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1 Introduction 

Monitoring Indoor Environmental Quality (IEQ) is critically important, due to the amount of time people spend indoors 

[1]. Concerns surrounding inadequate IEQ are resulting in increased number of green building standards designed around 

health and wellbeing metrics [2]. To achieve these standards, there is a need to monitor indoor environments (as well as 

the health and wellbeing of building occupants). However, monitoring equipment can be complex and costly, acting as 

a barrier by reducing feasibility of monitoring solutions beyond research [3]. Additionally, the 2019 SARS-COV-2 

pandemic has been a catalyst to hasten need for pragmatic remote healthcare monitoring in enclosed spaces, where 

previous suggestions have been unpopular [4].  

The dominant approach to monitoring IEQ is with research grade devices, which offer excellent quality data but have 

many limitations. They are often unimodal, measure only one aspect of IEQ and can cost thousands of US dollars [3]. 

Given that IEQ is determined by many different factors, this requires multiple devices to gain a holistic picture.. 

Consequently, indoor spaces are often measured from a single location, reducing the spatial density of IEQ measurements 

[5], [6], limiting what can be inferred about the health and wellbeing of a spatially distributed set of occupants. Research 

grade devices can be moved between locations, but this limits long-term measurements in any one location, meaning 

data from different locations will not be temporally comparable.  

Occasionally it may be beneficial to sacrifice precision and accuracy of measurement for gains in spatial density and 

longitudinal monitoring. Low-cost sensor technologies could positively impact on building sciences (and the wider 

healthcare, architecture, engineering and construction fields), as they enable multimodal monitoring devices that can 

measure a range of IEQ factors from a single low-cost device [1]. Thus, low-cost sensors would be a likely requirement 

in creating devices that could be scalable to support localised and therefore, increased spatial dense IEQ monitoring. 

Such devices could capture remote longitudinal IEQ data in many locations, providing greater insights into the long-

term effects of indoor environments on occupants [7].  

Individualised occupant health and wellbeing could also be assessed by identifying patterns in localised, 

longitudinal data [8]. Localised sensors could provide occupants with guidance on how they can self-manage their 

comfort by e.g., recommending a different location that has environmental conditions closer to their preferences. 

Lack of Cloud connectivity is another limitation with many research grade monitoring devices, where IEQ data is 

recorded to internal storage, which removes the possibility of accessing real-time data [3]. Low-cost sensor technologies 

Low-cost, multimodal environmental monitoring 

based on the Internet of Things  

 
Graham Coulbya; Adrian K. Clearb; Oliver Jonesc

; Alan Godfreya,*;  

 

 
a    Department of Computer and Information Sciences, Faculty of Engineering and Environment, Northumbria University, 

Newcastle Upon Tyne, NE1 8ST (e-mail: g.d.coulby@northumbria.ac.uk; a.godfrey@northumbria.ac.uk) 
b    School of Computer Science, College of Science and Engineering, National University of Ireland Galway, Galway, 

Ireland. (email: adrian.clear@nuigalway.ie) 
c   O. Jones is the Director of Research, Ryder Architecture, Newcastle Upon Tyne, NE1 3NN (e-mail: 

ojones@ryderarchitecture.com) 

ARTICLE INFO 

 

Monitoring Indoor Environmental Quality (IEQ) is of growing interest for health and 

wellbeing. New building standards, climate targets and adoption of homeworking 

strategies are creating needs for scalable, monitoring solutions with onward Cloud 

connectivity. Low-cost Micro-Electromechanical Systems (MEMS) sensors have 

potential to address these needs, enabling development of bespoke multimodal devices. 

Here, we present insights into the development of a MEMS-based Internet of things 

(IoT) enabled multimodal device for IEQ monitoring. A study was conducted to 

establish the inter-device variability and validity to reference standard sensors/devices. 

For the multimodal, IEQ monitor, intraclass correlations and Bland-Altman analyses 

indicated good inter-sensor reliability and good-to-excellent agreement for most 

sensors. All low-cost sensors were found to respond to environmental changes. Many 

sensors reported low accuracy but high precision meaning they could be calibrated 

against reference sensors to increase accuracy. The multimodal device developed here 

was identified as being fit-for-purpose, providing general indicators of environmental 

changes for continuous IEQ monitoring. 

Keywords: 

Indoor Environmental Quality 

(IEQ) 

Sensor Fusion 

Multimodal 

Internet of Things (IoT) 

Building Performance 

 

 



2 | P a g e  

 

could address this limitation as many processing units that control low-cost sensors are IoT enabled, reading and writing 

data to the Cloud in real-time [1] and enabling data to be analysed while devices are deployed. 

While low-cost technologies are enabling the development of pragmatic and affordable solutions for remote 

monitoring, there is a general lack of acceptance towards low-cost sensor technologies [3]. This issue is further 

complicated by a lack of transparency from manufacturers of consumer-grade monitoring equipment, that utilise low-

cost sensors. While manufacturers typically publish accuracy information and technical specifications they often negate 

to publish which sensors are used in their devices, which results in the need to explore internal photographs from Federal 

Communications Commission (FCC) reports or dismantle devices to identify sensors [9]. This means there are 

requirements to continually benchmark, verify and validate these technologies to reference (gold) standard devices. This 

can be extremely costly and impracticable to implement [9]–[13].  

Here, the primary aim is to investigate and develop a multimodal, IoT-enabled, monitoring device that is low-cost 

and scalable, to support localised environmental monitoring. A secondary aim is to compare the accuracy and precision 

of the low-cost sensors with reference standard devices, used in IEQ research, to determine suitability of low-cost sensors 

for applications in this space. The multimodal approach is constructed to measure a wide range of important IEQ factors.  

2 Related work 

Air quality, thermal comfort, sound/noise and light are the four most commonly measured factors of IEQ  [14], [15]. 

Low-cost sensors can be used to measure a range of data relating to those factors, but differences exist in the technologies 

and methods used to derive them [3]. This section will provide a rationale for the selection of low-cost sensors in the 

proposed multimodal device by comparing and contrasting to reference standards.  

2.1 Inclusion criteria: Sensor integration 

Cost and accessibility of IoT technology has resulted in a vast array of instruments. Many have a great deal of support 

(manufacturers and the IoT community of users [1]) where, e.g., hardware is supported by official code-libraries to 

expedite integration between sensors and microcontrollers [16]. Many libraries provide mechanisms to read and process 

sensor data, with minimal coding. In addition to low-cost, availability of libraries and functionality within was another 

inclusion factor within this study when selecting low-cost sensing instrument.  

2.2 Low-cost IEQ sensing  

Air quality: equivalent Carbon Dioxide (eCO2) and Volatile Organic Compounds (VOCs) 

Non-dispersal, infra-red (NDIR) sensors are most commonly used as the reference/gold standard for measuring Carbon 

Dioxide (CO2) [17]. However, sensors that measure eCO2 (known as equivalent or estimated CO2) are becoming more 

popular due to their low-cost (approx US$5-10) [1]. Yet eCO2 sensors are often used in place of CO2 sensors and 

incorrectly reported as CO2 [18]–[20]. 

eCO2 sensors use a heated Metal Oxide (MOx) semiconductor on which oxygen reacts with gasses to change the 

resistance, proportional to gas concentrations [21]. However, MOx sensors are highly sensitive to environmental 

conditions and a wide range of gases and pollutants, which can have a major influence on measurement accuracy [22].   

As the name suggests, eCO2 is not an actual measure of carbon dioxide but an estimation. The value is derived from a 

measurement of the Total VOCs (TVOCs), which describe the total concentration of organic, carbon-based compounds 

that evaporate into the air at room temperature [23]. There is a lack of clarity around what TVOC sensors actually 

measure and also little information about how the readings are calculated or whether readings/outcomes are standardised 

[24]–[26]. Algorithms that estimate TVOC values are typically implemented within the on-board microcontroller of the 

sensors and are often black boxed [3]. General assumptions are also made during the calculation of both TVOC and 

eCO2.  For example, TVOC sensors assume the primary source of VOC is from humans and validity can be questioned 

when measuring in environments where this is not case [24].  

Naepelt [27] provided transparent algorithms for eCO2/TVOC calculations, but they depend on knowing the 

proportion of human generated VOCs. For their calculations, they assert that human generated VOCs increase gradually, 

and VOCs released from aerosols or cooking increase rapidly. However, TVOCs are most commonly released by finishes 

and furnishings, especially those made using artificial materials such as solvents and adhesives [28]. As room 

temperature affects the concentration of such VOCs [23], it cannot be assumed that all artificial VOCs increase TVOC 

concentrations rapidly. Moreover, there can potentially be hundreds of VOCs within indoor air [29], so making 

assumptions based on one or two of the most volatile compounds is likely to have inaccuracies.  

Given the limitations of TVOC sensors, they will not be used as a measure of air quality in the proposed multimodal 

device. However, since eCO2 is often misrepresented as a measurement of CO2 [18]–[20], a MOx eCO2 sensor was 

selected for comparing eCO2 readings with readings from reference CO2 sensors. This was to identify whether eCO2 

readings have any correlation with CO2 concentrations and to understand whether it is suitable to use them in place of 

NDIR CO2 sensors. Thus, an AMS CCS811 (Table 1) was selected for our multimodal device as it is regarded as a 

reliable solution for measuring gas concentrations [30]–[32]. Consequently, a CCS811 breakout board was chosen as it 

provides an I2C interface and is supported by an official Adafruit Arduino code library [33]. 



3 | P a g e  

 

Air quality: Carbon Dioxide (CO2) 

High concentrations of CO2 can have a range of impacts on productivity and cognitive performance [34], It is therefore 

often used in work place IEQ studies. However, extremely high concentrations of CO2 are required before it becomes 

detrimental to health [34]. Thus, CO2  is often regarded as a poor indicator of Indoor Air Quality (IAQ) [35]–[37]. 

Nevertheless, it has become more commonly used in IAQ/IEQ monitoring as a proxy outcome for ventilation [37], [38]. 

Focus on CO2 sensors for ventilation monitoring has increased rapidly since the outbreak of the SAR-COV-2 pandemic 

[39], [40], to monitor the circulation of fresh air within buildings and to help stop the spread of the virus. This greatly 

increases their importance in IEQ monitoring and provides a need for monitoring solutions that can be deployed at scale. 

NDIR sensors set the standard for CO2 measurements [17] and technological advancements are driving a growing 

market of low-cost sensors that can also measure CO2 using the same NDIR technology [41]. Due to the complexity of 
NDIR components, even the lowest costing NDIR sensors (approx. US$20) is greater than the cost of most MOx sensors. 

However, the price range of low-cost NDIR CO2 sensors is much broader than MOx sensors. For example, a previous 
study [3] identified several low-cost, NDIR CO2 sensors that ranged from US$20 (MH-Z19, Winsen Electronics) to 

US$200 (CozIR, Gas Sensing Solutions), with most costing approx. US$100. Here, the MH-Z19 (Table 1) was the most 

viable option for use in the proposed multimodal device. Despite its low cost, the MH-Z19 is regarded as a reliable, 
stable and accurate sensor for CO2 measurement [42]–[44]. The MH-Z19 is supported by Dempsey’s Arduino library 

[45], which provides many functions for interfacing. Air quality: Particulate matter (e.g., PM2.5) 

PM2.5 is used to describe airborne particulate matter. The ‘2.5’ refers to particles that are up to 2.5μm (microns) in 

diameter. The term PM10 is also used to describe particles >2.5 microns, but <=10 microns. PM1.0 is used to describe the 

smallest range of particles (up to 1.0 microns), but is not standardised by global environmental protection agencies 

(EPAs) [46]. The current specification of the US EPA is that within no 24-hour period should PM2.5 exceed 35µg/m3 

[47].  

Measurement of particulates and the pollutants within them requires expensive equipment that collects particles in 

a filter and measures the weight increase using a Tapered Element Oscillating Microbalance (TEOM) [48]. Lower-cost, 

optical, sensing technologies can also be used to measure PM, but these cannot detect particles <0.25μm and can miss 

some sources of pollution such as a cooking that does not involve frying or heating oil [48].  

A previous review [9] identified the scientific potential of the FooBot Air Quality monitor, which uses a Sharp 

GP2Y1010AU0F (GP2YX) optical dust sensor [9]. Therefore, the GP2YX was selected for use in the low-cost 

multimodal device, but initial testing with the GP2YX produced erratic and highly inaccurate data. Alternatively, 

PlanTower sensors are often used in many commercial devices [48] and have been found to report data that correlates 

with reference equipment when measuring PM2.5 [49]–[51]. Therefore, a (PlanTower) PMSA003 (Table 1) sensor was 

selected here to measure PM2.5. The Adafruit PMSA003i variant of the sensor was chosen as it provides an I2C interface 

and an official Arduino code library to interact with the sensor [52]. 

Thermal comfort: Temperature and humidity 

Temperature and humidity have an influential role in IEQ monitoring as optical sensors that detect airborne particles and 

molecules (such as those used to measure CO2 and PM) can be highly impacted by thermal changes [53]. Therefore, 

many commercial devices include a temperature and humidity sensor to support and/or calibrate the primary sensors [3]. 

Hygrometers are commonly used to measure humidity and temperature simultaneously. Hygrometers are typically 

small (approx. 1cm2), low-cost (approx. $2-5) devices that output signals which can be read by analogue inputs on 

microcontrollers and processed with an Analogue-to-Digital Convertor (ADC). MEMS technologies are also used to 

measure temperature and humidity, providing a range of benefits over traditional hygrometers. For example, they are 

significantly smaller than analogue hygrometers (approx. 2mm2) and have integrated amplification and ADC circuitry.  

Given the role temperature and humidity play on other sensor technologies, there are a plethora of low-cost sensors. 

However, the Bosch BME280 (Table 1) sensor was chosen as it is a low-cost, multimodal, MEMS sensor that is used 

within healthcare applications [54]. Moreover, the sensor also captures barometric air pressure, which can also impact 

readings from optical sensors [53]. A BME280 breakout board was chosen as it provides an I2C interface and is supported 

by an official Adafruit Arduino code library [55]. 

Light: Ambient light intensity 

Light intensity can be a source of discomfort for occupants, causing distractions, eye pain and skin conditions [56]. There 

are two common approaches for measuring light intensity (in lux): (i) Light Dependant Resistor (LDR), that reduces the 

resistance across a circuit as light intensity increases [57] and (ii) photodiodes, which converts light intensity into an 

electrical current [58]. LDRs have a response delay between light exposure and resistance decrease, which can be a 

limitation in high frequency measurement [58]. Photodiodes can use filters to target specific frequencies bands in a light 

spectrum and can obtain more precise measurements across a broader range of light intensities compared to LDRs [59]. 

They are often incorporated into integrated circuits that contain amplification circuitry and an ADC [60]. This can 

provide more control of the output measurements.  Previous work examined the ROHM BH1750 photodiode sensor 

(Table 1) [1], where it was found to be highly correlative to research standard sensors. Thus, it was selected here for the 
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multimodal device. The BH1750 is also available as an I2C breakout board and was setup according to the installation 

instructions and code libraries provided with the sensor [61]. 

Sound/noise: Noise levels 

Microphones work by converting sound pressure into a linear electrical signal, meaning the latter directly correlates with 

the sound signal [62]. To measure loudness, decibels (dB) logarithmically scale to mirror human hearing sensitivity [63], 

[64]. Therefore, to measure dBs with a microphone, the output voltage from microphones is converted to the logarithmic 

dB scale. The complexity of the logarithmic calculation is highly dependent on the sensitivity of the microphone. Yet 

how the sensitivity of a microphone is determined is influenced by the selection of an analogue or a digital microphone.  

The voltage of analogue microphones typically needs to be routed through both a pre-amp and an audio codec that 

converts the analogue signal to digital using an ADC [65]. This three-stage approach can be affected by other circuitry 

and communication signals such as Wi-Fi and Bluetooth [66]. Therefore, it is often appropriate to use digital 

microphones, built using MEMS, as they have an in-built ADC that converts the signal directly from the microphone 

and is therefore not as susceptible to circuit noise [66].  

Since the microphone within the proposed multimodal device will be housed in close proximity to the 

microcontroller (WiFi and Bluetooth enabled), a digital MEMS microphone was selected to minimise interference [66]. 

The  InvenSense INMP441 (Table 1) microphone was chosen here, which is supported by Kostoski’s ESP32 library for 

I2S digital microphones [67]. This library is specifically designed for digital MEMS microphones and calculates A-

weighted decibel readings from MEMS microphones and provides the necessary filters and equalisation to do so, which 

are based on precalculated analyses conducted in MATLAB®.  

 
Table 1 – Low-Cost sensors used for development including min/max measurement thresholds and units that are measured  

Measure Instrument† Protocol Cost‡ Min Max 

TVOC (ppb) 

eCO2 (ppm) 
CCS-811 [24] I2C $5 

0 

400 

1187 

8192 

CO2 (ppm) MH-Z19B§ [68] UART PWM DAC $20 
0 

0 

2000 

5000 

PM2.5 (μg/m3) PMSA003i [69] I2C $16 0 500 

Temp (°C) 

Humidity (%) 
Pressure (hPa) 

BME280 [70] I2C $2 

-40 

0 
300 

85 

100 
1100 

Light (lux) BH1750 [71] I2C $1 1 65535 

Noise  
(dB SPL) 

INMP441 [72] I2S $2 33 120 

† Detailed technical specifications for each sensor (including voltage requirements, accuracies and working temperature/humidity) can be found within 
the referenced datasheets; ‡ All prices (rounded to the nearest USD) are taken from AliExpress.com (10 November 2020).; § The MH-Z19B supports two 

measurement ranges (0-2000ppm and 0-5000ppm) over the UART protocol only. 

2.3 Cloud connectivity 

IoT cloud computing is largely dominated by Amazon, Google and Microsoft [73], but there are hundreds more readily 

(low-cost/free) accessible platforms, many tailored for unique use cases [74]. Many IoT platforms provide free but 

limited functionality for testing and prototyping. Equally there are often hidden costs with these services that need to be 

considered before choosing platforms for production [1].  

Previously, ThingSpeak® [1] was identified as a fit-for-purpose IoT/Cloud platform when conducting IEQ 

monitoring. It is developed by the creators of MATLAB® and supports real-time transmission and visualisations of data 

from IoT devices and if required, Cloud-based analysis using MATLAB® code [1]. For the purposes of this study, the 

quota provided in the free package was enough to evaluate the feasibility of real-time transmission from the prototype, 

without any costs. ThingSpeak® also provides an official code library to transmit data from various microcontrollers to 

the Cloud. This meant that a simple interface could be created to encapsulate the data transmission function of the code 

library, meaning that ThingSpeak® could be easily switched out to different IoT platforms, if required. 

3 Reference devices 

3.1 Onset HOBO® MX1102 (CO2 and eCO2) 

The HOBO® MX1102 (Table 2) datalogger was selected to measure CO2 due to high accuracy at room temperature [75], 

[76]. Although not an IoT device, it has a large storage capacity and is able to gather data continuously for several months. 

Since eCO2 sensors will also be included in the multimodal device, to evaluate the validity of eCO2 readings, the HOBO® 

MX-1102 sensor was also used as a reference for eCO2 readings.  
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3.2 IQAir Air Visual Pro (PM2.5) 

Due to cost and complexity of reference standard PM monitoring equipment, where single units can cost several 

thousands of dollars [3], it was not possible to obtain a true reference within the budget of this study. However, a previous 

study [48] evaluated several lower-cost monitors  (defined as devices <US$300), concluding that those lower-cost 

monitors may be used to efficiently detect PM2.5 events. In that study, the validity of six low-cost, optical PM2.5 were 

examined against a TEOM, which measured the actual mass of dust particles. Of the sensors examined, two were 

available at the time of the study (Kaiterra: Laser Egg 2 and IQAir: Air Visual Pro). The ratio of both device 

measurements against the TEOM was ≤1:2 but for most test events the IQAir Air Visual Pro (AVP) reported closer to 

the true mass concentrations captured by the TEOM. Additionally, IQAir calibrate each device against a Grimm 11-A 

[48] sensor, which is commonly used as a research standard measure of PM2.5 [77]–[79]. Based on these findings, the 

AVP (Table 2) was selected as a PM2.5 reference for this study. 

3.3 Onset HOBO® MX1104 (Light intensity, temperature, humidity) 

An Onset HOBO® datalogger was also used as a reference standard to measure ambient light intensity. The MX1104 

(Table 2) features a similar interface to the MX1102 but measures light intensity alongside temperature and humidity. 

Like the MX1102, the MX1104 has large internal storage and is also highly accurate at room temperature. Temperature 

and humidity were validated against the HOBO® MX1104 as both HOBO® devices measure these factors, but (according 

to the manufacturer’s specifications) the MX1104 has a slightly higher accuracy for temperature and humidity than the 

MX1102. 

3.4 Air Pressure 

To validate results from the BME280’s air pressure sensor, data were compared to outdoor air pressure extracted from 

the weather.com API. The following endpoint was used to acquire data from the study location (Newcastle Upon Tyne, 

UK) during the sample period:  

 
https://api.weather.com/v1/location/EGNT:9:GB/observations/historical.json?apiKey=<API_KEY>&units=m&startDate=20201101&endD
ate=20201130.  

3.5 Omega HHSL-101 (noise levels) 

The Omega HHSL-101 (Table 2) sound level meter was selected as it has a similar dynamic range (100dB SPL) to the 

INMP441 (87dB). Many sound level meters are designed for real-time measurements, but to validate the INMP411 it 

was important that data could be logged, extracted and analysed. The Omega HHSL-101 logs with a decimal resolution 

(0.1dB) to internal storage, up to 32,000 samples. At 10 second (s) intervals, this is not a large amount of storage, but it 

enables data capture to run a comparative analysis. 

 
Table 2 – Reference devices used, with indicative costs, min/max measurement thresholds and units 

Measure Instrument† Cost‡ Min Max Units 

CO2 (ppm) 

Temp (°C) 

Humidity (%) 

Onset 

HOBO®  

MX-1102 [80] 

$595 

0 

0 

1 

5000 

50 

70 

ppm 

°C 

% 

Light (lux) 

Temp (°C) 

Humidity (%) 

Onset 

HOBO®  

MX-1104 [81] 

$185 

0 

-20 

0 

167,731 

70 

100 

lx 

°C 

% 

PM2.5 (μg/m3) 

CO2 (ppm) 

Temp (°C) 

Humidity (%) 

IQAir Air Visual Pro [82] $269 

0 

400 

-10 

0 

1,798 

10,000 

40 

95 

μg/m3 

ppm 

°C 

% 

Noise  

(dB SPL) 

Omega  

HHSL-101 [83] 
$149 30 130 dB SPL 

† Detailed technical specifications for each sensor (including voltage requirements, accuracies and working temperature/humidity) can be found within the 
referenced datasheets; ‡ All prices (rounded to the nearest USD) are taken from the manufacturer’s websites via Google Shopping - with the region set to 

United States (10 November 2020). 

4 Multimodal device architecture 

4.1 Hardware development 

For testing, three multimodal devices were constructed to test low-cost devices/sensors against reference standards, and 

to test inter-sensor reliability. The low-cost sensors were connected to a Heltec Wi-Fi Kit 32 ESP32 microcontroller on 
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a solderless breadboard (Figure 1). Additional schematic diagrams and detailed breadboard configurations have also 

been included in the supplementary material. 

 
Figure 1 - Low-cost sensors collecting data alongside reference devices. Including a closeup image to show the breadboard configuration. 

The Heltec was selected as it included Wi-Fi for Cloud (Figure 2) communication and a built-in OLED display for real-

time feedback. The specifications for the Heltec also made it a suitable choice for the intended application as the included 

communication interfaces (3x UART; 2x I2C; 1 x I2S) can support a simultaneous connection to all sensors. Despite its 

size, the Heltec also has 3V and 5V output, when powered with USB, meaning it can power the MH-Z19B without 

additional voltage boosting circuity.  

 
 Figure 2 - Schematic diagram for multi-modal IEQ sensor device. 

A mix of the Arduino IDE and Visual Studio Code (with the Arduino extension) were used to program the ESP32 

with C++ code. The ESP32 can be programmed with both Arduino code and Micro Python code, but the Arduino 

workflow was chosen because of its maturity and wider support for sensors. 

4.2 Reading CO2  data via UART  

The MH-Z19B outputs data via Pulse Wave Modulation (PWM) Digital Analogue Conversion (DAC) or  Universal 

Asynchronous Receiver-Transmitter (UART). UART was selected as it enabled the read/write of byte commands to 

request and receive data, which facilitates a range of additional functionality, Table 3. These commands also allow the 

device to be configured to utilise the full measurement range of the sensor (0-5000ppm).  

To read CO2 data from the MH-Z19B a byte command is first sent to the sensor’s microcontroller. After processing, 

the MH-Z19B sends data back to the requester as a return byte command. These commands will be sent as Byte3 when 

sending a command to the sensor and returned as Byte2 when receiving data from the sensor, Table 3. 
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Table 3 - MH-Z19B UART Commands 

Action Byte0 Byte1 Byte2 Byte3 
Byte 

4 – 7 
Byte8 

Send  

Command 
0xFF 0x01 CMD† 0x00 0x00 0x79 

Receive 

Command 
Start CMD† 

High 

Level 

Low 

Level 
- Check  

† UART Byte commands available on the MHZ19B - 0x78: Recovery 

Reset; 0x79: ABC Mode ON/OFF; 0x84: Raw CO2; 0x85: Temp float; 

0x86: Temp integer; 0x87: Zero Calibration; 0x88: Span Calibration; 

0x99: Range; 0x9B: Get Range; 0x9C: Get Background CO2; 0xA0: 

Get Firmware Version; 0xA2: Get Last Response; 0xA3: Get Temp 

Calibration. 

The MH-Z19B uses Automatic Baseline Calibration (ABC), enabled by factory default, that calibrates 400pm to the 

lowest measured PPM in the last 24-Hour cycle. The sensor also supports zero-point calibration, whereby the sensor can 

be manually set to 400ppm. Manual calibration was done to all MH-Z19B sensors on the first connection, due to high 

initial output values. To do this, sensors were connected to a microcontroller and placed outdoors. After exposing the 

sensors to 400ppm for 20 minutes (mins), the zero-point calibration was set by connecting the Hd pin to GND on each 

sensor for approx. 7s.  

4.3 Reading PM, temperature, humidity and ambient light intensity data via I2C 

Four sensors communicated with the microcontroller via an I2C bus, Table 1. This was chosen because it is a serial 

communication protocol that uses a two-wire interface: (i) the Serial Data (SDA) wire sends data across the bus, and the 

(ii) Serial Clock (SCL) wire synchronises communication between the master (microcontroller) and slaves (sensors) [84]. 

As the protocol requires two wires only to form the serial bus, it is optimal in microcontroller applications. Thus, it has 

become standardised for ARM microcontrollers [85]. Moreover, the ability to read from multiple sensors from a single 

two-wire bus makes this protocol extremely useful for multimodal devices [86].  

Each I2C slave communicates on its own unique I2C address. Some sensor manufacturers develop sensors with 

multiple I2C buses to allow more than one of the same slaves to communicate with an I2C master. Addresses for CCS811 

and BH1750 can be changed with a software modification, typically by specifying the address, when declaring a new 

instance of sensor within a code library. However, the BME280 requires a hardware modification to switch addresses. 

On the front of the breakout board there are three solder points (i.e. jumpers). If no jumpers are joined, (or the two left-

most jumpers are joined) the device defaults to address 0x76. However, if the two right-most jumpers are soldered the 

address is changed to 0x77. I2C multiplexors can also be used which have separate busses for communicating with 

sensors. Each bus works the same way as the I2C bus on an MCU, in that multiple devices can be connected if there are 

no address conflicts. However, each bus of the multiplexor has its own access address and each bus is separated from 

one another [87]. This means that address conflicts can be resolved by connected devices with conflicts to separate 

busses. For this study, there were no I2C address conflicts in the multimodal device. Consequently, multiplexors were 

not required and the default addresses for each sensor were used. 

4.4 Reading noise data via I2S 

To calculate the Sound Pressure Level (SPL) in dB with a microphone, a logarithmic calculation is required: 

𝑑𝐵 = 20 × 𝑙𝑜𝑔10 (
𝑆𝑅𝑀𝑆
𝑟𝑒𝑓

) ⁡ (1) 

Where SRMS is the root mean squared of the samples captured by the microphone over a given sample period (e.g., 

1000ms) and ref is the peak amplitude of the microphone. To calculate SRMS, Kostoski’s library first applies equalisation 

and filtering to the samples and calculates the sum of squared, weighted samples: 

𝑆𝑤 =⁡∑𝑦2
𝑁

0

 (2) 

Where N is the number of samples captured in the sample period and y is the samples after weighting and equalisation 

have been applied. The sum of samples is then used to calculate the SRMS:  
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𝑆𝑅𝑀𝑆 = ⁡√
𝑆𝑤
𝑁

 (3) 

To calculate the peak amplitude (ref, Eq. 1) the sensitivity of the microphone must first be calculated. For digital 

microphones, the sensitivity of the microphone should be pre-specified in the microphone’s datasheet and is calculated 

as: 

𝑆𝑒𝑛𝑠𝑑𝐵𝐹𝑆 =⁡𝑑𝐵𝑅𝐸𝐹 −⁡𝑑𝐵𝑀𝐴𝑋 (4) 

Where dBREF is 94dB (equivalent to 1 Pascal), and dBMAX is the maximum acoustic input for the given microphone. For 

the INMP441, the specified maximum acoustic input is 120dB (Table 1) so the resulting sensitivity is -26dBFS. 

Once sensitivity is calculated, it is then used to calculate the peak amplitude of the microphone that is used as the 

ref, Eq (1). The INMP441 datasheet [72] specifies that the peak amplitude for this microphone is calculated as: 

𝑟𝑒𝑓 = (2(𝑏𝑖𝑡𝑟𝑎𝑡𝑒−1) − 1)⁡×⁡(10(𝑑𝐵𝐹𝑆 20)⁄ ) (5) 

Since the INMP441 transmits data via a 24-bit I2S interface [72], the peak amplitude of the microphone therefore maps 

to 420,426 discreet digital values. 

5 Methods 

5.1 Data acquisition and connectivity 

All data from low-cost sensors were read and processed by a HELTEC ESP32 Wi-Fi microcontroller (a dual-core 

microcontroller with Wi-Fi, Bluetooth, Bluetooth Low Energy (BLE) and an integrated Liquid Crystal Display (LCD) 

display). A reading for each sensor was collected every 15s and data were written to ThingSpeak®, which allows up to 

eight sensor readings (per channel) to be written to the Cloud simultaneously. The data/channel quota included with a 

free subscription was suitable to test the prototype and conduct validation of sensors in each device.  

5.2 Data processing 

The intervals between measurements, for each device (low-cost and reference), were determined from when the devices 

were initially configured to initiate logging. Therefore, it was not possible to synchronise the sample rate across devices. 

Consequently, there was a need to resample data extracted from the measurement instruments to ensure they were 

comparable. A series of steps were undertaken for data processing and analysis (Figure 3). 

 
Figure 3 - Data processing methods 

Resampling (excluding noise level data) 

A sample rate of 1min was chosen for resampling to reduce the amount of interpolated data in the final dataset. Since 

the sample rate of the reference standard sensors was 5mins this meant up-sampling all reference standard sensors by 
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interpolating the values for the missing intervals. This was done using the pre-processing package from the Sci-Kit Learn 

library for Python, using a linear interpolation method. Conversely, down-sampling was required to resample sensor data 

from low-cost sensors, which captured sensor readings with a 15s sample rate. Sci-Kit Learn was also used to resample 

those data, but the mean function was used on the data series to calculate the mean for each 1min period.  

Missing data 

After resampling data, the rows which contained missing data were dropped using the Pandas’ Dropna function so that 

a bivariate analysis could be performed on any two columns without conflicts. A dataset was created that contained a 

total of 15,828 samples. Those data were combined into a single Pandas DataFrame for processing. (Since there were 

many gaps in the HHSL-101 data, due to the three-day reconfiguration cycle, noise data from the HHSL-101 and 

INMP441 were not included here). 

Noise level data 

INMP441 data were combined with HHSL-101 data separately using the same methods used for other sensors. Data 

were resampled with a 10s sample rate and the resulting dataset contained 47,602 samples that were also combined into 

a single DataFrame.  

Analytical and statistical procedures 

To analyse both data sets, Pandas was used in conjunction with Matplotlib, Seaborn, Sci-Kit Learn, Pingouin and the 

Statsmodel API libraries for Python. Pandas was used to provide descriptive statistics and to process datasets 
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(resampling, missing data removal, Pearson correlation statistics and data aggregation). The Seaborn library was used in 

conjunction with Matplotlib to create plots and visualisations and, finally, Sci-Kit Learn, Pingouin and the Stats Models 

API performed agreement analysis (Intraclass Correlation Coefficients (ICCs), and Bland-Altman) on bivariate pairs. 
Correlation and agreement (absolute and consistency) of each low-cost sensor was validated against reference 

devices. ICC estimates and their 95% confidence intervals were calculated using the Pingouin v0.3.9 [88] library for 

Python. ICCs were used to assess the reliability of sensor data taken from low-cost sensors against reference devices 
[89]. Predefined acceptance ratings for ICC were: excellent (>0.900), good (0.750–0.899), moderate (0.500–0.749) and 

poor (<0.500) [89]–[91].  
The Two-Way Random-Effects Model, against a single rater (ICC2,1), was used to determine the reliability of 

randomly chosen low-cost sensors [90]. In this model, the low-cost sensors were evaluated to test the absolute agreement 

between measurements from each low-cost sensor against the reference device/sensor. This model can be used to 

generalise findings and evaluate the potential reliability of other sensors (from the same manufacturer) [90]. For example, 

here we selected three low-cost BH1750 light sensors, and can use ICC2,1 to determine the potential reliability of other 

BH1750 sensors.  

The Two-Way Mixed-Effects Model, against a single rater (ICC3,1), was used to assess the reliability of this specific 

sample of sensors [90]. In this model, the consistency of each low-cost sensor is evaluated against a reference. Since this 

model focuses specifically on the sampled low-cost sensors, the results cannot be generalised to other similar low-cost 

sensors, even if they share the same characteristics [90]. For example, the consistency of the three BH1750 sensors can 

be evaluated, but the results cannot be used to determine the consistency of other BH1750 sensors. 

Table 4 - Results of sensor validation study 

Src Dev†  Descriptive Statistics 
P'son 

Corr  
Agreement (Bland-Altman) ICC§ 

  Mean Std 50% 75% Max  Mean Dif Std LoA‡ ICC2,1 ICC3,1 

eCO2 

(ppm) 

CCS811 

ESP_A_eCO2 652.01 353.28 552.88 727.5 7899 0.38 -50.87 244.54 479.29 
0.79 

[0.49 - 0.9] 

0.89 

[0.88 0.89] 
ESP_B_eCO2 932.83 549.25 769.33 1052.38 7992 0.38 268.57 474.5 930.01 

ESP_C_eCO2 964.95 520.06 779 1077.38 7632.75 0.36 311.39 456.52 894.79 

Ref: MX1102 700.43 178.35 678.7 866.8 999 - - - - 

CO2 

(ppm) 

MH-Z19 

ESP_A_CO2 574.03 132.13 564 693 1260 0.97 -138.86 66 129.36 
0.72 

[0.1 - 0.9] 

0.95 

[0.95 - 0.96] 
ESP_B_CO2 748.38 144.28 743 873.75 1485.67 0.95 39.22 64.64 126.7 

ESP_C_CO2 632.84 185.49 617.67 793.25 1611 0.96 -67.52 48.77 95.58 

Ref: MX1102 700.43 178.35 678.7 866.8 999 - - - - 

PM2.5 

(μg/m3) 

PMSA003i 

ESP_A_PM25 4.92 17.19 0.00 2.33 414.67 0.23 3.37 20.15 39.50 
0.99 

[0.97 - 0.99] 

0.99  

[0.99 - 0.99] 
ESP_B_PM25 5.49 17.89 0.33 3.00 405.00 0.24 3.99 20.56 40.30 

ESP_C_PM25 5.61 17.79 0.75 3.33 351.75 0.24 4.24 21.58 42.30 

Ref: IQAIR AVP 3.75 10.81 1.50 3.00 340.40 - - - - 

Temp 

(°C) 

BME280 

ESP_A_TEMP 24.86 0.73 24.80 25.51 26.63 0.97 3.64 0.16 0.31 
0.75 

[0.08 - 0.91] 
0.98 

[0.98 - 0.99] 
ESP_B_TEMP 25.50 0.87 25.47 26.29 27.44 0.94 4.30 0.29 0.57 

ESP_C_TEMP 24.59 0.79 24.57 25.29 26.39 0.96 3.39 0.21 0.40 

Ref: MX1104 21.22 0.70 21.20 21.83 22.88 - - - - 

RH 

(%) 

BME280 

ESP_A_RH 37.13 3.75 37.35 39.83 50.94 0.99 -10.84 1.14 2.24 
0.89 

[0.19 - 0.97] 

1.00 

[1.0 - 1.0] 
ESP_B_RH 36.32 3.58 36.51 39.01 49.74 0.98 -11.67 1.42 1.42 

ESP_B_RH 39.22 3.85 39.38 42.05 54.13 0.99 -8.78 1.10 2.16 

Ref: MX1104 47.93 4.79 48.34 51.44 64.96 - - - - 

Air Prs 

(hPa) 

BME280 

ESP_A_PRS 992.14 11.81 992.69 1003.36 1011.06 1.00 -4.13 0.45 0.88 
1.00 

[0.94 - 1.0] 
1.00 

[1.0 - 1.0] 
ESP_A_PRS 991.97 11.84 992.48 1003.20 1010.97 1.00 -4.30 0.43 0.85 

ESP_A_PRS 992.95 11.81 993.51 1004.12 1011.90 1.00 -3.32 0.45 0.89 

Ref: Weather API 996.25 12.03 996.37 1007.27 1015.19 - - - - 

Light 

(lux) 

BH1750 

ESP_A_LUX 11.07 23.79 0.00 15.00 294.00 0.95 -4.29 6.04 11.84 
0.98 

[0.91 - 0.99] 

0.99 

[0.99 - 0.99] 
ESP_C_LUX 13.39 23.97 3.00 18.00 300.50 0.95 -1.92 5.59 10.96 

ESP_C_LUX 8.15 21.86 0.00 9.00 275.25 0.93 -7.71 8.08 15.83 

Ref: MX1104 14.45 25.88 4.31 22.04 269.84 - - - - 

Noise 

(dB SPL) 

INMP441 

ESP_A_SOUND 45.17 8.86 42.49 51.57 92.01 0.51 -1.48 6.49 6.49 

0.73 

[0.68 - 0.77] 

0.73 

[0.69 - 0.78] 
ESP_B_SOUND 46.63 8.21 44.00 52.17 84.49 0.49 0.04 6.65 13.04 

ESP_C_SOUND 45.07 9.33 42.76 52.13 85.66 0.51 -1.05 7.81 15.31 

Ref: HHSL_101 45.42 5.82 43.20 47.30 102.90 - - - - 

† Device: Ref = reference device, ESP_{device}_{Measure} labels refer to the labels used in the dataset to identify multimodal devices; ‡ Limit of 

Agreement: from Bland-Altman analysis; § ICCs: reported with 95% Confidence Intervals that are displayed as [Lower – Upper] bounds. The bounds define 

a range where there is a 1 in 20 chance the true mean should exist. Thus, wider ranges or a low upper-bound indicates a lower reliability. 
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Data visualisation 

To improve clarity of bivariate visualisations, datasets were resampled to a 1-hour frequency before plots were generated, 

Figure 3. Bivariate line plots and regression plots were generated to visually inspect data pairs. Finally, the Statsmodel 

API was used to calculate the mean difference statistics for each data pair. These mean differences were then plotted to 

Bland-Altman plots, using the Statsmodel Graphic Utilities, to quantify agreement between each data pair [92].  

5.3 Sensor deployment 

All devices (low-cost multimodal and reference) were placed next to each other on a (165cm high) shelf within an office, 

above a computer desk (Figure 4). The office (located in Newcastle Upon Tyne, UK) was a south-facing shared office, 

occupied by two people. Occupants had control over the windows, blinds and heating and the core operating hours were 

typically between 8am-6pm, Monday to Friday. The position of the shelf meant that no direct light from computer 

monitors was able to enter the light sensors, so light captured was a mixture of natural daylight and ambient artificial 

lighting from LED bulbs. Except for the reference sound level meter (Omega HHSL-101), all devices logged sensor 

readings continuously between 1st – 30th of November 2020. However, the storage capacity of the HHSL-101 meant that 

data were downloaded, and the sensors reconfigured every three days. 

 
Figure 4 - Layout of office showing placement of windows, doors, artificial light sources and radiators. 

5.4 Reference standard setup 

All reference standard equipment stored data locally and data were downloaded at the end of the study via the proprietary 

interfaces. Both HOBO® devices recorded from each of their internal sensors every 5min and stored data internally. Data 

were then downloaded using the HOBOMobile app.  

The AirVisual Pro provides a Server Message Block (SMB) interface. This allows a user to connect to the device, 

via an IP address, to obtain the stored data files, which are stored in .CSV format. The device has the capability of storing 

data in the Cloud that can be accessed using the IQAir dashboard. However, to obtain data from the Cloud, a paid 

subscription is required.  

The HHSL-101 also requires use of an application (Omega’s Sound DataLogger) to initialise, record and download 

data. However, this application is only available for Microsoft Windows (XP or greater). The sample rate for the HHSL-

101 was set to 10s. From options available, that was the closest to the sample rate of the low-cost multimodal device. At 

the chosen sample rate, the HHSL-101 was able to capture data for three days only. Therefore, multiple sample periods 

from this device were conducted throughout November 2020. 
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6 Results 

Due to the number of sensors being evaluated, it is not possible to provide a complete set of data and visualisations. 

Consequently, a summary of data is presented (Table 4) while data and visualisations used to inform the analysis are 

included in the online supplementary material. 

6.1 Equivalent carbon dioxide (eCO2) 

The MOX eCO2 sensors had a poor correlation with the reference (≤0.38) and divergence between measurements can 

be seen across all percentiles, Table 4. When approaching the upper limits of measurements, the measured values are 

approx. 7000ppm greater than the reference CO2. There is also little commonality across the mean values and the standard 

deviations are significantly large. Despite the significant difference in reported values, the MOx sensor data did mostly 

rise and fall at the same time as the CO2 reference sensor (Figure 5). 

ICC2,1 were good (0.79) with broad confidence intervals (0.41 difference between lower and upper bounds). ICC3,1 

were also good (0.89) but with much narrower confidence intervals (0.01 difference). However, eCO2 sensors had 

significantly large mean differences against reference CO2 sensors and had and had a larger LoA (between 350-900ppm) 

than the NDIR CO2 sensors.  

 

 

 
 

Figure 5 – Snapshot of eCO2 vs CO2 events captured by CCS811 (blue) and MX1102 (orange) 

6.2 Carbon dioxide (CO2) 

CO2 measurements across all low-cost sensors were found to strongly correlate with reference data (≥0.95). Low-cost 

CO2 sensors appear to generally agree across the lower percentiles but diverge above the 75th percentile. NDIR CO2 

sensor data were closer to the reference data than eCO2 sensors and had a similar precision to the reference (Figure 6).   

 

 
Figure 6 – Snapshot of MH-Z19B CO2 sensor (blue) vs reference MX1102 CO2 sensor (orange) 
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ICC2,1 were moderate (0.72), but the confidence intervals were broad (0.8 difference between lower and upper 

bounds) indicating that other sensors of the same manufacturer and model may have a higher variability than the sensors 

sampled here. Contrastingly, ICC3,1 were excellent (0.95), with a high and narrow confidence interval (0.1 difference 

between lower and upper bounds). However, the Limit of Agreements (LoAs) were large across all low-cost devices. 

That notwithstanding, all CO2 sensors (including the reference) have a high standard deviation (between 132 - 186), 

which may have impacted the LoA.   

6.3 Particulate matter 

Low-cost PM2.5 were found to have poor correlations (≤0.38) to the reference standard. However, there was little 

divergence across the percentiles. Despite the low Pearson correlations, the low-cost sensors had excellent ICCs for both 

ICC2,1 and ICC3,1 (both 0.99). There was also very narrow range between the lower and upper bounds of the confidence 

intervals (>0.02). This indicates that that there is good inter-sensor reliability.  

There was a significantly low mean difference (between 2 – 4), but relatively high LoAs were seen across the low-

cost sensors (≥35µg/m3 more than the reference mean). However, the Bland-Altman analysis (Figure 7) highlights that 

there is a significantly strong agreement between the low-cost and reference sensors during events where dust 

concentrations are lower. As the dust concentrations increase, the agreement between sensors is reduced, which is likely 

causing the low correlations. While low-cost PM2.5 monitoring devices are considered effective indicators of PM2.5 events 

[48], it is possible that the optical technology used in low-cost PM2.5 is not suitable for accurately determining higher 

concentrations of particulate matter. However, for longitudinal monitoring of IEQ, optical sensors could provide a fit-

for-purpose indicator of PM2.5 events despite not being able to accurately report values when concentrations exceed 

around 15µg/m3
.
  

 

 
Figure 7 – Bland-Altman plot of PMSA003i means against the Air Visual Pro 

6.4 Temperature, humidity (and air pressure) 

The multimodal sensor for measuring temperature, relative humidity and air pressure performed well across all 

measurement factors and were found to have significantly high correlations with the selected reference (≥0.94). While 

the mean values measured by low-cost sensors did not exactly match the reference means, the values did not diverge 

through the percentiles and measured with consistent precision (around 3-4°C mean difference, Figure 8). 
 

 
Figure 8 – Comparison of low-cost BME280 temperature sensor (blue) against MX1104 reference (orange). 
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Like CO2, the ICC2,1 for temperature were good (0.75), but with broad confidence intervals (0.83 difference between 

lower and upper bounds). However, ICC3,1 values indicate excellent reliability among the sample (0.9), with 0.01 

difference between the confidence bounds. The BME280 also had the lowest observed LoAs (≤2.3) across all the 

evaluated sensors.  

6.5 Light 

Light sensors also performed well against the reference. Low-cost sensors performed consistently across the percentiles 

and had significant correlations (≥0.93). Mean values and standard deviations agreed with the reference device. Although 

mean values for light-intensity were lower than expected, it is noted that  office users had control over the blinds so were 

able to mitigate glare (and as such control light intensity) from south-facing windows. 

Light sensors were excellent for both ICC2,1 (0.98) and ICC3,1 (0.99), with high, narrow confidence intervals for 

both, (≥0.90 with ≤0.08 difference across the lower and upper bounds). This suggests that other sensors of the same 

manufacturer and model should have similarly low variability across devices. 

6.6 Noise 

The correlation of noise sensors was approx. 0.50, mildly significant. However, the descriptive statistics agreed with the 

reference device.  

LoAs were also found to be relatively low (≤15.5dB) and the ICCs for both ICC2,1 and ICC3,1 showed moderate 

reliability (0.73), with only 0.09 difference between the lower and upper bounds for both ICCs. This indicates good inter-

sensor reliability. The sensors also performed consistently across all percentiles showing the lowest recorded mean 

difference against the reference (≤1.48). 

7 Discussion 

This study proposed and developed a multimodal IEQ monitoring device to achieve scalable and individualised IEQ 

monitoring. A background of related work was presented to identify a range of sensors and technologies used to construct 

and configure a low-cost, IoT enabled device. A detailed analytical study compared variations across low-cost sensors 

and a comparison to reference standards.   

7.1 MEMS sensor selection 

Use of I2C MEMS sensors meant that fewer General-Purpose Inputs/Outputs (GPIOs) were required on the 

microcontroller. As a result, smaller microcontrollers with less GPIOs could be used. Moreover, selected MEMS sensors 

had integrated ADCs negating the requirement for a microcontroller with a high resolution ADC, which can be more 

costly [1]. Also, using a digital I2S MEMS microphone meant that the proximity with WiFi and Bluetooth components 

(required by a small form-factor, multimodal, IoT device) would not interfere with the microphone’s performance.  

Use of MEMS sensors did identify certain drawbacks. For example, many MEMS sensors (e.g., CCS811, BH1750, 
BME280) have built-in controllers that enable the ADC conversions and signal processing. However, this can often result 

in a sensor that performs ‘hidden’, black boxed algorithms on data, which can be problematic in research settings where 

transparency is key. Understanding, e.g., how the CCS811 calculates TVOC and eCO2 could be beneficial to researchers 

and help to better assess calculation validity or to develop algorithms against the unreported raw data.  

7.2 Sensor performance 

ICC2,1 indicated good-to-excellent reliability for all sensors. However, the range between lower and upper bounds 

of the 95% confidence intervals was as much greater in some cases (CO2: 0.9; Temperature: 0.83). This indicates that 

the sensors sampled here cannot be used to determine the reliability of other sensors with the same characteristics. 

Most sensors however (MH-Z19, PMSA003i, BME280, BH1750) had excellent ICC3,1 (≥0.95) with a 95% 

confidence range of 0.01 between the upper and lower bounds. This indicates that this sample of sensors had excellent 

inter-sensor reliability. The sound and eCO2 sensors did not perform as well, but ICC3,1 were still good (0.89) with a 

95% confidence range of 0.01 between the upper and lower bounds.  

Accuracy and precision 
This study confirmed findings [3] that low-cost sensors can often have high precision, but with a reduced accuracy. A 

clear misalignment between the two datasets (i.e., low accuracy) was found, but the low-cost sensor responded with the 

same precision as the reference. This was not the case for all sensors, but CO2, Temperature, Relative Humidity, Air 

Pressure and Light all had high precision. 

Due to the high precision, it is possible to calibrate the devices against the mean difference between the low-cost 

sensor and the reference. However, since light intensity dropped to 0lx at night, adjusting against the mean difference 

alone would result in negative values, so measurement ranges need to be considered when calibrating sensors. 
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7.3 Ventilation sensors for air quality 

Here, MOx eCO2 sensor data was erratic, when compared against actual CO2 measurements. Reported values from the 

MOx sensors did mostly rise and fall at the time as the CO2 reference sensor, but the reported values for eCO2 were often 

far greater than the reference. Since MOx sensors are highly sensitive to a range of environmental factors [22], It is 

possible that these sensors are responding to the accumulation of unventilated air (as opposed to actual CO2). In this 

way, they may be useful as proxies for ventilation measurement in the same way CO2 sensors are used [37], [38]. 

More research is required to assess whether eCO2/TVOC sensors are fit-for-purpose in ventilation monitoring. 

However, they could provide an affordable and scalable solution (compared to NDIR CO2 sensors) to address the 

growing need for ventilation monitoring brought on by the SARS-COV-2 pandemic. Therefore, there are strong practical 

implications for identifying eCO2/TVOC sensors as proxies for ventilation.  

If eCO2 sensors are found to be suitable for indoor ventilation monitoring, it would be preferable to report data from 

these sensors with more appropriate terminology, as the eCO2 terminology implies the measurement is related to carbon 

dioxide, which cannot be confirmed by this study.  

7.4 Cloud connectivity 

The use of ThingSpeak® in this study was beneficial as it provided an IoT platform to capture data in real-time, without 

needing to connect to devices or download data from internal storages. This was advantageous as it meant a sample 

could be downloaded during the data collection phase and used to develop code needed for analysis, reducing the 

workload at the end of the project. ThingSpeak® also allowed for real-time monitoring of the data, providing graphs and 

visualisations. While the platform was previously deemed currently unsuitable for real-time medical monitoring [1], this 

study confirmed that it is suitable for prototyping/small scale IEQ monitoring projects. The platform is also scalable and 

provides a clear pricing calculator so project costs can be easily projected. However, the quota strategies used by larger 

Cloud computing platforms (e.g., Amazon Web Services) may be better suited for larger projects as resources can be 

shared and distributed amongst multiple devices more easily [1]. It is also worth noting that the IoT cloud platform 

market is rapidly growing and there are more than 600 dedicated platforms available, each designed with nuanced use-

cases [1], [74]. It is recognised here that while ThingSpeak® was suitable for this study, the quotas and limitations it 

imposes may create a requirement for researchers to conduct an analysis of the IoT platform market to assess available 

platforms. 

7.5 Limitations 

Only three low-cost multimodal devices were examined in this study. With more resources, more devices could have 

been examined, which would have provided a greater sample size for ICC analyses. While three sensors is enough to 

conduct a reliability study, a greater number of sensors would reduce the potential lack of variability between sensors, 

which may impact ICC estimations [90]. 

All devices were connected to a premium residential network package (Virgin Media, Reading, UK). However, on 

occasions during the study period the internet was heavily interrupted, which caused the devices to disconnect and 

resulted in lost data. Regardless, there was ample data to conduct an informed analysis and comparison of all sensors. 

The measurement ranges captured by sensors in this study were measured under normal operating conditions so 

there was no necessity to test the upper/lower limits of the sensors (i.e. at extreme conditions). Therefore, it was not 

possible to evaluate the LoA for sensors in those ranges. Nevertheless, Bland-Altman analyses did highlight (for sensors 
that approached upper office comfort limits) that LoAs did diverge as values increased (Figure 7). Researchers wishing 

to use these sensors under more extreme conditions should be mindful of this and further evaluate the sensors under the 

desired measurement conditions.   

7.6 Future Work 

The affordability and multimodality of the device proposed here identifies a scalable solution for occupant monitoring 

that can provide a guidance around IEQ in buildings. Future work should exploit the affordability of these sensors to 

deploy multimodal devices for longer periods of time (i.e. continuously) and address the needs for localised monitoring 

of building occupants, by deploying sensors at an individual level to understand the IEQ variability in multi-occupant 

spaces. This could  be beneficial to understanding health and wellbeing of building occupants, but it could also add more 

spatial density to environmental monitoring, which could have pragmatic implications to the operation of buildings. For 

example, building management systems could make use of the spatially dense data captured from localised monitoring 

solutions, which could be used to inform the operation, and evaluate the performance of e.g., HVAC systems and other 

building services. Future work should also aim to identify calibration offsets that can be applied to individual 

measurement factors to account for poor accuracy and to ensure the validity of sensors using determined offsets. 

8 Conclusions 

Sensors used in this study would be suitable for continuous monitoring to provide building occupants with an indication 

of environmental quality and changes. Despite inaccuracies in certain sensors, the high precision witnessed means that 
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in most cases the sensors can be calibrated easily against the mean differences recorded in this study. However, the 

ICC2,1 showed that the variability of sensors seen in this study may not be representative of other sensors with the same 

make/model. Therefore, with the findings from this study alone, it would not be possible to provide a general calibration 

offset that would be applicable for other sensors.  

In certain cases, it may be preferable to report data from sensors as a red/amber/green system instead of using the 

numerical output. For example, eCO2 was found to be unsuitable as a measurement of carbon dioxide but showed 

potential as a proxy measure for ventilation. While further research would be needed to confirm this, reporting data as 

Parts Per Million, the unit of measurement for CO2, may not be applicable for this application. 

Given the potential accuracy biases found in this study, it would not be possible to ensure the scientific validity of 

the sensors for use in applications such as occupational health assessments or standard compliance. However, the 

intended use-case for the devices proposed here is to provide building occupants with a general indication of 

environmental changes. For this application, this study found evidence that the specific sensors sampled in this study are 

fit-for-purpose. Consequently, the multimodal device developed here could provide a viable solution for localised, 

continuous monitoring that could be pragmatically deployed at scale.  

9 Data  

Additional data and visualisations used in this study are available via online supplementary material. 
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