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Abstract. Origami that can form various shapes by setting simple creases on the paper and folding along these creases has a 

lot of applications from the fields of art to engineering. The inverse problem of origami that determines the distribution of 10 

creases based on the desired shape is very complicated. In this paper, we use theoretical kinematics to systematically analyse 

an inverse folding problem of a toy about how to fold a piece of paper into a disc through a smaller hole without breaking it. 

The results show that some four-crease and six-crease patterns can achieve the expected function, and they can be easily folded 

with 1 degree of freedom (DOF). It not only opens up a new way to solve the inverse folding problem but also helps students 

to understand mechanisms and machine theory. 15 

1 Introduction 

Origami, a kind of traditional art of paper folding originating in East Asia, has attracted much attention in the fields of science 

and engineering due to the property that it can generate a large number of 3D structures by setting creases on a piece of paper. 

In mechanism, Zhang and Chen utilized origami to find some mobile assemblies of overconstrained linkages (Zhang and Chen, 

2018). In biology, origami was applied in DNA nanotechnology (Marras et al., 2019; Masayuki and Hiroshi, 2018). In 20 

engineering, a variable-diameter wheel was designed for a wheel-driven robot using an origami structure (Lee et al., 2017; Lee 

et al., 2021), Meanwhile, Pesenti et al. (2015) used an origami pattern to reduce energy consumption for indoor climate control 

as well as artificial lighting and offered visual comfort for users (Pesenti et al., 2015). Because there are always lots of creases 

in an origami pattern and the topology is quite complex, some numerical approaches (Yu et al., 2019; Deng et al., 2020) were 

proposed to study the folding behaviour of origami patterns. To further satisfy the need of practical applications, some scholars 25 

paid attention to the folding of thick-panel origami patterns and proposed some solutions (Chen et al., 2015; Zhang and Chen, 

2019; Hull and Tachi, 2017). 
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On some particular occasions, some holes have to be cut in the paper before folding, and this variation of origami is called 

kirigami. The interference among the sides of holes can be utilized to block the folding, which benefits the load-bearing 

capacity of self-locking mechanical metamaterials (Fang et al, 2018) and self-locking structures(Wang et al., 2020). Comparing 30 

with normal origami patterns, the gaps make kirigami patterns easier to deform, facilitating the applications of kirigami in 

some engineering areas. For example, Rafsanjani et al. (2018) and Yang et al. (2021) designed some crawlers with kirigami 

patterns. Some graded conventional/auxetic honeycomb cores were designed by Hou et al. (2014). Lin et al. (2016) got a 

synthetic Buckliball, and Zhang et al. (2015) drove an assembly of 3D mesostructures of diverse materials from 2D 

micromembranes or nanomembranes.  35 

Recently, an interesting toy of the paper-folding problem on how to get a round disc through a smaller square hole in a piece 

of paper (see Fig. 1) has attracted the attention of the authors. The problem was proposed by Tadashi Tokieda, who is a 

mathematician from Stanford University. As Tokieda explained, the 2D paper is transferred into a 3D structure when being 

folded up off the table by twisting the paper, and the disc can then pass the smaller hole (Round Disk in a Square Hole, 2021). 

However, the mechanism behind the problem such as creating creases by twisting the paper and the folding process has not 40 

been explained explicitly yet.  

Therefore, the target of this paper is to systematically find proper kirigami patterns that can realize the function of allowing a 

round disc to pass through a smaller square hole in a piece of paper, namely to determine the distribution of creases. Meanwhile, 

the folding process will be explained by kinematic analysis. The remaining parts are structured as follows. Section 2 is to 

describe the problem from the mechanical engineering perspective. The construction process of the kirigami patterns is given 45 

by kinematic analysis in Section 3. Conclusions are drawn in Section 4 to end the paper.  

2 Origami and linkage 

Ignoring the deformation of paper panels and only allowing the folding around creases, an origami pattern is equivalent to a 

linkage by viewing creases as revolute joints (R-joints), paper panels as links. In origami, a four-creases pattern, see Fig. 2a, 

is the most classical origami with the least number of creases, we hence choose it as an example to show the equivalent property, 50 

see Fig. 2b. 

Since we are interested in the folding performance of the origami pattern, the relative motion among links in the linkage ought 

to be concerned. Therefore, local coordinate systems at creases are established according to D-H notation (Denavit and 

Hartenberg, 1955), where the z axis directs from the vertex P to the outside along each crease; the direction of the x axis is 

determined by the right-hand rule, namely 1X Z Zi i i−=  , and the y axis is determined by the right-hand rule (see Fig. 2b). 55 

Therefore, the relationships among kinematic variables in spherical 4R linkage (Chiang, 1988) are  

1 1sin cos 0i iU V W + ++ + =           (1) 

where 
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( )( ) ( )( )1 2 3 4
sin sin sin ii i i i

U   
+ + + +

= −  

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )1 1 2 3 4 1 1 2 3 4
cos sin sin cos sin sin cosii i i i i i i i i i i i

V       
+ + + + + + + + + +

= +  60 

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )1 1 2 3 4 1 1 2 3 4 2 3
sin cos sin cos cos cos cos cosii i i i i i i i i i i i i i

W        
+ + + + + + + + + + + +

= − +  

where α is the twist angle, and θ is the revolute angle (variable). To describe the folding more intuitively, upper-dihedral angles, 

φ, are adopted (see Fig. 2a). In this paper, all of the dihedral angles are measured from upwards, namely φ<π means that the 

corresponding creases are valley ones represented by dashed lines, and situations of φ>π are for mountain creases represented 

by solid lines. Here,  65 

πi i = −             (2) 

Therefore, the kinematic relationship can be expressed by the dihedral angles 

f 1 f 1 fsin cos 0i iU V W + ++ + =             (3) 

where 

( )( ) ( )( )f 1 2 3 4
sin sin sin ii i i i

U   
+ + + +

= −  70 

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )f 1 1 2 3 4 1 1 2 3 4
cos sin sin cos -sin sin cosii i i i i i i i i i i i

V       
+ + + + + + + + + +

=  

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )f 1 1 2 3 4 1 1 2 3 4 2 3
sin cos sin cos cos cos cos cosii i i i i i i i i i i i i i

W        
+ + + + + + + + + + + +

= − − +  

In the view of mechanical engineering, the target is to assign creases to generate a kirigami pattern. To facilitate the folding, 

these equivalent linkages are expected to be of 1 degree of freedom (DOF), and the distribution of creases is preferred to be 

symmetric to simplify the folding process. According to the classical G-K (Grübler–Kutzbach) criterion (Huang, 2004), single-75 

loop spatial linkages must be with multi-DOFs when the number of links is larger than seven. On the other hand, the least 

number of movable spatial linkages is four. Therefore, the number of creases of possible kirigami patterns must belong to {4, 

5, 6, 7}. To make the obtained pattern easy to fold, the creases are hoped to be symmetrically distributed. For five-bar spatial 

linkages, only the Myard 5R linkage (Liu and Chen, 2009) is plane-symmetric, which will become a 2-DOF spherical 5R 

linkage when all link lengths are taken zero in zero-thickness origami, see Fig. 2c. Figure 2d shows the two possible situations 80 

for the seven-crease pattern with plane symmetry, where planes 3 and 4 are the symmetric planes, and all panels are expected 

to be folded to the corresponding planes with 1 DOF. However, the yellow panels can never be folded into these symmetric 

planes, namely seven-creases patterns are not flat-foldable. Therefore, there are two possible assignments, four-crease and six-

crease patterns, to be studied. Meanwhile, in order to allow the disc to pass through the smaller square hole, one of the distances 

between a pair of alternating vertices of the square hole should be as large as possible and not smaller than the diameter of the 85 

disc. Therefore, the following section will evaluate the distances of the two possibilities during the folding.  
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3 Construction of the pattern 

For convenience, the side length of the square hole is denoted as l, the size length of the paper is la by lb, and the diameter of 

the disc is d, which is larger than  √2𝑙 and smaller than 2l. The two possible situations, four-crease and six-crease patterns, are 

studied as follows.  90 

3.1 Four-crease pattern 

Figure 3 shows the situation of setting four creases on the paper, where the angles between each pair of adjacent creases, 

namely the twist angles, are 𝛼 and 𝛽. Due to the symmetric property, 𝛽 = π − 𝛼. Crease AA' is chosen as a valley one for 

convenience. According to Hull (1994), creases BB', CC', and DD' are valley, mountain, and valley creases, respectively, and 

the pattern is flat-foldable; then 𝜑1, 𝜑2, 𝜑4 ∈ [0, π], and  𝜑3 ∈ [π, 2π].  95 

It is easy to find that the distance between B and D rapidly becomes smaller during the folding, the disc thus could not pass 

the hole along this gap. For the gap along AC, some auxiliary lines are added to evaluate the distance. For example, 

perpendicular lines of BB'crossing A and C, respectively, AM and CN, are drawn, where M and N are vertical feet, see Figs. 

3a and 3b. Line segment MQ is determined as paralleling and equalling NC. Then, CQ, AQ, and AC are connected 

independently (see Fig. 3b). According to the geometric properties of the pattern, the following conditions are satisfied (see 100 

Fig. 3a), 

2
BO=

2
l               (4a) 

BO 2
PO cot

tan 2
l 


= =              (4b) 

( )
2

PA PO AO cot 1
2

l = − = −             (4c) 

( )
2

PM PAcos cos cot 1
2

l  = = −            (4d) 105 

( )
2

AM PAsin cos sin
2

l  = = −            (4e) 

( )
2

PC PO OC cot 1
2

l = + = +             (4f) 

( )
2

PN PCcos cos cot 1
2

l  = = +            (4g) 
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( )
2

CN QM PCsin cos sin
2

l  = = = +            (4h) 

MN QC PN PM 2 cosl = = − =             (4i) 110 

In ∆AQM, ∠AMQ = 𝜑2 (see Fig. 3b); then 

2 2 2

2AQ AM QM 2AM QM cos(π )= + −  −         (4j) 

Due to AQ⊥CQ, 

( )2 2 2 2

AC 2AQ QC 2cos + 2cos 1 cos 1l l  = + = − +           (5) 

Since 𝜑2 varies from π to 0 when the pattern is folded from the deployed configuration to the folded one, lAC is monotonically 115 

increasing and will become the largest value, AC,max 2 cosl l = , at the fully folded configuration. Therefore, if 2 cosd l  , 

the disc can pass through this hole by folding the four-creases pattern; otherwise, the disc could not.  

3.2 Six-crease pattern 

Based on the four-creases pattern, two additional creases, BB'' and DD'', are introduced (see Fig. 4). Similarly, AA' is also 

chosen as a valley crease for reference. The corresponding mechanism is a plane-symmetric Bricard linkage with the following 120 

parameters: 

12 23 34 45 56 61 0a a a a a a= = = = = = ;           (6) 

12 612π =  = − , 
23 56=2π =  − , 34 45=2π =  −          (7) 

1 4 =0R R= , 
6 2R R= − , 

5 3R R= − ;            (8) 

where 0 , , π    , =π  − − , 2

2

2sin

l
R


= , and 

3

2

2sin

l
R


= − . The relationship among kinematic variables (Feng, 125 

2015) is 

3tan
2 2

I

A


= ;              (9) 

1tan
2

HI J

KI L

 +
=

+
;              (10) 

4tan
2

MI N

OI P

 +
=

+
;             (11) 
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5 3 = , 
6 2 = ;              (12) 130 

where 

( )22 tan sin sin 2
2

A l


  = − − +   ,         (13a) 

( ) ( ) ( ) ( ) ( )2 22 2 22 2 tan sin( )sin sin sin 2 tan sin sin tan sin sin 2
2 2 2

H l
  

             
 

= − + − + + − + + − + 
 

             (13b) 

( )2 22= 2 2 tan sin cos cos
2

I l


  −  ,         (13c) 135 

( )
22 3 28 tan sin sin sin 2

2
J l


   = − +   ,         (13d) 

( ) ( ) ( )
( )

( )

( )
( )

4 22 2

2 2

2 sin2
2sin 2 tan sin 2 tan sin 2 2 sin

2 2 2 2sin

2 sin 22
8tan sin cos sin

2 2 2sin

l
K l

l
l

  
      

 

 
   



 − 
= + − + + −   +    

 +
− + − 

  

,   (13e) 

( )
22 4 24 sin 2 tan sin sin 2

2
L l


   = − +   ,         (13f) 

( ) ( ) ( ) ( ) ( )2 22 2 22 2 tan sin( )sin sin sin 2 tan sin sin tan sin sin 2
2 2 2

M l
  

             
 

= − + − + + − + + − + 
 

             (13g) 140 

( )
22 3 28 tan sin sin sin 2

2
N l


   = − +   ,         (13h) 

( ) ( ) ( )
( )

( )

( )
( )

4 22 2

2 22

2 sin2
2sin 2 tan sin 2 tan sin 2 2 sin

2 2 2 2sin

2 sin 22
8tan sin sin

2 2 2sin

l
O l

l
l

  
      

 

 
  



 − 
= + + + + −   +    

 +
+ + − 

  

,   (13i) 

( )
22 4 24 sin 2 tan sin sin 2

2
P l


   = − − +   .        (13j) 

Here, variable I has two solutions, which represent two moving paths. I remains zero in one of the solutions, which means 

there is no folding along creases BB' and DD', and it degenerates to a spherical 4R mode. The situation, I=0, is thus not 145 

considered in the following analysis, then  

2 2= 4 2 tan cos sin
2

I l


 −             (14) 
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Because 𝛾 will determine the positions of the added creases (i.e. BB'' and DD'') and the range of 𝛾 (i.e.  𝛾 ∈ (0, π/2), 𝛾 = π/2

，𝛾 ∈ (π/2, π)) will also influence the distribution of mountain or valley creases, we will study the three ranges as three 

schemes I, II, and III, respectively. It should be noticed that when 𝛾 ≠ π/2, Eqs. (9)-(11) become, by considering Eq. (14),  150 

( )

2

3

2 tan cos sin
2=2arctan

sin sin 2


 


  

 
 
 

− + 
  

;            (15) 

1

2

1
2arctan

tan cos
2






 
 

=  
  
 

;             (16) 

4 1 = , 
5 3 = , 

6 2 = .              (17) 

3.2.1 Scheme I for  𝜸 ∈ (𝟎, 𝛑/𝟐) 

When 𝛾 ∈ (0, π/2) (see Fig. 4), the relationship between dihedral angles and revolute variables is 155 

2 2=π+  ;              (18) 

 )

 

1 2

2

1

1 2

2

1
2arctan π,0

tan cos
2

=

1
2π+ 2π+2arctan 0,π

tan cos
2

 






 




  
  

=  −  
   
  


 
 

=  
   
 

         (19) 

( )

2

3 3

2 tan cos sin
2=π+ π+2arctan

sin sin 2


 

 
  

 
 

=  
− + 

  

;          (20) 

4 1=  , 5 3=  , 6 2=  .             (21) 

Substituting Eqs. (18)-(20) into Eqs. (15) and (16), 160 
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( 

2

2

1

2

2

tan
2-2arctan 0,π

cos

=

tan
22 -2arctan π 2π

cos









 


  
  

  
   
  


 
 

 
   
 

，

           (22) 

( )

2

3

2cot cos sin
2=π-2arctan

sin sin 2


 


  

 
 
 

− + 
  

           (23) 

According to Eqs. (21-23), when 𝜑2 = π , and 𝜑1 = 𝜑4 = 𝜑3 = 𝜑5 ≡ π , the pattern locates at the fully deployable 

configuration. While 𝜑2 = 0, 𝜑1 = 𝜑4 ≡ 0, and 𝜑3 = 𝜑5 ≡ 2π, the pattern is always flat-foldable. To show the folding 

performance in detail, Fig. 5 shows the curves among dihedral angles for γ=3π/4, 2π/3, 5π/12 when α=π/6. All curves pass 165 

through the point (π, π), which represents the deployed configuration in a plane, and pass the point (0, 0), which represents the 

fully folded configuration in a plane. The types of creases 1, 2, 4, and 6 are the same and are different from those of creases 3 

and 5 according to the range of dihedral angles, and the pattern could be folded along two sides due to 𝜑2 = 𝜑6 ∈ (0,2π). The 

distance between A and C can be obtained by the transformation of coordinate systems. In system 1,  

( )

T

2
= 0 0 cot 1 1

2
l 

 
+ 

 

1
A             (24) 170 

and in system 4, 

( )

T

4 2
= 0 0 cot 1 1

2
l 

 
+ 

 
C             (25) 

It can be transformed into system 1, 

𝐂1 = 𝐓21𝐓32𝐓43 𝐂4              (26) 

in which 𝐓𝑖𝑗 represents the transformation matrix from system i to system j (Dai, 2014): 175 

3 3 3

3 3 3

cos cos sin sin sin 0

sin cos sin sin cos 0

2
0 sin cos

2sin

0 0 0 1

l

    

    

 


− 
 

−
 
 =

− 
 
  

43T ,         (27) 
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2 2 2

2 2 2

cos cos sin sin sin 0

sin cos sin sin cos 0

2
0 sin cos

2sin

0 0 0 1

l

    

    

 


− 
 

−
 
 =
 
 
 
 

32T ,         (28) 

1 1 1

1 1 1

cos cos sin sin sin 0

sin cos sin sin cos 0

0 sin cos 0

0 0 0 1

    

    

 

− 
 

−
 =
 
 
 

21T ,          (29) 

Then, the distance between A and C is 

ACl = −1 1
A C .              (30) 180 

To make the disc through the hole, the largest value of lAC should be larger than d, 𝑙AC,max > 𝑑. According to the above-

mentioned analysis, the pattern is flat-foldable. Figure 4c shows the fully folded configuration, in which 𝑙AC,f is related to 𝜂,  

1 2

π π 3π
2

4 4 2
       

   
= + − = + + + − = −   

   
,          (31) 

Then, 

AC,f

π
2 sin 2π 2 sin

2 4
l l l




   
= − = +   

   
.          (32) 185 

Therefore, when 𝛽 = π/4, 𝑙AC,f will reach the largest value, 𝑙AC,f,max = 2𝑙, and the disc can definitely pass through the hole. 

Figure 4d shows the folding sequence with three states of a model, α=5π/36, β=π/4, γ=11π/18, the fully deployed configuration, 

a middle state, and the fully folded configuration, where dashed lines represent valley creases and solid lines show the mountain 

creases.  

3.2.2 Scheme II for  𝜸 = 𝛑/𝟐 190 

When 𝛾 = π/2 (see Fig. 6), the degenerated condition is from a plane-symmetric Bricard linkage to a movable 4R linkage, Eq. 

(20) in Feng (2015) is satisfied. The plane-symmetric Bricard linkage works as a spherical 4R mode along creases AA', BB', 

CC', and DD' after panels BB'B'' and DD'D'' overlap panels AA'B''B and AA'D''D, respectively, and 2 6 0 = =  (see Fig. 6b). 

Obviously, the twist angles of the 4R linkage are 

S12 S23 S34 S41    = = = = .             (33) 195 

Then, the kinematic relationship, expressed with dihedral angles, can be obtained from Eq. (3), 
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3

1

1
=π+2arctan

cos tan
2






 
 
 
  
 

;            (34) 

4 1=  , 
5 3=  .              (35) 

The curves among dihedral angles for β=π/10, π/5, 3π/10, 2π/5, are given in Fig. 7, which show that all of them can be fully 

folded too. It shows that creases 1 and 4 move as valleys while creases 3 and 5 move synchronously as mountains due to 200 

physical interference. Similarly, by observing Eqs. (34) and (35), the pattern could also be flat-foldable. Figure 6c shows the 

pattern at the fully folded configuration, in which 𝑙AC,f can be calculated with Eq. (31) too. Therefore, when 𝛽 = π/4, 𝑙AC,f 

will reach the largest value, 𝑙AC,f,max = 2𝑙, and the pattern can also realize the desired function, which is demonstrated with a 

model, α=π/4, β=π/4, γ=π/2 (see Figure 6d). It should be noticed that the solution of Prof. Tokieda is just one particular situation 

of this scheme. 205 

3.2.3 Scheme III for  𝜸 ∈ (𝛑/𝟐, 𝛑) 

When 𝛾 ∈ (π/2, π), the relationship between dihedral angle, φ1, and revolute variable, θ1, is changed because the distribution 

of creases is changed (see Fig. 8); 

 )

 

1 2

2

1

1 2

2

1
2π+ 2π+2arctan π,0

tan cos
2

=

1
2arctan 0,π

tan cos
2

 






 




  
  

=  −  
   
  


 
 

=  
   
 

         (36) 

Then, the relationship between φ1 and φ2 becomes 210 

 

( 

2

2

1

2

2

tan
22π 2arctan 0,π

cos

=

tan
22arctan π 2π

cos












  
  

−   
   
  


 
 

−  
   
 

，

           (37) 

Kinematic curves among dihedral angles are given in Fig. 9 for γ=π/3, π/4, π/6 when α=5π/12, which show that all of them can 

be fully folded theoretically. It shows that creases 2, 3, 5, and 6 are the same type, while creases of 1 and 4 are the other type.  
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In this situation, panels BCC'B' and BAA'B'' are folded in the same direction regarding panel BB'B'' since creases BB' and BB'' 

are both mountain creases (see Fig. 8b). If 𝛽 is not large enough, panel BCC'B' will intersect with BAA'B'', a physical model 215 

with parameters α=5π/18, β=π/3, γ=7π/18 was fabricated with card paper as shown in Fig. 8e. The interference area gradually 

increases with the folding process and becomes the largest value at the fully folded configuration. To show the condition of 

avoiding the interference, Fig. 8c gives the fully folded configuration theoretically without considering interference. If 

𝜂1 + 𝜂2 = (𝛾 + π/4) + (𝛼 + π/4) = 𝛾 + 𝛼 +
π

2
= π − β + π/2 = 3π/2 − β < 𝛽,      (38) 

then there is no common area between panels BCC'B' and BAA'B'', and there will be no interference during the folding (see 220 

Fig. 8d). Namely, the condition of avoiding interference for this scheme is 

𝛽 > 3π/4.              (39) 

The distance between A and C (see Fig. 8d) is 

1 2
AC,f

3π
2 sin 2 sin 2 sin

2 2 4
l l l l

  


− −    
= − = = −    

    
.        (40) 

Due to 𝛽 < π, 225 

AC,f

π
2 sin 2

4
l l l d

 
 =  

 
.          (41) 

Therefore, the scheme could not realize the desired function even if the interference is avoided. The result is verified with a 

physical model, α=π/18, β=29π/36, γ= 5π/36, with no interference, as shown in Fig. 8f, in which the top panel was removed to 

show AC in sub-figure (iv).  

4 Conclusions 230 

The paper proposed symmetric kirigami patterns to realize the function that allows a round disc to pass through a smaller hole 

in a piece of paper by the systematic analysis of kinematics and folding behaviours. The condition for the four-crease pattern 

to enable the disc to pass through the smaller hole was given. For six-crease patterns, situations for 𝛾 ≤ π/2 are possible to 

realize the desired function, while the pattern with 𝛾 > π/2  could not due to interference. By analysing the folded 

configuration, we found that 𝛽 = π/4 will always make the gap achieve the largest value, and the solution from Prof. Tokieda 235 

belongs to scheme II of the six-crease pattern, 𝛾 = π/2, and 𝛽 = π/4. The patterns provide an effective way to enable bigger 

objects to pass through smaller holes. The process of finding the distribution of creases can be used as a reference for similar 

inverse folding problems and helps deepen understanding of the mechanisms and machine theory.  
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Figure 1: A paper folding toy: how to get a round disc through a smaller square hole in a piece of paper. 

  



16 

 

 

(a)                                                                            (b) 310 

 

(c) 

 

(d) 

Figure 2: (a) The origami with four creases. (b) The local coordinate systems on the equivalent 4R linkage. (c) The movable five-315 
creases pattern becomes a 2-DOF spherical 5R linkage. (d) Two possible seven-crease patterns are not flat-foldable. 
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          (a)                                                                         (b) 

Figure 3: The four-creases pattern (a) at the deployed configuration, and (b) at the folding configuration. 320 
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                 (a)                                                                   (b)                                                                  (c) 

 
(d) 325 

Figure 4: The six-creases pattern for scheme I with parameters α=5π/36, β=π/4, γ=11π/18 (a) at the deployed configuration, (b) at 

the folding configuration, and (c) at the fully folded configuration, demonstrated with (d) the folding sequence of a physical model. 
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Figure 5: The kinematic curves for scheme I among dihedral angles φ1, φ3, φ4, φ5 V.S. φ2(φ6).  330 
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               (a)                                                                   (b)                                                                   (c) 

 
(d) 335 

Figure 6: The six-creases pattern for scheme II with parameters α=π/4, β=π/4, γ=π/2, which is the solution from Prof. Tokieda (a) at 

the deployed configuration, (b) at the folding configuration, and (c) at the fully folded configuration, demonstrated with (d) the 

folding sequence of a physical model. 

  



21 

 

 340 

Figure 7: The kinematic curves for scheme II among dihedral angles φ3(φ3) V.S. φ1(φ4).  
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    (a)                                                                       (b) 

 345 

 (c)                                                                 (d) 

 
(e) 
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(f) 350 

Figure 8: The six-creases pattern for scheme III (a) at the deployed configuration, (b) at the folding configuration, (c) at the fully 

folded configuration with interference and (d) with no interference, demonstrated with physical models (e) with interference, 

α=5π/18, β=π/3, γ=7π/18, and (f) with no interference, α=π/18, β=29π/36, γ= 5π/36. 
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 355 

Figure 9: The kinematic curves for scheme III among dihedral angles φ1, φ3, φ4, φ5 V.S. φ2(φ6). 

 


