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ORDERING OF MINIMAL ENERGIES
IN UNICYCLIC SIGNED GRAPHS

TAHIR SHAMSHER, MUSHTAQ A. BHAT, SHARIEFUDDIN PIRZADA,
AND YILUN SHANG

Abstract. Let S = (G, σ) be a signed graph of order n and size m and let
t1, t2, . . . , tn be the eigenvalues of S. The energy of S is defined as E(S) =∑n

j=1 |tj |. A connected signed graph is said to be unicyclic if its order and
size are the same. In this paper we characterize, up to switching, the unicyclic
signed graphs with first 11 minimal energies for all n ≥ 11. For 3 ≤ n ≤ 7, we
provide complete orderings of unicyclic signed graphs with respect to energy.
For 8 ≤ n ≤ 10, we determine unicyclic signed graphs with first 13 minimal
energies.

1. Introduction

Let S = (G, σ) be a signed graph of order n, where G = (V, E) is its underlying
graph and σ : E → {−1, 1} is its signature. Let A be the adjacency matrix of S.
In a signed graph, a cycle is said to be positive if it contains an even number of
negative edges, and negative otherwise. A signed graph is said to be balanced if
all its cycles are positive. For undefined terms related to signed graphs, we refer
the reader to [1]. The characteristic polynomial P (S, x) of S is the characteristic
polynomial of its adjacency matrix A and is given by

P (S, t) = det(tI − A) =
n∑

r=0
ar(S)tn−r,

with
ar(S) =

∑
l∈Lr

(−1)k(l)2|c(l)|
∏

X∈c(l)

Z(X), (1.1)

where Lr denotes the set of all linear signed subgraphs (also known as basic figures)
on r vertices, k(l) denotes the number of components in l, c(l) denotes the set of
cycles in l, and Z(X) =

∏
e∈X σ(e) is the sign of X. Let S be a signed graph with
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vertex set V . For any X ⊆ V , let SX denote the signed graph obtained from S
by reversing the signs of the edges between X and V − X. Then, we say SX is
switching equivalent to S. Here we note that switching is an equivalence relation
and preserves the eigenvalues including their multiplicities. We use a single signed
graph as representative of a switching class. Germina et al. [2] defined the energy
of a signed graph S with eigenvalues t1, t2, . . . , tn as E(S) =

∑n
j=1 |tj |. Note

that the definition of the energy of a signed graph is transferred from the domain
of unsigned graphs. Signed graphs significantly enrich algebraic and geometric
properties compared to unsigned graphs [7].

It is well known that even and odd coefficients of the characteristic polynomial of
a unicyclic signed graph alternate in sign [1, Lemma 2.7]. Putting cj(S) = |aj(S)|,
we have the following integral representation for the energy of a unicyclic signed
graph S:

E(S) = 1
2π

∞∫
−∞

1
t2 log


⌊ n

2 ⌋∑
j=0

c2j(S)t2j

2

+

⌊ n
2 ⌋∑

j=0
c2j+1(S)t2j+1

2
 dt. (1.2)

From the above integral formula, we see that the energy of a unicyclic signed graph
is a monotonic increasing function of the coefficients cj , where j = 0, 1, . . . , n. For
signed graphs S1 and S2 of the same order, say n, if cj(S1) ≤ cj(S2) for all j,
then we write S1 ⪯ S2. Moreover, if S1 ⪯ S2 and there is a strict inequality in
cj(S1) ≤ cj(S2) for some j = 1, 2, . . . , n, then we write S1 ≺ S2. Hence, if S1 ⪯ S2,
then E(S1) ≤ E(S2) and if S1 ≺ S2, then E(S1) < E(S2). Also, if cj(S1) = cj(S2)
for all j, then we write S1 ∼ S2. Hence, if S1 ∼ S2, then E(S1) = E(S2).

Let Sn,l denote the set of unicyclic signed graphs with n vertices and a cycle of
length l ≤ n. Let e = uv be a pendant edge of a signed graph S ∈ Sn,l with v as
the pendant vertex. Then the following relation holds [1, Lemma 3.2] for cj ’s of a
signed graph S and its vertex-deleted signed subgraphs:

cj(S) = cj(S − v) + cj−2(S − u − v). (1.3)

2. Unicyclic signed graphs of order n with the first eleven
minimal energies

Let Cσ
r (r = 3, 4) be signed cycles on 3 and 4 vertices respectively, and k be

a nonnegative integer. Let Sk
n,n be a unicyclic signed graph obtained from Cσ

3 by
connecting k pendant vertices to any vertex and the remaining n − k − 3 pendant
vertices to any other vertex of Cσ

3 . Also, let Bk
n,n be a unicyclic signed graph

obtained from Cσ
4 by connecting k pendant vertices to any vertex and the remaining

n−k−4 pendant vertices to any other vertex of Cσ
4 which is at a distance of 2 from

this vertex. There are two switching classes in Sk
n,n and two in Bk

n,n. We use Sk,1
n,n,

Sk,2
n,n and Bk,1

n,n, Bk,2
n,n, respectively, as the representatives for these two switching

classes as shown in Figure 1 (here a positive edge is denoted by a plain line and a
negative edge by a dotted line). Note that Sk,1

n,n and Bk,1
n,n are balanced, while Sk,2

n,n

and Bk,2
n,n are unbalanced. With these notations, we have the following result.
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k

(n-3-k)

S
n, n

k,1
k

S
n, n

k,2

B
n, n

k,2

(n-4-k)

Figure 1. Switching classes corresponding to unicyclic signed
graphs Sk

n,n and Bk
n,n.

Lemma 2.1.
(i) For all n ≥ 11 and 0 ≤ k < n − 5, E(Sk,1

n,n) = E(Sk,2
n,n) < E(Bk,1

n,n).
(ii) For all n ≥ 11, E(Bk,1

n,n) < E(Sk+1,1
n,n ) = E(Sk+1,2

n,n ) for k = 0, 1, and
E(Sk+1,1

n,n ) = E(Sk+1,2
n,n ) < E(Bk,1

n,n) for all 2 ≤ k ≤ n − 4.
(iii) For all n ≥ 11 and 0 ≤ k ≤ n − 4, E(Sk+1,1

n,n ) = E(Sk+1,2
n,n ) < E(Bk,2

n,n).
(iv) For all n > 2k + 9 and k ≥ 0, E(Bk,2

n,n) < E(Bk+1,1
n,n ).

(v) For all n ≥ 11 and k ≥ 0, E(Bk,1
n,n) < E(Bk,2

n,n).

Proof. (i) By (1.1), we have

p(Bk,1
n,n, t) = tn−4{t4 − nt2 + [(k + 2)(n − k − 4) + 2k]},

p(Sk,1
n,n, t) = tn−4{t4 − nt2 − 2t + [(k + 1)(n − k − 3) + k]},

and p(Sk,2
n,n, t) = tn−4{t4 − nt2 + 2t + [(k + 1)(n − k − 3) + k]}.

It is clear that Sk,1
n,n ∼ Sk,2

n,n and so E(Sk,1
n,n) = E(Sk,2

n,n). Therefore, to compare the
energy of Sk,r

n,n for r = 1, 2 and Bk,1
n,n, it is enough to compare the energy of Sk,1

n,n and
Bk,1

n,n. Clearly, Sk,1
n,n and Bk,1

n,n are not quasi-order comparable. We use the integral
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formula (1.2) in this case, and we have

E(Bk,1
n,n) − E(Sk,1

n,n) = 1
π

∞∫
0

ln {1 + nt2 + [(k + 2)(n − k − 4) + 2k]t4}2

{1 + nt2 + [(k + 1)(n − k − 3) + k]t4}2 + 4t6 dt.

Put
f1(t) = {1 + nt2 + [(k + 2)(n − k − 4) + 2k]t4}2

and g1(t) = {1 + nt2 + [(k + 1)(n − k − 3) + k]t4}2 + 4t6.

Since n > k + 5, we get

f1(t) − g1(t) = 2(n − k − 5)t4 + 2[n(n − k − 5) − 2]t6

+ (n − k − 5)[n − k − 5 + 2(k + 1)(n − k − 3) + 2k]t8 > 0

for n ≥ 11 and t > 0, and thus E(Bk,1
n,n) > E(Sk,1

n,n).

(ii) The characteristic polynomials of Bk,1
n,n and Sk+1,r

n,n for r = 1, 2 are given by

p(Bk,1
n,n, t) = tn−4{t4 − nt2 + [(k + 2)(n − k − 4) + 2k]},

p(Sk+1,1
n,n , t) = tn−4{t4 − nt2 − 2t + [(k + 2)(n − k − 4) + k + 1]},

and p(Sk+1,2
n,n , t) = tn−4{t4 − nt2 + 2t + [(k + 2)(n − k − 4) + k + 1]}.

To prove the result, it is enough to show that E(Bk,1
n,n) < E(Sk+1,1

n,n ) for k = 0, 1
and E(Bk,1

n,n) > E(Sk+1,1
n,n ) for all 2 ≤ k ≤ n−4. Clearly, Bk,1

n,n ≺ Sk+1,1
n,n for k = 0, 1,

and therefore E(Bk,1
n,n) < E(Sk+1,1

n,n ) for k = 0, 1 and for all n ≥ 11. To compare the
energy of Sk+1,1

n,n and Bk,1
n,n for all 2 ≤ k ≤ n−4, it is enough to compare the energy

of Sk+1,1
n,n and Bk,1

n,n. Clearly, Sk+1,1
n,n and Bk,1

n,n are not quasi-order comparable for
2 ≤ k ≤ n − 4. By (1.2), we have

E(Bk,1
n,n)−E(Sk+1,1

n,n ) = 1
π

∞∫
0

ln {1 + nt2 + [(k + 2)(n − k − 4) + 2k]t4}2

{1 + nt2 + [(k + 2)(n − k − 4) + k + 1]t4}2 + 4t6 dt.

Put
f2(t) = {1 + nt2 + [(k + 2)(n − k − 4) + 2k]t4}2

and g2(t) = {1 + nt2 + [(k + 2)(n − k − 4) + k + 1]t4}2 + 4t6.

Since n ≥ k + 4, we get

f2(t) − g2(t) = 2(k − 1)t4 + 2[n(k − 1) − 2]t6

+ [2(k + 2)(n − k − 4)(k − 1) + 3k2 − 2k − 1]t8 > 0

for all 2 ≤ k ≤ n − 4, n ≥ 11 and t > 0, and therefore E(Bk,1
n,n) > E(Sk+1,1

n,n ) for all
2 ≤ k ≤ n − 4 and n ≥ 11.

(iii) The characteristic polynomial of Bk,2
n,n is given by

p(Bk,2
n,n, t) = tn−4{t4 − nt2 + [(k + 2)(n − k − 4) + 2k + 4]}.
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We show that E(Bk,2
n,n) > E(Sk+1,1

n,n ) for all 0 ≤ k ≤ n−4. Clearly, Sk+1,1
n,n and Bk,2

n,n

are not quasi-order comparable. Proceeding similarly to part (ii), we can prove
that E(Sk+1,1

n,n ) = E(Sk+1,2
n,n ) < E(Bk,2

n,n) for all 0 ≤ k ≤ n − 4 and n ≥ 11.

(iv) We have

p(Bk+1,1
n,n , t) = tn−4{t4 − nt2 + [(k + 3)(n − k − 5) + 2k + 2]}.

Clearly, Bk+1,1
n,n ≻ Bk,2

n,n for all n > 2k + 7, and therefore E(Bk,2
n,n) < E(Bk+1,1

n,n ) for
all n > 2k + 9.

(v) This follows by [1, Theorem 2.10 (i)]. □

Let F 1
n,n be a unicyclic graph as shown in Figure 2. There are two switching

classes on the signings of F 1
n,n. Let F 1

n,n and F 2
n,n be the representatives for these

two switching classes, where F 1
n,n contains a positive cycle of length 4 and F 2

n,n

contains a negative cycle of length 4. With these notations, we have the following
lemma.

Figure 2. Unicyclic signed graphs F 1
n,n and F 2

n,n.

Lemma 2.2.
(i) For all n ≥ 6, we have E(B2,1

n,n) < E(F 1
n,n) < E(B2,2

n,n) < E(F 2
n,n).

(ii) For all n ≥ 9, n = 2k + 9, E(Bk,2
n,n) = E(Bk+1,1

n,n ).

Proof. (i) The characteristic polynomials of B2,r
n,n for r = 1, 2, F 1

n,n, and F 2
n,n are

given by

p(B2,2
n,n, t) = tn−4{t4 − nt2 + (4n − 16)},

p(B2,1
n,n, t) = tn−4{t4 − nt2 + (4n − 20)},

p(F 1
n,n, t) = tn−4{t4 − nt2 + (4n − 18)},

and p(F 2
n,n, t) = tn−6{t6 − nt4 + (4n − 14)t2 − 4(n − 5)}.

Clearly, F 2
n,n ≻ B2,2

n,n ≻ F 1
n,n ≻ B2,1

n,n, and therefore E(B2,1
n,n) < E(F 1

n,n) <

E(B2,2
n,n) < E(F 2

n,n) for all n ≥ 6.
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(ii) We have
p(Bk+1,1

n,n , t) = tn−4{t4 − nt2 + [(k + 3)(n − k − 5) + 2k + 2]}
and p(Bk+1,1

n,n , t) = tn−4{t4 − nt2 + [(k + 2)(n − k − 4) + 2k + 4]}.

Clearly, Bk+1,1
n,n ∼ Bk,2

n,n for n = 2k + 7, and therefore E(Bk,2
n,n) = E(Bk+1,1

n,n ) for all
n = 2k + 9. □

Combining Lemma 2.1 and Lemma 2.2, we have the following result.

Theorem 2.3.
(i) For n = 11, we have E(S0,1

11,11) = E(S0,2
11,11) < E(B0,1

11,11) < E(S1,1
11,11) =

E(S1,2
11,11) < E(B0,2

11,11) < E(B1,1
11,11) < E(S2,1

11,11) = E(S2,2
11,11) < E(S3,1

11,11) =
E(S3,2

11,11) < E(B1,2
11,11) = E(B2,1

11,11) < E(F 1
11,11) < E(B2,2

11,11).
(ii) For all n ≥ 12, we have E(S0,1

n,n) = E(S0,2
n,n) < E(B0,1

n,n) < E(S1,1
n,n) =

E(S1,2
n,n) < E(B0,2

n,n) < E(B1,1
n,n) < E(S2,1

n,n) = E(S2,2
n,n) < E(B1,2

n,n) < E(S3,1
n,n) =

E(S3,2
n,n) < E(B2,1

n,n) < E(F 1
n,n) < E(B2,2

n,n).

Let Slσ
n denote the signed graph obtained by identifying the center of the signed

star Sn−l+1 with a vertex of Cσ
l . The following theorem shows that among all

unicyclic signed graphs with cycle length greater than 5, S6−
n has the minimal

energy.

Theorem 2.4. Let S ∈ Sn,l, where S ̸= S6−
n , n ≥ l, n ≥ 7, and l ≥ 6. Then

S ≻ S6−
n and E(S) > E(S6−

n ).

Proof. By (1.1), we have
p(S6−

n , t) = tn−6{t6 − nt4 + (4n − 15)t2 − (3n − 18)}.

In view of integral formula (1.2), it suffices to prove that ci(S6−
n ) ≤ ci(S) for all

i = 4, 6, with strict inequality for at least one i. Here, we need to consider two
cases.

Case 1. Let S ∈ Sn,l be unbalanced, where n ≥ l, n ≥ 7, and l ≥ 6. Then, by
[1, Theorem 3.3], it suffices to show that ci(S6−

n ) ≤ ci(Sl−
n ) for all i = 4, 6, with

strict inequality for at least one i. We use induction on n− l for n ≥ l, where n ≥ 7
and l ≥ 6.

If n − l = 0, then Sl−
n = C−

n . We have c4(C−
n ) = n(n−3)

2 , c4(S6−
n ) = 4n − 15,

c6(C−
n ) = n(n−4)(n−5)

6 and c6(S6−
n ) = 3n − 18. Clearly, ci(S6−

n ) < ci(C−
n ) for

i = 4, 6 and n ≥ 7. By (1.3), for i = 4, 6, we have
ci(Sl−

n ) = ci(Sl−
n−1) + ci−2(Pl−1)

and
ci(S6−

n ) = ci(S6−
n−1) + ci−2(P5).

By induction, Sl−
n−1 ≻ S6−

n−1. Since l ≥ 6, Pl−1 has P5 as a subgraph, and hence
ci(S6−

n ) ≤ ci(Sl−
n ) for all i = 4, 6, with strict inequality for at least one i.

Case 2. This is similar to Case 1. □
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Lemma 2.5. For all n ≥ 6, we have
(i) E(S6−

n ) > E(B2,2
n,n),

(ii) E(S5+
n ) > E(B2,2

n,n).

Proof. (i) The characteristic polynomials of S6−
n and B2,2

n,n are respectively given
by

p(S6−
n , t) = tn−6{t6 − nt4 + (4n − 15)t2 − (3n − 18)}

and
p(B2,2

n,n, t) = tn−6{t6 − nt4 + (4n − 16)t2}.

Clearly, S6−
n ≻ B2,2

n,n for all n ≥ 6, and therefore E(S6−
n ) > E(B2,2

n,n) for all n ≥ 6.

(ii) We have

p(S5+
n , t) = tn−6{t6 − nt4 + (3n − 10)t2 − 2t − (n − 5)}.

The signed graphs S5+
n and B2,2

n,n are not quasi-order comparable. Consider the
functions f3(t) = t6 −nt4 +(3n−10)t2 −2t−(n−5) and g3(t) = t4 −nt2 +(4n−16).
It is easy to see that f3( 3

5 ) < 0, f3(1) > 0, f3( 7
5 ) > 0, f3(2) < 0, f3(

√
n − 3) < 0,

and f3(
√

n − 2) > 0 for all n ≥ 10. Also, g3(2) = 0 and g3(
√

n − 4) = 0. By
Descartes’s rule of signs, f3(t) has three positive and three negative zeros and g3(t)
has two positive and two negative zeros. As the energy of a signed graph is twice
the sum of its positive eigenvalues, we have

E(S5+
n ) > 2(2 +

√
n − 3) > 2(2 +

√
n − 4) = E(B2,2

n,n)
for all n ≥ 10. We have verified the result directly for n = 6, 7, 8, 9.

Let Qr,1
n,n (r = 1, 2, 3, 4) be the graphs shown in Figure 3. It is easy to see that

there are two switching classes on the signings of Qr,1
n,n for all r = 1, 2, 3, 4. Let

Qr,1
n,n and Qr,2

n,n (r = 1, 2, 3, 4) be the representatives for these two switching classes,
where Qr,1

n,n (r = 1, 2, 3, 4) contains a positive cycle and Qr,2
n,n (r = 1, 2, 3, 4) contains

a negative cycle. We have the following lemma, the proof of which is similar to
that of Lemma 2.5, and so we skip it here. □

Lemma 2.6. For all n ≥ 6, we have
(i) E(B2,2

n,n) < E(Q1,1
n,n) < E(Q1,2

n,n),
(ii) E(Q1,1

n,n) < E(Q2,1
n,n) < E(Q2,2

n,n),
(iii) E(B2,2

n,n) < E(Q3,1
n,n) = E(Q3,2

n,n),
(iv) E(B2,2

n,n) < E(Q4,1
n,n) = E(Q4,2

n,n).

A unicyclic signed graph can be obtained by attaching rooted signed trees to the
vertices of the cycle Cσ

l . Thus, if T1, T2, . . . , Tl are l rooted signed trees, then we
denote by U(T1, T2, . . . , Tl, σ) the signed graph obtained by attaching the rooted
signed trees Ti to the vertices vi of the cycle Cσ

l = v1v2 . . . vlv1. When Ti is a rooted
signed star K1,ni with the center of the star as its root, we write U(n1, n2, . . . , nl, σ)
instead of U(T1, T2, . . . , Tl, σ). For example, B2,1

n,n = U(n − 6, 0, 2, 0, +) and B2,2
n,n =

U(n − 6, 0, 2, 0, −).

Rev. Un. Mat. Argentina, Vol. 65, No. 1 (2023)



126 T. SHAMSHER, M. A. BHAT, S. PIRZADA, AND Y. SHANG

Figure 3. Unicyclic signed graphs Qr,s
n,n (r = 1, 2, 3, 4 and s = 1, 2).

Also, when Ti is a rooted signed star K1,ni
, with a pendant vertex of the star

as its root, we simplify the notation U(T1, T2, . . . , Tl, σ) by replacing Ti by the
pair (ni − 1, 1). For example, F 1

n,n = U((n − 5, 1), 0, 0, 0, +) and F 2
n,n = U((n −

5, 1), 0, 0, 0, −). Let T (m − 2, 2) be the rooted signed tree obtained by identifying
the end vertex of a path of length 2 with the center of the star K1,m−2, and let the
vertex of degree m − 1 be the root. Clearly, Q2,1

n,n = U(T (n − 6, 2), 0, 0, 0, +) and
Q2,2

n,n = U(T (n − 6, 2), 0, 0, 0, −).
Let S(n) be the set of all unicyclic signed graphs of order n. Let S ∈ S(n) and

u be a vertex of S. Let T be a rooted signed tree and Su(T ) be the signed graph
obtained by attaching T to S such that the root of T is u. When T is a signed
path Pm+1 with one endpoint as the root, we write Su(T ) as Su(m). When T is
a star K1,m with the center as its root, we write Su(T ) as S∗

u(m). When T is a
star K1,m with a pendant vertex as its root, we write Su(T ) as S∗

u(m − 1, 1). For
example, if S = C−

3 , then S∗
u(n − 3) = S0,2

n,n and S∗
u(n − 4, 1) = Q3,2

n,n. With these
notations, we have following lemmas.

Lemma 2.7 ([6]). Let S ∈ S(n) be balanced and u be a vertex of S. Let T be a
tree of order m + 1 rooted at u. Then we have:

(1) if Su(T ) ̸= Su(m), then Su(T ) ≺ Su(m);
(2) if Su(T ) ̸= S∗

u(m), then Su(T ) ≻ S∗
u(m).

Lemma 2.8 ([8]). Let S ∈ S(n) be balanced, u be a vertex of S, and T be a tree of
order m + 1 (m ≥ 3) rooted at u. If Su(T ) ̸= Su(T (m − 2, 2)), S∗

u(m − 1, 1), S∗
u(m),

then Su(T ) ≻ Su(T (m − 2, 2)).
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For a signed graph S, let dS(v) denote the degree of a vertex v. Recall that
U(n1, n2, . . . , nl, σ) denotes the unicyclic signed graph obtained by attaching the
rooted signed star K1,ni

, with the center of the star as its root, to the vertices
vi for i = 1, 2, . . . , l of the cycle Cσ

l = v1v2 . . . vlv1. We denote by Sv1,vi
(m, n) =

U(m, 0, 0, 0, . . . , n, ni+1, ni+2, . . . , nl, σ) (2 ≤ i ≤ l) the signed graph obtained by
attaching m pendant edges and n pendant edges to the vertices v1 and vi of the
signed graph U(0, 0, 0, 0, . . . , 0, ni+1, ni+2, . . . , nl, σ) (2 ≤ i ≤ l), respectively, as
shown in Figure 4. Then Sv1,vi

(m + 1, n − 1) is the signed graph obtained from the
signed graph Sv1,vi

(m, n) by deleting a pendant edge which is adjacent to vi and
adding a pendant edge to v1, also called edge grafting π. Proceeding in an exactly
similar way to [8, Theorem 2.2], we obtain the following lemma.

Figure 4. The edge-grafting π.

Lemma 2.9. Let m and n be positive integers. If m ≥ n, then Sv1,vi
(m, n) ≻

Sv1,vi
(m + 1, n − 1).

Let Un = {S | S ∈ S(n), S ̸= Sk,r
n,n (k = 0, 1, 2, 3, r = 1, 2), S ̸= Bk,r

n,n (k =
0, 1, 2, r = 1, 2), and S ̸= F 1

n,n}. Also, let Cσ
l = v1v2 . . . vlv1 be the unique cycle

of the unicyclic signed graph S and N(S) = {vi | d(vi) > 2, vi ∈ V (Cσ
l )}.

Theorem 2.10. Let S ∈ Un. If n ≥ 11, then E(S) > E(B2,2
n,n).

Proof. Let Cσ
l = v1v2 . . . vlv1 be the unique cycle of the unicyclic signed graph S

and N(S) = {vi | d(vi) > 2, vi ∈ V (Cσ
l )}. Then the following cases arise:

Case 1. If l ≥ 5, then the following two subcases arise.
Subcase 1.1. If l ≥ 6, then the result follows by Theorem 2.4 and Lemma 2.5.
Subcase 1.2. If l = 5, then the result follows by [1, Theorem 2.9], [4, Theorem 4]

and Lemma 2.5.

Case 2. Let l = 4. If S = F 2
n,n, then the result follows by Lemma 2.2. Also,

by [1, Theorem 2.10 (i)], it is enough to show that E(S) > E(B2,2
n,n), where S is

balanced. Therefore, the following subcases arise.
Subcase 2.1. If |N(S)| = 1, then by Lemma 2.8, S ≻ Q2,1

n,n, and therefore
E(S) > E(Q2,1

n,n). Hence the result follows by Lemma 2.6.
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Subcase 2.2. If |N(S)| = 2, then by Lemma 2.7, S ⪰ U(n − 4 − r, r, 0, 0, +)
(r ≥ 1) or S ⪰ U(n−4−r, 0, r, 0, +) (r ≥ 3). By Lemma 2.9, U(n−4−r, r, 0, 0, +) ⪰
Q1,1

n,n (r ≥ 1) or U(n − 4 − r, 0, r, 0, +) ⪰ B3,1
n,n ≻ B2,2

n,n (r ≥ 3), and therefore
E(S) ≥ E(Q1,1

n,n) or E(S) > E(B2,2
n,n). Hence the result follows by Lemma 2.6.

Subcase 2.3. If |N(S)| = 3, then by Lemma 2.7, S ⪰ U(n − 4 − r − s, r, s, 0, +)
(r ≥ 1, s ≥ 1) or S ⪰ U(n − 4 − r − s, r, 0, s, +) (r ≥ 1, s ≥ 1). By Lemma 2.9,
U(n − 4 − r − s, r, s, 0, +) ≻ U(n − 4 − s, 0, s, 0, +) or U(n − 4 − r − s, r, 0, s, +) ≻
U(n − 4 − s, 0, 0, s, +). Again by Lemma 2.9, U(n − 4 − s, 0, s, 0, +) ⪰ B3,1

n,n ≻ B2,2
n,n

(s ≥ 3) or U(n − 4 − s, 0, 0, s, +) ⪰ Q1,1
n,n (s ≥ 1), and therefore E(S) > E(Q1,1

n,n) or
E(S) > E(B2,2

n,n). Hence the result follows by Lemma 2.6.
Subcase 2.4. If |N(S)| = 4, then by Lemma 2.7, S ⪰ U(n − 4 − r1 − r2 −

r3, r1, r2, r3, +) (ri ≥ 1, i = 1, 2, 3). Now applying Lemma 2.9 repeatedly, we have
U(n − 4 − r1 − r2 − r3, r1, r2, r3, +) ≻ U(n − 4 − r2 − r3, 0, r2, r3, +) ≻ U(n − 4 −
r3, 0, 0, r3, +) ⪰ Q1,1

n,n (r3 ≥ 1, ), and therefore E(S) > E(Q1,1
n,n). Hence the result

follows by Lemma 2.6.
Case 3. Let l = 3. By [1, Theorem 2.9], it is enough to show that E(S) >

E(B2,2
n,n), where S is balanced. Therefore the following subcases arise.

Subcase 3.1. If |N(S)| = 1, we have by Lemma 2.8 that, if S ̸= Qr,1
n,n (r = 3, 4),

then S ≻ Q4,1
n,n, and therefore E(S) > E(Q4,1

n,n). Hence the result follows by
Lemma 2.6.

Subcase 3.2. If |N(S)| = 2, then by Lemma 2.7, we have S ⪰ U(n−3−r, r, 0, +)
(r ≥ 1). By Lemma 2.9, U(n − 3 − r, r, 0, +) ⪰ U(n − 7, 4, 0, +) (r ≥ 4). By Sach’s
theorem, we have

p(U(n − 7, 4, 0, +), t) = tn−4{t4 − nt2 − 2t + (5n − 31)}.

Clearly, U(n − 7, 4, 0, +) ≻ B2,2
n,n, and therefore E(U(n − 7, 4, 0, +)) > E(B2,2

n,n).
Hence the result follows in this subcase.

Subcase 3.3. If |N(S)| = 3, then by Lemma 2.7, we have S ⪰ U(n − 3 −
r1 − r2, r1, r2, +) (ri ≥ 1, i = 1, 2). Now applying Lemma 2.9 repeatedly, we have
U(n − 3 − r1 − r2, r1, r2, +) ≻ U(n − 3 − r2, 0, r2, +) ⪰ U(n − 7, 0, 4, +) (r2 ≥ 4).
By Sach’s theorem, we get

p(U(n − 7, 0, 4, +), t) = tn−4{t4 − nt2 − 2t + (5n − 31)}.

Clearly, U(n − 7, 0, 4, +) ≻ B2,2
n,n, and therefore E(U(n − 7, 0, 4, +)) > E(B2,2

n,n).
Hence the result follows. This completes the proof. □

By direct calculations via computer simulation, we have verified that the signed
graphs Q3,1

11,11, Q3,2
11,11 have 11th minimal energy, Q4,1

11,11, Q4,2
11,11 have 12th minimal

energy, and Q1,1
11,11 has 13th minimal energy for n = 11. The following theorem is

the main result of our paper.

Theorem 2.11. (i) Among all unicyclic signed graphs with n = 11 vertices,
Q1,1

11,11 is the signed graph with 13th minimal energy. Also, we have an or-
dering of energies in ascending order as follows: E(S0,1

11,11) = E(S0,2
11,11) <

E(B0,1
11,11) < E(S1,1

11,11) = E(S1,2
11,11) < E(B0,2

11,11) < E(B1,1
11,11) < E(S2,1

11,11) =
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E(S2,2
11,11) < E(S3,1

11,11) = E(S3,2
11,11) < E(B1,2

11,11) = E(B2,1
11,11) < E(F 1

11,11) <

E(B2,2
11,11) < E(Q3,1

11,11) = E(Q3,2
11,11) < E(Q4,1

11,11) = E(Q4,2
11,11) < E(Q1,1

11,11).
(ii) Among all unicyclic signed graphs with n ≥ 12 vertices, B2,2

n,n is the signed
graph with 11th minimal energy for all n ≥ 12. Also, we have an ordering
of energies in ascending order as follows: E(S0,1

n,n) = E(S0,2
n,n) < E(B0,1

n,n) <

E(S1,1
n,n) = E(S1,2

n,n) < E(B0,2
n,n) < E(B1,1

n,n) < E(S2,1
n,n) = E(S2,2

n,n) < E(B1,2
n,n) <

E(S3,1
n,n) = E(S3,2

n,n) < E(B2,1
n,n) < E(F 1

n,n) < E(B2,2
n,n).

Proof. The result follows by Theorems 2.3 and 2.10. □

Finally, we consider the partial ordering by minimal energies of unicyclic signed
graphs with at most 10 vertices. There do not exist any unicyclic signed graphs on
one and two vertices.

For n = 3, there is a unique unicyclic unsigned graph, which gives two unicyclic
signed graphs with the same number of vertices, up to switching. Let C+

3 and C−
3

be balanced and unbalanced cycles on 3 vertices, respectively. By the coefficient
theorem, we have p(C+

3 , t) = t3 − 3t − 2 and p(C−
3 , t) = t3 − 3t + 2. Therefore, by

the integral formula (1.2), we get E(C+
3 ) = E(C−

3 ).
For n = 4, there are 4 unicyclic signed graphs, up to switching. Let S0,1

4,4 , S0,2
4,4 ,

C+
4 , and C−

4 be 4 unicyclic signed graphs, up to switching, on 4 vertices. Their
characteristic polynomials are respectively given as p(S0,1

4,4 , t) = t4 − 4t2 − 2t + 1,
p(S0,2

4,4 , t) = t4 − 4t2 + 2t + 1, p(C+
4 , t) = t4 − 4t2, and p(C−

4 , t) = t4 − 4t2 + 4.
By direct calculations, we have E(S0,1

4,4) = 4.9622 = E(S0,2
4,4), E(C+

4 ) = 4, and
E(C−

4 ) = 5.657. Therefore, we obtain

E(C+
4 ) < E(S0,1

4,4) = E(S0,2
4,4) < E(C−

4 ).

For n = 5, there are 10 unicyclic signed graphs, up to switching. Let S0,1
5,5 , S0,2

5,5 ,
S1,1

5,5 , S1,2
5,5 , Q3,1

5,5, Q3,2
5,5, B0,1

5,5 , B0,2
5,5 , C+

5 , and C−
5 be 10 unicyclic signed graphs, up

to switching, on 5 vertices. Their characteristic polynomials are respectively given
as p(S0,1

5,5 , t) = t{t4 − 5t2 − 2t + 2}, p(S0,2
5,5 , t) = t{t4 − 5t2 + 2t + 2}, p(S1,1

5,5 , t) =
t{t4 − 5t2 − 2t + 3}, p(S1,2

5,5 , t) = t{t4 − 5t2 + 2t + 3}, p(Q3,1
5,5, t) = t5 − 5t3 − 2t2 +

4t + 2, p(Q3,2
5,5, t) = t5 − 5t3 + 2t2 + 4t − 2, p(B0,1

5,5 , t) = t{t4 − 5t2 + 2}, p(B0,2
5,5 , t) =

t{t4 − 5t2 + 6}, p(C+
5 , t) = t5 − 5t3 + 5t − 2, and p(C−

5 , t) = t5 − 5t3 + 5t + 2.
By direct calculations, it is easy to see that E(S0,1

5,5) = 5.6272 = E(S0,2
5,5),

E(S1,1
5,5) = 5.8416 = E(S1,2

5,5), E(Q3,1
5,5) = 6.4286 = E(Q3,2

5,5), E(B0,1
5,5) = 5.596,

E(B0,2
5,5) = 6.2926, and E(C+

5 ) = 6.472 = E(C−
5 ). Therefore, we have E(B0,1

5,5) <

E(S0,1
5,5) = E(S0,2

5,5) < E(S1,1
5,5) = E(S1,2

5,5) < E(B0,2
5,5) < E(Q3,1

5,5) = E(Q3,2
5,5) <

E(C+
5 ) = E(C−

5 ).
For n = 6, there are 26 unicyclic signed graphs, up to switching. Let S0,1

6,6 , S0,2
6,6 ,

S1,1
6,6 , S1,2

6,6 , Q3,1
6,6, Q3,2

6,6, Q4,1
6,6, Q4,2

6,6, B0,1
6,6 , B0,2

6,6 , B1,1
6,6 , B1,2

6,6 , Q1,1
6,6, Q1,2

6,6, F 1
6,6, F 2

6,6, Q1,1
6 ,

Q1,2
6 , Q2,1

6 , Q2,2
6 , Q3,1

6 , Q3,2
6 , Q4,1

6 , Q4,2
6 , C+

6 , and C−
6 be 26 unicyclic signed graphs,
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up to switching, on 6 vertices. Here, the signed graphs Q1,1
6 , Q1,2

6 , Q2,1
6 , Q2,2

6 , Q3,1
6 ,

Q3,2
6 , Q4,1

6 , and Q4,2
6 are shown in Figure 5.

Figure 5. Unicyclic signed graphs Qr,s
6 , r = 1, 2, 3, 4 and s = 1, 2.

By direct calculations, it is easy to see that E(S0,1
6,6) = E(S0,2

6,6) = 6.1722,
E(S1,1

6,6) = E(S1,2
6,6) = 6.4852, E(Q3,1

6,6) = E(Q3,2
6,6) = 7.1916, E(Q4,1

6,6) = E(Q4,2
6,6) =

7.3426, E(B0,1
6,6) = 6.3244, E(B0,2

6,6) = 6.8284, E(B1,1
6,6) = 6.4722, E(B1,2

6,6) =
6.9284, E(Q1,1

6,6) = 7.2078, E(Q1,2
6,6) = 7.5176, E(F 1

6,6) = 6.6026, E(F 2
6,6) = 8.0548,

E(Q1,1
6 ) = E(Q1,2

6 ) = 7.3004, E(Q2,1
6 ) = E(Q2,2

6 ) = 7.416, E(Q3,1
6 ) = E(Q3,2

6 ) =
7.5494, E(Q4,1

6 ) = E(Q4,2
6 ) = 7.4658, E(C+

6 ) = 8, and E(C−
6 ) = 6.9284. There-

fore, we have E(S0,1
6,6) = E(S0,2

6,6) < E(B0,1
6,6) < E(B1,1

6,6) < E(S1,1
6,6) = E(S1,2

6,6) <

E(F 1
6,6) < E(B0,2

6,6) < E(B1,2
6,6) = E(C−

6 ) < E(Q3,1
6,6) = E(Q3,2

6,6) < E(Q1,1
6,6) <

E(Q1,1
6 ) = E(Q1,2

6 ) < E(Q4,1
6,6) = E(Q4,2

6,6) < E(Q2,1
6 ) = E(Q2,2

6 ) < E(Q4,1
6 ) =

E(Q4,2
6 ) < E(Q1,2

6,6) < E(Q3,1
6 ) = E(Q3,2

6 ) < E(C+
6 ) < E(F 2

6,6).
For n = 7, there are 33 unicyclic unsigned graphs on 7 vertices, which gives 66

unicyclic signed graphs with the same number of vertices, up to switching: Sr,s
7,7

(r = 0, 1, 2 and s = 1, 2), Br,s
7,7 (r = 0, 1 and s = 1, 2), Qr,s

7,7 (r = 1, 2, 3, 4 and
s = 1, 2), F r

7,7 (r = 1, 2), Qr,s
7 (r = 1, 2, . . . , 22 and s = 1, 2), C+

7 , and C−
7 .

By direct calculations, it is easy to see that E(S0,1
7,7) = E(S0,2

7,7) = 6.6468 <

E(B0,1
7,7) = 6.899 < E(S1,1

7,7) = E(S1,2
7,7) = 7.0206 < E(B1,1

7,7) = 7.1154 < E(S2,1
7,7) =

E(S2,2
7,7) = 7.1232 < E(B0,2

7,7) = E(F 1
7,7) = 7.3006 < E(B1,2

7,7) = 7.4642 < E(Q3,1
7,7) =

E(Q3,2
7,7) = 7.8102 < E(Q1,1

7,7) = 7.9426 < E(Q4,1
7,7) = E(Q4,2

7,7) = 7.9688 < E(Q2,1
7,7) =

8.004 < E(Q1,1
7 ) = E(Q1,2

7 ) = 8.0094 < E(Q16,1
7 ) = 8.0628 < E(Q4,1

7 ) = E(Q4,2
7 ) =

E(Q9,1
7 ) = E(Q9,2

7 ) = 8.0852 < E(Q5,1
7 ) = E(Q5,2

7 ) = 8.1178 < E(Q17,1
7 ) = 8.12 <

E(Q19,1
7 ) = E(Q19,2

7 ) = 8.1282 < E(Q15,1
7 ) = 8.1528 < E(Q7,1

7 ) = E(Q7,2
7 ) =

8.171 < E(Q1,2
7,7) = 8.175 < E(Q14,1

7 ) = 8.2078 < E(Q13,1
7 ) = E(Q13,2

7 ) = 8.2618 <

E(Q3,1
7 ) = E(Q3,2

7 ) = 8.3012 < E(Q21,1
7 ) = E(Q21,2

7 ) = 8.3184 < E(Q15,2
7 ) =
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Figure 6. Unicyclic signed graphs Qr,1
7 , r = 1, 2, 3, . . . , 22.

E(Q22,2
7 ) = 8.3632 < E(Q2,1

7 ) = E(Q2,2
7 ) = 8.3898 < E(Q20,1

7 ) = E(Q20,2
7 ) =

8.4286 < E(Q6,1
7 ) = E(Q6,2

7 ) = 8.4556 < E(Q2,2
7,7) = 8.647 < E(Q16,2

7 ) = 8.6906 <

E(Q22,1
7 ) = 8.7266 < E(Q14,2

7 ) = 8.7628 < E(Q8,1
7 ) = E(Q2,2

7 ) = E(F 2
7,7) =

8.8284 < E(Q11,1
7 ) = E(Q11,2

7 ) = 8.8696 < E(Q10,1
7 ) = E(Q10,2

7 ) = 8.8702 <

E(Q18,1
7 ) = E(Q18,2

7 ) = 8.9172 < E(Q12,1
7 ) = E(Q12,2

7 ) = 8.9408 < E(C+
7 ) =

E(C−
7 ) = 8.988 < E(Q17,2

7 ) = 8.9838, where unicyclic signed graphs Qr,1
7 , r =

1, 2, 3, . . . , 22, are shown in Figure 6. Also, Qr,2
7 is an unbalanced unicyclic signed

graph corresponding to the balanced signed graph Qr,1
7 .

Similarly, by direct calculations with the aid of MATLAB software, we obtain
the following result.

Theorem 2.12. (i) Among all 178 unicyclic signed graphs on 8 vertices, Q1,1
8

and Q1,2
8 are the signed graphs with 13th minimal energy. Also, we have an

ordering of energies in ascending order as follows: E(S0,1
8,8) = E(S0,2

8,8) <

E(B0,1
8,8) < E(S1,1

8,8) = E(S1,2
8,8) < E(B1,1

8,8) < E(S2,1
8,8) = E(S2,2

8,8) < E(B0,2
8,8) =

E(B2,1
8,8) < E(F 1

8,8) < E(B1,2
8,8) < E(B2,2

8,8) < E(Q3,1
8,8) = E(Q3,2

8,8) < E(Q2,1
8,8) <

E(Q1,1
8,8) < E(Q1,1

8 ) = E(Q1,2
8 ), where Q1,r

8 , r = 1, 2, are shown in Figure 7.
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Figure 7. Unicyclic signed graphs Q1,1
8 , Q1,2

8 , Q1,1
9 , and Q1,2

9 .

(ii) Among all 480 unicyclic signed graphs on 9 vertices, Q2,1
9,9 is the signed graph

with 13th minimal energy. Also, we have an ordering of energies in ascending
order as follows: E(S0,1

9,9) = E(S0,2
9,9) < E(B0,1

9,9) < E(S1,1
9,9) = E(S1,2

9,9) <

E(B0,2
9,9) = E(B1,1

9,9) < E(S2,1
9,9) = E(S2,2

9,9) < E(B2,1
9,9) < E(F 1

9,9) = E(B1,2
9,9) <

E(B2,2
9,9) < E(Q3,1

9,9) = E(Q3,2
9,9) < E(Q4,1

9,9) = E(Q4,2
9,9) < E(Q1,1

9,9) < E(Q1,1
9 ) =

E(Q1,2
9 ) < E(Q2,1

9,9), where Q1,r
9 , r = 1, 2, are shown in Figure 7.

(iii) Among all 667 unicyclic unsigned graphs on 10 vertices, which gives 1334
unicyclic signed graphs, up to switching, Q4,1

10,10 and Q4,2
10,10 are the signed

graphs with 13th minimal energy. Also, we have an ordering of energies in
ascending order as follows: E(S0,1

10,10) = E(S0,2
10,10) < E(B0,1

10,10) < E(S1,1
10,10) =

E(S1,2
10,10) < E(B0,2

10,10) < E(B1,1
10,10) < E(S2,1

10,10) = E(S2,2
10,10) < E(S3,1

10,10) =
E(S3,2

10,10) < E(B2,1
10,10) < E(B1,2

10,10) < E(F 1
10,10) < E(B2,2

10,10) < E(Q3,1
10,10) =

E(Q3,2
10,10) < E(Q4,1

10,10) = E(Q4,2
10,10).

Conclusion. In this paper, we were able to provide unicyclic signed graphs with
first eleven minimal energies. After that the problem becomes difficult. For exam-
ple, it is easy to see that the unicyclic signed graphs Q3,1

n,n and Q4,1
n,n have 12th and

13th minimal energy, respectively, for n = 12. But for n = 1000, Q4,1
n,n has 12th

minimal energy and Q3,1
n,n has 13th minimal energy. It will be interesting to provide

further orderings with respect to minimal energy. Energy ordering in other families
of signed graphs, such as bipartite, k-cyclic (k ≥ 2), complete signed graphs of fixed
order, etc., remains a problem for future study. It will be useful to see the work on
weighted graphs [3] and directed graphs [5].
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