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Abstract. Let S = (G, σ) be a signed graph of order n and size m and let t1, t2, . . . , tn be the

eigenvalues of S. The energy of S is defined as E(S) =
n∑
j=1

|tj|. A connected signed graph is said

to be unicyclic if its order and size are same. In this paper, we characterize, up to switching, the

unicyclic signed graphs with first 11 minimal energies for all n ≥ 12. For 3 ≤ n ≤ 7, we provide

complete ordering of unicyclic signed graphs with respect to energy. For n = 8, 9, 10 and 11, we

determine unicyclic signed graphs with first 13 minimal energies respectively.
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1 Introduction

Let S = (G, σ) be a signed graph of order n, where G = (V,E) is its underlying graph and

σ : E → {−1, 1} is its signature. Let A be the adjacency matrix of S. In a signed graph, a cycle

is said to be positive if it contains an even number of negative edges, and negative, otherwise.

A signed graph is said to be balanced if all its cycles are positive. For undefined terms related

to signed graphs, we refer to [1]. The characteristic polynomial P (S, x) of S is the characteristic

polynomial of its adjacency matrix A and is given by

P (S, t) = det(tI − A) =
n∑
r=0

ar(S)tn−r,

with

ar(S) =
∑
l∈Lr

(−1)k(l)2|c(l)|
∏
X∈c(l)

Z(X), (1.1)
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where Lr denotes the set of all linear signed subgraphs (also known as basic figures) on r

vertices, k(l) denotes the number of components in l, c(l) denotes the set of cycles in l and

Z(X) =
∏
e∈X

σ(e) is the sign of X. Let S be a signed graph with vertex set V . For any X ⊆ V ,

let SX denote the signed graph obtained from S by reversing the signs of the edges between

X and V − X. Then, we say SX is switching equivalent to S. Here we note that switching is

an equivalence relation and preserves the eigenvalues including their multiplicities. We use a

single signed graph as representative of a switching class. Germina et al. [2] defined the energy

of a signed graph S with eigenvalues t1, t2, . . . , tn as E(S) =
n∑
j=1

|tj|. Note that the definition of

the energy of a signed graph is transferred from the domain of unsigned graph. Signed graphs

significantly enrich algebraic and geometric properties compared to unsigned graphs [7].

It is well known that even and odd coefficients of the characteristic polynomial of a unicyclic

signed graph respectively alternate in sign [ [1], Lemma 2.7]. Putting cj(S) = |aj(S)|, we have

the following integral representation for the energy of a unicyclic signed graph S.

E(S) =
1

2π

∞∫
−∞

1

t2
log

 bn2 c∑
j=0

c2j(S)t2j

2

+

 bn2 c∑
j=0

c2j+1(S)t2j+1

2 dt. (1.2)

From the above integral formula, we see that the energy of a unicyclic signed graph is a monotonic

increasing function of the coefficients cj, where j = 0, 1, . . . , n. For signed graphs S1 and S2 of

the same order, say n, if cj(S1) ≤ cj(S2) for all j, then we write S1 � S2. Moreover, if S1 � S2

and there is a strict inequality in cj(S1) ≤ cj(S2) for some j = 1, 2, . . . , n, then we write

S1 ≺ S2. Hence, if S1 � S2, then E(S1) ≤ E(S2) and if S1 ≺ S2, then E(S1) < E(S2). Also if

cj(S1) = cj(S2) for all j, then we write S1 ∼ S2. Hence, if S1 ∼ S2, then E(S1) = E(S2).

Let Sn,l denote the set of unicyclic signed graphs with n vertices and a cycle of length l ≤ n.

Let e = uv be a pendant edge of a signed graph S ∈ Sn,l with v as the pendant vertex. Then

the following relation holds [ [1], Lemma 3.2] for cj’s of a signed graph S and its vertex deleted

signed subgraphs.

cj(S) = cj(S − v) + cj−2(S − u− v). (1.3)

2 The unicyclic signed graphs of order n with the first

eleven minimal energies

Let Cσ
r (r = 3, 4) be signed cycles on 3 and 4 vertices respectively, and k be a nonnegative integer.

Let Skn,n be a unicyclic signed graph obtained from Cσ
3 by connecting k pendent vertices to any

vertex and remaining (n− k − 3) pendent vertices to any other vertex of Cσ
3 . Also, let Bk

n,n be

a unicyclic signed graph obtained from Cσ
4 by connecting k pendent vertices to any vertex and
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k

(n-3-k)

S
n, n

k,1

k

S
n, n

k,2

B
n, n

k,2

(n-4-k)

Figure 1: Switching classes corresponding to unicyclic signed graphs Skn,n and Bk
n,n respectively.

remaining (n − k − 4) pendent vertices to other vertex of Cσ
4 which is at a distance of 2 from

this vertex. There are two switching classes in Skn,n and Bk
n,n respectively. We use Sk,1n,n, Sk,2n,n and

Bk,1
n,n, Bk,2

n,n respectively as the representative for these two switching classes as shown in Figure

1 (here positive edge is denoted by a plain line and negative edge by a dotted line). Note that

Sk,1n,n and Bk,1
n,n are balanced while as Sk,2n,n and Bk,2

n,n are unbalanced. With these notations, we

have the following result.

Lemma 2.1 (i) For all n ≥ 11 and 0 ≤ k < n− 5, E(Sk,1n,n) = E(Sk,2n,n) < E(Bk,1
n,n).

(ii) For all n ≥ 11, for k = 0, 1, E(Bk,1
n,n) < E(Sk+1,1

n,n ) = E(Sk+1,2
n,n ) and

for all 2 ≤ k ≤ n− 4, E(Sk+1,1
n,n ) = E(Sk+1,2

n,n ) < E(Bk,1
n,n).

(iii) For all n ≥ 11 and 0 ≤ k ≤ n− 4, E(Sk+1,1
n,n ) = E(Sk+1,2

n,n ) < E(Bk,2
n,n).

(iv) For all n > 2k + 9 and k ≥ 0, E(Bk,2
n,n) < E(Bk+1,1

n,n ).

(v) For all n ≥ 11 and k ≥ 0, E(Bk,1
n,n) < E(Bk,2

n,n).

Proof. (i) By (1.1), we have

p(Bk,1
n,n, t) = tn−4{t4 − nt2 + [(k + 2)(n− k − 4) + 2k]},

p(Sk,1n,n, t) = tn−4{t4 − nt2 − 2t+ [(k + 1)(n− k − 3) + k]}

and

p(Sk,2n,n, t) = tn−4{t4 − nt2 + 2t+ [(k + 1)(n− k − 3) + k]}.
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It is clear that Sk,1n,n ∼ Sk,2n,n and so E(Sk,1n,n) = E(Sk,2n,n). Therefore, to compare the energy of Sk,rn,n
for r = 1, 2 and Bk,1

n,n, it is enough to compare the energy of Sk,1n,n and Bk,1
n,n. Clearly, Sk,1n,n and

Bk,1
n,n are not quasi-order comparable. We use integral formula (1.2) in this case, and we have

E(Bk,1
n,n)− E(Sk,1n,n) =

1

π

∞∫
0

ln
{1 + nt2 + [(k + 2)(n− k − 4) + 2k]t4}2

{1 + nt2 + [(k + 1)(n− k − 3) + k]t4}2 + 4t6
dt.

Put

f1(t) = {1 + nt2 + [(k + 2)(n− k − 4) + 2k]t4}2

and

g1(t) = {1 + nt2 + [(k + 1)(n− k − 3) + k]t4}2 + 4t6.

Since n > k + 5, we get

f1(t)−g1(t) = 2(n−k−5)t4+2[n(n−k−5)−2]t6+(n−k−5)[n−k−5+2(k+1)(n−k−3)+2k]t8 > 0

for n ≥ 11 and t > 0, and thus E(Bk,1
n,n) > E(Sk,1n,n).

(ii) The characteristic polynomials of Bk,1
n,n and Sk+1,r

n,n for r = 1, 2 are given by

p(Bk,1
n,n, t) = tn−4{t4 − nt2 + [(k + 2)(n− k − 4) + 2k]},

p(Sk+1,1
n,n , t) = tn−4{t4 − nt2 − 2t+ [(k + 2)(n− k − 4) + k + 1]}

and

p(Sk+1,2
n,n , t) = tn−4{t4 − nt2 + 2t+ [(k + 2)(n− k − 4) + k + 1]}.

To prove the result, it is enough to show that E(Bk,1
n,n) < E(Sk+1,1

n,n ) for k = 0, 1 and E(Bk,1
n,n) >

E(Sk+1,1
n,n ) for all 2 ≤ k ≤ n − 4. Clearly, Bk,1

n,n ≺ Sk+1,1
n,n , for k = 0, 1 and therefore E(Bk,1

n,n) <

E(Sk+1,1
n,n ) for k = 0, 1 and for all n ≥ 11. To compare the energy of Sk+1,1

n,n and Bk,1
n,n, for all

2 ≤ k ≤ n− 4, it is enough to compare the energy of Sk+1,1
n,n and Bk,1

n,n. Clearly, Sk+1,1
n,n and Bk,1

n,n

are not quasi-order comparable for 2 ≤ k ≤ n− 4. By (1.2), we have

E(Bk,1
n,n)− E(Sk+1,1

n,n ) =
1

π

∞∫
0

ln
{1 + nt2 + [(k + 2)(n− k − 4) + 2k]t4}2

{1 + nt2 + [(k + 2)(n− k − 4) + k + 1]t4}2 + 4t6
dt.

Put

f2(t) = {1 + nt2 + [(k + 2)(n− k − 4) + 2k]t4}2

and

g2(t) = {1 + nt2 + [(k + 2)(n− k − 4) + k + 1]t4}2 + 4t6.

Since n ≥ k + 4, we get

f2(t)− g2(t) = 2(k − 1)t4 + 2[n(k − 1)− 2]t6 + [2(k + 2)(n− k − 4)(k − 1) + 3k2 − 2k − 1]t8 > 0
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Figure 2: Unicyclic signed graphs F 1
n,n and F 2

n,n respectively.

for all 2 ≤ k ≤ n− 4, n ≥ 11 and t > 0 and therefore E(Bk,1
n,n) > E(Sk+1,1

n,n ) for all 2 ≤ k ≤ n− 4

and n ≥ 11 .

(iii) The characteristic polynomial of Bk,2
n,n is given by

p(Bk,2
n,n, t) = tn−4{t4 − nt2 + [(k + 2)(n− k − 4) + 2k + 4]},

We show that E(Bk,2
n,n) > E(Sk+1,1

n,n ), for all 0 ≤ k ≤ n − 4. Clearly, Sk+1,1
n,n and Bk,2

n,n are not

quasi-order comparable. Proceeding similarly as in part (ii), we can prove that E(Sk+1,1
n,n ) =

E(Sk+1,2
n,n ) < E(Bk,2

n,n), for all 0 ≤ k ≤ n− 4 and n ≥ 11.

(iv) We have

p(Bk+1,1
n,n , t) = tn−4{t4 − nt2 + [(k + 3)(n− k − 5) + 2k + 2]}.

Clearly, Bk+1,1
n,n � Bk,2

n,n, for all n > 2k + 7 and therefore E(Bk,2
n,n) < E(Bk+1,1

n,n ) for all n > 2k + 9.

(v) This follows by [ [1], Theorem 2.10(i)].

Let F 1
n,n be a unicyclic graph as shown in Figure 2. There are two switching classes on the

signings of F 1
n,n. Let F 1

n,n and F 2
n,n be the representative for these two switching classes, where

F 1
n,n contains a positive cycle of length 4 and F 2

n,n contains a negative cycle of length 4. With

these notations, we have the following lemma.

Lemma 2.2 (i) For all n ≥ 6, we have, E(B2,1
n,n) < E(F 1

n,n) < E(B2,2
n,n) < E(F 2

n,n).

(ii) For all n ≥ 9, n = 2k + 9, E(Bk,2
n,n) = E(Bk+1,1

n,n ).

Proof. (i) The characteristic polynomials of B2,r
n,n, for r = 1, 2, F 1

n,n and F 2
n,n are given by

p(B2,2
n,n, t) = tn−4{t4 − nt2 + (4n− 16)},

p(B2,1
n,n, t) = tn−4{t4 − nt2 + (4n− 20)},

p(F 1
n,n, t) = tn−4{t4 − nt2 + (4n− 18)}

and

p(F 2
n,n, t) = tn−6{t6 − nt4 + (4n− 14)t2 − 4(n− 5)}.

Clearly, F 2
n,n � B2,2

n,n � F 1
n,n � B2,1

n,n and therefore E(B2,1
n,n) < E(F 1

n,n) < E(B2,2
n,n) < E(F 2

n,n) for
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all n ≥ 6.

(ii) We have

p(Bk+1,1
n,n , t) = tn−4{t4 − nt2 + [(k + 3)(n− k − 5) + 2k + 2]}

and

p(Bk+1,1
n,n , t) = tn−4{t4 − nt2 + [(k + 2)(n− k − 4) + 2k + 4]}.

Clearly, Bk+1,1
n,n ∼ Bk,2

n,n, for n = 2k + 7 and therefore E(Bk,2
n,n) = E(Bk+1,1

n,n ) for all n = 2k + 9.

Combining Lemma 2.1 and Lemma 2.2, we have the following result.

Theorem 2.3 (i) For n = 11, we have

E(S0,1
11,11) = E(S0,2

11,11) < E(B0,1
11,11) < E(S1,1

11,11) = E(S1,2
11,11) < E(B0,2

11,11) < E(B1,1
11,11) < E(S2,1

11,11) =

E(S2,2
11,11) < E(S3,1

11,11) = E(S3,2
11,11) < E(B1,2

11,11) = E(B2,1
11,11) < E(F 1

11,11) < E(B2,2
11,11).

(ii) For all n ≥ 12, we have

E(S0,1
n,n) = E(S0,2

n,n) < E(B0,1
n,n) < E(S1,1

n,n) = E(S1,2
n,n) < E(B0,2

n,n) < E(B1,1
n,n) < E(S2,1

n,n) =

E(S2,2
n,n) < E(B1,2

n,n) < E(S3,1
n,n) = E(S3,2

n,n) < E(B2,1
n,n) < E(F 1

n,n) < E(B2,2
n,n).

Let Slσn denote the signed graph obtained by identifying the center of the signed star Sn−l+1

with a vertex of Cσ
l . The following theorem shows that among all unicyclic signed graphs with

cycle length greater than 5, S6−
n has the minimal energy.

Theorem 2.4 Let S ∈ Sn,l, where S 6= S6−
n , n ≥ l, n ≥ 7 and l ≥ 6. Then S � S6−

n and

E(S) > E(S6−
n ).

Proof. By (1.1), we have

p(S6−
n , t) = tn−6{t6 − nt4 + (4n− 15)t2 − (3n− 18)}.

In view of integral formula (1.2), it suffices to prove that ci(S
6−
n ) ≤ ci(S), for all i = 4, 6, with

strict inequality holds for at least one i. Here, we need to consider two cases.

Case 1. Let S ∈ Sn,l be unbalanced, where n ≥ l, n ≥ 7 and l ≥ 6. Then, by [ [1], Theorem

3.3], it suffices to show that ci(S
6−
n ) ≤ ci(S

l−
n ) for all i = 4, 6 with strict inequality for at least

one i. We use induction on n− l for n ≥ l, where n ≥ 7 and l ≥ 6.

If n − l = 0, then Sl−n = C−n . We have c4(C
−
n ) = n(n−3)

2
, c4(S

6−
n ) = 4n − 15, c6(C

−
n ) =

n(n−4)(n−5)
6

and c6(S
6−
n ) = 3n − 18. Clearly, ci(S

6−
n ) < ci(C

−
n ), for i = 4, 6 and n ≥ 7. By (1.3),

for i = 4, 6, we have

ci(S
l−
n ) = ci(S

l−
n−1) + ci−2(Pl−1)

and

ci(S
6−
n ) = ci(S

6−
n−1) + ci−2(P5).

By induction Sl−n−1 � S6−
n−1. Since l ≥ 6, therefore Pl−1 has P5 as a subgraph and hence ci(S

6−
n ) ≤

ci(S
l−
n ), for all i = 4, 6, with strict inequality holds for at least one i.

Case 2. This is similar to Case 1.
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Figure 3: Unicyclic signed graphs Qr,s
n,n (r = 1, 2, 3, 4 and s = 1, 2).

Lemma 2.5 For all n ≥ 6, we have (i) E(S6−
n ) > E(B2,2

n,n), (ii) E(S5+
n ) > E(B2,2

n,n).

Proof. (i) The characteristic polynomials of S6−
n and B2,2

n,n are respectively given by

p(S6−
n , t) = tn−6{t6 − nt4 + (4n− 15)t2 − (3n− 18)}

and

p(B2,2
n,n, t) = tn−6{t6 − nt4 + (4n− 16)t2}.

Clearly, S6−
n � B2,2

n,n for all n ≥ 6 and therefore E(S6−
n ) > E(B2,2

n,n) for all n ≥ 6.

(ii) We have

p(S5+
n , t) = tn−6{t6 − nt4 + (3n− 10)t2 − 2t− (n− 5)}.

The signed graphs S5+
n and B2,2

n,n are not quasi-order comparable. Consider the functions f3(t) =

t6 − nt4 + (3n − 10)t2 − 2t − (n − 5) and g3(t) = t4 − nt2 + (4n − 16). It is easy to see that

f3(
3
5
) < 0, f3(1) > 0, f3(

7
5
) > 0, f3(2) < 0, f3(

√
n− 3) < 0 and f3(

√
n− 2) > 0 for all n ≥ 10.

Also, g3(2) = 0 and g3(
√
n− 4) = 0. By Descarte’s rule of signs, f3(t) has three positive and

three negative zeros and g3(t) has two positive and two negative zeros. As the energy of a signed

graph is twice the sum of its positive eigenvalues, therefore

E(S5+
n ) > 2(2 +

√
n− 3) > 2(2 +

√
n− 4) = E(B2,2

n,n)

for all n ≥ 10. We have verified the result directly for n = 6, 7, 8, 9.

Let Qr,1
n,n, r = 1, 2, 3, 4 be the graphs as shown in Figure 3. It is easy to see that there are two

switching classes on the signings of Qr,1
n,n, for all r = 1, 2, 3, 4. Let Qr,1

n,n and Qr,2
n,n (r = 1, 2, 3, 4)

be the representative for these two switching classes, where Qr,1
n,n (r = 1, 2, 3, 4) contains positive
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cycle and Qr,2
n,n (r = 1, 2, 3, 4) contains negative cycle. We have the following lemma, the proof

of which is similar to that of Lemma 2.5, and so we skip it here.

Lemma 2.6 For all n ≥ 6, we have

(i) E(B2,2
n,n) < E(Q1,1

n,n) < E(Q1,2
n,n).

(ii) E(Q1,1
n,n) < E(Q2,1

n,n) < E(Q2,2
n,n).

(iii) E(B2,2
n,n) < E(Q3,1

n,n) = E(Q3,2
n,n).

(vi) E(B2,2
n,n) < E(Q4,1

n,n) = E(Q4,2
n,n).

A unicyclic signed graph can be obtained by attaching rooted signed trees to the vertices of the

cycle Cσ
l . Thus, if T1, T2, . . . , Tl are l rooted signed trees, then we denote by U(T1, T2, . . . , Tl, σ),

the signed graph obtained by attaching the rooted signed trees Ti to the vertices vi of the cycle

Cσ
l = v1v2 . . . vlv1. When Ti is a rooted signed starK1,ni

with the center of star as its root, then we

write U(n1, n2, . . . , nl, σ) instead of U(T1, T2, . . . , Tl, σ). For example, B2,1
n,n = U(n− 6, 0, 2, 0,+)

and B2,2
n,n = U(n− 6, 0, 2, 0,−).

Also, when Ti is a rooted signed star K1,ni
, with a pendent vertex of star as its root, then

we simplify the notation U(T1, T2, . . . , Tl, σ) by replacing Ti by the pair (ni− 1, 1). For example,

F 1
n,n = U((n− 5, 1), 0, 0, 0,+) and F 2

n,n = U((n− 5, 1), 0, 0, 0,−). Let T (m− 2, 2) be the rooted

signed tree obtained by identifying end vertex of a path of length 2 with center of the star

K1,m−2 and let vertex of degree m− 1 be the root. Clearly, Q2,1
n,n = U(T (n− 6, 2), 0, 0, 0,+) and

Q2,2
n,n = U(T (n− 6, 2), 0, 0, 0,−)

Let S(n) be the set of all unicyclic signed graphs of order n. Let S ∈ S(n) and u be a vertex

of S. Let T be a rooted signed tree and Su(T ) be the signed graph obtained by attaching T to

S such that the root of T is u. When T is a signed path Pm+1 with one endpoint as the root,

then we write Su(T ) as Su(m). When T is a star K1,m with the center as its root, then we write

Su(T ) as S∗u(m). When T is a star K1,m with a pendent vertex as its root, then we write Su(T )

as S∗u(m− 1, 1). For example, if S = C−3 , then S∗u(n− 3) = S0,2
n,n and S∗u(n− 4, 1) = Q3,2

n,n. With

these notations, we have following lemmas.

Lemma 2.7 [6] Let S ∈ S(n) be balanced and u be a vertex of S. Let T be a tree of order

m+ 1 rooted at u. Then we have the following.

(1) If Su(T ) 6= Su(m), then Su(T ) ≺ Su(m).

(2) If Su(T ) 6= S∗u(m), then Su(T ) � S∗u(m).

Lemma 2.8 [8] Let S ∈ S(n) be balanced, u be a vertex of S and T be a tree of order m+1 (m ≥
3) rooted at u. If Su(T ) 6= Su(T (m− 2, 2)), S∗u(m− 1, 1), S∗u(m), then Su(T ) � Su(T (m− 2, 2)).

For a signed graph S, let dS(v) denote the degree of a vertex v. Recall that U(n1, n2, . . . , nl, σ)

denote the unicyclic signed graph obtained by attaching the rooted signed star K1,ni
with the

center of star as its root, to the vertices vi for i = 1, 2, . . . , l, of the cycle Cσ
l = v1v2 . . . vlv1. We
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Figure 4: The edge grafting π.

denote Sv1,vi(m,n) = U(m, 0, 0, 0, . . . , n, ni+1, ni+2, . . . , nl, σ)(2 ≤ i ≤ l) to be the signed graph

obtained by attaching m pendent edges and n pendent edges to the vertices v1 and vi of signed

graph U(0, 0, 0, 0, . . . , 0, ni+1, ni+2, . . . , nl, σ)(2 ≤ i ≤ l) respectively as shown in Figure 4. Then

Sv1,vi(m+ 1, n− 1) is the signed graph obtained from the signed graph Sv1,vi(m,n) by deleting a

pendent edge which is adjacent to vi and adding a pendent edge to v1, also called edge grafting

π. Proceeding exactly in a similar way in [ [8], Theorem 2.2], we obtain the following lemma.

Lemma 2.9 Let m and n be positive integers. If m ≥ n, then Sv1,vi(m,n) � Sv1,vi(m+1, n−1).

Let Un = {S ∈ S(n) and S 6= Sk,rn,n (k = 0, 1, 2, 3 and r = 1, 2), Bk,r
n,n (k = 0, 1, 2 and r = 1, 2),

F 1
n,n}. Also, let Cσ

l = v1v2 . . . vlv1 be the unique cycle of the unicyclic signed graph S and

N(S) = {vi|d(vi) > 2, vi ∈ V (Cσ
l )}.

Theorem 2.10 Let S ∈ Un. If n ≥ 11, then E(S) > E(B2,2
n,n).

Proof. Let Cσ
l = v1v2 . . . vlv1 be the unique cycle of the unicyclic signed graph S and N(S) =

{vi : d(vi) > 2, vi ∈ V (Cσ
l )}. Then the following cases arise:

Case 1. If l ≥ 5, then the following two subcases arise.

Subcase 1.1. If l ≥ 6, then the result follows by Theorem 2.4 and Lemma 2.5.

Subcase 1.2. If l = 5, then the result follows by [ [1], Theorem 2.9], [ [4], Theorem 4] and

Lemma 2.5.

Case 2. Let l = 4. If S = F 2
n,n, then the result follows by Lemma 2.2. Also, by [ [1], Theorem

2.10(i)], it is enough to show that E(S) > E(B2,2
n,n), where S is balanced. Therefore, the following

subcases arise.

Subcase 2.1. If |N(S)| = 1, then by Lemma 2.8, S � Q2,1
n,n and therefore E(S) > E(Q2,1

n,n).

Hence the result follows by Lemma 2.6.

Subcase 2.2. If |N(S)| = 2, then by Lemma 2.7, S � U(n − 4 − r, r, 0, 0,+)(r ≥ 1) or
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S � U(n − 4 − r, 0, r, 0,+)(r ≥ 3). By Lemma 2.9, U(n − 4 − r, r, 0, 0,+) � Q1,1
n,n(r ≥ 1) or

U(n− 4− r, 0, r, 0,+) � B3,1
n,n � B2,2

n,n(r ≥ 3) and therefore E(S) ≥ E(Q1,1
n,n) or E(S) > E(B2,2

n,n).

Hence the result follows by Lemma 2.6.

Subcase 2.3. If |N(S)| = 3, then by Lemma 2.7, S � U(n− 4− r − s, r, s, 0,+)(r ≥ 1, s ≥ 1)

or S � U(n − 4 − r − s, r, 0, s,+)(r ≥ 1, s ≥ 1). By Lemma 2.9, U(n − 4 − r − s, r, s, 0,+) �
U(n− 4− s, 0, s, 0,+) or U(n− 4− r − s, r, 0, s,+) � U(n− 4− s, 0, 0, s,+). Again by Lemma

2.9, U(n − 4 − s, 0, s, 0,+) � B3,1
n,n � B2,2

n,n(s ≥ 3) or U(n − 4 − s, 0, 0, s,+) � Q1,1
n,n(s ≥ 1) and

therefore E(S) > E(Q1,1
n,n) or E(S) > E(B2,2

n,n). Hence the result follows by Lemma 2.6.

Subcase 2.4. If |N(S)| = 4, then by Lemma 2.7, S � U(n− 4− r1 − r2 − r3, r1, r2, r3,+)(ri ≥
1, i = 1, 2, 3). Now applying Lemma 2.9 repeatedly, we have, U(n−4−r1−r2−r3, r1, r2, r3,+) �
U(n− 4− r2 − r3, 0, r2, r3,+) � U(n− 4− r3, 0, 0, r3,+) � Q1,1

n,n(r3 ≥ 1, ) and therefore E(S) >

E(Q1,1
n,n). Hence the result follows by Lemma 2.6.

Case 3. Let l = 3. By [ [1], Theorem 2.9], it is enough to show that E(S) > E(B2,2
n,n), where S

is balanced. Therefore the following subcases arise.

Subcase 3.1. If |N(S)| = 1, by Lemma 2.8, if S 6= Qr,1
n,n(r = 3, 4), then S � Q4,1

n,n and therefore

E(S) > E(Q4,1
n,n). Hence the result follows by Lemma 2.6.

Subcase 3.2. If |N(S)| = 2, then by Lemma 2.7, we have S � U(n− 3− r, r, 0,+)(r ≥ 1). By

Lemma 2.9, U(n− 3− r, r, 0,+) � U(n− 7, 4, 0,+)(r ≥ 4). By Sach’s theorem, we have

p(U(n− 7, 4, 0,+), t) = tn−4{t4 − nt2 − 2t+ (5n− 31)}.

Clearly, U(n− 7, 4, 0,+) � B2,2
n,n and therefore E(U(n− 7, 4, 0,+)) > E(B2,2

n,n). Hence the result

follows in this subcase.

Subcase 3.3. If |N(S)| = 3, then by Lemma 2.7, we have S � U(n− 3− r1− r2, r1, r2,+)(ri ≥
1, i = 1, 2). Now applying Lemma 2.9 repeatedly, we have, U(n − 3 − r1 − r2, r1, r2,+) �
U(n− 3− r2, 0, r2,+) � U(n− 7, 0, 4,+)(r2 ≥ 4). By Sach’s theorem, we get

p(U(n− 7, 0, 4,+), t) = tn−4{t4 − nt2 − 2t+ (5n− 31)}.

Clearly, U(n − 7, 0, 4,+) � B2,2
n,n and therefore E(U(n − 7, 0, 4,+)) > E(B2,2

n,n). Hence the

result follows. This completes the proof.

By direct calculations via computer simulation, we have verified that the signed graphs

Q3,1
11,11, Q

3,2
11,11 have 11th minimal energy, Q4,1

11,11, Q
4,2
11,11 have 12th minimal energy and Q1,1

11,11 has

13th minimal energy for n = 11. The following theorem is the main result of our paper.

Theorem 2.11 (i) Among all unicyclic signed graphs with n = 11 vertices, Q1,1
11,11 is the signed

graph with 13th minimal energy. Also, we have ordering of energies in ascending order as follows.

E(S0,1
11,11) = E(S0,2

11,11) < E(B0,1
11,11) < E(S1,1

11,11) = E(S1,2
11,11) < E(B0,2

11,11) < E(B1,1
11,11) < E(S2,1

11,11) =

E(S2,2
11,11) < E(S3,1

11,11) = E(S3,2
11,11) < E(B1,2

11,11) = E(B2,1
11,11) < E(F 1

11,11) < E(B2,2
11,11) < E(Q3,1

11,11) =

E(Q3,2
11,11) < E(Q4,1

11,11) = E(Q4,2
11,11) < E(Q1,1

11,11).
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Figure 5: Unicyclic signed graphs Qr,s
6 , r = 1, 2, 3, 4 and s = 1, 2.

(ii) Among all unicyclic signed graphs with n ≥ 12 vertices, B2,2
n,n is the signed graph with 11th

minimal energy for all n ≥ 12. Also, we have ordering of energies in ascending order as follows.

E(S0,1
n,n) = E(S0,2

n,n) < E(B0,1
n,n) < E(S1,1

n,n) = E(S1,2
n,n) < E(B0,2

n,n) < E(B1,1
n,n) < E(S2,1

n,n) =

E(S2,2
n,n) < E(B1,2

n,n) < E(S3,1
n,n) = E(S3,2

n,n) < E(B2,1
n,n) < E(F 1

n,n) < E(B2,2
n,n).

Proof. The result follows by Theorems 2.3 and 2.10.

Finally, we consider the partial ordering by minimal energies of unicyclic signed graphs with

at most 10 vertices. There does not exist any unicyclic signed graph on one and two vertices.

For n = 3, there is unique unicyclic unsigned graph, which gives two unicyclic signed graphs

with the same number of vertices, up to switching. Let C+
3 and C−3 be balanced and unbalanced

cycle on 3 vertices respectively. By coefficient theorem, we have p(C+
3 , t) = t3 − 3t − 2 and

p(C−3 , t) = t3 − 3t+ 2. Therefore by integral formula (1.2), we get E(C+
3 ) = E(C−3 ).

For n = 4, there are 4 unicyclic signed graphs, up to switching. Let S0,1
4,4 , S0,2

4,4 , C+
4 and C−4

be 4 unicyclic signed graph, up to switching, on 4 vertices. Their characteristic polynomials is

respectively given as

p(S0,1
4,4 , t) = t4−4t2−2t+1, p(S0,2

4,4 , t) = t4−4t2+2t+1, p(C+
4 , t) = t4−4t2 and p(C−4 , t) = t4−4t2+4.

By direct calculations, we have, E(S0,1
4,4) = 4.9622 = E(S0,2

4,4), E(C+
4 ) = 4 and E(C−4 ) = 5.657.

Therefore we obtain

E(C+
4 ) < E(S0,1

4,4) = E(S0,2
4,4) < E(C−4 ).

For n = 5, there are 10 unicyclic signed graph, up to switching. Let S0,1
5,5 , S0,2

5,5 , S1,1
5,5 , S1,2

5,5 , Q3,1
5,5,

Q3,2
5,5, B

0,1
5,5 , B0,2

5,5 , C+
5 and C−5 be 10 unicyclic signed graph, up to switching, on 5 vertices. Their

characteristic polynomials is respectively given as

p(S0,1
5,5 , t) = t{t4 − 5t2 − 2t+ 2}, p(S0,2

5,5 , t) = t{t4 − 5t2 + 2t+ 2}, p(S1,1
5,5 , t) = t{t4 − 5t2 − 2t+ 3},

p(S1,2
5,5 , t) = t{t4 − 5t2 + 2t+ 3}, p(Q3,1

5,5, t) = t5−5t3−2t2+4t+2, p(Q3,2
5,5, t) = t5−5t3+2t2+4t−2,

p(B0,1
5,5 , t) = t{t4 − 5t2 + 2}, p(B0,2

5,5 , t) = t{t4 − 5t2 + 6}, p(C+
5 , t) = t5 − 5t3 + 5t − 2 and

p(C−5 , t) = t5 − 5t3 + 5t+ 2.

By direct calculations, it is easy to see that E(S0,1
5,5) = 5.6272 = E(S0,2

5,5), E(S1,1
5,5) = 5.8416 =
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Figure 6: Unicyclic signed graphs Qr,1
7 , r = 1, 2, 3, ..., 22.

E(S1,2
5,5), E(Q3,1

5,5) = 6.4286 = E(Q3,2
5,5), E(B0,1

5,5) = 5.596, E(B0,2
5,5) = 6.2926 and E(C+

5 ) = 6.472 =

E(C−5 ). Therefore, we have

E(B0,1
5,5) < E(S0,1

5,5) = E(S0,2
5,5) < E(S1,1

5,5) = E(S1,2
5,5) < E(B0,2

5,5) < E(Q3,1
5,5) = E(Q3,2

5,5) < E(C+
5 ) =

E(C−5 ).

For n = 6, there are 26 unicyclic signed graphs, up to switching. Let S0,1
6,6 , S0,2

6,6 , S1,1
6,6 , S1,2

6,6 ,

Q3,1
6,6, Q

3,2
6,6, Q

4,1
6,6, Q

4,2
6,6, B

0,1
6,6 , B0,2

6,6 , B1,1
6,6 , B1,2

6,6 , Q1,1
6,6, Q

1,2
6,6, F

1
6,6, F

2
6,6, Q

1,1
6 , Q1,2

6 , Q2,1
6 , Q2,2

6 , Q3,1
6 ,

Q3,2
6 , Q4,1

6 , Q4,2
6 , C+

6 , and C−6 be 26 unicyclic signed graph, up to switching, on 6 vertices.

Here, the signed graphs Q1,1
6 , Q1,2

6 , Q2,1
6 , Q2,2

6 , Q3,1
6 , Q3,2

6 , Q4,1
6 and Q4,2

6 are shown in Fig-

ure 5. By direct calculations, it is easy to see that, E(S0,1
6,6) = E(S0,2

6,6) = 6.1722, E(S1,1
6,6) =

E(S1,2
6,6) = 6.4852, E(Q3,1

6,6) = E(Q3,2
6,6) = 7.1916, E(Q4,1

6,6) = E(Q4,2
6,6) = 7.3426, E(B0,1

6,6) = 6.3244,

E(B0,2
6,6) = 6.8284, E(B1,1

6,6) = 6.4722, E(B1,2
6,6) = 6.9284, E(Q1,1

6,6) = 7.2078, E(Q1,2
6,6) = 7.5176,

E(F 1
6,6) = 6.6026, E(F 2

6,6) = 8.0548, E(Q1,1
6 ) = E(Q1,2

6 ) = 7.3004, E(Q2,1
6 ) = E(Q2,2

6 ) = 7.416,

E(Q3,1
6 ) = E(Q3,2

6 ) = 7.5494, E(Q4,1
6 ) = E(Q4,2

6 ) = 7.4658, E(C+
6 ) = 8, and E(C−6 ) = 6.9284.

Therefore, we have

E(S0,1
6,6) = E(S0,2

6,6) < E(B0,1
6,6) < E(B1,1

6,6) < E(S1,1
6,6) = E(S1,2

6,6) < E(F 1
6,6) < E(B0,2

6,6) < E(B1,2
6,6) =

E(C−6 ) < E(Q3,1
6,6) = E(Q3,2

6,6) < E(Q1,1
6,6) < E(Q1,1

6 ) = E(Q1,2
6 ) < E(Q4,1

6,6) = E(Q4,2
6,6) < E(Q2,1

6 ) =

E(Q2,2
6 ) < E(Q4,1

6 ) = E(Q4,2
6 ) < E(Q1,2

6,6) < E(Q3,1
6 ) = E(Q3,2

6 ) < E(C+
6 ) < E(F 2

6,6).

For n = 7, there are 33 unicyclic unsigned graph on 7 vertices, which gives 66 unicyclic signed

graphs with the same number of vertices, up to switching. Let Sr,s7,7(r = 0, 1, 2 and s = 1, 2),

Br,s
7,7(r = 0, 1 and s = 1, 2), Qr,s

7,7(r = 1, 2, 3, 4 and s = 1, 2), F r
7,7(r = 1, 2), Qr,s

7 (r = 1, 2, ..., 22
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and s = 1, 2), C+
7 and C−7 .

By direct calculations, it is easy to see that, E(S0,1
7,7) = E(S0,2

7,7) = 6.6468 < E(B0,1
7,7) = 6.899 <

E(S1,1
7,7) = E(S1,2

7,7) = 7.0206 < E(B1,1
7,7) = 7.1154 < E(S2,1

7,7) = E(S2,2
7,7) = 7.1232 < E(B0,2

7,7) =

E(F 1
7,7) = 7.3006 < E(B1,2

7,7) = 7.4642 < E(Q3,1
7,7) = E(Q3,2

7,7) = 7.8102 < E(Q1,1
7,7) = 7.9426 <

E(Q4,1
7,7) = E(Q4,2

7,7) = 7.9688 < E(Q2,1
7,7) = 8.004 < E(Q1,1

7 ) = E(Q1,2
7 ) = 8.0094 < E(Q16,1

7 ) =

8.0628 < E(Q4,1
7 ) = E(Q4,2

7 ) = E(Q9,1
7 ) = E(Q9,2

7 ) = 8.0852 < E(Q5,1
7 ) = E(Q5,2

7 ) = 8.1178 <

E(Q17,1
7 ) = 8.12 < E(Q19,1

7 ) = E(Q19,2
7 ) = 8.1282 < E(Q15,1

7 ) = 8.1528 < E(Q7,1
7 ) = E(Q7,2

7 ) =

8.171 < E(Q1,2
7,7) = 8.175 < E(Q14,1

7 ) = 8.2078 < E(Q13,1
7 ) = E(Q13,2

7 ) = 8.2618 < E(Q3,1
7 ) =

E(Q3,2
7 ) = 8.3012 < E(Q21,1

7 ) = E(Q21,2
7 ) = 8.3184 < E(Q15,2

7 ) = E(Q22,2
7 ) = 8.3632 <

E(Q2,1
7 ) = E(Q2,2

7 ) = 8.3898 < E(Q20,1
7 ) = E(Q20,2

7 ) = 8.4286 < E(Q6,1
7 ) = E(Q6,2

7 ) = 8.4556 <

E(Q2,2
7,7) = 8.647 < E(Q16,2

7 ) = 8.6906 < E(Q22,1
7 ) = 8.7266 < E(Q14,2

7 ) = 8.7628 < E(Q8,1
7 ) =

E(Q2,2
7 ) = E(F 2

7,7) = 8.8284 < E(Q11,1
7 ) = E(Q11,2

7 ) = 8.8696 < E(Q10,1
7 ) = E(Q10,2

7 ) = 8.8702 <

E(Q18,1
7 ) = E(Q18,2

7 ) = 8.9172 < E(Q12,1
7 ) = E(Q12,2

7 ) = 8.9408 < E(C+
7 ) = E(C−7 ) = 8.988 <

E(Q17,2
7 ) = 8.9838. Where unicyclic signed graphs Qr,1

7 , r = 1, 2, 3, ..., 22 are shown in Figure 6.

Also, Qr,2
7 is unbalanced unicyclic signed graph corresponding to balanced signed graph Qr,1

7 .

Similarly, by direct calculations with the help of MATLAB software, we obtain the following

result.

Theorem 2.12 (i) Among all 178 unicyclic signed graphs on 8 vertices, Q1,1
8 and Q1,2

8 are the

signed graphs with 13th minimal energy. Also, we have ordering of energies in ascending order

as follows.

E(S0,1
8,8) = E(S0,2

8,8) < E(B0,1
8,8) < E(S1,1

8,8) = E(S1,2
8,8) < E(B1,1

8,8) < E(S2,1
8,8) = E(S2,2

8,8) < E(B0,2
8,8) =

E(B2,1
8,8) < E(F 1

8,8) < E(B1,2
8,8) < E(B2,2

8,8) < E(Q3,1
8,8) = E(Q3,2

8,8) < E(Q2,1
8,8) < E(Q1,1

8,8) <

E(Q1,1
8 ) = E(Q1,2

8 ). Where Q1,r
8 , r = 1, 2 are shown in Figure 7.

(ii) Among all 480 unicyclic signed graphs on 9 vertices, Q2,1
9,9 is the signed graph with 13th min-

imal energy. Also, we have ordering of energies in ascending order as follows.

E(S0,1
9,9) = E(S0,2

9,9) < E(B0,1
9,9) < E(S1,1

9,9) = E(S1,2
9,9) < E(B0,2

9,9) = E(B1,1
9,9) < E(S2,1

9,9) = E(S2,2
9,9) <

E(B2,1
9,9) < E(F 1

9,9) = E(B1,2
9,9) < E(B2,2

9,9) < E(Q3,1
9,9) = E(Q3,2

9,9) < E(Q4,1
9,9) = E(Q4,2

9,9) <

E(Q1,1
9,9) < E(Q1,1

9 ) = E(Q1,2
9 ) < E(Q2,1

9,9). Where Q1,r
9 , r = 1, 2 are shown in Figure 7.

(iii) Among all 667 unicyclic unsigned graphs on 10 vertices, which gives 1334 unicyclic signed

graphs, upto switching. Q4,1
10,10 and Q4,2

10,10 are the signed graph with 13th minimal energy. Also,

we have ordering of energies in ascending order as follows.

E(S0,1
10,10) = E(S0,2

10,10) < E(B0,1
10,10) < E(S1,1

10,10) = E(S1,2
10,10) < E(B0,2

10,10) < E(B1,1
10,10) < E(S2,1

10,10) =

E(S2,2
10,10) < E(S3,1

10,10) = E(S3,2
10,10) < E(B2,1

10,10) < E(B1,2
10,10) < E(F 1

10,10) < E(B2,2
10,10) < E(Q3,1

10,10) =

E(Q3,2
10,10) < E(Q4,1

10,10) = E(Q4,2
10,10).

Conclusion. In this paper we are able to provide unicyclic signed graphs with first eleven

minimal energies. After that the problem becomes difficult. For example, It is easy to see that

the unicyclic signed graphs Q3,1
n,n and Q4,1

n,n have 12th and 13th minimal energy respectively for

n = 12. But for n = 1000, Q4,1
n,n has 12th minimal energy and Q3,1

n,n has 13th minimal energy. It
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Figure 7: Unicyclic signed graphs Q1,1
8 , Q1,2

8 , Q1,1
9 and Q1,2

9 respectively.

will be interesting to provide further ordering with respect to minimal energy. Energy ordering

in other families of signed graphs like bipartite, k-cyclic (k ≥ 2), complete signed graphs of fixed

order etc remains a problem for future study. It will be useful to see the work on weighted

graphs [3] and directed graphs [5].
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