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Percolation of interdependent networks with limited knowledge

Yilun Shang
Department of Computer and Information Sciences,

Northumbria University, Newcastle upon Tyne, NE1 8ST, UK

Real-world networks are often not isolated and the interdependence between different networks
in a complex system is as important as the topological connectivity within individual networks. We
develop a theoretical framework to study the robustness of interdependent networks under attacks
with limited knowledge. A node may be attacked if it is the most connected node among a given
number of potential victims. This number is referred to as the attacker’s knowledge level, which
joins the two ends, namely, the random failure with zero knowledge and the intentional attack with
full knowledge of the network. We introduce percolation models with attacks over one layer and two
layers as well as mixed site-bond percolation. Along with the discontinuous phase transition, we show
the existence of a critical knowledge level, which indicates a transition of network robustness under
the competition between connectivity and interdependence. It is unraveled that interdependent
networks can be extremely fragile to the extent that a random failure on two layers would be more
deleterious than a targeted attack with full knowledge over one layer. Moreover, we find that a
balanced distribution of attack knowledge on both layers tends to be most destructive if the total
knowledge is a conserved quantity.

PACS numbers: 64.60.Ak, 64.60.Fr, 02.10.Ox, 02.50.-r

I. INTRODUCTION

Interdependent networks have gained considerable
prominence over the past decade. This is partly due
to their genuine representation for many real-world
networked systems such as transportation systems [1],
cyber-physical systems [2], and networks of living cells
[3]. As real networks are rarely isolated, the coupling and
interdependence between different subnetworks or layers
sow the seeds of cascading failure effect, where failures
in one layer may propagate to other layers giving rise
to the avalanche collapse of the entire system [4]. The
pioneer work [5] on the robustness of interdependent net-
works models an iterative pruning process between two
fully interdependent network layers on the basis of perco-
lation theory [6]. By investigating the steady functional
component of the network, referred to as the mutually
connected giant component, it is revealed that interde-
pendent networks are more vulnerable than single net-
works under random failures undergoing a discontinuous
percolation transition. Since then percolation of interde-
pendent networks has been extensively studied by con-
sidering, for example, different level of interdependency
[7, 8], varied correlations between network layers [9, 10],
targeted attacks [11] and network of networks [12]. There
have also been a few comprehensive overviews on the in-
terdependent networks and their percolation theory, see
e.g. [13–15], to name a few.

Understanding vulnerability of networks to damages is
of great importance for the structure and performance of
various complex systems. Until recently, most research
on network robustness considers random and localized
failures assuming zero/local knowledge of the network
topology [5, 16] or, on the other hand, targeted and opti-
mal attacks assuming full knowledge [11, 17, 18]. In the
recent work [19], an intermediate strategy called immu-

nization under limited knowledge is introduced, where a
random set of n nodes in the network is known in each
iteration and only the most connected node among them
is removed. If the network under consideration has N
nodes, the classical random failure and targeted attack
can be reproduced by the two limit scenarios n = 1 and
n = N under this framework. The giant component size
and percolation threshold have been analytically derived
in [19] showing that just a relatively small n (e.g. around
15) can approximately achieve the optimal attack level
for both Erdős-Rényi and scale-free random networks. It
is worth noting that the above percolation process uses
the degree information of a limited number (but not nec-
essarily a localized set) of nodes, and hence conceptually
different from localized attack strategies [20, 21].

A versatile mirror image process of the percolation
under limited knowledge has been proposed in [22],
where the targeted nodes for removal can be random
or most/least connected with certain probabilities. The
network is shown to undergo a hybrid phase transition
for the k-core organization under such pruning processes
[22, 23]. An analytical framework for studying network
immunization with limited knowledge is investigated in
[24], where the immunity acquired may decline over time.
However, all these results are established only on the ba-
sis of single networks.

To fill this gap, we here extend the single network
framework [19, 22] to interdependent networks and pro-
pose three different schemes of percolation under lim-
ited knowledge over interdependent networks. The in-
terdependent network considered here is composed by
two fully interdependent network layers A and B with
the same number of nodes connected by interdependency
links; see Fig.1. We first consider the model in which the
initial attack only happens on one layer, following the
classical cascading mechanism in percolation of interde-
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FIG. 1: Schematic of interdependent networks (N = 10) under percolation with limited knowledge. Assume layer A is fully
known. Black arrows indicate the initially removed nodes and edges. The mutually connected giant components are indicated
by red boxes. (a) Only layer A is initially attacked; (b) Both layers are initially attacked; (c) Nodes in layer A and edges in
layer B are initially attacked. Solid dots are remaining nodes and hollow dots are those removed.

pendent networks [5, 6]. A discontinuous phase transi-
tion is observed for the size of mutually connected giant
component under such attacks. The percolation thresh-
old displays a growth-and-then-saturation phenomenon
with respect to the knowledge level n, which is rein-
forced compared to the single network scenario. Inter-
estingly, we find the competition between connectivity
and interdependency may flip the network robustness as
the knowledge level changes. The critical level nc can be
determined.

It is known that network layers in real interdependent
networks are often of distinct characteristics and sub-
ject to different attacks. For example, modern supply
chain systems are interdependent networks across regions
and countries [25]. The network layers involve nodes
like manufacturers, suppliers, distributors, retailers, cus-
tomers etc., all of which are subject to different faults
and disruption modes. Another example is the computer
communication networks, which are coupled with infras-
tructure networks such as electric power grids. Com-
puters and servers as nodes are prone to cyber attacks
while transmission links in power grids are more likely
to fail than the closure of a power station. Motivated by
this, we then consider two further interdependent net-
work percolation models, where both network layers are
subject to different nodes or edges failures under limited
knowledge. Note that the idea of incorporating attacks
over multiple layers has been studied in some effective
optimal percolation algorithms, where degrees of nodes
in all layers are combined to define the strategy [17, 18].

However, failure under limited knowledge requires a dif-
ferent analytical approach, which we will develop in this
paper.

Like our first model with attacks over one layer, we find
the network undergoes an abrupt collapse under attacks
over two layers. Remarkably, we show that attacks over
two layers can be extremely harmful to interdependent
networks to the extent that a random attack on both
layers would cause more damage than a targeted attack
over one layer with full knowledge. Moreover, it is unrav-
eled that an equitable distribution of attack knowledge
on both layers turns out to be most detrimental if the
total knowledge is conserved.

The rest of the paper is organized as follows. Section
II presents the first model, where the initial attack only
happens on one layer following the classical cascading
mechanism in percolation of interdependent networks.
Section III deals with the second model, where the initial
attack happens independently on both layers. Section IV
proposes the mixed site-bond percolation, where nodes
are removed in one layer and links are removed in the
second one. In all these models, the analytical calcula-
tions are supported with experiments in silico. Section
V concludes the paper.
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II. ATTACK UNDER LIMITED KNOWLEDGE
OVER ONE LAYER

Here, we introduce our first interdependent network
model with two layers denoted by layer A and layer B,
where the initial attack only happens on layer A. We de-
velop a theoretical framework based on the configuration
network methodology [14, 26] and compare the results
with the case of single networks [19] with homogeneous
and heterogeneous degree distributions.

A. Analysis for percolation of interdependent
networks

Suppose the two layers A and B in the interdependent
network are fully interdependent via one-to-one corre-
spondence and both of them have N nodes. We call these
N inter-layer links as interdependency links, which shall
be differentiated from usual edges within each layer. Let
PA(q) = PA(q; 0) and PB(q) = PB(q; 0) be the initial
degree distributions at time t = 0, respectively, within
layers A and B [26]. The percolation consists of two
stages. In Stage 1, we randomly select nA nodes from
layer A at each step and remove the one with the high-
est degree among them. The process continues until a
1 − pA fraction of nodes is removed from layer A. Next,
in Stage 2, any nodes and their incident edges in layer
B will be removed if the corresponding nodes in layer A
are removed. Any edge connecting two nodes, whose cor-
responding nodes in the other layer are not in the same
connected component, will also be removed. This depen-
dency process continues back and forth between the two
layers until no further deletion can happen and the fi-
nal mutually connected giant component emerges (if it
exists); c.f. Fig. 1. Clearly, if nA = 1, it reduces to
the cascading failure described in the original model [5],
where a random breakdown of 1−pA fraction of nodes in
layer A triggers the disintegration of the whole network.
In the sequel, we refer to Stage 1 as the initial targeted
removal process and Stage 2 as the dependency process,
respectively.

During the initial targeted removal process in layer A,
technically we will assume that only nodes are deleted
but their incident edges remain in the network, which fa-
cilitates the analysis below. This can be naturally under-
stood in the setting of configuration models [28], where
removing a node takes away all its incident half-edges or
stubs without affecting the degrees of remaining nodes.
Let PA(q; t) be the degree distribution of a random node
in layer A at step t ≥ 0 given that it remains in the net-
work until step t. According to the above assumption,
PA(q; t) changes with respect to t only due to the removal
of some nodes. The corresponding cumulative distribu-
tion is denoted by FA(q; t) =

∑q
s=0 PA(s; t), which is the

probability that a randomly chosen node in layer A has
degree no more than q if it stays in the resulting network
at time t. Denote FA(q) = FA(q; 0). Using the maxi-

mum order statistics, the degree distribution P̂A(q; t) of
the removed node at step t is given by

P̂A(q; t) =FA(q; t)nA

− FA(q − 1; t)nA

=∆
(
FA(q; t)nA

)
, (1)

for q ≥ 0, where ∆ is the difference operator relevant to
q. For t ≥ 0, let FA(−1; t) = 0. With one more node in
layer A being removed, we have

NA(q; t + 1) = NA(q; t) − P̂A(q; t), (2)

where NA(q; t) represents the number of nodes with de-
gree q in layer A at step t.

In the continuous limit we obtain

∂NA(q; t)
∂t

= − ∆
(
FA(q; t)nA

)
=(N − t)

∂PA(q; t)
∂t

− PA(q; t) (3)

by using (1), (2) and the relation NA(q; t) = (N −
t)PA(q; t). Therefore,

∆
(
− FA(q; t) + (N − t)

∂FA(q; t)
∂t

+ FA(q; t)nA

)
= 0. (4)

By (4) and FA(−1; t) = 0 for all t, it yields for q ≥ 0,{
(N − t)∂F A(q;t)

∂t = FA(q; t) − FA(q; t)nA

, t > 0,
FA(q; 0) = FA(q).

(5)

When nA > 1, a direct integration of (5) yields [19, 22]

FA(q; t) =
(
1 +

(
FA(q)1−nA

− 1
)

· e(nA−1) ln(N−t
N )

)− 1
nA−1

, (6)

which is equivalent to (with a slight change of notation)

FA
p (q) =

(
1 +

(
FA(q)1−nA

− 1
)

· (pA)(n
A−1)

)− 1
nA−1 (7)

by noting (1 − pA)N = t. Here, FA
p (q) is the cumulative

probability that a random node has degree at most q
when a 1 − pA fraction of nodes is removed (leaving all
incident edges intact) in layer A conditional on the node
itself not being removed.

The trivial case of nA = 1 can be solved directly from
(5) as FA

p (q) = FA(q), which agrees with (7) in the limit
nA → 1. Therefore, for any nA ≥ 1, the probability of
a randomly chosen node having degree q when a 1 − pA
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fraction of nodes is removed in layer A conditional on it
not being removed is expressed as

PA
p (q) = ∆FA

p (q) = FA
p (q) − FA

p (q − 1). (8)

We next consider the dependency process (i.e. cas-
cading failure) that potentially involves further removal
of nodes and edges in layers A and B. Different from
the above approach to tracing each stage of the initial
targeted removal process, we now focus on the steady
network state when all deletion processes end.

Let x be the probability that a random edge in layer
A leads to the mutually connected giant component and
similarly let y be the probability that a random edge in
layer B leads to the mutually connected giant compo-
nent. Define RA(q) to be the probability that a node in
layer A is occupied in the final network given it has de-
gree q in the original network, namely at time t = 0, or
equivalently when a 1 − pA fraction of nodes in layer A
is removed. Hence,

x =
( ∞∑

q=0

qPA(q)
〈q〉A

RA(q)
(
1 − (1 − x)q−1

))

·
( ∞∑

q=0

PB(q)
(
1 − (1 − y)q

))
, (9)

where the first term on the right-hand side means the
probability that a random edge in layer A leads to an
occupied node, say v, in the mutually connected giant
component, and the last term means the probability that
the corresponding node of v, say v′ in layer B, is in
the mutually connected giant component. The quan-
tity 〈q〉A :=

∑∞
q=0 qPA(q) is the mean degree in layer

A. Note that the one-to-one interdependency links are
random and hence v′ can be viewed as a randomly cho-
sen node in layer B.

By the conditional probability calculation, we have

PA(q)RA(q) = pAPA
p (q), (10)

which is the probability that a randomly chosen node,
say u, in layer A has degree q at t = 0 and is occupied
in the final network. This can be seen by noting the
following two facts: (i) If u survives the initial targeted
removal process, it has the same degree at t = 0 and
when a 1 − pA fraction of nodes in layer A is removed;
and (ii) If u survives the initial targeted removal process,
it will also survive the dependency process.

Feeding (10) into (9) yields

x =
pA

〈q〉A

( ∞∑
q=0

qPA
p (q)

(
1 − (1 − x)q−1

))

·
( ∞∑

q=0

PB(q)
(
1 − (1 − y)q

))
, (11)

Analogously, following a random edge in layer B we de-
rive the following equation

y =
( ∞∑

q=0

qPB(q)
〈q〉B

(
1 − (1 − y)q−1

))

·
( ∞∑

q=0

PA(q)RA(q)
(
1 − (1 − x)q

))

=
pA

〈q〉B

( ∞∑
q=0

qPB(q)
(
1 − (1 − y)q−1

))

·
( ∞∑

q=0

PA
p (q)

(
1 − (1 − x)q

))
, (12)

where 〈q〉B :=
∑∞

q=0 qPB(q) is the mean degree in layer
B. When nA = 1, we have PA

p (q) = PA(q) and the self-
consistent equations (11) and (12) are equivalent to the
generating function formulation derived in [5] as well as
[27, Eqs. (12) and (13)].

Let P∞ be the normalized size of the mutually con-
nected giant component, which is also the probability
that a random node in layer A or B is in the mutually
connected giant component. By applying (10) again, we
derive

P∞ =
( ∞∑

q=0

PA(q)RA(q)
(
1 − (1 − x)q

))

·
( ∞∑

q=0

PB(q)
(
1 − (1 − y)q

))
,

=pA

( ∞∑
q=0

PA
p (q)

(
1 − (1 − x)q

))

·
( ∞∑

q=0

PB(q)
(
1 − (1 − y)q

))
, (13)

where the quantities x and y can be calculated from (11)
and (12). In fact, the expressions (11) and (12) can be
thought of as a pair of implicit functions x = f(pA, y)
and y = g(pA, x). If the system undergoes a first-order
phase transition, the two functions meet tangentially at
the critical point pA = pA

c . By the inverse function the-
orem, we have

∂f(pA
c , y)

∂y
· ∂g(pA

c , x)
∂x

= 1, (14)

which determines the percolation threshold pA
c . In the

case of single networks, it is shown that the system un-
dergoes a second-order phase transition, where the perco-
lation threshold pc sits at the point where P∞ decreases
to zero [19, 22]. The limit behavior of the threshold pc

can be analytically estimated, which is not available in
the present case of interdependent networks.

We remark that in the initial targeted removal process,
the comparison between node degrees are based on intra-
degrees, namely PA(q). Since the interdependency links
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are one-to-one correspondence in our model, we can pro-
duce the same results if total degrees (intra-degrees plus
inter-degrees) are considered instead.

B. Results for synthetic networks

We apply the theoretical results to two classes of syn-
thetic networks with Poisson and exponential degree dis-
tributions over layers with N = 106 nodes. For in-
terdependent networks with two Poisson degree distri-
butions, we have PA(q) = e−λA

(λA)q/q! and PB(q) =
e−λB

(λB)q/q!, where q ≥ 0, λA = 〈q〉A and λB = 〈q〉B .
These networks are referred to as ER-ER networks, where
ER stands for Erdős-Rényi by convention. For net-
works with two layers following exponential degree dis-
tributions, denoted by EXP-EXP, we have PA(q) =
(1 − e−1/αA

)e−q/αA

and PB(q) = (1 − e−1/αB

)e−q/αB

.
Here, q ≥ 0, αA > 0 and αB > 0 are two param-
eters satisfying αA = 1/ ln(1 + 1/〈q〉A) ≈ 〈q〉A and
αB = 1/ ln(1+1/〈q〉B) ≈ 〈q〉B . These networks are com-
monly observed in reality [28, 29] and their degree distri-
butions facilitate closed-form analytical results through
applications of generating functions [26]. We observe, for
example, P∞ = y always holds in ER-ER networks and
P∞ depends nonlinearly on y in EXP-EXP networks (see
Appendix A).
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FIG. 2: P∞ as a function of pA with nA = 1, 2, N for (a)
ER-ER networks with λ := λA = λB = 5 (blue plots) and
ER networks with λ = 5 (red plots) and for (c) EXP-EXP
networks with 〈q〉 := 〈q〉A = 〈q〉B = 5 (blue plots) and EXP
networks with 〈q〉 = 5. Panels (b) and (d) show pA

c as a
function of nA for the corresponding types of networks with
λ = 4, 5, 6 and 〈q〉 = 4, 5, 6, respectively. Solid lines are com-
puted from theory and symbols are simulations averaged over
100 network realizations.

In Fig. 2 we compare the results for the size of mu-

tually connected giant component P∞ and the percola-
tion threshold pA

c for single networks against interdepen-
dent networks with both layers having the same degree
distributions. The quantity P∞ in Fig. 2(a) and Fig.
2(c), as an order parameter, shows that the interdepen-
dent networks undergo a discontinuous phase transition
as opposed to the second-order transition in single net-
works under attacks with limited knowledge. As one
would expect, the giant components for Poisson networks
are systematically larger than those for exponential net-
works when comparing Fig. 2(a) and Fig. 2(c). This is
due to the degree heterogeneity of exponential networks.
Moreover, interdependent ER-ER networks and single
ER networks posses similar values of P∞ when the occu-
pation probability pA is relatively large, e.g. pA > 0.8,
for all knowledge level nA. In contrast to the Poisson
networks, we observe from Fig. 2(c) that interdepen-
dent EXP-EXP networks have significantly smaller gi-
ant components than the single EXP networks across the
range of pA. The interdependency prominently weakens
the EXP-EXP network structure due to the existence of
large-degree nodes. Even a small fraction of initial at-
tack on layer A could easily cascade forward leading to a
considerable collapse.

The percolation threshold pA
c displayed in Fig. 2(b)

and Fig. 2(d) shows a phenomenon of growth-and-then-
saturation at a plateau with respect to the knowledge
level nA. For single networks, this effect has been ob-
served in [10] and it becomes slightly more apparent in
interdependent networks for both Poisson and exponen-
tial networks. For instance, a value of nA ≈ 20 in EXP
networks with 〈q〉 = 4 corresponds to a nearly full knowl-
edge attack, whereas this number goes down to around
10 in the corresponding EXP-EXP networks.

The fragility of interdependent networks is well rec-
ognized [6, 14]. However, the crossover at nA

c ≈ 5 for
ER-ER networks with mean degree λ = 6 and ER net-
works with mean degree λ = 4 displayed in Fig. 2(b) is
worth noting. This crossover phenomenon implies when
an interdependent network is sufficiently more connected
than the single network with the same type of degree dis-
tribution, attack knowledge makes a difference. Here, the
single ER network is more robust when nA ≤ 4 but the
interdependent ER-ER network takes over when nA ≥ 6.
The critical value nA

c ≈ 5 suggests a balance point of
knowledge level, where the potential cascading failure
(due to interdependency) cancels out the network con-
nectivity offset (indicated by, e.g. ∆λ = 6 − 4 = 2,
the difference between the two mean degrees). When
nA > nA

c , the attack is relatively less harmful over the in-
terdependent network (given the connectivity offset) than
the single network. Hence, the interdependent network
is more robust in this regime. When nA < nA

c , the at-
tack is relatively more harmful over the interdependent
network (given the connectivity offset) than the single
network, giving a more robust single network. The com-
petition of the two factors with respect to knowledge level
is intuitively subtle and is only revealed here through il-
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lustration.
Generally, the critical value nA

c (if exists) can be
identified numerically by solving (14) for the two net-
works under consideration. When nA = 1 and given λ,
pA

c (ER-ER) > pA
c (ER). Therefore, the critical value al-

ways exists if ∆λ is sufficiently large. We observe from
Fig. 2(b) that ER-ER networks with λ = 5 are less robust
than ER networks with λ = 4 for any nA, and hence no
crossover of robustness would occur in this case. This is
because the connectivity of them is close (∆λ = 1) — the
attack is more harmful over ER-ER networks for all nA.
Although we have taken a close look only at Poisson net-
works, the above analysis for the crossover phenomenon
in principle also holds for networks with exponential and
other types of degree distributions.

III. ATTACK UNDER LIMITED KNOWLEDGE
OVER TWO LAYERS

In Section II we have assumed that the initial targeted
attack only happens in layer A, namely, a 1−pA fraction
of nodes is attacked in layer A under limited knowledge
level nA. Here, we consider a modified model with initial
attacks happening on both layers. We observe some in-
teresting results highlighting the vulnerability of interde-
pendent networks under such attacks (see Section III.B).

A. Analysis for percolation of interdependent
networks

Suppose that the two initial targeted removal processes
occur in layer A and layer B independently. Specifically,
a 1 − pA fraction of nodes in layer A is removed with
knowledge level nA and a 1−pB fraction of nodes in layer
B is removed with knowledge level nB . As in Section II,
we establish the conditional degree distribution PA

p (q)
for layer A through (7) and (8), and the corresponding
conditional degree distribution for layer B can be given
by

PB
p (q) = ∆FB

p (q) = FB
p (q) − FB

p (q − 1), (15)

where the resulting conditional cumulative probability
FB

p (q) is

FB
p (q) =

(
1 +

(
FB(q)1−nB

− 1
)

· (pB)(n
B−1)

)− 1
nB−1 (16)

and FB(q) =
∑q

s=0 PB(s) is the initial cumulative prob-
ability or distribution function.

Following the cascading failure over the interdependent
network, we denote by x and y the probabilities that a
random edge in layer A and layer B, respectively, leads
to the mutually connected giant component. Let RA(q)
and RB(q) be the probabilities that a node in layer A and

layer B, respectively, is occupied in the ultimate network
given the node has degree q in the original network at
t = 0. Analogous to (9) we derive

x =
( ∞∑

q=0

qPA(q)
〈q〉A

RA(q)
(
1 − (1 − x)q−1

))

·
( ∞∑

q=0

PB(q)RB(q)
(
1 − (1 − y)q

))
. (17)

Note that the equality (10) and its counterpart expression
PB(q)RB(q) = pBPB

p (q) in layer B still hold. Arguing
along the same line of Section II.A, we have

x =
pApB

〈q〉A

( ∞∑
q=0

qPA
p (q)

(
1 − (1 − x)q−1

))

·
( ∞∑

q=0

PB
p (q)

(
1 − (1 − y)q

))
(18)

and

y =
( ∞∑

q=0

qPB(q)
〈q〉B

RB(q)
(
1 − (1 − y)q−1

))

·
( ∞∑

q=0

PA(q)RA(q)
(
1 − (1 − x)q

))

=
pApB

〈q〉B

( ∞∑
q=0

qPB
p (q)

(
1 − (1 − y)q−1

))

·
( ∞∑

q=0

PA
p (q)

(
1 − (1 − x)q

))
. (19)

When pB = 1, we have PB
p (q) = PB(q) by (15). Hence,

the above self-consistent equations (18) and (19) reduce
to (11) and (12), respectively, as one would expect.

The normalized size of the mutually connected giant
component in the ultimate network can be derived as

P∞ =
( ∞∑

q=0

PA(q)RA(q)
(
1 − (1 − x)q

))

·
( ∞∑

q=0

PB(q)RB(q)
(
1 − (1 − y)q

))
,

=pApB

( ∞∑
q=0

PA
p (q)

(
1 − (1 − x)q

))

·
( ∞∑

q=0

PB
p (q)

(
1 − (1 − y)q

))
, (20)

where the quantities x and y are determined by (18) and
(19). Let (18) and (19) be expressed as x = f(pA, pB , y)
and y = g(pA, pB , x). Then the percolation thresholds
pA

c and pB
c satisfy the surface determined by

∂f(pA
c , pB

c , y)
∂y

· ∂g(pA
c , pB

c , x)
∂x

= 1. (21)
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If the range of initial attack is equitable on two layers,
namely pA = pB , the critical value pc = pA

c = pB
c can be

obtained.

B. Results for synthetic networks

Here, we apply the above results on the same ER-ER
networks and EXP-EXP networks as Section II.B (see
Appendix B for the formulation using generating func-
tions). Some remarks are in order.

In Fig. 3 (a) and (c), we show the evolution of the
size of mutually connected giant component for ER-
ER networks and EXP-EXP networks, respectively, with
nA = nB . As one would expect, when the initial at-
tacks happen on two layers, both networks collapse more
quickly than the situations of attacks on only layer A at
all knowledge level. The first-order phase transition phe-
nomenon also persists. However, somewhat surprisingly,
ER-ER networks turn out to be particularly susceptible
to attacks on two layers to the extent that a random
removal on both layers would cause more harm than a
targeted attack on layer A with full knowledge (c.f. Fig.
3 (a)). This can naturally be explained by the degree
homogeneity in ER-ER networks but it also sheds light
on the fragility of interdependent networks against ini-
tial attacks in both layers in general. This aspect has
not received sufficient attention in the literature.

The color map for the percolation threshold pc is shown
in Fig. 3 (b) for ER-ER networks and in Fig. 3(d) for
EXP-EXP networks when pA = pB . We observe a quick
saturation phenomenon of pc when the knowledge level
nA or nB increases similarly as the situation of single
layer attacks in Section II.B. Although analytical com-
parison is difficult, the following relation is checked nu-
merically for all cases considered here:

pc(n, n) ≥ pc(n + 1, n − 1) (22)

or equivalently pc(n, n) ≥ pc(n − 1, n + 1) by symmetry
of the two layers. The monotonicity also holds naturally:
pc(nA, nB) ≥ pc(nA′, nB ′) if nA ≥ nA′ and nB ≥ nB ′.
Combining these relations, we conclude that an even dis-
tribution of knowledge on both layers would cause the
most harm when the total knowledge is bounded. This is
in line with our above observation, which highlights the
danger of attacks on both layers.

IV. SITE-BOND PERCOLATION IN
INTERDEPENDENT NETWORKS

In the previous two sections, we have considered mod-
els with exclusively site percolation. Here, we explore a
mixed site-bond percolation model, where a random edge
attack happens on layer B. Specifically, assume that layer
A in the interdependent network is subject to the node
attack with limited knowledge whereas layer B in the net-
work is subject to an independent random edge removal
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0.75

0.8

0.85
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FIG. 3: P∞ as a function of pA with nA = nB = 1, 2, N for
(a) ER-ER networks with λA = λB = 5 when pB = 1 (blue
plots) and pB = pA (green plots), and (c) EXP-EXP networks
with 〈q〉A = 〈q〉B = 5 when pB = 1 (blue plots) and pB = pA

(green plots). The critical value pc := pA
c = pB

c over different
nA and nB is shown in (b) for the same ER-ER networks when
pA = pB and (d) for the same EXP-EXP networks when pA =
pB . Solid lines are computed from theory and symbols/data
points are simulations averaged over 100 network realizations.

with edge occupation probability pB . Clearly, this sce-
nario is the counterpart for the site percolation model
under attacks on two layers with nB = 1 described in
Section III.

As before, define x and y to be probabilities that a
random edge in layer A and layer B, respectively, leads
to the mutually connected giant component. Since no
further node in layer B is removed outside the depen-
dency process, following the same argument in Section
II, the equation (11) still holds. However, when follow-
ing a random edge in layer B to explore the mutually
connected giant component, the chosen edge is present
only with a probability of pB . Therefore, we can modify
the self-consistent equation (12) as

y =
pApB

〈q〉B

( ∞∑
q=0

qPB(q)
(
1 − (1 − y)q−1

))

·
( ∞∑

q=0

PA
p (q)

(
1 − (1 − x)q

))
. (23)

Since no node in layer B is removed outside the cascading
failure, it can be seen that the normalized size of the
mutually connected giant component P∞ still follows the
expression (13).

Let (11) and (23) be expressed as x = f(pA, y) and
y = g(pA, pB , x). Analogously, the percolation thresholds



8

pA
c and pB

c satisfy the surface determined by

∂f(pA
c , y)

∂y
· ∂g(pA

c , pB
c , x)

∂x
= 1. (24)

Although the probability pB does not explicitly appear
in equations (11) and (13), both quantities x and y, and
P∞ depend on it. Apparently, we reduce to the scenario
of attack on one layer in Section II when pB = 1.
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FIG. 4: P∞ as a function of pA with pB = 0.8 and nA =
1, 2, N for (a) ER-ER networks with λA = λB = 5 under
site percolation with nB = 1 (green plots) and site-bond per-
colation (magnet plots), and (b) EXP-EXP networks with
〈q〉A = 〈q〉B = 5 under site percolation with nB = 1 (green
plots) and site-bond percolation (magnet plots). Solid lines
are computed from theory and symbols are simulations aver-
aged over 100 network realizations.

In Fig. 4, we fix the occupation probability on layer
B as pB = 0.8 and compare the size of mutually con-
nected giant component P∞ for the site percolation over
two layers with nB = 1 and the mixed site-bond perco-
lation. The site percolation is significantly more harmful
than site-bond percolation in terms of P∞ and pA

c for
both ER-ER networks and EXP-EXP networks under
any knowledge level nA. Although the networks are more
robust to site-bond percolation, abrupt breakdown is ob-
served as nodes are removed from layer A. These phe-
nomena are qualitatively consistent with the discrepancy
between random site and bond percolation over other
coupled networks [6, 14, 30].

V. CONCLUSION

In summary, we have considered percolation on inter-
dependent networks with limited knowledge. Here, the
cascading failure in the networks is initiated by a targeted
removal process, where the most connected node among
n randomly selected nodes is attacked at each step. At-
tack with limited knowledge offers a more detailed land-
scape of percolation transitioning from random failure
(n = 1) to targeted attack with full knowledge (n = N).
We have developed a theoretical framework to cover node
attacks with limited knowledge over one layer as well as
two layers. The mixed site-bond percolation over two
layers has also been studied. Along with the first-order

phase transition typically found in interdependent net-
works, we show the existence of a critical knowledge level,
which signifies a crossover of network robustness when
both connectivity and interdependence are taken into ac-
count. When the overall knowledge level n is fixed, a
balanced partition of n for the attacks over two layers is
unveiled to be most harmful. Moreover, we find that ran-
dom failure in both layers can be more deleterious than
targeted attack in just one layer for homogeneous inter-
dependent networks. The paper sheds new light on the
design and protection of interdependent networks under
errors or malicious attacks.

Appendix A: Attack under limited knowledge over
one layer in synthetic networks

In ER-ER networks, the generating functions for the
degree distributions in the two layers are given by
GA(z) = eλA(z−1) and GB(z) = eλB(z−1), where z
serves as a placeholder. Analogously, let GA

p (z) =∑∞
q=0 PA

p (q)zq. Using (11) and (12) we obtain

x =
pA

λA

(
GA

p
′(1) − GA

p
′(1 − x)

)(
1 − e−λBy

)
(A1)

and

y = pA
(
1 − e−λBy

)(
1 − GA

p (1 − x)
)
, (A2)

which together determine the two probabilities x and y.
By (13) and (A2) we observe that P∞ = y, meaning
that the probability of a random node in ER-ER net-
work being in the mutually connected giant component
is equivalent to the probability of a random edge in layer
B leading to the mutually connected giant component.
This is in line with the observation in [5] in the special
case of random failure (i.e. nA = 1).

In EXP-EXP networks, the generating functions for
the degree distributions in the two layers become
GA(z) =

(
1 − e−1/αA)

/
(
1 − ze−1/αA)

and GB(z) =(
1 − e−1/αB)

/
(
1 − ze−1/αB)

, where z is a placeholder.
In view of (11) and (12), with some algebra we obtain

x =
pAye−

1
αB

(
GA

p
′(1) − GA

p
′(1 − x)

)
〈q〉A

(
1 − (1 − y)e−

1
αB

) (A3)

and

y =pA

(
1 −

(
1 − e−

1
αB

)2(
1 − (1 − y)e−

1
αB

)2

)
·
(
1 − GA

p (1 − x)
)
, (A4)

which determine the two probabilities x and y. It follows
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from (13) and (A4) that

P∞ =pA(1 − GA
p (1 − x))

(
ye−

1
αB

1 − (1 − y)e−
1

αB

)

=
y
(
1 − (1 − y)e−

1
αB

)
2 − (2 − y)e−

1
αB

. (A5)

This means P∞ ∈ [y/2, y], where P∞ → y/2 if αB → 0
and P∞ → y if αB → ∞.

Appendix B: Attack under limited knowledge over
two layers in synthetic networks

In ER-ER networks, the two quantities x and y in (18)
and (19) are given by the following system

x =
pApB

λA

(
GA

p
′(1) − GA

p
′(1 − x)

)(
1 − GB

p (1 − y)
)

(B1)

and

y =
pApB

λB

(
GB

p
′(1) − GB

p
′(1 − y)

)(
1 − GA

p (1 − x)
)

(B2)

using the generating functions GA
p (z) =

∑∞
q=0 PA

p (q)zq

and GB
p (z) =

∑∞
q=0 PB

p (q)zq. By (20) we have

P∞ = pApB
(
1 − GA

p (1 − x)
)(

1 − GB
p (1 − y)

)
. (B3)

Similarly, in EXP-EXP networks the quantities x and
y are determined by the system

x =
pApB

〈q〉A
(
GA

p
′(1) − GA

p
′(1 − x)

)(
1 − GB

p (1 − y)
)

(B4)

and

y =
pApB

〈q〉B
(
GB

p
′(1) − GB

p
′(1 − y)

)(
1 − GA

p (1 − x)
)

(B5)

The size of mutually connected giant component P∞ fol-
lows the same expression in (B3).
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