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A Pose-based Feature Fusion and Classification Framework for the Early
Prediction of Cerebral Palsy in Infants

Kevin D. McCay , Pengpeng Hu , Hubert P. H. Shum , Wai Lok Woo ,
Claire Marcroft, Nicholas D. Embleton , Adrian Munteanu and Edmond S. L. Ho

Abstract— The early diagnosis of cerebral palsy is an area which
has recently seen significant multi-disciplinary research. Diagnos-
tic tools such as the General Movements Assessment (GMA), have
produced some very promising results. However, the prospect
of automating these processes may improve accessibility of the
assessment and also enhance the understanding of movement
development of infants.

Previous works have established the viability of using pose-
based features extracted from RGB video sequences to undertake
classification of infant body movements based upon the GMA. In
this paper, we propose a series of new and improved features,
and a feature fusion pipeline for this classification task. We also
introduce the RVI-38 dataset, a series of videos captured as part
of routine clinical care. By utilising this challenging dataset we es-
tablish the robustness of several motion features for classification,
subsequently informing the design of our proposed feature fusion
framework based upon the GMA. We evaluate our proposed frame-
work’s classification performance using both the RVI-38 dataset
and the publicly available MINI-RGBD dataset. We also implement
several other methods from the literature for direct comparison
using these two independent datasets.

Our experimental results and feature analysis show that our
proposed pose-based method performs well across both datasets.
The proposed features afford us the opportunity to include finer
detail than previous methods, and further model GMA specific
body movements. These new features also allow us to take ad-
vantage of additional body-part specific information as a means of
improving the overall classification performance, whilst retaining
GMA relevant, interpretable, and shareable features.

Index Terms— Cerebral Palsy, Early Diagnosis, Explain-
able AI, General Movements Assessment, Machine Learn-
ing, Motion Analysis, Skeletal Pose Estimation

I. INTRODUCTION

CEREBRAL palsy (CP) is the collective term given to a group
lifelong neurological conditions caused by non-progressive

damage to the brain [5], occurring before, during, or shortly after
birth [49]. CP typically affects movement, muscle tone, posture and
co-ordination, but can also cause difficulties with swallowing, speech-
articulation, hearing, vision, and can impact upon an individual’s
ability to learn new skills [17].

CP is the most prevalent physical disability found in children, with
2.11 diagnoses per 1000 live births [41]. There is also an increased
prevalence of CP in infants born prematurely, with 32.4 diagnoses
per 1000 infants born very preterm (28-32 weeks gestation), and
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70.6 diagnoses per 1000 infants born extremely preterm (<28 weeks
gestation) [47]. As the degree of prematurity increases so to does the
likelihood of severe disability, with one-in three of those surviving
at 22 weeks gestation being severely disabled [14], [28]. As such,
the early diagnosis of CP is an ongoing area of multidisciplinary
research, as it has the potential to allow for early intervention clinical
care. Early interventions look to optimise the neuroplasticity of the
developing infant brain, thereby inhibiting the impact of impairment
and subsequently reducing the likelihood of the child fully developing
associative conditions [24]. However, early diagnosis can be difficult
and time consuming [31].

Manual examinations, such as the General Movements Assessment
(GMA) [16], have been developed to identify the emerging signs of
CP. Studies suggest that the GMA compares favourably with other
methods, such as cranial ultrasound and neurological examination,
by producing more consistent and reliable individual results [6], with
the GMA being identified as the leading method of predicting later
CP [26]. The GMA is typically carried out by evaluating the quality
of body movements at a specific window in an infant’s development
(Section II-A); however, the application of these assessments can be
challenging, chiefly due to the availability of appropriately skilled
clinicians [31].

There is increasing motivation to utilise technology to aid with clin-
ical decision making, helping with logistical constraints, increasing
the predictive accuracy and targeting early intervention [39]. As such,
several works [1], [33]–[35], [40], [53] have proposed automated
solutions to help address the challenges faced in the diagnosis of
CP. The proposed methods typically make use of machine learning
frameworks to automatically assess infants based upon the movement
patterns associated with the GMA. These methods suggest that a
machine learning framework could substantiate the decision making
process, allowing for intuitive, quantitative, cost-effective, evidence-
based evaluation [29], and also provide a means of fully remote
diagnostic assessment.

However, it is also clear that the interpretability of the model
must be considered, particularly when using machine-learning based
approaches in the medical domain. Machine learning models are often
be seen as ‘black boxes’, in which the underlying structures can
be difficult to comprehend. Consequently, clarity is required as to
why a system arrives at a decision, and as such the mechanisms
behind classification frameworks have to be transparent, under-
standable and explainable [21]. We therefore suggest that by using
pose data in combination with histogram representations, we retain
human interpretability throughout the classification pipeline. As such,
we propose a feature-extraction, feature-fusion, and classification
framework, which extracts several new GMA relevant features using
pose data generated from standard 2D RGB video. By using this
approach we aim to ensure that the extracted features are not only
closely mapped to the assessment criteria specified in the GMA,
but are also able to be understood by clinicians as a means of
retaining predictive accountability and explainability. This approach
also provides opportunities for remote data analysis without the need
for specialist equipment, making wider clinical diagnosis feasible.
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To evaluate our system and to inform the design of our proposed
features, we subsequently collected a new video dataset (RVI-38),
which reflects the complexity associated with video data gathered
in real-world clinical settings for use in the GMA. By utilising the
challenging RVI-38 dataset, we have developed and evaluated com-
binations of several different supplementary pose-based features. In
doing so, we have produced a feature-set capable of generalising well
across datasets of varying size, quality, and duration, whilst simul-
taneously dealing with superfluous information present in shot. We
compare our method with several methods from the literature using
both the RVI-38 dataset and the MINI-RGBD [20] dataset to evaluate
the comparative robustness of our features. The source code and
dataset used in this paper is available at (https://github.com/
edmondslho/Pose-basedCerebralPalsyPrediction).

The contributions of this work can therefore be summarised as:
• A series of new and enhanced pose-based interpretable features,

extracted from 2D video sequences, and based upon specific
criteria set out in the GMA.

• Experimental re-implementation, comparative evaluation, and
discussion of several prominent previous methods, along with
our proposed method, are undertaken using shared datasets, for
unbiased assessment and the generation of a new benchmark.

• The introduction of a challenging new video dataset, composed
of real-world patient data. This GMA specific dataset informs
our proposed feature design and comparative analysis. Addition-
ally, given the difficulty in acquiring data in this sensitive area,
we also make the extracted pose dataset and associated GMA
labels available to the community

• Analysis of a new automated feature extraction, fusion, and
classification pipeline, for the prediction of cerebral palsy based
upon the GMA. We also make this framework available to the
community to further encourage research in this field.

II. RELATED WORKS

In this section, we discuss the GMA as well as relevant studies
which have attempted to automate this diagnostic process using
computer vision based approaches. We provide an overview of the
associated feature extraction processes, with a view to including
several of the discussed methods as comparative evaluation baselines.

A. General Movements Assessment
The GMA is a non-invasive and non-intrusive physical examination

of infants for the early detection of neurological anomalies associated
with CP. General movements (GMs) are body movements which
are spontaneous and variable, and form part of a distinct pattern of
movements, called Fidgety Movements (FMs), which can be observed
from early fetal life through to around 20 weeks post-term [16].

In a typically developing infant, FMs wax and wane in intensity,
speed, frequency, amplitude, and range of motion, with notable
fluctuations to the rotation, orientation, and displacement around the
limb axes [42]. Conversely, abnormal GMs are identified by the
absence of FMs, with a lack of duration, variability, and complexity
throughout the movement sequence [48]. FMs are seen as a reliable
indicator of brain dysfunction and as such, the presence of these
abnormal GM patterns is seen as a strong predictor that the infant
will receive a confirmed diagnosis of CP in later life [15].

The ability to provide an early diagnosis of CP is considered
key, as early intervention care can contribute towards improved
motor-function ability due to the application of neuro-developmental
treatments, which optimise the “brain plasticity” found in developing
infants [37]. As such, the earlier a confirmed diagnosis can be made,
the better the outlook for the infant’s long term development [58].

However, whilst diagnostic tools such as the GMA have been proven
to provide accurate prediction of CP, the training required to become
a suitably proficient assessor is significant.

Motivated by this, an initial study by Adde et al. [1], proposed
a system in which computer vision techniques were employed to
assess the feasibility of undertaking automated GMA. In this study, a
representation of the associated motion was created by generating a
“motion image”, which quantified the amount of infant movement
present in each video through frame differencing. The generated
motion images were then used to generate features for binary
classification of normal or abnormal infant movements. However
the use of difference images is subject to several limitations, such
as sensitivity to camera movement, issues with self-occlusion, strict
background pre-processing, and a lack of information about the speed
and direction of objects moving in frame [43], [53]. As such, several
studies have subsequently attempted to further evaluate the viability
of automated GMA through more advanced computer vision-based
techniques, such as optical flow.

B. Automated Optical Flow-based Methods
In optical flow based methods, the motion is represented by a

displacement vector field of the pixels between consecutive frames
of an image sequence, rather than simply calculating the gross
quantity of motion present in the frame and localising this centrally
as previously proposed [53]. This allows for more detailed tracking
of infant body-parts and the associated movements, and subsequently
deeper analysis of the correlated motion.

In [53], optical flow data was extracted from video sequences
before wavelet frequency analysis was implemented in order to
calculate the time-dependant trajectory signals found in the data.
However, using this optical flow method presented issues with
tracking larger movements, and as such it was suggested that video
captured at a higher frame rate would be required for future analysis.
In order to address this problem several works [23], [40], [44],
[45] implemented large displacement optical flow (LDOF) [8], to
track infant body movements and extract features for classification.
The LDOF method extends optical flow to better deal with large
displacements of foreground objects and camera movement, making
it more suitable for detailed infant motion analysis. This enhancement
allowed for the improvement of existing motion quantity features
[23], the development of velocity-based features [40], [44], and
the introduction of frequency-based features [45] for infant motion
analysis and binary classification. Through comprehensive analysis
of these movement-based features, it was subsequently determined
that dynamic features are typically more predictive than the previous
statistical features [45]. However, similar challenges are present,
such as issues with occlusion, drift and noise [54], as well as
susceptibility to unrelated movements (such as equipment, parents
or clinicians in shot), and sensitivity to illumination changes [43].
Additionally, the low generalizability and interpretability of extracted
features make translation to clinical practice less likely [43], [45].
Finally, the motion data does not easily assess body parts separately,
typically relying upon whole body movement analysis [10], [46]. By
incorporating part-based assessment, the potential to provide further
analytic cues for CP prediction and the identification of CP sub-types
is enhanced [43]. As such, alternative methods have been proposed
to better model human shape and motion, such as pose estimation
[9], [22].

C. Pose Estimation-based Methods
Pose estimation is the task of using computer vision and machine

learning techniques, to detect human figures in images and video,
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and determine their pose by estimating the spatial locations of key
body joints. In this particular use case, it is suggested that pose
estimation is more robust to several factors negatively affecting
the discussed methods [11], such as illumination changes, camera
movement, changes in resolution, inconsistencies in infant size, and
larger movements between frames. Since pose-estimation provides
localised joint estimation it is also better able to deal with external
influences, as well as provide important motion information based
upon individual body-part movements, requiring comparatively min-
imal manual tuning [10], [36].

Research into the feasibility of using pose-based assessment for
GMA is ongoing, with several papers contributing advances in this
area. In [10], [18], [27], [30] and [36], pose estimation and domain
adaptation methods for video sequences of infants are proposed, with
each suggesting that their methods are a step towards automated pose-
based GMA. However, each typically assesses the effectiveness of
the extracted pose rather than the effect this might have upon final
classification. In contrast, [33], [34], [38], [51], [56], examine the
viability of using pose-based features for the prediction of CP using
a feature extraction and classification pipeline.

Whilst reasonable results have been reported in each of the
previously discussed related methods, evaluation of the robustness
of the proposed features has not been demonstrated across multiple
datasets. Indeed, given the sensitive nature of the data required
for evaluation of each of the discussed methods, it is difficult to
assess their viability without full re-implementation and assessment
on shared datasets. As such, we not only propose a wide range of
new GMA relevant features capturing orientation, displacement, and
frequency information (Section III-E), and a feature fusion pipeline
(Section III-G), but also a full re-implementation of several methods
for comparative testing across multiple datasets, including videos
captured in a real-world clinical setting (Section IV).

III. METHODOLOGY

In this section we provide details of the study design, data
collection and the composition of the two datasets used for evaluation.
We also discuss the proposed framework, data pre-processing, feature
extraction, and the classification techniques used.

Fig. 1: Overview of the pose estimation (Section III-D), feature ex-
traction (Section III-E) and classification (Section III-F) framework.

A. Study Design and Data Collection
For this collaborative project, a retrospective cohort study design

was implemented for data collection to produce the RVI-38 dataset
(detailed in Section III-B.1). Ethical approval was obtained from the
host organisation (Ref: 9865), the Research Ethics Committee (REC),
the Health Research Authority (HRA), and Health and Care Re-
search Wales (HCRW) (Ref: 19/LO/0606, IRAS project ID: 252317).
Parental consent for the use of video recordings was obtained by the
clinical staff associated with the project prior to implementation. The

study population included infants who had a clinical GMA, with a
video recording at 3–5 months post-term, as part of their routine
follow-up care. The MINI-RGBD dataset (detailed in Section III-
B.2) is an open source dataset, and all terms specified in the author’s
license agreement were met.

B. Datasets

In order to comprehensively evaluate our feature extraction, fusion
and classification pipeline, we made use of two separate datasets,
details of which are discussed in this section. These datasets were
also used to evaluate the selected baseline methods for comparison,
as discussed in Section IV.

1) RVI-38 Dataset: An important part of this study is that the
framework has to have the ability to generalise well across different
datasets, particularly when processing real-world video data. To
reflect this, the challenging new RVI-38 dataset was collected to
inform the design of our framework, and for evaluative analysis.
This dataset is composed of real patient video data gathered as part
of routine clinical care at the Royal Victoria Infirmary (RVI) in
Newcastle upon Tyne, and reflects the genuine intra-class variance
and subsequent complexity present in the real-world clinical setting.
The RVI-38 dataset consists of 38 videos, of 38 different infants aged
between three and five months post-term. The videos were recorded
using a handheld Sony DSC-RX100 Advanced Compact Premium
Camera with a resolution of 1920x1080 @ 25 FPS. The duration of
each video varied between a minimum of 40 seconds and a maximum
of 5 minutes, with an average duration of 3 minutes and 36 seconds.
The footage was captured from above, in a top-down orientation,
with the infant lying in a supine position per the GMA guidelines.
However, unlike many of the related works (e.g [1], [2], [10], [23],
[40]), all video recordings were used as part of our evaluation,
with no prior screening for inconsistencies such as poor lighting,
camera movement, external factors, significant shadows, or additional
selective pre-processing. Whilst this produced a more challenging
dataset, it also represents a real-world evaluation of footage captured
in a clinical setting. By including this challenging footage we hope
to demonstrate that our system is more capable of being robust
to variations in data capture, making it more suitable to clinical
implementation. The videos were classified by two experienced
assessors, using the GMA, into one of two categories; 1) FM+
where the infant demonstrates normal movements indicative of typical
development; and 2) FM- where the infant demonstrates abnormal
movement patterns that may be of concern to clinicians. This resulted
in 32 videos being annotated as FM+ and 6 videos being annotated
as FM-.

2) MINI-RGBD Dataset: One of the challenges facing re-
searchers attempting to automate the GMA is the availability of
suitable data. Given that the video data required for the GMA is
of a sensitive nature, baseline datasets are not currently publicly
available. Additionally, since human pose estimation frameworks
are almost exclusively trained and tested using images of adults,
a dataset consisting of images of infants for research purposes can
understandably be difficult to obtain. To address this problem the
Moving INfants In RGB-D (MINI-RGBD) dataset was generated and
made publicly available [20]. This dataset maps real-world 3D infant
movements, captured in a clinical setting, to virtual 3D models of
infants. Photo-realistic videos of the 3D infant models were produced
using computer graphics rendering, allowing for the generation of
anonymised, and subsequently shareable footage, which retains the
real-world movement characteristics required for the GMA. This
dataset consists of 12 top down videos of infants lying in a supine
position, each 40 seconds in duration. The videos were once again



4 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

analysed by two experienced GM assessors and similarly labelled,
resulting in 8 videos being annotated as FM+ and 4 videos being
annotated as FM-.

C. Proposed Framework Overview
In this paper, we make use of traditional machine learning classifi-

cation algorithms for practicality and interpretability (Fig 1). We use
raw video as input for the pose estimation framework to compute
joint positions, which are then corrected to remove outliers and
inconsistencies, as discussed in Section III-D. This corrected data
is then used to generate features based upon the GMA for further
analysis. Details of the features used and the extraction processes are
discussed in Section III-E. These individually extracted features are
then fed into a classification framework for evaluation, as discussed in
Section III-F. Finally, we fuse the features together to create a more
robust representation and evaluate this against both the individual
features and the selected baselines, as discussed in Section IV.

D. Pose Estimation and Data Pre-processing
In order to extract meaningful features for subsequent analysis

and classification, pose estimation methods are utilised in this paper.
Specifically, we make use of the OpenPose framework [9] to extract
joint positions from 2D RGB video data. The extracted joint positions
form a skeletal pose representation consisting of 25 predefined
joints, as shown in Figure 2. As such, each frame of each video is
represented by 25 sets of 2D (x and y) coordinates and an associated
confidence score for the prediction.

In this work, we make use of all the extracted joints with the
exception of the facial landmarks (joints 16 to 19), and the feet (joints
20 to 25), as it was determined that these joints were less reliable
than the other body landmarks acquired through OpenPose due to
self occlusion errors, and were found to play a less important role in
the final GMA-based classification results.

1) Automated Data Correction: To ensure consistency through-
out the pipeline, the exported OpenPose data is pre-processed prior
to feature extraction. This pre-processing involves remapping anoma-
lous joint positions caused by self occlusion or inaccuracies in the
OpenPose joint prediction process. The first stage is a qualitative
evaluation of the extracted OpenPose data, to check that predicted
joint positions and the associated confidence scores correctly align,
and are consistent with the input video. We then use the predicted
confidence scores to calculate a confidence threshold. The confidence
threshold is calculated by taking the average confidence score, per
joint, across each video sequence, and subtracting 5% from this.
This means that we are able to remove joint positions with a lower
confidence score than the confidence threshold, removing outliers on
a frame by frame basis, for each joint, in each video sequence. As
such, we compute the confidence threshold value ti for joint i by

ti = (
1

n

n∑
j=1

ci,j)× 95% (1)

where n is the total number of frames (or postures), ci,j is the
confidence score of joint i at frame j returned by OpenPose.

For joints identified as outliers, we calculate a revised joint position
based upon the coordinates of the joint in the nearest neighbouring
frames with confidence scores higher than the confidence threshold.
To calculate the revised joint position we use modified Akima
interpolation [4] as proposed in [34].

We then apply a moving-average filter between frames on a per
joint basis to reduce jitter present in the sequence. With the filter,
smoother, more reliable movements are generated for motion analysis.
Empirically, we found that using a filter calculated over a 5 frame
sliding window provides the best results.

Fig. 2: The 25 joint OpenPose [9] output skeleton, with associated
joint reference numbers overlaid on an example input RGB image
from the MINI-RGBD dataset [20].

2) Automated Data Normalisation: To ensure that the orienta-
tion and displacement is comparable between videos, we rotate and
normalise the landmark coordinates within each frame. Using joint 9
as the root, we amend all joint coordinates so that the root is fixed
at 0,0 whilst the relative distance of each of the joints is unchanged.
We then calculate the rotation θfalign required at frame f to align the
spinal column (i.e. the central line between joints 2 and 9) with the
yaxis = (0, 1) by

θfalign = dir × arccos
(fpf2 − fp

f
9 ) · yaxis

‖(fpf2 − fp
f
9 )‖‖yaxis‖

(2)

where fpf2 and fpf9 are the filtered 2D coordinates of joint 2 and
9, respectively, and dir = sign(fpf2 − fpf9 ) × yaxis) is used to
determine the direction of the rotation (i.e. clockwise or counter-
clockwise). Finally, the normalized position p of each joint can be
computed by

pfi =

[
cos(θfalign) −sin(θfalign)

sin(θfalign) cos(θfalign)

]
(fpfi − fp

f
9 )T (3)

where i ∈ [1, 15].

E. Feature Extraction

Motivated by the encouraging results obtained in our pilot study
[33], we suggest that pose-based histogram features can effectively
represent the motion and distribution of postures over time related
to the GMA. Using the corrected and normalised pose data, we
therefore propose several new pose-based features for the analysis
of infant body movements and subsequent prediction of CP based
upon distinct features from the GMA. Given that GM assessors
typically look for specific movement patterns, we attempt to model
these patterns through a set of orientation-based, displacement-based
and frequency-based features. Specifically we aim to model the
movements associated with the assessment criteria set out in the
GMA checklist [3], and the passive movement assessment section of
the Optimality Score neurological examination [19]. In this section
we discuss details of the proposed new features, their relevance to
the GMA, and the methods used for feature fusion.

1) Angular Displacement (HOAD2D): Angular Displacement
represents the change in angular orientation across a specified time
interval for each body part in the video. This histogram-based feature
captures the distribution of the angular displacement between a
predefined regular offset interval. As such, the smoothness of the
body part movements can be represented. For example, a smooth
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movement should be characterised by a histogram which has only
a small number of bins with high values. This feature is therefore
designed to help identify spasmodic, abrupt, and sporadic movements
of short duration. The orientation of each joint is the 2D vector
pointing from the parent joint to the child joint:

ofi = pfi − p
f
j (4)

where ofi is the orientation (2D vector) of joint i at frame f , pfi and
pfj are the 2D coordinates of joint i and j, respectively, with joint j
being the parent of joint i. This method of joint orientation calculation
was also used to extract the HOJO2D feature in our pilot study [33],
however, here, we further compute the angular displacement θfi of
joint i at frame f by:

θfi = arccos
ofi · o

f−∆t
i

‖ofi ‖‖o
f−∆t
i ‖

(5)

where ∆t is a predefined regular offset interval of 10 frames, the
value of which we determined empirically from our experiments.
Equation 5 represents the cosine similarity of ofi and of−∆t

i . By ap-
plying this method, the direction (i.e. clockwise or counter-clockwise)
of the angular displacement is discarded such that the feature solely
focuses on the magnitude of the orientation change.

Having computed the angular displacements of every joint in the
whole pose sequence, the HOAD2D for each joint is computed by
quantizing the displacements into a finite number of bins. Therefore,
the number of bins and the size (i.e. range of values) of each bin
will significantly affect the discriminative power of the feature. We
observed that most of the angular displacements are very small,
while the maximum theoretical displacement is 180◦. As a result,
we propose using non-uniform bin sizes to better represent the
distribution for the angular displacements:

bsi =
180◦

2n−i
(6)

where bsi is the bin size for the i-th bin and n is the total number of
bins for the histogram feature. For HOAD2D, we empirically found
that n = 16 yields the best results.

2) Relative Joint Orientation (HORJO2D): To analyse the co-
ordination and synchronisation of different body part movements, it
is important to extract features from different joints simultaneously.
Inspired by [50], we propose representing the distribution of the
relative orientation of the joints using a histogram-based feature.
Here, the pairwise relative joint orientation is computed in a similar
manner as in Equation 4:

ofi→j = pfj − p
f
i (7)

, although the two joints are not necessarily physically connected. In
order to capture the synchronisation of different parts of the body,
we compute the relative orientation for all pairs of joints.

Since the relative joint orientation has a potential range of 0◦ to
359◦, a uniform bin size is used. In doing so, we empirically found
that n = 16 produced the best performance. Once the individual joint
histograms have been extracted, we combine these to form histogram
representations for each limb prior to concatenation for classification.
HORJO2D intuitively represents the body synchronisation, as such,
a histogram which has only a small number of bins with high values
means that the joints are moving in the same direction together.

3) Relative Joint Angular Displacement (HORJAD2D): To fur-
ther capture the change in body part movement synchronisation over
time, the angular displacement of the relative joint orientation is also
extracted as a histogram feature. This feature is crafted to evaluate the
relationship between body parts, such that whole body coordination,

dystonia, and ataxic movements can be assessed. As with extracting
the HORJO2D feature, the pairwise relative joint orientation (RJO)
is computed and similarly combined. We further compare the RJOs
before and after the predefined frame offset interval, and angular
displacement is calculated using the cosine similarity of the two RJO
vectors similar to the calculation of HOAD2D, as in Equation 5.

Again, most of the angular displacements computed have a small
values. As a result, we again implement a non-uniform bin size
(Equation 6) to increase the discriminative power of the HORJAD2D
feature. From our experiments, we empirically found that the best
results were obtained when n = 8.

4) Fast Fourier Transform of Joint Displacement (FFT-JD):
Whilst the aforementioned histogram features represent the distribu-
tion of different kinds of spatial features at a coarse level, information
pertaining to temporal ordering is discarded. Inspired by previous
work analysing body movements in the frequency domain [45], we
propose the FFT-JD feature. This feature contains the magnitude of
each of the frequency components extracted from the motion such
that the variability of the motion can be better assessed. By using
the Fast Fourier Transform (FFT) we convert the extracted joint
displacement signal Di = [‖ṗ2

i ‖, ‖ṗ
3
i ‖,· · · , ‖ṗ

m
i ‖] of joint i from

a motion with m frames to a representation in the frequency domain,
allowing us to model the complexity, fluidity, and variety of the
movements, whilst highlighting any repetitive, athetoid, tremulous, or
myoclonic characteristics. Additionally it is reported that analyzing
human motion in the frequency domain is more robust to noisy data
[55], and as such helps with the task of assessing some of the smaller,
more detailed movements associated with the GMA.

We extract the FFT-JD by applying FFT to the vector Di:

Y ki =
1

m

m−1∑
f=0

Die
−l2πkf
m (8)

where Y ki is a vector which contains the magnitude of the frequency
component at index k for joint i, e

l2π
m is a primitive mth root of 1.

Having computed the frequency component Yi from Di, Yi is
partitioned into 16 bins with non-uniform bin sizes:

bsFFT−JD,b =


F b2

n2
, if b = 1,

F b2

n2
−

∑b−1
k=1 bsFFT−JD,k, if 2 ≤ b < n,

F −
∑b−1
k=1 bsFFT−JD,k, if b = n.

(9)
where bsFFT−JD,b is the size of the b-th bin and F is the number
of frequency components obtained from Di using FFT. The last bin
(i.e. bsFFT−JD,n) will occupy the remaining space.

5) Fast Fourier Transform of Joint Orientation (FFT-JO): Sim-
ilar to the FFT-JD feature we once again make use of FFT to model
repetitive movements by looking into the frequency components.
This feature provides information relating to the rigidity, directional
variation, and range of movement associated with the infant’s posture.
In this case we model the repetition and frequency of similar postures
from a joint orientation sequence Oi = [o1

i , o
2
i ,· · · , o

m
i ] for joint

i using FFT as in Equation 8. The histogram-based FFT-JO is
computed using the same method described in Equation 9, where
the frequency components are computed using Oi instead. In this
case, the bins for the lower frequency components will be smaller
and can more effectively represent the more relevant low frequency
components, as opposed to the high frequency motion signals which
potentially contain noise.

6) Histograms of Joint Orientation (HOJO2D) and Histograms
of Joint Displacement (HOJD2D): In this work we improve
upon our previously reported method [33], by extracting individual
HOJO2D and HOJD2D joint histograms and concatenating these
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to form limb-based representations. This method means that we
are able to incorporate a greater range of motion detail than the
previous method, which extracts an individual per-limb histogram
representation grouping several joints together.

F. Classification

Once we have extracted features, we then use Z-score to stan-
dardise the feature data h, to ensure it is on the same scale prior
to further analysis by z = h−µ

σ , where µ and σ are the mean and
standard deviation of all samples in the training set, and z contains
the normalized features. In our implementation we use Z-score as
this allows our system to retain the shape properties of the original
data set, with our initial classification results showing improvements
using this method over min-max normalization. We then feed the
features into a classification framework to obtain an overall prediction
on the prevalence of CP based upon the annotations provided by the
GMA assessors (Section III-B). Our classification framework consists
of several machine learning algorithms, namely Logistic Regression
(LR), Support Vector Machine (SVM), Decision Tree (Tree), Linear
Discriminant Analysis (LDA), Ensemble of classification models
(Ens), and k-Nearest Neighbour where k = 1 and k = 3. This
approach allows us to generate a suitable interpretation of the strength
of the features assessed, and the performance of each classifier in
this task. The metrics used to evaluate the features and associated
classification performance are discussed in Section IV-B.

G. Feature Fusion

In addition to evaluating the classification performance of each of
the individual features, we also fuse our selected features together
for further analysis. This fusion process concatenates two separate
feature sets into pose-based features, and velocity-based features
which are used for classification. The pose-based features represent
the angular feature information extracted from the pose data, as such
these representations are indicative of the overall quality of the infant
posture and the predominant directions of movement. The pose-
based features consist of a concatenation of HOJO2D, HOAD2D,
HORJO2D, and FFT-JO. The velocity-based features represent the
displacement of the joints over predefined time intervals, and as such
model the speed, fluidity, coordination, and complexity of the infant
movements. The velocity-based features consist of a concatenation of
HOJD2D, HORJAD2D, and FFT-JD. Lastly, we fuse the pose-based
feature set with the velocity-based feature set for classification. By
concatenating the features through early fusion, it is expected that
improved classification performance will be achieved, provided the
classifier is capable of handling the higher dimensionality input data.

IV. EVALUATION

In this section we provide details of our evaluation methods. In
Section IV-A we discuss the baseline methods used for comparison
with our proposed method. In Section IV-B we discuss the metrics
used for our comparative evaluation. In Section IV-C we discuss the
experimental settings used and the rationale behind each selected test.
In Section IV-D we discuss our classification results and in Section
IV-E we examine the hyperparameter optimisation. Finally, in Section
IV-F we include an analysis of the proposed features.

A. Baseline Methods

In order to assess the effectiveness and robustness of our system,
we reimplement several video-based methods from the literature to
serve as baselines for comparison, including Centroid of Motion and

Quantity of Motion [1], [2]; Absolute Motion Distance, Relative Fre-
quency, and Magnitude of Wavelet Coefficients [53]; and Frequency
Analysis [45]. We also compare our results with those reported in
[56] and [57], as well as conducting our experiments using the source
code provided by the authors of [38] and [51].

1) Centroid of Motion: The centroid of motion is the spatial
centre point of the motion image which highlights the pixels with
detected changes (i.e. body movement), and in our case, represents
the centre point of the movements of the infant. As discussed in [2],
the mean and standard deviation of centroid of motion in the x-and y-
directions (CXm, CXSD, CYm and CYSD) are calculated and exported
as features for classification.

2) Quantity of Motion: The quantity of motion is also calculated
through the generation of a motion image [2]. It is the sum of all
pixels with positive values from the motion image, divided by the
total number of pixels contained within the image. The standard
deviation (QSD) and mean (Qm) of the quantity of motion are
therefore calculated and used for classification.

3) Cerebral Palsy Predictor: We also include the Cerebral Palsy
Predictor (CPP) feature set as discussed in [2]. This is the con-
catenated combination of the centroid of motion standard deviation
(CSD), the quantity of motion mean (Qm), and the quantity of motion
standard deviation (QSD).

4) Absolute Motion Distance: The Absolute Motion Distance
(AMD), Relative Frequency (RF), and Magnitude of Wavelet Coeffi-
cients (MWC) methods are all based upon optical flow information,
which is used for motion-based tracking. We followed the technical
details presented in [53] in our implementation. The AMD is pro-
posed as a holistic measure of activity, as it captures the absolute
values of the optical flow velocities and stores them in histogram
format. Since the bin size is not specified in [53], we experiment
with bin sizes of 8, 16, 32, 64 and 128 in our implementation. We
reported the best results obtained using the bin size of 8 in this paper.

5) Relative Frequency: The relative frequency (RF) of the signal
represents the occurring frequencies found in the movement patterns,
which are converted into a histogram representation for classification.
In our implementation, we followed [53] and again used bin sizes of
8, 16, 32, 64 and 128 since this is not specified. From our experiments
we empirically found a bin size of 8 returns the best results.

6) Magnitude of Wavelet Coefficients: The Magnitude of
Wavelet Coefficients (MWC) power spectrum is used to demonstrate
the variety of the observed movement at different resolution levels,
providing insight into the complexity of the movement. We followed
[53] to compute the associated histogram features.

7) Frequency Analysis: Given that normal FMs are defined as
an ongoing and variable stream of movements, [45] suggest that
these motions can be better studied in frequency domain. As such,
Fast Fourier Transform (FFT) was used to obtain the frequency
components of the motion. We followed [45] to extract the mean
and standard deviation values of the Fourier coefficients in horizontal
(FFTxm and FFTxSD) and vertical directions (FFTym and FFTySD)
as features for classification, using 100 bins with non-uniform sizes
as specified in the literature.

B. Evaluation Metrics

In this paper we make use of several evaluation metrics to assess
the performance of each feature and the associated classifier. In our
evaluation, true positive (TP) is a measure of the cases in which
impaired infants are correctly classified as impaired, true negative
(TN) represents unimpaired infants correctly classified as unimpaired,
false positive (FP) represents unimpaired infants incorrectly classified
as impaired, and false negative (FN) represents impaired infants
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incorrectly classified as unimpaired. Based upon these metrics, the
sensitivity (SE) is defined as the percentage of correctly identified
positive classifications amongst the positive population of the dataset,
the specificity (SP) is the percentage of correctly identified negative
classifications amongst the negative population of the dataset, and the
accuracy (AC) is defined as the percentage of all correctly classified
instances. We also calculate the precision (PR), recall (RE), and
F1 Score (F1). PR represents the percentage of correctly identified
positive cases from all positive predictions, RE measures the correctly
identified positive cases from all of the actual positive cases, and F1
is the harmonic mean of PR and RE and typically provides one of
the most valuable measures of performance [13]. In addition to this,
we also calculate the Matthews Correlation Coefficient (MCC) [32],
which is regarded as a reliable measure where there are significant
differences between the classes sizes, and as such it is widely used
as a consistent performance metric on imbalanced datasets [7], [12].

C. Experimental Settings
To evaluate the generality of the classifiers using both our proposed

features and the baseline approaches, a leave-one-subject-out cross
validation method is used. Splitting the data in this manner ensures
that the classifiers will be evaluated using unseen data, as suggested in
previous works [33], [34], [56]. We further evaluate the performance
of each type of feature on different classifiers (as explained in Section
III-F). We report the best result for each method along with the
associated classifier.

D. Experimental Results
The classification results on the MINI-RGBD and RVI-38 datasets

are presented in Table I and Table II, respectively. From our evalua-
tion, we observe that our individual features are typically performing
at a similar level to that of the best features proposed in the related
works. However, we note that the fusion of our proposed features
is providing state-of-the-art performance across both of the datasets
used in our experiments, as discussed the following subsections.

1) Classification Performance on Individual Features: From
Table I, it can be seen that our proposed feature FFT-JO achieved
a 100.00% classification accuracy on the MINI-RGBD dataset.
Only one of the 20 baseline methods (BPB) evaluated achieved
this perfect classification result in our tests, highlighting the
remarkable performance of this new feature. Encouraging re-
sults are also obtained using our other frequency-based feature
FFT-JD with 91.67% classification accuracy, 85.71% F1 score,
and 81.65% MCC. This performance is higher than all of the
20 baselines in the experiments, with the exception of AMD
(F1:88.89%, MCC:83.67%), RF (F1:88.89%, MCC:83.67%), FFT-
Ym (F1:85.71%, MCC:81.65%), MCI (F1:88.89%, MCC:83.67%),
and STAM (F1:88.89%, MCC:83.67%). Similarly, our newly pro-
posed HORJO2D feature achieved the same performance of 91.67%
classification accuracy, 85.71% F1 score, and 81.65% MCC. How-
ever, the other relative orientation-based feature HORJAD2D is
not performing as well on this dataset with 83.33% classification
accuracy, an F1 Score of 75% and MCC of 62.50%. Although this
performance still outperforms most of the baselines, the noticeably
lower specificity (87.50%) results in a lower overall classification
performance for this feature. For the angular displacement based
feature HOAD2D, an average performance is obtained on this dataset
with an F1 score of 66.67%, matching or outperforming 8 of 20
baselines.

For the RVI-38 dataset, we note a general drop in performance
due to the challenging nature of the dataset, as shown in Table II.
This is particularly noticeable in the baseline methods where we see

Feature Class. AC SE SP F1 MCC
CXm [2] Ens 83.33 50.00 100.00 66.67 63.25
CXSD [2] Ens 83.33 75.00 87.50 75.00 62.50
CYm [2] LDA 33.33 100.00 0.00 50.00 0.00
CYSD [2] k=3 75.00 75.00 75.00 66.67 47.81
Qm [2] Ens 58.33 50.00 62.50 44.44 11.95
QSD [2] k=3 75.00 75.00 75.00 66.67 47.81
CPP [1] Tree 66.67 75.00 62.50 60.00 35.36
AMD [53] LDA 91.67 100.00 87.50 88.89 83.67
MWC [53] LDA 83.33 75.00 87.50 75.00 62.50
RF [53] LDA 91.67 100.00 87.50 88.89 83.67
FFTxm [45] Tree 83.33 75.00 87.50 75.00 62.50
FFTxSD [45] Ens 58.33 50.00 62.50 44.44 11.95
FFTym [45] Tree 91.67 75.00 100.00 85.71 81.65
FFTySD [45] Tree 75.00 75.00 75.00 66.67 47.81
FFTm [45] Tree 83.33 75.00 87.50 75.00 62.50
FFTSD [45] LR 75.00 75.00 62.50 72.73 59.76
MCI [56] n/a 91.67 100.00 87.50 88.89 83.67
CA [57] DNN 91.67 - - - -
BPB [51] DNN 100.00 100.00 100.00 100.00 100.00
STAM [38] DNN 91.67 100.00 87.50 88.89 83.67
HOJO2D Ens 91.67 75.00 100.00 85.71 81.65
HOJD2D Ens 83.33 75.00 87.50 75.00 62.50
FFT-JO Ens 100.00 100.00 100.00 100.00 100.00
FFT-JD LR 91.67 75.00 100.00 85.71 81.65
HOAD2D LR 66.67 100.00 50.00 66.67 50.00
HORJO2D LDA 91.67 75.00 100.00 85.71 81.65
HORJAD2D Ens 83.33 75.00 87.50 75.00 62.50
Pose Ens 100.00 100.00 100.00 100.00 100.00
Velocity Ens 91.67 100.00 87.50 88.89 84.32
Pose & Vel. Ens 100.00 100.00 100.00 100.00 100.00

TABLE I: Classification results using the MINI-RGBD dataset [20].

a significant drop for each baseline, with the exception of MWC
(F1:75%, MCC:62.50%). This drop is most likely associated with the
challenging nature of the captured data and the full frame analysis
of these methods. We are seeing that methods which are able to
deal with external influences better, such as the pose-based methods,
are generally producing more accurate results. This is also reflected
in the results produced using our proposed individual features.
In this setting we note that the HOAD2D feature is performing
particularly well, representing the strongest individual feature on
this dataset, recording the highest F1 Score (83.33%) and MCC
(80.21), along with the joint highest accuracy (94.74%) and sensitivity
(83.33%). The reworked HOJO2D (F1:72.73%, MCC:68.54) and
HOJD2D (F1:80.00%, MCC:79.21%) again perform well, showing
the robustness of these improved features. The HORJO2D feature
is also performing well, with an accuracy of 92.11%, F1 score
of 76.92%, and MCC of 72.51%. We note that FFT-JD is once
again performing well, with an accuracy of 92.11%, an F1 score
of 72.73%, and MCC of 68.54%. We also observe that whilst FFT-
JO and HORJA2D achieve a reasonable performance on the RVI-38
dataset, with 84.21% and 86.84% classification accuracy respectively,
the F1 and MCC scores are lower than our other proposed features.
However, whilst the scores for these features are not class leading,
they are still higher than those achieved by 16 of the 18 baseline
methods evaluated in this setting.

2) Classification Performance on Feature Fusion: We observe
that on the MINI-RGB dataset the pose-based fusion is extracting
the strongest feature representation and retaining the perfect classifi-
cation performance provided by the FFT-JO individual feature. Our
evaluation also suggests that whilst the pose-based fused features are
generally outperforming the velocity-based features, fusing both of
these feature sets further improves performance on both the MINI-
RGB dataset (F1: 100%, MCC 100.00%) and the RVI-38 dataset
(F1: 90.91%, MCC: 89.89%). We note that on the RVI-38 dataset,
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Feature Class. AC SE SP F1 MCC
CXm [2] LR 50.00 83.33 43.75 34.48 20.20
CXSD [2] Ens 68.42 33.33 75.00 25.00 6.90
CYm [2] k=3 84.21 50.00 90.63 50.00 40.63
CYSD [2] LR 63.16 66.67 65.63 36.36 21.54
Qm [2] LR 52.63 50.00 53.13 25.00 2.28
QSD [2] k=1 86.84 50.00 93.75 54.44 47.19
CPP [1] Ens 84.21 50.00 90.63 50.00 40.63
AMD [53] LDA 83.33 50.00 100.00 66.67 63.25
MWC [53] Tree 83.33 75.00 87.50 75.00 62.50
RF [53] LDA 84.21 66.67 87.50 57.14 48.45
FFT-Xm [45] Ens 84.21 50.00 90.63 50.00 40.63
FFT-XSD [45] LR 63.16 66.67 62.50 36.36 21.54
FFT-Ym [45] k=1 81.58 33.33 90.63 36.36 25.84
FFT-YSD [45] LDA 55.26 50.00 56.25 26.09 4.58
FFTm [45] Tree 84.21 50.00 90.63 50.00 40.63
FFTSD [45] LR 42.11 66.67 37.50 26.67 3.15
BPB [51] DNN 84.21 33.33 93.75 40.00 32.18
STAM [38] DNN 81.58 33.33 90.63 36.36 25.85
HOJO2D Ens 92.11 66.67 96.88 72.73 68.54
HOJD2D Ens 94.74 66.67 100.00 80.00 79.21
FFT-JO LDA 84.21 83.33 84.38 62.50 56.07
FFT-JD Ens 92.11 66.67 96.88 72.73 68.54
HOAD2D Ens 94.74 83.33 96.88 83.33 80.21
HORJO2D Tree 92.11 83.33 93.75 76.92 72.51
HORJAD2D LR 86.84 66.67 90.63 61.54 53.89
Pose Ens 94.74 83.33 96.88 83.33 80.21
Velocity Ens 94.74 66.67 100.00 80.00 79.21
Pose & Vel. Ens 97.37 83.33 100.00 90.91 89.89

TABLE II: Classification results using the RVI-38 dataset.

the strengths from each feature set combine to provide this improved
overall classification performance, with the higher sensitivity found
in the pose-based features (83.33%) and the higher specificity found
in the velocity-based features (100.00%) directly translating to the
concatenated fusion of these feature sets. This observation aligns well
with our feature design, which looks to incorporate the combined
positional, directional, postural, and transitory information specified
in the GMA guidelines. We also note that on the fused features we are
seeing a consistently high performance using the Ensemble classifier,
with the best results obtained on both datasets for all fused feature sets
using this classification method. The evaluation metrics also highlight
the robustness of the proposed feature fusion method, given that only
one positive sample video was misclassified across both datasets.

E. Hyperparameter Optimisation
To refine the framework performance, we further investigate hyper-

parameter optimisation using Bayesian Optimisation [52]. Using this
method, we evaluate the results of optimisation in an informed
manner, by tuning the learning rate, the number of learning cycles,
the minimum observations per leaf, and the maximum number of
branch nodes, to minimize the cross-validation loss of the classifier.

We present several plot representations of our Bayesian Optimisa-
tion in the supplementary information. In the plots, the number of
function evaluations relates to the iteration number of the objective
function, the min objective is the minimum value that the objective
function has reached up to the current iteration, and the estimated
minimum objectives are the mean values of the posterior distribution
of the Gaussian process model of the objective function [25]. We also
map the hyper-parameter variables to the classification performance
metrics to determine the optimal hyper-parameters. In this setting, we
found the optimal hyper-parameters to be: 0.1045800 learning rate,
11 learning cycles, 1 minimum observation per leaf, and 32 split
branch nodes, providing an objective function of 0.026316 and an
accuracy of 100% on the MINI-RGBD dataset, and 97.37% on the
RVI-38 dataset, per our reported results.

F. Feature Analysis

To further evaluate the discriminative power of the newly proposed
features, chi-square tests are used for testing if the predictor variables
(i.e. the multi-dimensional features proposed in this work) and
the response variable (i.e. the label of each video) are related. In
particular, such tests have been widely used for feature selection
and are thus able to reflect the quality of the features we propose.
We further conducted the chi-square tests on both the MINI-RGBD
and the RVI-38 datasets to highlight the differences between these
two datasets. Specifically, the p-value for each predictor variable is
calculated and the median values are reported in Table III. Here,
we consider the predictor variables as significant predictor (sp) if p
<0.05. Since the features used in the experiments are mostly multi-
dimensional, the dimensionality (dim.), number of sp (# sp) and
percentage of sp (% sp) are also reported in Table III. We also include
the top performing baselines from our experiments (i.e. AMD, MWC
and RF proposed in [53]) in this analysis to further highlight the
effectiveness of the proposed features.

From Table III, it can be seen that HOJD2D and HORJO2D achieve
the highest % sp on MINI-RGBD and RVI-38, respectively. On
MINI-RGBD, our proposed features are having the same or lower
median p-value when compared with AMD, MWC and RF. On RVI-
38, HORJO2D and HORJAD2D achieved significantly lower median
p-values than other top performers. Also, it can be seen that AMD
performed better than some of our proposed features in terms of
the median p-values. However, the results from the 2 datasets also
indicate the robustness of our proposed features since more consistent
results are obtained by using our features.

MINI-RGBD RVI-38
Feature Dim. Median # sp % sp Median # sp % sp

AMD [53] 8 0.1020 0 0% 0.1280 2 25%
MWC [53] 18 0.6456 0 0% 0.8931 6 33.33%

RF [53] 16 0.1020 4 25.00% 0.2388 6 37.50%
HOJO2D 64 0.1020 18 28.13% 0.1370 10 31.25%
HOJD2D 128 0.0860 52 40.63% 0.1849 45 35.16%
FFT-JO 48 0.1020 8 16.67% 0.1849 18 32.14%
FFT-JD 64 0.1020 23 35.94% 0.1849 18 28.13%

HOAD2D 64 0.0847 17 26.56% 0.1849 22 34.38%
HORJO2D 32 0.1020 5 15.63% 0.050 14 43.75%

HORJAD2D 32 0.1020 9 28.13% 0.071 8 25%
Pose & Vel. 792 0.1020 228 28.78% 0.1849 260 32.83%

TABLE III: The p-values of the features computed from chi-square
tests on the MINI-RGBD and RVI-38 datasets.

To better visualize the distribution of the p-values, boxplots of
the p-values of different features on MINI-RGBD and RVI-38 are
shown in Figure 3a and 3b, respectively. In particular, the maximum,
minimum, first quartile, third quartile and median (red line) values
are illustrated in the figures. It can be seen that the majority (from
the first to third quartile) of the predictor variables in our proposed
features are having a small range with low p-values. This indicates
the majority of our proposed features are of higher importance and
quality when compared with the AMD, MWC and RF.

V. DISCUSSION

As discussed in Section II-C, we suggest that pose-estimation based
approaches provide several advantages over the previously proposed
methods in data acquisition and analysis. Our pose and velocity-based
method is simpler to understand, retains understandable information,
and has less parameters to tune than the related methods, making it
more accessible in a clinical setting. We also suggest that, due to the
relative assessment of joint motion, our framework is better able to
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(a) MINI-RGBD

(b) RVI-38

Fig. 3: Boxplots of the p-values of different features on each dataset.

deal with camera movement, changes in resolution, variable infant
sizes, and larger motion changes between frames.

However, whilst the results we have achieved in this paper are
encouraging, there are several key areas which we would like to
address in future works. Our method is heavily dependant upon the
quality of the extracted joint positions and as such the pose estimation
method. In this paper we made use of OpenPose [9], however this
framework is trained using adult data and as such the extracted pose
has the potential to have some inconsistencies. Although the results
demonstrated here suggest that these inconsistencies are largely dealt
with by our qualitative assessment and automated pre-processing
techniques, we would like to enhance the pose-estimation by inte-
grating domain adaptation to make the framework more specific to
infant body dimensions and posture. We would also like to further
explore the temporal aspect of the GMA by extracting spatio-temporal
features for further analysis.

Our results on the RVI-38 dataset in particular represent a particu-
larly robust performance given the difficulty of the associated dataset,
with only one misclassified video. In this case the misclassified video
was one of the positive samples which, in practice presents a greater
issue than a misclassified negative sample. In future works we will
look to methods by which we can improve the sensitivity of the
classification performance, perhaps through data augmentation to help
deal with the moderate class imbalance found in the datasets.

VI. CONCLUSION

In this paper we have proposed and evaluated several new inter-
pretable motion features relating directly to the criteria associated
with the GMA checklist [3] and optimality score [19]. Additionally,
we have fused these features together to produce a more robust
representation of infant body movement for classification. We com-
pared these features with several other methods from the literature
by re-implementing them for assessment using shared datasets. The
datasets used in the study consist of the publicly available MINI-
RGBD dataset [20], and the RVI-38 dataset, a challenging new video
dataset gathered as part of routine clinical care. We find that our
proposed fused features achieve state-of-the-art performance across
both datasets whilst retaining clinical interpretability. Additionally,
we also suggest that by utilising pose-based features, we make the
likelihood of collaborative working within the healthcare domain

more viable, due to the inherently anonymised and unidentifiable
patient data. As such, we make the pose data, and our feature
extraction and classification code available to the community to
further improve related research.

In future works we hope to explore improving the interpretability
of CP prediction models by allowing clinicians to form part of the
feedback loop. We will also explore methods of extracting more
detailed information about the movement characteristics, through
temporal analysis and improved annotation.
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Genovesi, Silvia Maria Ibidi, and Renata Hydee Hasue. The general
movement checklist: A guide to the assessment of general movements
during preterm and term age. Jornal de Pediatria, 2020.

[4] Hiroshi Akima. A new method of interpolation and smooth curve fitting
based on local procedures. J. ACM, 17(4):589–602, October 1970.

[5] Martin Bax, Murray Goldstein, Peter Rosenbaum, Alan Leviton, Nigel
Paneth, Bernard Dan, Bo Jacobsson, and Diane Damiano. Proposed
definition and classification of cerebral palsy, april 2005. Developmental
Medicine and Child Neurology, 47(8):571–576, 2005.

[6] Margot Bosanquet, Lisa Copeland, Robert Ware, and Roslyn Boyd. A
systematic review of tests to predict cerebral palsy in young children.
Developmental Medicine & Child Neurology, 55(5):418–426, 2013.

[7] Sabri Boughorbel, Fethi Jarray, and Mohammed El-Anbari. Optimal
classifier for imbalanced data using matthews correlation coefficient
metric. PLOS ONE, 12(6):1–17, 06 2017.

[8] Thomas Brox, Christoph Bregler, and Jitendra Malik. Large displace-
ment optical flow. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 41–48, 2009.

[9] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh.
Openpose: Realtime multi-person 2d pose estimation using part affinity
fields. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2019.

[10] Claire Chambers, Nidhi Seethapathi, Rachit Saluja, Helen Loeb,
Samuel R. Pierce, Daniel K. Bogen, Laura Prosser, Michelle J. Johnson,
and Konrad P. Kording. Computer vision to automatically assess
infant neuromotor risk. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 28(11):2431–2442, nov 2020.

[11] Yucheng Chen, Yingli Tian, and Mingyi He. Monocular human pose
estimation: A survey of deep learning-based methods. Computer Vision
and Image Understanding, 192(December 2019):102897, 2020.

[12] Davide Chicco and Giuseppe Jurman. The advantages of the Matthews
correlation coefficient (MCC) over F1 score and accuracy in binary
classification evaluation. BMC Genomics, 21(1):1–13, 2020.

[13] Ryan Cunningham, Marı́a B. Sánchez, Penelope B. Butler, Matthew J.
Southgate, and Ian D. Loram. Fully automated image-based estimation
of postural point-features in children with cerebral palsy using deep
learning. Royal Society Open Science, 6(11):191011, 2019.

[14] ES Draper, ID Gallimore, JJ Kurinczuk, PW Smith, T Boby, LK Smith,
and BN Manktelow. MBRRACE-UK – Perinatal Mortality Surveillance
Report 2017. The Infant Mortality and Morbidity Studies, 2018.

[15] Christa Einspieler and Heinz F. R. Prechtl. Prechtls method on the
qualitative assessment of general movements in preterm, term, and young
infants. Mac Keith Press, 2004.

[16] Christa Einspieler, Heinz F.R. Prechtl, Fabrizio Ferrari, Giovanni Cioni,
and Arend F. Bos. The qualitative assessment of general movements in
preterm, term and young infants. Early Human Development, 50(1):47 –
60, 1997. Spontaneous Motor Activity as a Diagnostic Tool Functional
Assessment of the Young Nervous System.



10 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

[17] National Institute for Health and Care Excellence. NICE seeks to
improve diagnosis and treatment of cerebral palsy, Jan 2017.

[18] Daniel Groos, Heri Ramampiaro, and Espen Af. EfficientPose : Scalable
single-person pose estimation. Applied Intelligence, 2021.

[19] Leena Haataja, Eugenio Mercuri, Rivka Regev, Frances Cowan, Mary
Rutherford, Victor Dubowitz, and Lilly Dubowitz. Optimality score for
the neurologic examination of the infant at 12 and 18 months of age.
The Journal of Pediatrics, 135(2):153–161, 1999.

[20] Nikolas Hesse, Christoph Bodensteiner, Michael Arens, Ulrich G. Hof-
mann, Raphael Weinberger, and A. Sebastian Schroeder. Computer
vision for medical infant motion analysis: State of the art and RGB-
D data set. In Computer Vision - ECCV 2018 Workshops. Springer
International Publishing, 2018.

[21] Andreas Holzinger, Chris Biemann, Constantinos S. Pattichis, and Dou-
glas B. Kell. What do we need to build explainable ai systems for the
medical domain?, 2017.

[22] Ying Huang, Hubert P. H. Shum, Edmond S. L. Ho, and Nauman Aslam.
High-speed multi-person pose estimation with deep feature transfer.
Computer Vision and Image Understanding, 197-198:103010, 2020.

[23] Espen Ihlen, Ragnhild Støen, Lynn Boswell, Raye-Ann Deregnier, Toril
Fjørtoft, Deborah Gaebler-Spira, and Lars Adde. Machine learning of
infant spontaneous movements for the early prediction of cerebral palsy:
A multi-site cohort study. Journal of Clinical Medicine, 9, 12 2019.

[24] Fatima Yousif Ismail, Ali Fatemi, and Michael V. Johnston. Cerebral
plasticity: Windows of opportunity in the developing brain. European
Journal of Paediatric Neurology, 21(1):23–48, 2017. Advances in
Neuromodulation in Children.

[25] Anezka Kazikova, Michal Pluhacek, and Roman Senkerik. How does
the number of objective function evaluations impact our understanding
of metaheuristics behavior? IEEE Access, 9:44032–44048, 2021.

[26] Amanda K.L. Kwong, Tara L. Fitzgerald, Lex W. Doyle, Jeanie L.Y.
Cheong, and Alicia J. Spittle. Predictive validity of spontaneous
early infant movement for later cerebral palsy: a systematic review.
Developmental Medicine and Child Neurology, 60(5):480–489, 2018.

[27] Min Li, Fan Wei, Yu Li, Sicong Zhang, and Guanghua Xu. Three-
dimensional pose estimation of infants using data from a kinect sensor
with low training cost. IEEE Sensors Journal, 21(5):6904–6913, 2021.

[28] Helen MacTier, Sarah Elizabeth Bates, Tracey Johnston, Caroline Lee-
Davey, Neil Marlow, Kate Mulley, Lucy K. Smith, Meekai To, and
Dominic Wilkinson. Perinatal management of extreme preterm birth
before 27 weeks of gestation: A framework for practice. Arch. of Disease
in Childhood: Fetal and Neonatal Edition, 105(3):F232–F239, 2020.

[29] Nathalie Maitre. Skepticism, cerebral palsy, and the General Movements
Assessment. Developmental Medicine and Child Neurology, 2018.

[30] Viviana Marchi, Anna Hakala, Andrew Knight, Federica D’Acunto,
Maria Luisa Scattoni, Andrea Guzzetta, and Sampsa Vanhatalo. Au-
tomated pose estimation captures key aspects of general movements
at eight to 17 weeks from conventional videos. Acta Paediatrica,
108(10):1817–1824, 2019.

[31] Claire Marcroft, Aftab Khan, Nicholas D. Embleton, Michael Trenell,
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[58] Dragan Zlatanović, Hristina Colovic, Zivkovic Vesna, Mirjana Kocic,
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