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H I G H L I G H T S 

 Study of using four butyl butyrate based biofuels for aviation application 

 Two operational conditions (cruising and idling state) were studied 

 Comprehensive emission and ion analysis were conducted 

 

Abstract 

This paper reports the gaseous pollutants and Particulate Matter (PM) emissions of a gas 

turbine combustor burning butyl butyrate and ethanol blends. The gas turbine has been tested 

under two operational conditions to represent the cruising (condition 1) and idling (condition 

2) conditions of aero engines. Aviation kerosene RP-3 and four different biofuels using butyl 

butyrate (BB) and ethanol blends were tested and compared to evaluate the impact of fuel 

composition on CO, NOx, unburnt hydrocarbon (UHC) and PM emissions under selected two 

operational conditions. The PM number (PN) concentration and size distributions were 

measured by a scanning mobility particle sizer (SMPS). The compositions of filter borne PM 

were analysed by ion chromatograph technique. The concentrations of CO, NOx and UHC 

were detected and analysed by a gas analyser. Results indicated that under idling and cruising 

conditions the CO emissions from butyl butyrate and ethanol blends were higher than that of 

RP-3 due to the relatively lower combustion temperature of the biofuels compared with that 

of RP-3. Results of the NOx emission comparison indicated the biofuels produced less NOx 

than RP-3 and the increase of ethanol content in the biofuels could reduce the NOx and UHC 

emissions. The particles smaller than 20 nm played a dominant role in PN emissions at 

condition 1 with the range from 2×106/cm3 to 4×107/cm3. There was a peak value of 

particle number concentration with the particle size ranging from about 25 nm and 40 nm. 

The PN emission index at condition 1 was higher than that at condition 2 for the biofuels, 

whilst the trend was opposite to that of RP-3. The ions analysis indicated Ca2+ and SO4
2- were 



the two dominant ions in the PM emissions of biofuels.  

 

Keywords: gaseous emissions, particulate matter (PM), particle number (PN), butyl butyrate 
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1. Introduction 

The gaseous pollutants and particulate matters (PM) from burning fossil fuels have attracted 

ever increasing research attentions on the development of new fuel formulations [1-3], 

advanced engine design and calibration methods [4-6], and effective after treatment 

technologies [7, 8]. Increasingly strict emission regulations have been proposed and adopted 

including Euro V and VI requiring a non-volatile particle number (PN) emission limit of 

6×1011 particles/km to complement the mass-based limit for PM emissions from light-duty 

diesel vehicles [9, 10]. Similar to vehicular emission regulations, the Committee on Aviation 

Environmental Protection (CAEP), a technical committee of the International Civil Aviation 

Organization (ICAO) Council has recently proposed amendments of number-based particle 

limits regarding the non-volatile Particulate Matter Standard [11]. The literature on aviation 

emission characteristics and their mitigation technologies is much scarcer compared with 

vehicular emissions. It is conceivable that the emissions from aviation gas turbine engines 

will become a hot topic in the light of the upcoming aviation emission regulations.  

The main gaseous pollutants from aero-engines are carbon monoxide (CO), nitrogen oxide 

(NOx) and unburnt hydrocarbon [12, 13]. Fu et al. and Kyprianidis et al. [14, 15] employed 

lean-burn combustors in aero-engines and obtained significant NOx reduction. Zhang et al. 

[16] introduced a novel double-vortex combustor for gas turbine engines burning kerosene 

and lower emissions of CO, NOx and UHC especially at high inlet temperature have been 

achieved. Numerical study was conducted by Hamed et al. [17] in order to figure out the 



method to reduce NOx emission of aero-engine combustor. Results indicated that the increase 

of the axial distance of the stabilizer and the number of holes could significantly hinder NOx 

generation in the combustor [17]. Xing et al. [18] also summarised researches on reducing 

NOx with increasing thermal efficiency via flameless combustion technologies. However, 

these methods of reducing gaseous emissions depend on retrofitting current aero-engines, 

which increase the costs of commercial application. 

Another major pollution from aero-engines is the PM emissions including soot and volatile 

particles, which now contribute about 4.9% of total anthropogenic PM emissions, which have 

drawn increasing attentions in recent years [19, 20]. Ultrafine particles (smaller than 100 nm) 

are harmful to human health because they can penetrate deeply in the lung and alveoli [21, 

22]. The size distributions and chemical compositions of PM emissions from gas turbines or 

aero-engines are the main research topics of scientists at present. The formation of ultrafine 

particles is highly correlative with fuel properties and engine operational conditions [13, 20, 

23]. Lobo et al. [20] studied PM emissions of a JT8D-219 engine burning kerosene Jet A at 

various conditions. Results demonstrated that the mean diameter increased with increasing 

engine thrust and the PN emissions experienced a U shaped line when the engine power 

raised from about 4% to full level. Huang et al. [23] tested the aviation kerosene JP-8 and 

several renewable fuels in a jet engine. Higher PN concentrations were found at 85-100% 

power level than that of 4-7% power due to a higher fuel air ratio and the presence of 

aromatics content [23]. Timko et al. [24, 25] also demonstrated that PM emitted from 

aero-engines during take-off and landing played a dominant role in the ultrafine particle 

emissions (4−100 nm). And the majority of total PN concentrations was the nucleation mode 



particles (5-50 nm) [24, 25]. However, in terms of engine operational parameters, previous 

researches have focused more on heavily sooting conditions (such as take-off, climb) and 

conditions that primarily affect the airport air quality (such as landing, taxiing). Limited 

researches have been conducted on the PN emissions under cruising and ground idling 

conditions, which represent the two longest durations of engine operation time.  

The ion analysis can identify the water-soluble inorganic component such as metal ion, 

sulphate, nitrate and ammonium, which are the chemical source of toxicity in PM [26, 27]. 

Popovicheva et al. [28] tested kerosene with the sulphur content of 0.11 % in an aero-engine 

and reported that sulphates (SO4
2-) and organic ions dominated the water-soluble fractions of 

soot emissions. Kinsey et al. and Mironova et al. [29, 30] demonstrated that SO42‑  was the 

largest single component ion in particle emissions from aero-engines. Cl−, NO3−, NH4
+, K+, 

and Na+ as well as other metal elements were also found and their sources were considered 

the compositions of kerosene, engine lubrication oils and abrasion from engine wearing 

components [31, 32].  

Biofuels are recognised as alternative energy resources for aero application, which could 

effectively mitigate the pollutant emissions from gas turbines or aero-engines. Chiaramonti et 

al. [33] tested diesel fuel, vegetable oil and biodiesel in a modified micro gas turbine and 

found that the combustion of vegetable oil generated comparable emissions with diesel fuel 

[33]. Habib et al. [34] tested four types of biofuels and their blends with Jet A in a gas turbine 

engine and demonstrated that biofuels decreased thrust-specific fuel consumption, CO and 

NOx emissions. Mendez et al. [13] selected butanol as a typical biofuel and observed less 

NOx and CO emissions. Seljak et al. [35] investigated the emissions of liquefied 



lignocellulosic biofuels in a gas turbine and found out the NOx and PMs are both reduced but 

the CO and UHC are increased. Nevertheless, a number of biofuels have shortcomings such 

as high viscosity, high surface tension and poor thermal stability, which may exert a negative 

impact on atomisation and combustion [36]. Jenkins et al. [37] and Chuck et al. [38] 

examined certain properties of several single-composition biofuels and compared with fossil 

fuel counterparts. Results suggested that butyl butyrate as a qualified biofuel surrogate, has 

similar viscosity, flash point, distillation profile and low temperature behaviour to kerosene 

(Jet A) [37, 38]. Thus the butyl butyrate has the potential to be used in a blend and fully 

compatible with aviation kerosene. However, experimental work on the combustion 

performance in gas turbine burning butyl butyrate-based biofuels has been rarely found in the 

literature.  

In summary, gaseous and particulate matter (PM) emissions from gas turbine engines, which 

are highly correlative with the fuel compositions and operating conditions of engines, are 

drawing concerns due to the adverse effects on health and environment. However, most 

research work has not mentioned the information on PM number (PN) concentration at 

cruising state and idling state of aero-derivative gas turbine engines. In addition, biofuels 

have the advantage in reducing most pollutant emissions, yet most of them have poor 

viscosity, distillation profile and low temperature behaviour, which have negative impacts on 

atomization and combustion. Given the above considerations, a series of experiments on a 

gas turbine combustor were conducted to analyse the characteristics of CO, NOx, unburnt 

hydrocarbon (UHC) and PM emissions of biofuels consisting of ethanol and butyl butyrate, 

which has closed thermal properties to aviation kerosene. Two conditions of the combustor 



were operated to represent the cruising state and idling state of a gas turbine engine 

respectively. 

 

2. Apparatus and Methodologies 

2.1 Test rig and measurement instruments 

 

Fig. 1. Schematic of the test combustor rig 

 

The gas turbine combustor consists of a high-pressure air source, a low-pressure air source, a 

combustion chamber, a fuel delivery system, and a cooling system. The schematic of the test 

combustor rig is show in Fig. 1. The pressure of air source is from 0 to 7 MPa and the air 

temperature can be heated up to 600 K. The fuel supply system with the injection pressure at 

2 MPa consists of a main feed line and a secondary feed line respectively for the primary 

combustion and pre-combustion. The K-type thermocouples are employed to measure 

temperatures and pressure transmitters are used to measure the air pressures. The measured 

temperature and pressure conditions are used to calculate the air flow rate, which has the 

relative errors within 1.5%. Two Coriolis mass flow meters are used in the fuel supply lines 

to measure the fuel mass flow rate with the relative error of 1%. 



 

 

Fig. 2. The section view of the combustion chamber 

The combustor in the combustion chamber is fabricated based on a typical aero-engine, 

whose section view is shown in Fig. 2. The case of the combustion chamber is 172 mm high 

and 325 mm long with the thickness and width of the case wall being 11 mm and 145 mm, 

respectively.  

A sampling tube inserted inside the exhaust pipe of the combustion chamber was connected 

with an auto-controlled dilution system, which provides a precise control over the dilution 

condition (e.g. dilution ratio, dilution temperature, and residence time). There were two 

instruments downstream the dilution system, namely, a filter holder with a Whatman 47 mm 

GF/A filter for collecting the PM emissions, and a TSI 3936 Scanning Mobility Particle Sizer 

(SMPS) system for measuring the particle size resolved number concentrations. The reasons 



for placing the dilution system prior to the filter and SMPS are:  

1) Reduce the PM concentration and avoid particle collision, aggregation and deposition, 

which will cause a considerable change of PN 

2) Stabilise the flow rate and reduce the humidity of exhaust gas in case of condensation 

3) Ensure the PN concentration, the temperature and pressure of exhaust gas within the 

measurement range of the SMPS. 

The SMPS system consists of a Differential Mobility Analyser (DMA) and a Condensation 

Particle Counter (CPC). Particles in the exhaust gas are classified into different particle size 

ranges by the DMA and then each class of particles are counted via the CPC to produce size 

distribution data. The measurable size range of the SMPS is 5 to 1000 nm. A gas analyser 

measures the gaseous emissions (CO, NOx and UHC). The parameters of the gas analyser and 

its key components are listed in  

Table 1.  

 

Table 1 

The main components and parameters of the gas analyser 

Gas analyser Gas species Range (ppm) Accuracy 

SIEMENS ULTRAMAC 6 OXYMAT 6 CO/O2/CO2 0 ~ 50000 ±2% 

CAI Model 600 CLD NOx 300/1000 ±1% 

BASELINE 9000 UHC 200/2000 ±1% 

 

Filter borne PM samples were analysed by two ion chromatograph systems (DIONEX 

ICS2500 / DIONEX ICS2000, Dionex Company, USA) for water soluble ions or acids. 

Anions and organic acids were measured by a Dionex AS1 separator column and an ASRS 

ULRTA II 4 mm suppresser, with KOH solution as an eluent passing at 1.2 mL/min. 



Information on cations were obtained by a Dionex CS-12 separator column and the CSRS 

ULRTA II 4 mm suppresser, with MSA (20 mmol/L) at 1.0 mL/min. The detailed parameters 

of the chromatograph system are listed in Table 2.  

 

Table 2 

Chromatograph systems for ions analysis 

System mode DIONEX ICS2500 DIONEX ICS2000 

Destination Cations Inorganic anions & organic acids 

Chromatograph 

column 

IonPac CS12 separator column, 

250mm×4mm 

IonPac AS1 separator column, 

250mm×4mm 

Suppresser mode CSRS ULTRA II 4mm CSRS ULTRA II 4mm 

Eluent MSA solution, 1mL/min KOH solution, 1.2mL/min 

Volume Auto inlet, 99μL Auto inlet, 100μL 

 

2.2 Methodologies 

2.2.1 Fuel formulation 

Because of the aforementioned reasons, butyl butyrate was chosen to be the primary 

component of test fuels. However, the poor volatility and higher surface tension of butyl 

butyrate may exert a negative impact on atomization and combustion. Because ethanol has a 

better volatility and was found to burn stably in gas turbines and produce less NOx [39], the 

biofuel blends use the mixture of butyl butyrate and ethanol with different blending ratios. 

The ethanol fraction was chosen to be 0~50%. BB stands for butyl butyrate, and its ethanol 

blends are termed as BE-10, BE-30 and BE-50 with the number representing the volumetric 

fraction of ethanol. The aviation kerosene RP-3 was used as a reference. Relevant physical 

and chemical properties of the test fuels are listed in Table 3. 

Table 3 

Properties of the test fuels 

Fuels Mean formula 
Viscosity 

(mm2/s) 

Surface tension 

(mN/m) 
Density (g/cm3) 

Energy density 

(MJ/kg) 



BB C8H16O2 
1.194 26.41 0.8692 35.0 

BE-10 C6.56H13.6O1.76 
1.166 24.81 0.8612 34.1 

BE-30 C5.43H10.51O1.45 
1.157 23.84 0.8457 32.3 

BE-50 C3.56H8.61O1.26 
1.130 22.77 0.8296 30.5 

RP-3 C10.35H20.83 1.255 25.32 0.7967 42.8 

 

2.2.2 Description of experimental procedure 

The operating conditions 1 and 2 (Table 4) are based on the representative inlet parameters of 

the combustor at cruising state and idling state of an aero-engine. 

 

Table 4 

The operating conditions of the combustion chamber 

Operating 

conditions 

Inlet 

temperature 

(K) 

Inlet 

pressure 

(MPa) 

Inlet air flow 

(kg/s) 

Fuel/air ratio 

(converted with 

kerosene) 

Pressure drop 

1 600 2 1.6 0.027 5.0% 

2 520 0.5 0.5 0.015 5.0% 

 

The experimental procedure can be described as the following steps: 

1) Switch on the high pressure and low pressure air supply lines; turn on the fuel supply 

system and measurement instruments.  

2) Ignite and adjust the combustor to the cruising state (condition 1); 

3) When the gas flow in the dilution system became stable, the inlet of SMPS with the 

sampling flow 1.5 L/min is opened to measure the PM size distributions for one minute, 

and then the outlet of dilution system is switched to the filter holder to collect PM for five 

minutes; 

4) The outlet of dilution system was switched off, and then the parameters of inlet air and 

fuel pressure was gradually adjusted to the idling state (condition 2); 



5) Repeat step 3;  

6) Stop feeding fuel, turned off the gas analyser and SMPS, and then keep the blowing air on 

until the combustion chamber cooled down; 

7) Measure the weight of the filters before and after the tests, cut into pieces and put into 

beakers with deionized water, and then water-soluble inorganic ions and low molecular 

weight organic acids were analysed after a 30 min-ultrasonic extraction. 

 

2.2.3 Data processing 

The number-based emission index 𝐸𝐼𝑛 (#/kg) is used to estimate the level of PN emissions 

regardless of the quantity of consumed fuel, as shown in Equation (1) 

𝐸𝐼𝑛 = 𝑃𝑁 𝑚𝑓⁄                      (1) 

Where 𝑃𝑁 refers to the total PN concentration (#/cm3) and 𝑚𝑓 is the mass of burnt fuel 

(kg). Meanwhile, the CO2 production by the combustion of the fuel can be presented by 

following equation 

𝑚𝑐𝑜2 =
𝑃𝑉𝑀𝑐𝑜2

𝑅𝑇
                     (2) 

The 𝑚𝑐𝑜2, 𝑉 and 𝑀𝑐𝑜2in the Equation (2) refer to the mass (g), volume (m3) and molar 

mass (g/mol) of CO2, respectively. R is the gas constant, and 𝑇 and 𝑃 are the absolute 

temperature (K) and pressure (Pa) in the combustor.  

As 𝑚𝑐𝑜2 is determined by 𝑚𝑓 and the carbon and hydrogen content in the fuel formula, 

these equations above can be combined and the number-based emission index 𝐸𝐼𝑛 could be 

confirmed in literature [20] as shown in Equation (3): 

𝐸𝐼𝑛 = 𝑃𝑁 × 106
0.082𝑇

[𝐶𝑂2](𝑀𝐶+𝛼𝑀𝐻)𝑃
                  (3) 



Where 𝑀𝐶 and 𝑀𝐻 are the molar mass of carbon and hydrogen (g/mol); 𝛼 is the hydrogen 

to carbon ratio of the fuel; [𝐶𝑂2] means the concentration of CO2 emission (ppm) measured 

by the SIEMENS ULTRAMAC 6 OXYMAT 6. The total PN concentration can be obtained 

by numerically integrating the size-resolved number concentrations measured by the TSI 

3936 SMPS system. 

3. Results and discussion 

3.1 Gaseous pollutant emissions 

 
Fig. 3. Average outlet temperature of the combustion chamber 

The emissions of CO, NOx and UHC were measured at condition 1 (cruising state) and 2 

(idling state). As the outlet temperature is an important factor indicating the combustion 

temperature, which influences both gaseous emissions and PM emissions, the average outlet 

temperature of the combustion chamber was measured and drawn in Fig. 3. The average 

outlet temperature of RP-3 were 1234℃ and 801℃ under condition1 and 2, respectively, 



whilst biofuels exhibited noticeable lower (about 19.5%) average outlet temperature than 

RP-3. Because RP-3 has higher energy density than butyl butyrate and ethanol, more heat can 

be produced from burning RP-3 under the same fuel air ratio compared with that of other 

testing samples. Results indicated the increase of ethanol fraction in the biofuel blends, the 

average outlet temperature of the combustion chamber was reduced, which was caused by 

low heat value of ethanol.  

 

 

Fig. 4. The concentration of CO under two conditions 

 

Fig. 4 shows the CO concentration from the four biofuel blends and reference fuel RP-3. The 

CO emissions from biofuel blends were all higher than that of RP-3 under the test conditions. 

Moreover, results indicated the CO emission under the engine idling state (condition 2) was 



much higher than that under engine cruising state (condition 1).  

CO is almost produced by pyrolysis at incomplete combustion, which can be concluded 

as[40]: 

𝑅𝐻 → 𝑅 → 𝑅𝐶𝐻𝑂 → 𝑅𝐶𝑂 → 𝐶𝑂                   (4) 

Where R refers to radicals in fuel molecules. CO can be further oxidised to CO2 via two 

different paths, which only dominate at high temperature with high reaction rate and 

efficiency and lower temperature with low reaction rate and efficiency, respectively. Given 

the measured outlet temperatures as shown in Fig. 3, the theory agrees well with the 

phenomenon in Fig. 4 that CO emission was much more at low power and biofuel blends 

with higher ethanol fractions led to higher CO emissions under the same power level.  

As CO is mainly generated in low temperature zones, another possible reason for the 

tendency of CO emission is that ethanol has high volatility and high latent heat of 

vaporization. The vaporisation of ethanol during the injection induced longer ignition and 

increased overly lean regions, thus reduced the local combustion temperature and produced 

more CO.  



 

Fig. 5. The concentration of NOx under two conditions 

 

Compared with CO, the emission of NOx experienced an opposite trend as shown in Fig. 5. 

NOx at condition 1 was much higher than that at condition 2 for all fuels due to the significant 

influence of combustion temperature on NOx formation. As summarised in literature [34, 40], 

three mechanisms determine the production of NOx, the Thermal NOx (T-NO), Prompt NOx 

(P-NO) and Fuel NOx (F-NO), among which the T-NO is dominant at high temperature and 

produces the most NOx in combustion at high engine power according to Fig. 3. Similarly, the 

reduction of NOx of biofuel blends [13], especially those with higher ethanol fraction, was 

also attributed to the lower combustion temperature caused by lower energy density of butyl 

butyrate and ethanol, which was caused by the presence of oxygen.  

 



 

Fig. 6. The concentration of UHC under two conditions 

Unburnt hydrocarbons (UHC) are the mixture of unburnt fuel vapour and the products of the 

thermal degradation of the parent fuel into lighter species, which are normally associated with 

poor atomisation, inadequate combustion, the effects of cooling air and the oxidation effect 

by the oxygen content in fuel compositions. For all the biofuel blends, a declining trend along 

the increasing engine load can be observed due to the higher combustion temperature under 

condition 1 as shown in Fig. 6. Although the higher latent heat of evaporation of ethanol in 

biofuels would reduce combustion temperature and thus promote UHC emissions, BE-10, 30, 

50 produced lower UHC than RP-3 and BB under the test conditions. Lefebvre [40] 

suggested that the oxygen in fuels tends to oxidase the light fuel molecules at high 

temperature and thus significantly reduces UHC emission. It is conceivable that the oxidation 

of unburned hydrocarbon by the oxygen compositions in fuels was more significant than the 



impact of combustion temperature as the difference of outlet temperature was not large 

among different biofuels. However, BB exhibited higher UHC emissions than RP-3 under 

condition 2 because the difference of combustion temperature was larger than that among 

biofuels but the effect of BB oxidation was not so strong due to its lowest oxygen content 

compared to other biofuels. In addition, UHC is likely to form particulate matter (PM) via a 

series of dehydrogenation and carbonization reactions, which can only happen at high 

temperature.  

3.2 PM emissions 

3.2.1 Size resolved number concentrations 

The SMPS system was used for continuous measurement of number concentrations with the 

particle size range of 5~1000 nm. Since the number concentration of particles larger than 100 

nm was nearly the same as that in the atmosphere and sub-15 nm data were subject to high 

noise-to-signal ratios, only 15~100 nm particles were selected and presented.  

 

  

(a) (b) 



  

(c) (d) 

Fig. 7. Size resolved number concentrations of PM emissions on a semi-logarithmic scale for four biofuels 

(a) BB ; (b) BE-10; (c) BE-30; (d) BE-50 under two conditions 

 

 

(c) (d) 

Fig. 7. Size resolved number concentrations of PM emissions on a semi-logarithmic scale for four biofuels 

(a) BB ; (b) BE-10; (c) BE-30; (d) BE-50 under two conditions 

 illustrates the PM emissions of the four test fuels under the two operating conditions. 

Results indicated sub-20 nm particles (in nucleation mode) dominated the size spectrum for 

the biofuels at condition 1. The size resolved number concentration experienced continuous 

decline when particles were larger than 20 nm. In contrast, particles under condition 2 had 

much fewer number concentrations than that under condition 1 and reached peak in the range 

of 30 ~ 40 nm.  

The peak of the size spectra occurred for each fuel under condition 2 and moved from ~25 

nm to ~40 nm when ethanol proportion increased from 10% to 50%. The reason might be that 

as ethanol addition increased, the elevated oxygen content of the blends would have 

promoted the oxidation of nucleation mode PM (particles smaller than 50 nm) whilst affected 



the accumulation mode PM (50-500 nm) to a less extent. However, BB did not follow the 

trend with its peak size larger than that of BE-10. It could be attributable to the fact that BB 

produced more UHC than BE-10 (Fig. 6), which means less UHC emitted from BB 

combustion formed small particles via dehydrogenation and carbonization so that the peak of 

the BB size spectra moved towards a larger size compared with BE-10. 

The particle number concentrations of the four biofuels over the entire size range under 

condition 1 were all higher than those under condition 2. This indicates that cruising state 

played a relatively dominate role in PM emissions than idling state, because the relatively 

fuel-rich combustion at cruising state (high fuel air ratio) increases the likelihood of 

incomplete combustion in some zones of the combustor and particle formation via 

polymerisation and dehydrogenation. The much lower PM emissions under idling were 

caused by leaner combustion, which means more oxygen was available to promote the PM 

oxidation and mitigate the dehydrogenation of organic molecules.  

By integrating the above PN spectra, the total PN concentration can be obtained. With CO2 

emissions data, the emission index of total particulate number concentration (EIn) under two 

operating conditions can be calculated via Equation (3) and the results are shown in Error! 

Reference source not found.. 

 



 
Fig. 8. The emission index of total particulate number concentrations  

for different test fuels under two conditions 

 

Both  

(c) (d) 

Fig. 7. Size resolved number concentrations of PM emissions on a semi-logarithmic scale for four biofuels 

(a) BB ; (b) BE-10; (c) BE-30; (d) BE-50 under two conditions 

 and Fig. 8Error! Reference source not found. illustrated that the emission level of PN 

concentration under condition 1 are all higher than that of condition 2, when the four biofuels 

are used in the combustor. However, the RP-3 shows an opposite tendency.  

Previous research [20] on PM emissions of fossil fuels in aero-engines demonstrated that a 

U-shaped line regulation of PM emissions versus engine power level, which means the PM 

emissions are usually higher at idling state (4% ~ 7% power level) and reduce to its minimum 

at about 15% ~ 30% power level, and then increase again. In this research, PM emissions 



between four biofuels and RP-3 are slightly different but both in accordance to the U-shaped 

line. Moreover, literature [41-44] also suggested that different fuels have different U-shaped 

lines, where fossil fuels usually have two equal ends for both lowest and highest power level 

but alternative fuels tend to have a higher end at high power level. The reasons can be 

summarised as   

1) Alternative fuels, especially biofuels, are more difficult to ignite due to lower energy 

density and thus aggravate the incomplete of combustion in the fuel rich zones at high fuel air 

ratio and air flow at cruising state. RP-3 has higher combustion temperature, whose effect 

could surpass that of rich fuel and boost combustion process at cruising state 

2) Polycyclic aromatic hydrocarbons (PAH) and sulphur in RP-3 are the two main factors for 

PM formation at lower temperature in idling state, compared with the dehydrogenation and 

carbonisation reactions of UHC at higher temperature, but biofuels have no PAH and sulphur.  

As indicated in Fig. 8Error! Reference source not found., RP-3 produced more particles at 

idling state because it contains a high proportion of PAHs, whilst the opposite tendency of 

PM emissions of the four biofuels can be attributed to the lack of PAHs and sulphur. The 

dehydrogenation and carbonization reactions of UHC under cruising state (higher 

temperature) is likely to be a more significant factor influencing PM formation for biofuels. 



 

Fig. 9. Comparison of different test fuels in relation to PM size distributions under condition 1 

 

Results shown in Error! Reference source not found. and Fig. 9 also indicate that increased 

ethanol content tends to reduce PM emissions. The relatively high oxygen content in ethanol 

molecules can accelerate soot oxidation to carbon dioxide in combustion. On the other hand, 

ethanol addition improves the quality of spray atomization, because its lower viscosity and 

surface tension as well as higher volatility enable the liquid fuel to break up into finer 

droplets and evaporate in a shorter time, which results in a more uniform fuel-air blend and 

more complete combustion. Since the energy density of ethanol is less than that of butyl 

butyrate, fuels with higher ethanol proportions cannot generate flames of such high 

temperature. This feature can also reduce particles because organic molecules cannot be 

dehydrogenated at lower temperature, as conjectured in Fig. 6. The combination of 

aforementioned factors causes the inhibition of PM production when ethanol is blended. 



3.2.2 Ions analysis 

As the amount of particles collected by Teflon films under operational condition 2 was much 

less than that under operating condition 1, only the latter was analysed. Each filter was cut 

into two pieces for two groups of ions analysis. Five inorganic cations (NH4
+, Ca2+, Na+, 

Mg2+, K+), three inorganic anions (Cl-, NO3
-, SO4

2-) and five low molecular weight organic 

acids (formic acid, acetic acid, propionic acid, oxalic acid, succinic acid) were quantitatively 

determined from filter borne PM samples. 

The mass concentration of five cation ions was obtained by analysing half filters in CS-12 

separation column, whilst three inorganic anions and five organic acids were analysed by 

using the AS1 separation column. The calculated molar fractions of all ions and organic acids 

are shown in Fig. 10. 

 
Fig. 10 Molar fractions of individual ions and organic acids analysed from filter borne PM samples of different 

test fuels under condition 1 

 



Fig. 10 shows that Ca2+ was the majority ion among the five cation ions and its molar 

percentage increased monotonically from 18.11% to 36.55% with the increase of ethanol 

content. In contrast, the percentage of K+ and Na+ exhibited a gradually decreasing trend 

from 5.90% to 2.21% and 6.24% to 2.35% as the fraction of butyl butyrate dropped, because 

K+ was believed to come from biomass combustion. The three cation ions accounted for 

27.85%, 3.78% and 4.68% respectively for RP-3 PM emissions. The molar percentages of 

Mg2+ and NH4
+ were rather stable for all test fuels with the range of 4.09% ~ 7.77% and 4.43% 

~ 4.81, respectively.  

As to the inorganic anions, SO4
2- was the dominant anion with the fraction of approximately 

23% for all the BE fuels, whilst the kerosene RP-3 produced a higher percentage of 30.57%. 

This may be caused by the oxidation of sulphur, which is a common impurity in kerosene 

(RP-3) and lubrication oil. NO3
- was the second highest anion and it declined from 20.50% to 

13.79% with the increase in ethanol content. This may be because that the existence of 

ethanol reduced the combustion temperature due to its low energy density, which inhibited 

the oxidation of nitrogen to NOx, the precursor of NO3
-. Similarly, the percentage of Cl- 

experienced a gradually decreasing trend and some Cl species in lubrication oils were 

probably the main sources of Cl-. 

The total percentage of the five organic acids was no more than 3.55% for all the test fuels 

with the minimum of 1.6% found in RP-3 PM emissions. Previous studies suggested that low 

molecular weight organic acids are mainly attributed to photochemistry conversion in the wet 

atmosphere [45]. However, the production of organic acids in this study was believed to 

originate from the hydrolytic reactions of unburnt butyl butyrate at high temperature, which 



was prohibited by the increase of ethanol fraction. The fact that the overall amount of organic 

acids was much smaller than that of inorganic ions implied complete combustion of the test 

fuels. 

4. Conclusions 

This paper reports the gaseous and particulate matter (PM) emissions and icon analysis of 

burning a promising bio-jet fuel (butyl butyrate) for aviation engine using a gas turbine 

combustor. Two engine operational conditions (cruising and idling state) were conducted to 

study the potential of using butyl butyrate-based biofuels as alternative clean bio-jet fuels for 

aero-engines application. The results drawn from this work can be summarised as, 

1. The concentration of CO emissions from biofuel blends was significantly higher than 

that of RP-3 during both cruising and idling states. The increase of the ethanol content in 

the biofuels led to a rise of CO emissions.  

2. The biofuel blends effectively reduced the NOx emissions by up to 70.4% compared with 

RP-3 under both cruising and idling states. The increase of ethanol fraction could further 

depress the NOx emissions.  

3. Biofuels produced less UHC than RP-3 by at most 60.9% (BE-50) except for pure butyl 

butyrate. The combustion temperature and the oxidation effect by oxygen compositions 

in the fuels are two primary factors influencing UHC emissions.  

4. To all biofuels, particles smaller than 20 nm dominated PN emissions under cruising 

state, and the concentrations decreased dramatically as particle size increased larger than 

20 nm. In contrast, the size resolved number concentrations under idling state were much 

less and each fuel exhibited a peak value between about 2×106/cm3 and 3×106/cm3 in 



the range of about 25 nm to 40 nm. The emission index of total PN concentrations for 

biofuels was significantly lower than that of RP-3.  

5. Ca2+ turned out to be the majority ion among the five cation ions and its molar 

percentage increased from 18.1% to 36.6% with increasing ethanol content. SO4
2- was 

the main anion with a relatively stable content of approximately 23% for all the BE fuels. 

Acknowledgement 

This research is supported by National Natural Science Foundation of China (91641119 and 

51306011). The financial supports from the SAgE doctoral Training Award NH/140671210 

and from Chinese Scholarship Council under No. 201508060054 are also acknowledged.  

 

Reference 

[1] Amara AB, Dauphin R, Babiker H, Viollet Y, Chang J, Jeuland N, et al. Revisiting diesel fuel formulation from 

Petroleum light and middle refinery streams based on optimized engine behavior. Fuel. 2016;174:63-75. 

[2] Chen L, Stone R, Richardson D. A study of mixture preparation and PM emissions using a direct injection 

engine fuelled with stoichiometric gasoline/ethanol blends. Fuel. 2012;96:120-30. 

[3] Chen L, Zhang Z, Gong W, Liang Z. Quantifying the effects of fuel compositions on GDI-derived particle 

emissions using the optimal mixture design of experiments. Fuel. 2015;154:252-60. 

[4] Chen L, Stone R, Richardson D. Effect of the valve timing and the coolant temperature on particulate 

emissions from a gasoline direct-injection engine fuelled with gasoline and with a gasoline–ethanol blend. 

Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 

2012;226:1419-30. 

[5] Tan P-q, Ruan S-s, Hu Z-y, Lou D-m, Li H. Particle number emissions from a light-duty diesel engine with 

biodiesel fuels under transient-state operating conditions. Applied Energy. 2014;113:22-31. 

[6] Chen L, Liang Z, Zhang X, Shuai S. Characterizing particulate matter emissions from GDI and PFI vehicles 

under transient and cold start conditions. Fuel. 2017;189:131-40. 

[7] Lee S, Kwak J, Lee S, Lee J. On-road chasing and laboratory measurements of exhaust particle emissions of 

diesel vehicles equipped with aftertreatment technologies (DPF, urea-SCR). International Journal of Automotive 

Technology. 2015;16:551-9. 

[8] Mamakos A, Martini G, Manfredi U. Assessment of the legislated particle number measurement procedure 

for a Euro 5 and a Euro 6 compliant diesel passenger cars under regulated and unregulated conditions. Journal 

of Aerosol Science. 2013;55:31-47. 

[9] Giechaskiel B, Wang X, Gilliland D, Drossinos Y. The effect of particle chemical composition on the activation 

probability in n-butanol condensation particle counters. Journal of Aerosol Science. 2011;42:20-37. 

[10] Otsuki Y, Takeda K, Haruta K, Mori N. A Solid Particle Number Measurement System Including 

Nanoparticles Smaller than 23 Nanometers. SAE Technical Paper; 2014. 

[11] Secretariat I. Annex 16—environmental protection volume II—aircraft engine emissions. ISBN 

978-92-9231-123-0; 2008. 



[12] D’Alessandro F, Pacchiarotta G, Rubino A, Sperandio M, Villa P, Carrera AM, et al. Lean Catalytic 

Combustion for Ultra-low Emissions at High Temperature in Gas-Turbine Burners. Energy & Fuels. 

2011;25:136-43. 

[13] Mendez C, Parthasarathy R, Gollahalli S. Performance and emission characteristics of butanol/Jet A blends 

in a gas turbine engine. Applied Energy. 2014;118:135-40. 

[14] Fu Z, Lin Y, Li L, Zhang C. Experimental and numerical studies of a lean-burn internally-staged combustor. 

Chinese Journal of Aeronautics. 2014;27:488-96. 

[15] Kyprianidis KG, Dahlquist E. On the trade-off between aviation NOx and energy efficiency. Applied Energy. 

2017;185:1506-16. 

[16] Zhang RC, Fan WJ, Shi Q, Tan WL. Combustion and emissions characteristics of dual-channel double-vortex 

combustion for gas turbine engines. Applied Energy. 2014;130:314-25. 

[17] Zeinivand H, Bazdidi-Tehrani F. Influence of stabilizer jets on combustion characteristics and NOx emission 

in a jet-stabilized combustor. Applied energy. 2012;92:348-60. 

[18] Xing F, Kumar A, Huang Y, Chan S, Ruan C, Gu S, et al. Flameless combustion with liquid fuel: A review 

focusing on fundamentals and gas turbine application. Applied Energy. 2017;193:28-51. 

[19] Lee DS, Fahey DW, Forster PM, Newton PJ, Wit RC, Lim LL, et al. Aviation and global climate change in the 

21st century. Atmospheric Environment. 2009;43:3520-37. 

[20] Lobo P, Hagen DE, Whitefield PD, Raper D. PM emissions measurements of in-service commercial aircraft 

engines during the Delta-Atlanta Hartsfield Study. Atmospheric Environment. 2015;104:237-45. 

[21] Moniruzzaman CG, Yu F. A 0D aircraft engine emission model with detailed chemistry and soot 

microphysics. Combustion and Flame. 2012;159:1670-86. 

[22] Argyropoulos G, Samara C, Voutsa D, Kouras A, Manoli E, Voliotis A, et al. Concentration levels and source 

apportionment of ultrafine particles in road microenvironments. Atmospheric Environment. 2016;129:68-78. 

[23] Huang C-H, Vander Wal RL. Effect of Soot Structure Evolution from Commercial Jet Engine Burning 

Petroleum Based JP-8 and Synthetic HRJ and FT Fuels. Energy & Fuels. 2013;27:4946-58. 

[24] Timko MT, Onasch TB, Northway MJ, Jayne JT, Canagaratna MR, Herndon SC, et al. Gas turbine engine 

emissions—Part II: Chemical properties of particulate matter. Journal of Engineering for Gas Turbines and 

Power. 2010;132:061505. 

[25] Mazaheri M, Johnson GR, Morawska L. Particle and gaseous emissions from commercial aircraft at each 

stage of the landing and takeoff cycle. Environmental science & technology. 2008;43:441-6. 

[26] Mazaheri M, Bostrom TE, Johnson GR, Morawska L. Composition and morphology of particle emissions 

from in-use aircraft during takeoff and landing. Environmental science & technology. 2013;47:5235-42. 

[27] Meng Q, Richmond-Bryant J, Lu S-E, Buckley B, Welsh WJ, Whitsel EA, et al. Cardiovascular outcomes and 

the physical and chemical properties of metal ions found in particulate matter air pollution: a QICAR study. 

Environmental health perspectives. 2013;121:558. 

[28] Popovicheva O, Persiantseva NM, Shonija NK, DeMott P, Koehler K, Petters M, et al. Water interaction with 

hydrophobic and hydrophilic soot particles. Physical Chemistry Chemical Physics. 2008;10:2332-44. 

[29] Kinsey J, Hays M, Dong Y, Williams D, Logan R. Chemical characterization of the fine particle emissions 

from commercial aircraft engines during the aircraft particle emissions experiment (APEX) 1 to 3. 

Environmental science & technology. 2011;45:3415-21. 

[30] Mironova IA, Aplin KL, Arnold F, Bazilevskaya GA, Harrison RG, Krivolutsky AA, et al. Energetic particle 

influence on the Earth’s atmosphere. Space Science Reviews. 2015;194:1-96. 

[31] Demirdjian B, Ferry D, Suzanne J, Popovicheva O, Persiantseva N, Shonija N. Heterogeneities in the 

microstructure and composition of aircraft engine combustor soot: impact on the water uptake. Journal of 



atmospheric chemistry. 2007;56:83-103. 

[32] Abegglen M, Brem B, Ellenrieder M, Durdina L, Rindlisbacher T, Wang J, et al. Chemical characterization of 

freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry. Atmospheric 

Environment. 2016;134:181-97. 

[33] Chiaramonti D, Rizzo AM, Spadi A, Prussi M, Riccio G, Martelli F. Exhaust emissions from liquid fuel micro 

gas turbine fed with diesel oil, biodiesel and vegetable oil. Applied energy. 2013;101:349-56. 

[34] Habib Z, Parthasarathy R, Gollahalli S. Performance and emission characteristics of biofuel in a small-scale 

gas turbine engine. Applied Energy. 2010;87:1701-9. 

[35] Seljak T, Oprešnik SR, Kunaver M, Katrašnik T. Wood, liquefied in polyhydroxy alcohols as a fuel for gas 

turbines. Applied energy. 2012;99:40-9. 

[36] Sallevelt J, Gudde J, Pozarlik A, Brem G. The impact of spray quality on the combustion of a viscous biofuel 

in a micro gas turbine. Applied energy. 2014;132:575-85. 

[37] Jenkins RW, Munro M, Nash S, Chuck CJ. Potential renewable oxygenated biofuels for the aviation and 

road transport sectors. Fuel. 2013;103:593-9. 

[38] Chuck CJ, Donnelly J. The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene. 

Applied Energy. 2014;118:83-91. 

[39] Lefebvre AH, Ballal DR. Gas Turbine Combustion: Alternative Fuels and Emissions, 2010. CRC Press, Taylor 

& Francis Group). ISBN-13. 

[40] Lefebvre AH. Gas turbine combustion: CRC press; 1998. 

[41] Anderson B, Beyersdorf A, Hudgins C, Plant J, Thornhill K, Winstead E, et al. Alternative aviation fuel 

experiment (AAFEX). 2011. 

[42] Bulzan D, Anderson B, Wey C, Howard R, Winstead E, Beyersdorf A, et al. Gaseous and particulate 

emissions results of the NASA alternative aviation fuel experiment (AAFEX).  ASME Turbo Expo 2010: Power 

for Land, Sea, and Air: American Society of Mechanical Engineers; 2010. p. 1195-207. 

[43] Moore RH, Shook M, Beyersdorf A, Corr C, Herndon S, Knighton WB, et al. Influence of jet fuel composition 

on aircraft engine emissions: A synthesis of aerosol emissions data from the NASA APEX, AAFEX, and ACCESS 

missions. Energy & Fuels. 2015;29:2591-600. 

[44] Beyersdorf A, Anderson B. An overview of the NASA alternative aviation fuel experiment (AAFEX).  TAC–2 

Proceedings, 2nd International Conference on Transport, Atmosphere and Climate2009. p. 21-5. 

[45] Hu M, Zhang J, Wu Z. Chemical compositions of precipitation and scavenging of particles in Beijing. Science 

in China Series B: Chemistry. 2005;48:265-72. 

 


