CH3FC3 CHBrCICF3 CHBrCICF3 CHBrFCF3 CHBr3 CH3FCH3BrC CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CHCH3Br RONO2 CH2=CHBr N(C2F5)3 N(CF2CF2CF2CF3)3 N(CF2CF2CF2CF2CF3)3 (CF3CF2CF2CF2CF2CF2CF3)3 (CF3CF2CF2CF2CF2CF3)3 (CF3CF2CF3CF3CF3)3 CF3CF3 CYC (-CF2CF2CF2CF2CF2CF3)3 CF3CF3 CYC (-CF2CF2CF2CF2CF3)3 CF3CF3 CYC (-CF2CF2CF2CF2CF3)3 CF3CF3CF3 CYC (-CF3CF2CF2CF3)3 CF3CF3CF3 CYC (-CF3CF3CF3CF3CF3)3 CF3CF3CF3 CYC (-CF3CF3CF3CF3CF3CF3CF3CF3CF3CF3CF3CF3CF3C	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-96-4 106-93-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7 338-84-1 42532-60-5 373-80-8 697-11-0 382-21-8 559-40-0 392-56-3 306-94-5 60433-11-6 60433-12-7 116-14-3 116-15-4 685-63-2 357-26-6 360-89-4	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days 15.0 days 20.0 days 15.0 days 20.0 days 1.1 days 2000.0 2000.0 2000.0 1.2 days 1.1 days 6.0 days 31.0 days	0.15 0.27 0.14 0.13 0.19 0.59 0.08 0.55 0.56 0.48 0.002 0.01 0.003 0.02	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.03) (0.04) (0.10) (0.04) 0.05 0.58 0.30 (0.34) 0.25 0.58 0.30 (0.34) 0.25 0.56 0.51 0.002 0.01 0.003 0.02 0.07	376 231 173 41 184 17,400 2 7,190 7,240 6,290 <1 <1 <1 2	398 226 186 47 211 <1 5 <1 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2301 Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,3-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotripropylamine, PTPA Heptacosafluorotributylamine, PFTBA Perfluorotripentylamine Heptafluoroisobutyronitrile (Trifluoromethyl)sulfur pentafluoride Hexafluoroeyclobutene Pentafluoro-2-(trifluoromethyl)-1-propene, PFIB Octafluorocyclopentene Hexafluorodecalin (mixed), PFC-91-18 Perfluorodecalin (mixed), PFC-91-18 Perfluorodecalin (mixed), PFC-91-18 Perfluorodecalin (trans) PFC-1114 PFC-1216 Hexafluoro-1-butene Octafluoro-2-buene Halogenated Alcohols and Ethers HFE-125	CHBrF2 CBr3F2 CH2BrCF3 CHBrCCF3 CHBrCCF3 CHBrCCF3 CHBrCCF3 CHBr3 CH2BrCI CH2BrCI CH2BrCI CH2BrCH2Br CH2BrCH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH3Br CF3CF3 CSC (-CF2CF3CF3)3 (CF3)2CFCN SF3CF3 CSC (-CF2CF2CF3)3 (CF3)2CFCB CSC (-CF3CF3CF3)3 (CF3)2CFCB CSC (-CF3CF3CF3CF3)3 (CF3CF3CF3CF3CF3CF3CF3CF3CF3CF3CF3CF3CF3C	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-97-5 74-96-4 106-93-4 106-93-3 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7 338-84-1 42532-60-5 373-80-8 697-11-0 382-21-8 559-40-0 392-56-3 306-94-5 60433-12-7 116-14-3 116-15-4 685-63-2 357-26-6 360-89-4	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days 15.0 days 15.0 days 20.0 days 15.0 days 20.0 days 15.0 days 20.0 days 1000.0 1000.0 1000.0 1000.0 2000.0 1.2 days 5.5 days 1.1 days 6.0 days 31.0 days	0.15 0.27 0.14 0.13 0.19 0.59 0.08 0.55 0.56 0.48 0.002 0.01 0.003 0.02	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.03) (0.04) (0.10) (0.04) 0.56 0.51 0.002 0.01 0.002 0.01 0.02 0.004 0.030 0.040 0.0	376 231 173 41 184 17,400 2 7,190 7,240 6,290 <1 <1 <1 2 12,400	398 226 186 47 211 <1 5 <1 1 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotripropylamine, PTPA Heptacosafluorotributylamine, PFTBA Perfluorotripropylamine Heptafluoroisobutyronitrile (Trifluoromethyl)sulfur pentafluoride Hexafluorocyclobutene Pentafluoro-2-(trifluoromethyl)-1-propene, PFIB Octafluorocyclopentene Hexafluorobenzene Perfluorodecalin (mixed), PFC-91-18 Perfluorodecalin (trans) PFC-1114 PFC-1216 Hexafluoro-1-butene Octafluoro-2-buene Halogenated Alcohols and Ethers HFE-125 HFE-134	CHBrF2 CBr ₂ F2 CH ₂ BrCF ₃ CHBrCCF ₃ CHBrCCF ₃ CHBr ₅ CF ₃ CHBr ₅ CF ₃ CHBr ₅ CF ₃ CHBr ₅ CF ₃ CHBr ₅ CH ₂ Br CH ₂ BrCH ₂ Br CH ₃ CH ₂ Br CH ₃ CHCH ₂ Br BrONO ₂ CH ₂ =CHBr N(C ₂ F ₃) ₃ N(CF ₂ CF ₂ CF ₃) ₃ N(CF ₂ CF ₂ CF ₂ CF ₃) ₃ N(CF ₃ CF ₂ CF ₂ CF ₂ CF ₃) ₃ (CF ₃) ₂ CFCN SF ₃ CF ³ cyc (-CF ₂ CF ₂ CF ₂ CF ₂ CF ₃) (CF ₃) ₂ CFCP cyc (-CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₃ CF ₃ CH ₅ CF ₃ CF ₃ CF ₃ CF ₃ CF ₄ CF ₅	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-96-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7 338-84-1 42532-60-5 373-80-8 697-11-0 382-21-8 559-40-0 392-56-3 306-94-5 60433-11-6 60433-12-7 116-14-3 116-15-4 685-63-2 357-26-6 360-89-4	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days 15.0 days 20.0 days 11.0 200.0 1000.0 1000.0 1000.0 1000.0 12.0 1.1 2000.0 2000.0 1.2 days 5.5 days 1.1 days 6.0 days 31.0 days	0.15 0.27 0.14 0.13 0.19 0.59 0.08 0.55 0.56 0.48 0.002 0.01 0.003 0.02 0.07	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.10) (0.04) (0.10) (0.04) 0.61 0.75 0.91 0.95 0.25 0.58 0.30 (0.34) 0.25 (0.15) 0.54 0.56 0.51 0.002 0.01 0.003 0.02 0.07	376 231 173 41 184 17,400 2 7,190 7,240 6,290 <1 <1 <1 2 12,400 5,560	398 226 186 47 211 <1 5 <1 1 1, 1 1 1, 1 1 1 1 1 1 1 1 1 1 1 1
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1,3-Dibromoethane 1-Bromopropane Bromomomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotripropylamine, PTPA Heptacosafluorotributylamine PFTBA Perfluorotripentylamine Heptafluorosiobutyronitrile (Trifluoromethyl)sulfur pentafluoride Hexafluorocyclobutene Pentafluoro-2-(trifluoromethyl)-1-propene, PFIB Octafluorocyclopentene Hexafluorodecalin (mixed), PFC-91-18 Perfluorodecalin (mixed), PFC-91-18 Perfluorodecalin (trans) PFC-1114 PFC-1216 Hexafluoro-1-butene Octafluoro-1-butene Octafluoro-2-buene Halogenated Alcohols and Ethers HFE-125 HFE-134 HFE-143a	CHBrF2 CBr3F2 CH2BrCF3 CHBrCCF3 CHBrFCF3 CHBrFCF3 CHBr3CCF3 CHBr3 CH2BrCI CH3CH2Br CH3BrCI CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br CH3CH2Br BrONO2 CH2=CHBr N(C2F5)3 N(CF2CF2CF3)3 N(CF2CF2CF2CF3)3 N(CF2CF2CF2CF2CF3)3 (CF3)2CFCN SF3CF3 eye (-CF2CF2CF2CF2-) C6F6 C10F18 E-C10F18 E-C10F18 E-C10F18 E-C10F18 E-C10F18 CF2=CF2 CF3CF2-CF2 CF3CF2-CF2 CF3CF2-CF2 CF3CF2-CF3 CH2CCF3 CH2CCCF3 CH2CCF3 CH	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-96-4 106-93-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7 338-84-1 42532-60-5 373-80-8 697-11-0 382-21-8 559-40-0 392-56-3 306-94-5 60433-11-6 60433-12-7 116-14-3 116-15-4 685-63-2 357-26-6 360-89-4	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days 1000.0 1000.0 1000.0 1.0 2000.0 2000.0 1.2 days 5.5 days 1.1 days 6.0 days 31.0 days 135.0 26.9 4.9	0.15 0.27 0.14 0.13 0.19 0.59 0.08 0.55 0.56 0.48 0.002 0.01 0.003 0.02 0.07	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.10) (0.04) (0.10) (0.04) 0.58 0.30 (0.30 0.30 0.30 0.30 0.30 0.30 0.3	376 231 173 41 184 17,400 2 7,190 7,240 6,290 <1 <1 2 12,400 5,560 523	398 226 186 477 2111 <1 5 <1 1 1,1 1 <1 <1 <1 <1 <1 2 7,940 8,270 7,560 <1 <1 <1 <1 <1 2 1 5 5 82 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Dibromomethane Halon-1201 Halon-1202 Halon-2301 Halon-2301 Halon-2311 (Halothane) Halon-2401 Tribromomethane Halon-1011 Bromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1-Bromopropane 2-Bromopropane Bromomethyl benzene 3-Bromo-1-propene Bromine Nitrate Bromoethene Fully Fluorinated Species Pentadecafluorotriethylamine Perfluorotripropylamine, PTPA Heptacosafluorotributylamine, PFTBA Perfluorotripropylamine Heptafluoroisobutyronitrile (Trifluoromethyl)sulfur pentafluoride Hexafluorocyclobutene Pentafluoro-2-(trifluoromethyl)-1-propene, PFIB Octafluorocyclopentene Hexafluorobenzene Perfluorodecalin (mixed), PFC-91-18 Perfluorodecalin (trans) PFC-1114 PFC-1216 Hexafluoro-1-butene Octafluoro-2-buene Halogenated Alcohols and Ethers HFE-125 HFE-134	CHBrF2 CBr ₂ F2 CH ₂ BrCF ₃ CHBrCCF ₃ CHBrCCF ₃ CHBr ₅ CF ₃ CHBr ₅ CF ₃ CHBr ₅ CF ₃ CHBr ₅ CF ₃ CHBr ₅ CH ₂ Br CH ₂ BrCH ₂ Br CH ₃ CH ₂ Br CH ₃ CHCH ₂ Br BrONO ₂ CH ₂ =CHBr N(C ₂ F ₃) ₃ N(CF ₂ CF ₂ CF ₃) ₃ N(CF ₂ CF ₂ CF ₂ CF ₃) ₃ N(CF ₃ CF ₂ CF ₂ CF ₂ CF ₃) ₃ (CF ₃) ₂ CFCN SF ₃ CF ³ cyc (-CF ₂ CF ₂ CF ₂ CF ₂ CF ₃) (CF ₃) ₂ CFCP cyc (-CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₃ CF ₃ CH ₅ CF ₃ CF ₃ CF ₃ CF ₃ CF ₄ CF ₅	1511-62-2 75-61-6 421-06-7 151-67-7 124-72-1 75-25-2 74-96-4 106-93-4 106-94-5 75-26-3 100-39-0 106-95-6 40423-14-1 593-60-2 359-70-6 338-83-0 311-89-7 338-84-1 42532-60-5 373-80-8 697-11-0 382-21-8 559-40-0 392-56-3 306-94-5 60433-11-6 60433-12-7 116-14-3 116-15-4 685-63-2 357-26-6 360-89-4	4.9 2.5 3.2 1.0 2.9 57.0 days 0.5 50.0 days 89.0 days 15.0 days 20.0 days 15.0 days 20.0 days 11.0 200.0 1000.0 1000.0 1000.0 1000.0 12.0 1.1 2000.0 2000.0 1.2 days 5.5 days 1.1 days 6.0 days 31.0 days	0.15 0.27 0.14 0.13 0.19 0.59 0.08 0.55 0.56 0.48 0.002 0.01 0.003 0.02 0.07	0.15 0.27 0.14 0.13 0.19 0.01 0.02 0.01 0.002 0.004 (0.10) (0.04) (0.10) (0.04) 0.61 0.75 0.91 0.95 0.25 0.58 0.30 (0.34) 0.25 (0.15) 0.54 0.56 0.51 0.002 0.01 0.003 0.02 0.07	376 231 173 41 184 17,400 2 7,190 7,240 6,290 <1 <1 <1 2 12,400 5,560	398 226 186 47 211 <1 5 <1 1 1, 1 1 1, 1 1 1 1 1 1 1 1 1 1 1 1

HCFE-235da2 (isoflurane)							
	CHF2OCHCICF3	26675-46-7	3.5	0.42	0.43	491	565
HFE-236ea2 (desflurane)	CHF ₂ OCHFCF ₃	57041-67-5	14.1	0.45	0.46	1,790	2,720
HFE-236fa	CF ₃ CH ₂ OCF ₃	20193-67-3	7.5	0.36	0.37	979	1,160
HFE-245cb2	CF ₃ CF ₂ OCH ₃	22410-44-2	5.0	0.33	0.34	654	784
HFE-245fa1	CHF ₂ CH ₂ OCF ₃	84011-15-4	6.7	0.31	0.31	828	980
HFE-245fa2	CHF ₂ OCH ₂ CF ₃	1885-48-9	5.5	0.36	0.36	812	922
2,2,3,3,3-Pentafluoropropan-1-ol	CF ₃ CF ₂ CH ₂ OH	422-05-9	0.5	0.14	0.16	19	36
HFE-254cb1	CH ₃ OCF ₂ CHF ₂	425-88-7	2.5	0.26	0.26	301	344
HFE-263mf	CF ₃ CH ₂ OCH ₃	460-43-5	28.0 days	0.04	0.05	1	2
HFE-263m1	CF ₃ OCH ₂ CH ₃	690-22-2	0.4	0.13	0.13	29	31
3,3,3-Trifluoropropan-1-ol	CF ₃ CH ₂ CH ₂ OH	2240-88-2	15.0 days	0.02	0.03	<1	<1
HFE-329mcc2	CHF ₂ CF ₂ OCF ₂ CF ₃	134769-21-4	25.0	0.53	0.55	3,070	3,970
HFE-338mmz1	(CF ₃) ₂ CHOCHF ₂	26103-08-2	22.3	0.44	0.45	2,620	3,200
					0.45		
HFE-338mcf2	CF ₃ CH ₂ OCF ₂ CF ₃	156053-88-2	7.5	0.44		929	1,090
Sevoflurane (HFE-347mmz1)	(CF ₃) ₂ CHOCH ₂ F	28523-86-6	1.9	0.32	0.31	216	205
HFE-347mcc3 (HFE-7000)	CH ₃ OCF ₂ CF ₂ CF ₃	375-03-1	5.1	0.34	0.34	530	605
HFE-347mcf2	CHF ₂ CH ₂ OCF ₂ CF ₃	171182-95-9	6.7	0.42	0.43	854	1,010
HFE-347pcf2	CHF ₂ CF ₂ OCH ₂ CF ₃	406-78-0	6.1	0.48	0.48	889	1,030
HFE-347mmy1	(CF ₃) ₂ CFOCH ₃	22052-84-2	3.7	0.32	0.32	363	412
HFE-356mec3	CH ₃ OCF ₂ CHFCF ₃	382-34-3	2.5	0.30	0.29	387	277
HFE-356mff2	CF ₃ CH ₂ OCH ₂ CF ₃	333-36-8	0.4	0.17	0.19	17	26
HFE-356pcf2	CHF ₂ CH ₂ OCF ₂ CHF ₂	50807-77-7	6.0	0.37	0.38	719	872
HFE-356pcf3		35042-99-0	3.5	0.38	0.38	446	508
	CHF ₂ OCH ₂ CF ₂ CHF ₂						
HFE-356pcc3	CH ₃ OCF ₂ CF ₂ CHF ₂	160620-20-2	2.5	0.32	0.30	413	291
HFE-356mmz1	(CF ₃) ₂ CHOCH ₃	13171-18-1	65.0 days	0.15	0.12	14	9
HFE-365mcf3	CF ₃ CF ₂ CH ₂ OCH ₃	378-16-5	25.0 days	0.05	0.06	1	2
HFE-374pc2	CHF ₂ CF ₂ OCH ₂ CH ₃	512-51-6	76.0 days	0.30	0.13	627	13
4,4,4-Trifluorobutan-1-ol	CF ₃ (CH ₂) ₂ CH ₂ OH	461-18-7	5.4 days	0.01	0.01	<1	<1
1,1,1,3,3,3-Hexafluoro-2-(trifluoromethyl)-2-propanol	(CF ₃) ₃ COH	2378-02-01		(0.38)	(0.38)		
2,2,3,3,4,4,5,5-Octafluorocyclopentanol	cyc (-(CF ₂) ₄ CH(OH)-)	16621-87-7	0.3	0.16	0.16	13	14
HFE-43-10pccc124 (H-Galden 1040x, HG-11)	CHF ₂ OCF ₂ OCF ₂ CF ₂ OCHF ₂	188690-77-9	14.1	1.02	1.03	2,820	3,380
HFE-449s1 (HFE-7100)	n/i-C ₄ F ₉ OCH ₃	219484-64-7	4.8	0.36	0.36	421	483
n-HFE-7100			4.8	0.42	0.42	486	571
	CF ₃ CF ₂ CF ₂ CCH ₃	163702-07-6					
i-HFE-7100	(CF ₃) ₂ CFCF ₂ OCH ₃	163702-08-7	4.8	0.35	0.34	407	458
HFE-569sf2 (HFE-7200)	$C_4F_9OC_2H_5$	N/A	0.8	0.30	0.30	57	64
i-HFE-7200	$(CF_3)_2CFCF_2OCH_2CH_3$	163702-06-5	0.6	0.24	0.22	44	36
HFE-7300	$(CF_3)_2CFCF(OC_2H_5)CF_2CF_2CF_3$	132182-92-4	5.2		0.48		425
HFE-7500	$n-C_3F_7CF(OC_2H_5)CF(CF_3)_2$	297730-93-9	0.3		0.27		14
HFE-236ca12 (HG-10)	CHF ₂ OCF ₂ OCHF ₂	78522-47-1	26.5	0.65	0.65	5,350	6,370
HFE-338pcc13 (HG-01)	CHF ₂ OCF ₂ CF ₂ OCHF ₂	188690-78-0	13.4	0.86	0.87	2,910	3,480
1,1,1,3,3,3-Hexafluoropropan-2-ol	(CF ₃) ₂ CHOH	920-66-1	1.9	0.26	0.27	182	216
HG-02	CHF ₂ (OCF ₂ CF ₂) ₂ OCHF ₂	205367-61-9	26.9	1.15	1.15	5,140	6,030
HG-03			26.9	1.43	1.13		
	CHF ₂ (OCF ₂ CF ₂) ₃ OCHF ₂	173350-37-3				4,800	5,630
(2,2,2-Trifluoroethoxy)ethene	CF ₃ CH ₂ OCH=CH ₂	406-90-6	3.6 days	0.01	0.01	<1	<1
2-Ethoxy-3,3,4,4,5-pentafluorotetrahydro-2,5-	$C_{12}H_5F_{19}O_2^{\#}$	920979-28-8	0.8	0.49	0.49	56	51
bis[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-furan							
Difluoro(methoxy)methane	CH₃OCHF₂	359-15-9	1.1	0.17	0.15	144	143
HG'-01	CH ₃ OCF ₂ CF ₂ OCH ₃	73287-23-7	1.7	0.29	0.29	222	212
HG'-02	CH ₃ O(CF ₂ CF ₂ O) ₂ CH ₃	485399-46-0	1.7	0.56	0.56	250	240
HG'-03	CH ₃ O(CF ₂ CF ₂ O) ₃ CH ₃	485399-48-2	1.7	0.77	0.76	239	230
HFE-329me3	CF ₃ CFHCF ₂ OCF ₃	428454-68-6	33.6		0.49	4,550	4,620
	01301110120013			0.48	(0.52)		
HFF_338mac3	CE.CEHCE.OCE.H		33.0	0.48			-,
HFE-338mec3	CF ₃ CFHCF ₂ OCF ₂ H	56860-85-6		(0.52)			
3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 7-Undecafluoroheptan-1-ol	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH	56860-85-6 185689-57-0	17.0 days	(0.52) 0.06	0.05	1	<1
3,3,4,4,5,5,6,6,7,7,7-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol		56860-85-6		(0.52)			
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH	56860-85-6 185689-57-0	17.0 days 17.0 days	(0.52) 0.06 0.07	0.05	1 1	<1
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₈ CH ₂ CH ₂ OH	56860-85-6 185689-57-0 755-02-2 87017-97-8	17.0 days 17.0 days 17.0 days	(0.52) 0.06 0.07 0.05	0.05 0.06 0.05	1 1 <1	<1 <1 <1
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₈ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6	17.0 days 17.0 days 17.0 days	(0.52) 0.06 0.07 0.05 0.21	0.05 0.06 0.05 0.21	1 1 <1 122	<1 <1 <1 142
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₈ CH ₂ CH ₂ OH	56860-85-6 185689-57-0 755-02-2 87017-97-8	17.0 days 17.0 days 17.0 days	(0.52) 0.06 0.07 0.05	0.05 0.06 0.05	1 1 <1	<1 <1 <1
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₈ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6	17.0 days 17.0 days 17.0 days	(0.52) 0.06 0.07 0.05 0.21	0.05 0.06 0.05 0.21	1 1 <1 122	<1 <1 <1 142
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl)	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₈ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1	17.0 days 17.0 days 17.0 days 1.4 800.0	0.52) 0.06 0.07 0.05 0.21 0.65	0.05 0.06 0.05 0.21 0.64	1 1 <1 122 9,710	<1 <1 <1 142 10,900
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₈ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF=CF ₂	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5	17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03	0.05 0.06 0.05 0.21 0.64 0.01	1 1 <1 122 9,710 <1	<1 <1 <1 142 10,900 <1
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₈ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF=CF ₂ CF ₃ CF ₂ OCHO CF ₃ CH ₂ OCHO	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9	17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19	1 1 <1 122 9,710 <1 580 33	<1 <1 <1 142 10,900 <1 626 57
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ CH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₈ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF=CF ₂ CF ₃ CF ₂ OCHO CF ₅ CH ₂ OCHO (CF ₃) ₂ CHOCHO	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6	17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19	1 1 <1 122 9,710 <1 580	<1 <1 <1 142 10,900 <1 626 57 282
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ CH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₈ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF=CF ₂ CF ₃ CF ₂ OCHO CF ₃ CH ₂ OCHO (CF ₃) ₂ CHOCHO CF ₃ C(O)OCH=CH ₂	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3	17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004	1 1 <1 122 9,710 <1 580 33 334	<1 <1 <1 142 10,900 <1 626 57 282 <1
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₈ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF=CF ₂ CF ₅ CF ₂ OCHO CF ₃ CH ₂ OCHO (CF ₃) ₂ CHOCHO CF ₃ C(O)OCH=CH ₂ CF ₃ C(O)OCH ₂ CH ₃	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1	17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004	1 1 <1 122 9,710 <1 580 33	<1 <1 <1 142 10,900 <1 626 57 282 <1 2
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₈ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF=CF ₂ CF ₃ CF ₂ OCHO CF ₃ CH ₂ OCHO (CF ₃) ₂ CHOCHO CF ₃ C(O)OCH=CH ₂ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH=CH ₂	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1 383-67-5	17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.3 days	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.06 0.005	1 1 <1 122 9,710 <1 580 33 334	<1 <1 <1 142 10,900 <1 626 57 282 <1 2 <1
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF-CF ₂ CF ₃ CF ₂ OCHO CF ₃ CH ₂ OCHO (CF ₃) ₂ CHOCHO CF ₃ CHOCHO CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₃ CF ₃ C(O)OCH ₃ CF ₃ C(O)OCH ₃ CH=CH ₂ CF ₃ C(O)OCH ₃	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1 383-67-5 431-47-0	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.3 days 1.0	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.05	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.06 0.005 0.16	1 1 <1 122 9,710 <1 580 33 334 1	<1 <1 <1 142 10,900 <1 626 57 282 <1 1 2 <1 86
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate 2,2,3,3,4,4-Heptafluorobutan-1-ol	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ CH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF=CF ₂ CF ₃ CCFOCHO CF ₃ CH ₂ OCHO (CF ₃) ₂ CHOCHO CF ₃ CH ₂ OCHO CF ₃ CH ₂ OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH=CH ₂ CF ₃ C(O)OCH ₂ CH=CH ₂ CF ₃ CF ₂ CF ₂ CH ₂ OH	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1 383-67-5 431-47-0 375-01-9	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.3 days 1.0 0.6	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.06 0.005 0.16 0.20	1 1 22 9,710 <1 580 33 334 1 52 33	<1 <1 <1 142 10,900 <1 626 57 282 <1 2 <1 86 38
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate 2,2,3,3,4,4-Heptafluorobutan-1-ol 1,1,2-Trifluoro-2-(trifluoromethoxy)ethane	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₈ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF=CF ₂ CF ₃ CF ₂ OCHO CF ₃ CH ₂ OCHO (CF ₃) ₂ CHOCHO CF ₃ C(O)OCH=CH ₂ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₃ CH=CH ₂ CF ₃ C(O)OCH ₃ CF ₃ C(O)OCH ₃ CF ₃ C(O)OCH ₃ CF ₃ C(O)OCH ₃ CF ₃ C(C)OCH ₃	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1 383-67-5 431-47-0 375-01-9 84011-06-3	17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.0 0.6 9.0	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20 0.34	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.06 0.005 0.16 0.20 0.35	1 1 22 9,710 <1 580 33 334 1	<1 <1 <1 142 10,900 <1 626 57 282 <1 2 <1 86 38 1,320
3,3,4,4,5,5,6,6,7,7,7-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate 1,1,2-Trifluoro-2-(trifluoromethoxy)ethane 1-Ethoxy-1,1,2,3,3,3-hexafluoropropane	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ CH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF=CF ₂ CF ₃ CCFOCHO CF ₃ CH ₂ OCHO (CF ₃) ₂ CHOCHO CF ₃ CH ₂ OCHO CF ₃ CH ₂ OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH=CH ₂ CF ₃ C(O)OCH ₂ CH=CH ₂ CF ₃ CF ₂ CF ₂ CH ₂ OH	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1 383-67-5 431-47-0 375-01-9	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.3 days 1.0 0.6	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.06 0.005 0.16 0.20	1 1 22 9,710 <1 580 33 334 1 52 33	<1 <1 <1 142 10,900 <1 626 57 282 <1 2 <1 86 38
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate 2,2,3,3,4,4-Heptafluorobutan-1-ol 1,1,2-Trifluoro-2-(trifluoromethoxy)ethane	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF=CF ₂ CF ₃ CF ₂ OCHO (CF ₃) ₂ CHOCHO (CF ₃) ₂ CHOCHO CF ₃ C(O)OCH=CH ₂ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH=CH ₂ CF ₃ C(O)OCH ₂ CH=CH ₂ CF ₃ C(O)CH ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CHF ₂ CHFOCF ₃ CF ₃ CHFCF ₂ OCH ₂ CH ₃	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-67-5 431-47-0 375-01-9 84011-06-3 380-34-7	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.0 0.6 9.0 0.4	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20 0.34	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.06 0.005 0.16 0.20 0.35 0.19	1 1 22 9,710 <1 580 33 334 1 52 33 1,240 23	<1 <1 <1 142 10,900 <1 626 57 282 <1 2 <1 86 38 1,320 28
3,3,4,4,5,5,6,6,7,7,7-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate 1,1,2-Trifluoro-2-(trifluoromethoxy)ethane 1-Ethoxy-1,1,2,3,3,3-hexafluoropropane	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₈ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF=CF ₂ CF ₃ CF ₂ OCHO CF ₃ CH ₂ OCHO (CF ₃) ₂ CHOCHO CF ₃ C(O)OCH=CH ₂ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₃ CH=CH ₂ CF ₃ C(O)OCH ₃ CF ₃ C(O)OCH ₃ CF ₃ C(O)OCH ₃ CF ₃ C(O)OCH ₃ CF ₃ C(C)OCH ₃	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1 383-67-5 431-47-0 375-01-9 84011-06-3	17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.0 0.6 9.0	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20 0.34	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.06 0.005 0.16 0.20 0.35	1 1 22 9,710 <1 580 33 334 1	<1 <1 <1 142 10,900 <1 626 57 282 <1 2 <1 86 38 1,320
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate 2,2,3,3,4,4-Heptafluorobutan-1-ol 1,1,2-Trifluoro-2-(trifluoromethoxy)ethane 1,1,2,2,3,3-Heptafluoro-3-(1,2,2,2-	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF=CF ₂ CF ₃ CF ₂ OCHO (CF ₃) ₂ CHOCHO (CF ₃) ₂ CHOCHO CF ₃ C(O)OCH=CH ₂ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH=CH ₂ CF ₃ C(O)OCH ₂ CH=CH ₂ CF ₃ C(O)CH ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CHF ₂ CHFOCF ₃ CF ₃ CHFCF ₂ OCH ₂ CH ₃	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-67-5 431-47-0 375-01-9 84011-06-3 380-34-7	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.0 0.6 9.0 0.4	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20 0.34	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.06 0.005 0.16 0.20 0.35 0.19	1 1 22 9,710 <1 580 33 334 1 52 33 1,240 23	<1 <1 <1 142 10,900 <1 626 57 282 <1 2 <1 86 38 1,320 28
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate 2,2,3,3,4,4-Heptafluorobutan-1-ol 1,1,2-Trifluoro-2-(trifluoromethoxy)ethane 1-Ethoxy-1,1,2,3,3,3-hexafluoropropane 1,1,1,2,3,3,3-Heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)propane	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF=CF ₂ CF ₃ CF ₂ OCHO CF ₅ CH ₂ OCHO (CF ₃) ₂ CHOCHO CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₂ CH ₂ CF ₂ CO ₂ OCH ₂ CH ₂	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1 383-67-5 431-47-0 375-01-9 84011-06-3 380-34-7 3330-15-2	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.3 days 1.0 0.6 9.0 0.4 59.4	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20 0.34 0.19	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.06 0.005 0.16 0.20 0.35 0.19 0.59	1 1 22 9,710 <1 580 33 334 1 52 33 1,240 23 6,490	<1 <1 <1 <1 142 10,900 <1 626 57 282 <1 2 2 1 86 38 1,320 28 7,000
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,11,11,11-Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate 2,2,3,3,4,4-Heptafluorobutan-1-ol 1,1,2-Trifluoro-2-(trifluoromethoxy)ethane 1-Ethoxy-1,1,2,3,3,3-hexafluoropropane 1,1,1,2,3,3-Heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)propane 2,2,3,3-Tetrafluoropropan-1-ol 2,2,3,4,4-Hexafluorobutan-1-ol	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF ₂ CHCIF CF ₃ OCF ₂ CF ₂ OCF ₂ OCF ₃ CF ₃ OCF=CF ₂ CF ₃ CH ₂ OCHO (CF ₃) ₂ CH ₂ OCHO (CF ₃) ₂ CH ₂ OCHO (CF ₃) ₂ CH ₂ OCHO CF ₃ C(O)OCH=CH ₂ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH=CH ₂ CF ₃ C(O)OCH ₃ CF ₃ C(O)OCH ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CHF ₂ CHFOCF ₃ CF ₃ CHFCF ₂ OCH ₂ CH ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CH ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CH ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CF ₃ CF ₃ CF ₂ CH ₂ OH CF ₃ CF ₂ CF ₂ CH ₂ OH	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-67-5 431-47-0 375-01-9 84011-06-3 380-34-7 3330-15-2 76-37-9	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.0 0.6 9.0 0.4 59.4 93.0 days	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20 0.34 0.19	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.06 0.005 0.16 0.20 0.35 0.19 0.59	1 1 22 9,710 <1 580 33 334 1 52 33 1,240 23 6,490 13	<1 <1 <1 142 10,900 <1 626 57 282 <1 2 <1 86 38 1,320 28 7,000 15
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate 2,2,3,3,4,4-Heptafluorobutan-1-ol 1,1,2-Trifluoro-2-(trifluoromethoxy)ethane 1-Ethoxy-1,1,2,3,3,3-hexafluoropropane 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)propane 2,2,3,3-Tetrafluoropropan-1-ol 2,2,3,3-Tetrafluoropropane 1,1,2,2-Tetrafluoro-3-methoxypropane	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ CH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ CH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF=CCF ₂ CF ₃ CF ₂ OCHO CF ₃ CH ₂ OCHO (CF ₃) ₂ CHOCHO CF ₃ CH ₂ CHOCHO CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₃ CH=CH ₂ CF ₃ C(O)OCH ₃ CH=CH ₂ CF ₃ C(O)CH ₃ CH ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CHF ₂ CHFOCF ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CHF ₂ CHFOCF ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CHF ₃ CF ₃ CH ₂ CH ₃ CHF ₃ CF ₂ CCH ₂ CH ₃ CHF ₃ CF ₂ CH ₂ CH CHF ₃ CHFCF ₃ CH ₃ CH CHF ₃ CF ₃ CH ₂ CH CHF ₃ CH ₃ CH CHF ₃ CH ₂ CH ₃ CH CHF ₃ CH ₃ CCH ₃ CH	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1 383-67-5 431-47-0 375-01-9 84011-06-3 380-34-7 3330-15-2 76-37-9 382-31-0 60598-17-6	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.0 0.6 9.0 0.4 59.4 93.0 days 0.4 26.0 days	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20 0.34 0.19 0.58	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.005 0.16 0.20 0.35 0.19 0.59 0.11 0.23 0.05	1 1 22 9,710 <1 580 33 334 1 52 33 1,240 23 6,490 13 17 1	<1 <1 <1 <1 142 10,900 <1 626 57 282 <1 2 <1 86 38 1,320 28 7,000 15 32 2
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate 2,2,3,3,4,4-Heptafluorobutan-1-ol 1,1,2-Trifluoro-2-(trifluoromethoxy)ethane 1-Ethoxy-1,1,2,3,3-3-hexafluoropropane 1,1,1,2,3,3-Heptafluoro-3-(1,2,2-tetrafluoroethoxy)propane 2,2,3,3-Tetrafluoropropan-1-ol 2,2,3,4,4,4-Hexafluorobuxn-1-ol 1,1,2,2-Tetrafluoro-3-methoxypropane perfluoro-2-methylpentan-3-one	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ CF ₂ CHO CF ₅ CH ₂ OCH CF ₅ CH ₂ OCH CF ₅ CH ₂ OCH CF ₅ CH ₂ CHO CF ₅ CH ₂ CHO CF ₃ CH ₂ CHO CF ₃ CH ₂ CH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₂	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1 383-67-5 431-47-0 375-01-9 84011-06-3 380-34-7 3330-15-2 76-37-9 382-31-0 60598-17-6 756-13-8	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.0 0.6 9.0 0.4 59.4 93.0 days 0.4 26.0 days 7.0 days	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20 0.34 0.19 0.03 0.03	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.005 0.16 0.20 0.35 0.19 0.59 0.11 0.23 0.05 0.03	1 1 22 9,710 <1 580 33 334 1 52 33 1,240 23 6,490 13 17 1 <1 51	<1 <1 <1 <1 142 10,900 <1 626 57 282 <1 2 <1 86 38 1,320 28 7,000 15 32 2 <1
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate 2,2,3,3,4,4-Heptafluorobutan-1-ol 1,1,2-Trifluoro-2-(trifluoromethoxy)ethane 1-Ethoxy-1,1,2,3,3,3-hexafluoropropane 1,1,1,2,3,3-Heptafluoro-3-(1,2,2-tetrafluoroethoxy)propane 2,2,3,3-Tetrafluoro-3-methoxypropane 2,2,3,4,4-Hexafluorobutan-1-ol 1,1,2,2-Tetrafluoro-3-methoxypropane perfluoro-2-methylpentan-3-one 3,3,3-Trifluoropropanal	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF-CF ₂ CF ₃ CCF ₂ OCH CF ₃ CH ₂ OCH (CF ₃) ₂ CH ₂ OCH (CF ₃) ₂ CHOCHO CF ₃ CH ₃ OCH ₂ CH ₂ CF ₃ C(O)OCH ₂ CH ₂ CF ₃ C(O)OCH ₂ CH=CH ₂ CF ₃ C(O)OCH ₂ CH=CH ₂ CF ₃ C(O)CH ₂ CH=CH ₂ CF ₃ CH ₂ CH ₃ OH CHF ₂ CHFOCF ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CHF ₂ CHFOCF ₃ CF ₃ CH ₂ CH ₂ OH CF ₃ CH ₂ CH ₃ OH CF ₃ CH ₂ CH ₂ OH CF ₃ CH ₂ CF ₃ CH ₂ CH ₃ CF ₃ CF ₂ CH ₂ CH ₃ OH CF ₃ CF ₂ CH ₂ CH ₃ CH CF ₃ CH ₂ CH ₂ CH CF ₃ CH ₂ CHOCF(CF ₃) ₂ CF ₃ CH ₂ CHO	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1 383-67-5 431-47-0 375-01-9 84011-06-3 380-34-7 3330-15-2 76-37-9 382-31-0 60598-17-6 756-13-8 460-40-2	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.0 0.6 9.0 0.4 59.4 93.0 days 0.4 26.0 days	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20 0.34 0.19 0.58 0.11 0.19 0.05	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.005 0.16 0.20 0.35 0.19 0.59 0.11 0.23 0.05 0.03 0.005	1 1 22 9,710 <1 580 33 334 1 52 33 1,240 23 6,490 13 17 1	<1 <1 <1 <1 142 10,900 <1 626 57 282 <1 2 <1 86 38 1,320 28 7,000 15 32 2
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate 2,2,3,3,4,4,4-Heptafluorobutan-1-ol 1,1,2-Trifluoro-2-(trifluoromethoxy)ethane 1-Ethoxy-1,1,2,3,3-hexafluoropropane 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)propane 2,2,3,3-Tetrafluoropropan-1-ol 2,2,3,4,4,4-Hexafluorobutan-1-ol 1,1,2,2-Tetrafluoro-3-methoxypropane perfluoro-2-methylpentan-3-one 3,3,3-Trifluoropropanal 4,4,4-Trifluorobutanal	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CH ₃ OCF ₂ CHCIF CF ₃ OCF ₂ CHCIF CF ₃ OCF ₂ CHCIF CF ₃ OCF ₂ CHO CF ₃ CH ₂ OCHO (CF ₃) ₂ CH ₂ OCHO (CF ₃) ₂ CH ₂ OCHO CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CHF ₂ CHFOCF ₃ CF ₃ CHPCF ₃ CH ₂ OH CHF ₂ CHFOCF ₃ CF ₃ CHPCF ₂ OCH ₂ CH ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CH ₃ CF ₃ CH ₂ CH ₃ CH ₃ CF ₃ CF ₃ CF ₂ CH ₂ OH CF ₃ CHFCF ₃ CH ₂ OH CF ₃ CH ₂ CH ₂ OH CF ₃ CHFCF ₃ CH ₂ OH CF ₃ CHFCF ₃ CH ₂ OH CF ₃ CHFCF ₃ CH ₂ OH CF ₃ CH ₂ CH ₂ CH ₃ CH CF ₃ CH ₂ CH ₂ CH CF ₃ CH ₂ CH ₂ CH	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1 383-67-5 431-47-0 375-01-9 84011-06-3 380-34-7 3330-15-2 76-37-9 382-31-0 60598-17-6 756-13-8 460-40-2 406-87-1	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.0 0.6 9.0 0.4 59.4 93.0 days 0.4 26.0 days 7.0 days 3.0 days	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.19 0.58 0.11 0.19 0.03 0.03 0.04	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.06 0.005 0.16 0.20 0.35 0.19 0.59 0.11 0.23 0.05 0.03 0.005 0.005 0.005	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<1 <1 <1 <1 142 10,900 <1 626 57 282 <1 2 <1 86 38 1,320 28 7,000 15 32 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroathyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate 2,2,3,3,4,4-Heptafluorobutan-1-ol 1,1,2-Trifluoro-2-(trifluoromethoxy)ethane 1-Ethoxy-1,1,2,3,3,3-hexafluoropropane 1,1,1,2,2,3,3-Tetrafluoropropane 1,1,1,2,2,3-Tetrafluoropropane 1,2,2,3,4,4-Hexafluorobutan-1-ol 1,1,2,2-Tetrafluoro-3-methoxypropane perfluoro-2-methylpentan-3-one 3,3,3-Trifluoroputanal 4,4-Trifluorobutanal 2-Fluoroethanol	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ CH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ CH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF=CCF ₂ CF ₃ CF ₂ OCHO CF ₃ CH ₂ OCHO (CF ₃) ₂ CHOCHO (CF ₃) ₂ CHOCHO CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₃ CH=CH ₂ CF ₃ C(O)OCH ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CHF ₂ CHFOCF ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CHF ₂ CHFOCF ₃ CF ₃ CF ₂ CF ₂ CH ₂ OCH ₃ CF ₃ CF ₂ CF ₂ CH ₂ OCH ₂ CH ₃ CF ₃ CF ₂ CF ₂ CH ₂ OCHCFCF ₃ CF ₃ CF ₂ CF ₂ CH ₂ OCH CF ₃ CF ₂ CH ₂ OCH CF ₃ CF ₂ CH ₂ OCH CF ₃ CF ₂ CH ₂ CHO CF ₃ CF ₂ CH ₂ CHO CF ₃ CF ₂ CH ₂ CHO CF ₃ CH ₂ CHO CH ₃ CH ₃ CHO	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1 383-67-5 431-47-0 375-01-9 84011-06-3 380-34-7 3330-15-2 76-37-9 382-31-0 60598-17-6 756-13-8 460-40-2 406-87-1 371-62-0	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.0 0.6 9.0 0.4 59.4 93.0 days 7.0 days 3.0 days	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20 0.34 0.19 0.58 0.11 0.03 0.03 0.03 0.04 0.19 0.03	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.005 0.16 0.20 0.35 0.19 0.59 0.11 0.23 0.05 0.03 0.005 0.010	1 1 22 9,710 <1 580 33 334 1 52 33 1,240 23 6,490 13 17 1 <1 <1 <1 1	<1 <1 <1 <1 142 10,900 <1 626 57 282 <1 2 <1 86 38 1,320 28 7,000 15 32 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate 4,11,1,2,1-Trifluoro-2-(trifluorohutan-1-ol 1,1,2-Trifluoro-2-(trifluoromethoxy)ethane 1-Ethoxy-1,1,2,3,3-hexafluoropropane 1,1,1,2,3,3-Heptafluoro-3-(1,2,2-terafluoroethoxy)propane 2,2,3,3-Tertafluoro-3-methoxypropane perfluoro-2-methylpentan-3-one 3,3,3-Trifluoropropanal 4,4,4-Trifluorobutanal 2-Fluoroethanol 2,2-Difluoroethanol	CT ₃ (CF ₂) ₄ CH ₂ CH ₂ CH CT ₃ (CF ₂) ₆ CH ₂ CH ₂ CH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF ₂ CF ₂ CF CF ₃ OCF ₂ CF CF ₃ CF ₂ CCH CF ₃ CH ₂ CH CF ₃ CHOCH CF ₃ CH ₂ CH CF ₃ CH ₃ CH CF ₃ CH ₂ CH CF ₃ CH CF CF ₃ CH CF	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-67-5 431-47-0 375-01-9 84011-06-3 380-34-7 3330-15-2 76-37-9 382-31-0 60598-17-6 756-13-8 460-40-2 406-87-1 371-62-0 359-13-7	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.0 0.6 9.0 0.4 59.4 93.0 days 7.0 days 3.0 days 1.0 days 1.0 days 1.0 days	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20 0.34 0.19 0.58 0.11 0.19 0.03 0.03 0.03 0.03 0.04 (0.16) 0.02 0.04	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.005 0.16 0.20 0.35 0.19 0.59 0.11 0.23 0.05 0.03 0.005 0.005 0.001 0.005	1 1 22 9,710 <1 580 33 334 1 52 33 1,240 23 6,490 13 17 1 <1 <1 <1 3	<1 <1 <1 142 10,900 <1 626 57 282 <1 86 38 1,320 28 7,000 15 32 2 <1 <1 <1 <1 <1 <1 <1 66
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate 2,2,3,3,4,4,4-Heptafluorobutan-1-ol 1,1,2-Trifluoro-2-(trifluoromethoxy)ethane 1-Ethoxy-1,1,2,3,3,3-hexafluoropropane 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2-tetrafluoroethoxy)propane 2,2,3,3-Tetrafluoro-3-methoxypropane perfluoro-2-methylpentan-3-one 3,3,3-Trifluoropropanal 4,4,4-Trifluorobutanal 2-Fluoroethanol 2,2-Difluoroethanol 2,2-Difluoroethanol 2,2-Trifluoroethanol	CF ₃ (CF ₂) _A CH ₂ CH ₂ OH CF ₃ (CF ₂) _A CH ₂ CH ₂ OH CF ₃ (CF ₂) _A CH ₂ CH ₂ OH CF ₃ (CF ₂) _A CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF ₂ CHCIF CF ₃ OCF ₂ CF ₂ CF ₂ CF ₂ CF ₃ CF ₂ OCF ₃ CF ₃ CF ₂ OCHO CF ₃ CH ₂ OHO (CF ₃) ₂ CHOCHO CF ₃ CH ₂ OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₂ CH ₂ OH CHF ₂ CHFOCF ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CHF ₂ CHFOCF ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CHF ₂ CF ₂ CH ₂ OH CF ₃ CF ₂ CF ₂ CH ₂ OH CF ₃ CF ₂ CF ₂ CH ₂ OH CF ₃ CF ₂ CF ₂ CH ₂ OH CF ₃ CF ₂ CF ₂ CH ₂ OH CF ₃ CF ₂ CF ₂ CH ₂ OH CF ₃ CH ₂ CH ₃ OH CF ₃ CF ₂ CH ₂ OH CF ₃ CH ₂ CH ₃	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1 383-67-5 431-47-0 375-01-9 84011-06-3 380-34-7 3330-15-2 76-37-9 382-31-0 60598-17-6 756-13-8 460-40-2 406-87-1 371-62-0 359-13-7 75-89-8	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.3 days 1.0 0.6 9.0 0.4 59.4 93.0 days 0.4 26.0 days 7.0 days 3.0 days 16.0 days 16.0 days	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20 0.34 0.19 0.58 0.11 0.19 0.03 0.03 0.004 (0.16) 0.02 0.04 0.10	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.06 0.005 0.16 0.20 0.35 0.19 0.59 0.11 0.23 0.05 0.03 0.005 (0.16) 0.01 0.05 0.12	1 1 22 9,710 <1 580 33 334 1 52 33 1,240 23 6,490 13 17 1 <1 1 1 3 20	<1 <1 <1 142 10,900 <1 626 57 282 <1 2 <1 86 38 1,320 28 7,000 15 32 2 <1 <1 <1 <1 <1 63 37
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate 2,2,3,3,4,4-Heptafluorobutan-1-ol 1,1,2-Trifluoro-2-cltrifluoromethoxy)ethane 1-Ethoxy-1,1,2,3,3,3-hexafluoropropane 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2-tetrafluoroethoxy)propane 2,2,3,3-Tetrafluoro-3-methoxypropane 2,2,3,3-Tetrafluoro-3-methoxypropane perfluoro-2-methylpentan-3-one 3,3,3-Trifluoropropanal 4,4,4-Trifluorobutanal 2-Fluoroethanol 2,2,2-Difluoroethanol HG-04	CT ₃ (CF ₂) ₄ CH ₂ CH ₂ CH CT ₃ (CF ₂) ₆ CH ₂ CH ₂ CH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF ₂ CF ₂ CF CF ₃ OCF ₂ CF CF ₃ CF ₂ CCH CF ₃ CH ₂ CH CF ₃ CHOCH CF ₃ CH ₂ CH CF ₃ CH ₃ CH CF ₃ CH ₂ CH CF ₃ CH CF CF ₃ CH CF	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-67-5 431-47-0 375-01-9 84011-06-3 380-34-7 3330-15-2 76-37-9 382-31-0 60598-17-6 756-13-8 460-40-2 406-87-1 371-62-0 359-13-7	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.3 days 0.6 9.0 0.4 59.4 93.0 days 0.4 26.0 days 7.0 days 3.0 days 61.0 days 61.0 days 61.0 days 62.9	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20 0.34 0.19 0.58 0.11 0.19 0.03 0.03 0.03 0.03 0.04 (0.16) 0.02 0.04	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.005 0.16 0.20 0.35 0.19 0.59 0.11 0.23 0.05 0.03 0.005 0.005 0.001 0.005	1 1 22 9,710 <1 580 33 334 1 52 33 1,240 23 6,490 13 17 1 <1 <1 <1 3	<1 <1 <1 142 10,900 <1 626 57 282 <1 86 38 1,320 28 7,000 15 32 2 <1 <1 <1 <1 <1 <1 <1 66
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate 2,2,3,3,4,4,4-Heptafluorobutan-1-ol 1,1,2-Trifluoro-2-(trifluoromethoxy)ethane 1-Ethoxy-1,1,2,3,3,3-hexafluoropropane 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2-tetrafluoroethoxy)propane 2,2,3,3-Tetrafluoro-3-methoxypropane perfluoro-2-methylpentan-3-one 3,3,3-Trifluoropropanal 4,4,4-Trifluorobutanal 2-Fluoroethanol 2,2-Difluoroethanol 2,2-Difluoroethanol 2,2-Trifluoroethanol	CF ₃ (CF ₂) _A CH ₂ CH ₂ OH CF ₃ (CF ₂) _A CH ₂ CH ₂ OH CF ₃ (CF ₂) _A CH ₂ CH ₂ OH CF ₃ (CF ₂) _A CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF ₂ CHCIF CF ₃ OCF ₂ CF ₂ CF ₂ CF ₂ CF ₃ CF ₂ OCF ₃ CF ₃ CF ₂ OCHO CF ₃ CH ₂ OHO (CF ₃) ₂ CHOCHO CF ₃ CH ₂ OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₂ CH ₂ OH CHF ₂ CHFOCF ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CHF ₂ CHFOCF ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CHF ₂ CF ₂ CH ₂ OH CF ₃ CF ₂ CF ₂ CH ₂ OH CF ₃ CF ₂ CF ₂ CH ₂ OH CF ₃ CF ₂ CF ₂ CH ₂ OH CF ₃ CF ₂ CF ₂ CH ₂ OH CF ₃ CF ₂ CF ₂ CH ₂ OH CF ₃ CH ₂ CH ₃ OH CF ₃ CF ₂ CH ₂ OH CF ₃ CH ₂ CH ₃	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1 383-67-5 431-47-0 375-01-9 84011-06-3 380-34-7 3330-15-2 76-37-9 382-31-0 60598-17-6 756-13-8 460-40-2 406-87-1 371-62-0 359-13-7 75-89-8	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.3 days 1.0 0.6 9.0 0.4 59.4 93.0 days 0.4 26.0 days 7.0 days 3.0 days 16.0 days 16.0 days	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20 0.34 0.19 0.58 0.11 0.19 0.03 0.03 0.004 (0.16) 0.02 0.04 0.10	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.06 0.005 0.16 0.20 0.35 0.19 0.59 0.11 0.23 0.05 0.03 0.005 (0.16) 0.01 0.05 0.12	1 1 22 9,710 <1 580 33 334 1 52 33 1,240 23 6,490 13 17 1 <1 1 1 3 20	<1 <1 <1 142 10,900 <1 626 57 282 <1 2 <1 86 38 1,320 28 7,000 15 32 2 <1 <1 <1 <1 <1 63 37
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate 2,2,3,3,4,4-Heptafluorobutan-1-ol 1,1,2-Trifluoro-2-cltrifluoromethoxy)ethane 1-Ethoxy-1,1,2,3,3,3-hexafluoropropane 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2-tetrafluoroethoxy)propane 2,2,3,3-Tetrafluoro-3-methoxypropane 2,2,3,3-Tetrafluoro-3-methoxypropane perfluoro-2-methylpentan-3-one 3,3,3-Trifluoropropanal 4,4,4-Trifluorobutanal 2-Fluoroethanol 2,2,2-Difluoroethanol HG-04	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF=CF ₂ CF ₃ CF ₂ OCHO CF ₃ CH ₂ OCHO (CF ₃) ₂ CHOCHO CF ₃ CH ₂ OCHO (CF ₃) ₂ CHOCHO CF ₃ CH ₂ OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₂ CH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₂ CH ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CHF ₂ CHFOCF ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CHF ₂ CHFCF ₂ OCH ₂ CH ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CF ₃ CHFCF ₃ CH ₂ OH CF ₃ CH ₂ CH ₂ OH CF ₃ CH ₂ CH ₂ OH CH ₃ CH ₂ CH ₂ OH CH ₃ CH ₂ CH ₂ OH CH ₃ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₂ OH CH ₃ CH ₂ CH ₂ CHO CH ₃ CH ₂ CH ₂ CHO CH ₃ CH ₂ CH ₂ CHO CH ₃ CH ₂ CH ₂ CH ₂ CHO CH ₃ CH ₂ CH ₂ CH ₂ CHO CH ₃ CH ₂	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1 383-67-5 431-47-0 375-01-9 84011-06-3 380-34-7 3330-15-2 76-37-9 382-31-0 60598-17-6 756-13-8 460-40-2 406-87-1 371-62-0 359-13-7 75-89-8	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.3 days 0.6 9.0 0.4 59.4 93.0 days 0.4 26.0 days 7.0 days 3.0 days 61.0 days 61.0 days 61.0 days 61.0 days 62.9	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20 0.34 0.19 0.58 0.11 0.19 0.03 0.03 0.004 (0.16) 0.02 0.04 0.10	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.06 0.005 0.16 0.20 0.35 0.19 0.59 0.11 0.23 0.05 0.03 0.005 (0.16) 0.01 0.01 0.05 0.12 1.46	1 1 22 9,710 <1 580 33 334 1 52 33 1,240 23 6,490 13 17 1 <1 1 1 3 20	I I I I I I I I I I
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroatyl formate 1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Methyl 2,2,2-trifluoroacetate 2,2,3,3,4,4-Heptafluorobutan-1-ol 1,1,2-Trifluoro-2-(trifluoromethoxy)ethane 1-Ethoxy-1,1,2,3,3,3-hexafluoropropane 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2-tetrafluoroethoxy)propane 2,2,3,3-Tetrafluoropropan-1-ol 2,2,3,4,4-Hexafluorobutan-1-ol 1,1,2,2-Tetrafluoro-3-methoxypropane perfluoro-2-methylpentan-3-one 3,3,3-Trifluoropropanal 4,4,4-Trifluorobutanal 2-Fluoroethanol 2,2-Difluoroethanol HG-04 Methyl-perfluoroheptene-ethers	CF ₃ (CF ₂) ₄ CH ₂ CH ₂ CH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ CH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF=CF ₂ CF ₃ CF ₂ OCHO CF ₃ CH ₂ OCHO (CF ₃) ₂ CHOCHO CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CH ₂ CHFOCF ₃ CF ₃ CH ₂ OCH ₂ CH ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CH ₂ CHFOCF ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CH ₂ CHFCF ₃ OCH ₂ CH ₃ CF ₃ CF ₂ CF ₂ CH ₂ OCH CF ₃ CH ₂ OCH CF ₃ CH ₂ CH ₃ OH CF ₃ CH ₂ CH ₃ OH CF ₃ CH ₂ CH ₃ OH CH ₂ CF ₂ CH ₂ OCH ₃ CF ₃ CF ₂ CH ₂ OCH CF ₃ CH ₂ CHO CH ₂ CH ₂ CH CH ₃ CCF ₂ CD ₃ CCH ₂ C CH ₃ CCF ₂ CD ₃ CCF ₂ C CH ₃ CCF ₂ CD ₃ CCH ₂ C CH ₃ CCF ₂ CD ₃ CCF CH ₃ CH CH ₃ CH CH ₃ CCF CH ₃ CH CH CH ₃ CCF CH CH CH ₃ CCF CH	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1 383-67-5 431-47-0 375-01-9 84011-06-3 380-34-7 3330-15-2 76-37-9 382-31-0 60598-17-6 756-13-8 460-40-2 406-87-1 371-62-0 359-13-7 75-89-8 173350-38-4	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.0 0.6 9.0 0.4 59.4 93.0 days 7.0 days 3.0 days 1.0 days 61.0 days 61.0 days 61.0 days	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20 0.34 0.19 0.58 0.11 0.19 0.03 0.03 0.004 (0.16) 0.02 0.04 0.10	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.005 0.16 0.20 0.35 0.19 0.59 0.11 0.23 0.05 0.03 0.005 0.16 0.01 0.05 0.16 0.05 0.16 0.05 0.16 0.05	1 1 22 9,710 <1 580 33 334 1 52 33 1,240 23 6,490 13 17 1 <1 1 1 3 20	<1 <1 <1 <1 10,900 <1 626 57 282 <1 2 <1 86 38 1,320 28 7,000 15 32 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate 2,2,3,3,4,4-Heptafluorobutan-1-ol 1,1,2-Trifluoro-2-(trifluoromethoxy)ethane 1-Ethoxy-1,1,2,3,3-3-hexafluoropropane 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2-tetrafluoroethoxy)propane 2,2,3,3-Tetrafluoro-3-methoxypropane perfluoro-2-methylpentan-3-one 3,3,3-Trifluoropropanal 4,4,4-Trifluorobutanal 2-Fluoroethanol 2,2-Difluoroethanol HG-04 Methyl-perfluoroheptene-ethers 1,1,1-Trifluoropropan-2-one 1,1,1-Trifluorobutan-2-one	CT ₃ (CF ₂) _A CH ₂ CH ₂ OH CF ₃ (CF ₂) _A CH ₂ CH ₂ OH CF ₃ (CF ₂) _A CH ₂ CH ₂ OH CF ₃ (CF ₂) _A CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF ₂ CHCIF CF ₃ OCF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₃ CF ₂ CCF ₃ CF ₂ CCF ₃ CF ₂ CCHO CF ₃ CH ₂ CHO (CF ₃) ₂ CHOCHO CF ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₃ CH ₂ CH ₃ CH ₃ CH ₂ CH ₃	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1 383-67-5 431-47-0 375-01-9 84011-06-3 380-34-7 3330-15-2 76-37-9 382-31-0 60598-17-6 756-13-8 460-40-2 406-87-1 371-62-0 359-13-7 75-89-8 173350-38-4	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.0 0.6 9.0 0.4 59.4 93.0 days 0.4 26.0 days 7.0 days 3.0 days 16.0 days 61.0 days	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20 0.34 0.19 0.58 0.11 0.19 0.03 0.03 0.004 (0.16) 0.02 0.04 0.10	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.06 0.005 0.16 0.20 0.35 0.19 0.59 0.11 0.23 0.05 0.03 0.005 0.16 0.005 0.11 0.23 0.05 0.01 0.01 0.01 0.05	1 1 22 9,710 <1 580 33 334 1 52 33 1,240 23 6,490 13 17 1 <1 1 1 3 20	I I I I I I I I I I
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate 2,2,3,3,4,4-Heptafluorobutan-1-ol 1,1,2-Trifluoro-2-(trifluoromethoxy)ethane 1-Ethoxy-1,1,2,3,3,3-hexafluoropropane 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2-tetrafluoroethoxy)propane 2,2,3,3-Tetrafluoro-3-methoxypropane 2,2,3,4,4-Hexafluorobutan-1-ol 1,1,2,2-Tetrafluoro-3-methoxypropane perfluoro-2-methylpentan-3-one 3,3,3-Trifluoroptanal 4,4-Trifluorobutanal 2-Fluoroethanol 2,2-Difluoroethanol HG-04 Methyl-perfluoroheptene-ethers 1,1,1-Trifluoropura-2-one 1,1,1-Trifluoroptanal	CT ₃ (CF ₂) ₄ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ CF ₃ OCF=CF ₂ CF ₃ CF ₂ OCHO CF ₃ CH ₂ OCH (CF ₃) ₂ CHOCHO CF ₃ CH ₂ OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH ₃ CF ₃ C(O)OCH ₂ CH=CH ₂ CF ₃ C(O)OCH ₂ CH=CH ₂ CF ₃ C(O)OCH ₂ CH=CH ₂ CF ₃ CH ₂ CH ₂ OH CHF ₂ CHFOCF ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CHF ₂ CHFCF ₂ OCH ₂ CH ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CF ₃ CHFCF ₂ CH ₂ OH CF ₃ CHFCF ₃ CH ₂ CH ₃ CF ₃ CF ₂ CF ₂ CH ₂ OH CH ₂ CF ₂ CH ₂ OH CH ₃ CF ₃ CH ₂ CH ₃ OH CH ₃ CF ₃ CH ₂ CH ₃ OH CH ₃ CH ₂ CH ₃ OH CH ₃ CH ₂ CH ₃ OH CH ₃ CH ₃ CH ₃ CH CF ₃ C(O)CH CF ₃ CH CF ₃ CH CF ₃ C(O)CH CF ₃ CH CF ₃ CH CF ₃ C(O)CH ₃ CF ₃ C(O)CH CF ₃ CH CF ₃ CO)CH ₃ CH CF ₃ CH	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1 383-67-5 431-47-0 375-01-9 84011-06-3 380-34-7 3330-15-2 76-37-9 382-31-0 60598-17-6 756-13-8 460-40-2 406-87-1 371-62-0 359-13-7 75-89-8 173350-38-4 421-50-1 381-88-4 75-90-1	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.0 0.6 9.0 0.4 59.4 93.0 days 0.4 26.0 days 7.0 days 3.0 days 16.0 days 61.0 days	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20 0.34 0.19 0.58 0.11 0.19 0.03 0.03 0.004 (0.16) 0.02 0.04 0.10	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.005 0.16 0.20 0.35 0.19 0.59 0.11 0.23 0.05 0.03 0.005 (0.16) 0.01 0.05 0.12 1.46 0.27 0.01 0.01 0.01 0.01 0.01 0.01	1 1 22 9,710 <1 580 33 334 1 52 33 1,240 23 6,490 13 17 1 <1 1 1 3 20	I I I I I I I I I I
3,3,4,4,5,5,6,6,7,7,-Undecafluoroheptan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- Nonadecafluoroundecan-1-ol 2-Chloro-1,1,2-trifluoro-1-methoxyethane PFPMIE (perfluoropolymethylisopropyl) HFE-216 Perfluoroethyl formate 2,2,2-Trifluoroethyl formate 1,1,1,3,3,3-Hexafluoropropan-2-yl formate Vinyl 2,2,2-trifluoroacetate Ethyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate Allyl 2,2,2-trifluoroacetate 2,2,3,3,4,4-Heptafluorobutan-1-ol 1,1,2-Trifluoro-2-(trifluoromethoxy)ethane 1-Ethoxy-1,1,2,3,3-3-hexafluoropropane 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2-tetrafluoroethoxy)propane 2,2,3,3-Tetrafluoro-3-methoxypropane perfluoro-2-methylpentan-3-one 3,3,3-Trifluoropropanal 4,4,4-Trifluorobutanal 2-Fluoroethanol 2,2-Difluoroethanol HG-04 Methyl-perfluoroheptene-ethers 1,1,1-Trifluoropropan-2-one 1,1,1-Trifluorobutan-2-one	CT ₃ (CF ₂) _A CH ₂ CH ₂ OH CF ₃ (CF ₂) _A CH ₂ CH ₂ OH CF ₃ (CF ₂) _A CH ₂ CH ₂ OH CF ₃ (CF ₂) _A CH ₂ CH ₂ OH CH ₃ OCF ₂ CHCIF CF ₃ OCF ₂ CHCIF CF ₃ OCF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₃ CF ₂ CCF ₃ CF ₂ CCF ₃ CF ₂ CCHO CF ₃ CH ₂ CHO (CF ₃) ₂ CHOCHO CF ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₃ CH ₂ CH ₃ CH ₃ CH ₂ CH ₃	56860-85-6 185689-57-0 755-02-2 87017-97-8 425-87-6 1309353-34-1 1187-93-5 313064-40-3 32042-38-9 856766-70-6 433-28-3 383-63-1 383-67-5 431-47-0 375-01-9 84011-06-3 380-34-7 3330-15-2 76-37-9 382-31-0 60598-17-6 756-13-8 460-40-2 406-87-1 371-62-0 359-13-7 75-89-8 173350-38-4	17.0 days 17.0 days 17.0 days 17.0 days 1.4 800.0 1.6 days 3.6 0.5 3.1 1.4 days 22.0 days 1.0 0.6 9.0 0.4 59.4 93.0 days 0.4 26.0 days 7.0 days 3.0 days 16.0 days 61.0 days	(0.52) 0.06 0.07 0.05 0.21 0.65 0.03 0.44 0.16 0.33 0.387 0.05 0.354 0.18 0.20 0.34 0.19 0.58 0.11 0.19 0.03 0.03 0.004 (0.16) 0.02 0.04 0.10	0.05 0.06 0.05 0.21 0.64 0.01 0.41 0.19 0.26 0.004 0.06 0.005 0.16 0.20 0.35 0.19 0.59 0.11 0.23 0.05 0.03 0.005 0.16 0.005 0.11 0.23 0.05 0.01 0.01 0.01 0.05	1 1 22 9,710 <1 580 33 334 1 52 33 1,240 23 6,490 13 17 1 <1 1 1 3 20	I I I I I I I I I I

Confidential manuscript submitted to Reviews of Geophysics. Revised version: 2020-06-26

2,2,3,3,4,4,5,5,5-Nonafluoropetanal	CF ₃ CF ₂ CF ₂ CHO	375-53-1		(0.29)	
Acryloyl chloride	CH ₂ =CHC(O)Cl	814-68-6		(0.15)	
Acetyl chloride	CH₃COCl	75-36-5		(0.11)	
1-chloro-2-ethoxyethane	C_4H_9CIO	628-34-2		(0.10)	
2-Chloroethanol	CH ₂ ClCH ₂ OH	107-07-3		(0.06)	
2-(Chloromethyl)oxirane	C ₃ H ₅ ClO [#]	106-89-8		(0.05)	
1-Chloropropan-2-one	CH ₃ C(O)CH ₂ Cl	78-95-5		(0.04)	
1-chloro-2-(2-chloroethoxy)ethane	CH ₂ CICH ₂ OCH ₂ CH ₂ CI	111-44-4		(0.11)	
2-chloroethyl vinyl ether	CICH ₂ CH ₂ OCH=CH ₂	110-75-8	0.1 days	0.001	<1
(Chlorometoxy)ethane	CH ₃ CH ₂ OCH ₂ Cl	3188-13-4		(0.11)	
Chloro(methoxy)methane	CH ₃ OCH ₂ Cl	107-30-2		(0.09)	
Ethyl carbonochloridate	CH ₃ CH ₂ OC(O)Cl	541-41-3		(0.26)	
1-Fluoropropan-2-one	CH ₃ C(O)CH ₂ F	430-51-3		(0.05)	
1,1,1,3,3,3-hexafluoropropan-2-one	CF ₃ C(O)CF ₃	684-16-2		(0.29)	
Trifluoroacetic acid	CF ₃ C(O)OH	76-05-1		(0.36)	
Trifluoroacetic anhydride	$CF_3C(O)OC(O)CF_3$	407-25-0		(0.51)	
Methacryloyl chloride	CH ₂ =C(CH ₃)C(O)Cl	920-46-7		(0.12)	

1774 a c 1775 # s

1776

1777

^a cyc, cyclic compound. * structure displayed in Table S21

Table 6. GWP and GTP for selected gases.

					GWP			GTP	
Identifier / name	Formula	Lifetime (yr)	$RE (W m^{-2} ppb^{-1})$	20-yr	100-yr	500-yr	20-yr	50-yr	100-yr
CFC-11	CCl ₃ F	52.0	0.26	7,720	5,870	2,060	7,930	6,020	3,410
CFC-12	CCl_2F_2	102.0	0.32	11,800	11,800	5,610	12,900	12,600	1,000
CFC-113	CCl_2FCClF_2	93.0	0.30	7,130	6,900	3,120	7,700	7,330	5,620
HCFC-22	$CHClF_2$	11.9	0.21	5,900	2,060	616	4,000	814	419
HCFC-141b	CH ₃ CCl ₂ F	9.4	0.16	2,800	903	270	1,640	275	180
HCFC-142b	CH_3CClF_2	18.0	0.19	5,720	2,410	725	4,680	1,510	564
HFC-23	CHF_3	228.0	0.19	12,900	15,500	11,600	14,400	16,400	16,300
HFC-134a	CH_2FCF_3	14.0	0.17	4,300	1,600	480	3,160	767	337
HFC-152a	CH_3CHF_2	1.6	0.10	607	172	52	76	37	33
1,1,1-Trichloroethane	CH ₃ CCl ₃	5.0	0.06	585	169	51	190	37	33
Tetrachloromethane	CCl_4	32.0	0.17	3,960	2,310	724	3,770	2,110	880
Sulphur hexafluoride	SF_6	3200.0	0.57	19,100	26,700	37,600	21,900	27,700	32,900
PFC-14	CF_4	50000.0	0.10	5,520	7,830	11,700	6,350	8,120	9,740

Table 7. List of compounds (among the 40 most abundant presented in Table 3) that enter new policy categories due to updated GWP(100) values. See Section 4 for a discussion of, and references to, the policies that are referred to here, and Section 3.1 for discussion of changes in lifetime and RE estimates. The rightmost column shows the contribution of change in GWP(100) due to the different factors: new AGWP $_{CO2}$, new lifetime estimate (τ), new instantaneous RF "Pinnock curve" (IRF curve), new method to account for stratospheric temperature adjustment (STA), and addition of absorption spectra.

Identifier / name	Formula	H2013	New	Policy category	Rea	asons fo	r GWP(100) c	hange (%	6)
		GWP(100)	GWP(100)	change	$AGWP_{CO2}$	τ	IRF curve	STA	Spectra
HCFC-142b	CH ₃ CClF ₂	1,980	2,410	Exceeds the 2,200	+14	+5	-1	+3	+1
				threshold in					
				Canada.					
				Exceeds the 750					
HFC-32	CH_2F_2	677	809	threshold in Japan	+14	+4	-1	0	+2
				and Canada					
				Exceeds the 1,500					
HFC-134a	CH_2FCF_3	1,300	1,600	threshold in EU,	+14	+5	0	+2	+2
				Japan and Canada					
HFC-152a	CH_3CHF_2	138	172	Exceeds the 150	+14	+8	-1	+2	+1
				threshold in EU,					
				Japan and Canada					
Carbon	CCl_4	1,730	2,310	Exceeds the 2,200	+14	+21	-2	-1	0
tetrachloride		*	*	threshold in Canada				_	
Halon-2402	$CBrF_2CBrF_2$	1,470	2,280	Exceeds the 1,500	+14	+38	-1	-1	+1
				threshold in EU and					
				Japan, and the					
				2,200 threshold in					
				Canada					

Figure 1. Atmospheric abundances of important halocarbons (and SF₆), separated into (a) lower and (b) higher mole fractions and based on observations from a number of stations (from WMO/GAW, 2019). The plots are based on the data submitted to the World Data Center for Greenhouse Gases supported by the Japan Meteorological Agency by laboratories participating in the GAW Programme.

Figure 2. Effect of temperature on band shape. (a) CFC-115: T = 203 K, p = 0 Torr; T = 298 K, p = 0 Torr (Massie et al., 1991; McDaniel et al., 1991). (b) CBrClF₂: T = 273 K, p = 760 Torr; T = 293 K, p = 760 Torr (Sharpe et al., 2004). (c) SF₆: T = 180 K, p = 75 Torr; T = 225 K, p = 78 Torr (referred to as Varanasi, private communication (2000) in HITRAN).

Figure 3. Instantaneous radiative forcing (IRF) efficiency (for a 0-1 ppb increase in mixing ratio) per unit cross section compared between the previous (Hodnebrog et al., 2013) and updated (Shine and Myhre, 2020) results from the Oslo Line-By-Line (OLBL) radiative transfer model run at 0.02 cm⁻¹ spectral resolution. Also shown is the new radiative forcing (RF) efficiency where the effect of stratospheric temperature adjustment per unit cross section, based on 10 cm⁻¹ Narrow Band Model (NBM) simulations (Shine and Myhre, 2020), have been used to modify the OLBL curve. The curves have been averaged to 10 cm⁻¹ spectral resolution in the plot, to improve readability, but RE calculations in this paper have been made using a 1 cm⁻¹ version of the RF efficiency curve (as provided in the supporting information of Shine and Myhre (2020)).

Figure 4. Stratospheric temperature adjustment represented as the % increase of the instantaneous RE for 40 abundant compounds. The red line shows the 10% assumption used in H2013 for nearly all compounds (note that the 10% assumption was not used for CFC-11, CFC-12 and PFC-14).

Figure 5. GWP(100) ranking calculated in this study and from H2013 for 40 most-abundant compounds. Note that only one compound (chloromethane) shows a decrease in GWP(100).

Figure 6: Present-day radiative forcing for the different groups of compounds. Note that in AR5 (Myhre et al., 2013) (yellow bars), Halon-1211 and Halon-1301 were included in the CFC category.

adjusted cloudy-sky) and from H2013 for (a) all compounds and (b)-(d) zoomed in using different scales for the RE. Black dots represent compounds where the RE in this study is less than 5% different from H2013, while yellow and red dots represent compounds where the REs are significantly different (>5% and >10%, respectively). Red dots have been labelled and represent compounds where the RE calculated here is more than 10% different from H2013.

Figure	6.
--------	----

