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A Self-adaptive Discriminative Autoencoder
for Medical Applications

Xiaolong Ge, Yanpeng Qu, Changjing Shang, Longzhi Yang and Qiang Shen

Abstract—Computer aided diagnosis (CAD) systems play an
essential role in the early detection and diagnosis of developing
disease for medical applications. In order to obtain the highly rec-
ognizable representation for the medical images, a self-adaptive
discriminative autoencoder (SADAE) is proposed in this paper.
The proposed SADAE system is implemented under a deep metric
learning framework which consists of K local autoencoders,
employed to learn the K subspaces that represent the diverse
distribution of the underlying data, and a global autoencoder to
restrict the spatial scale of the learned representation of images.
Such community of autoencoders is aided by a self-adaptive
metric learning method that extracts the discriminative features
to recognize the different categories in the given images. The
quality of the extracted features by SADAE is compared against
that of those extracted by other state-of-the-art deep learning and
metric learning methods on five popular medical image data sets.
The experimental results demonstrate that the medical image
recognition results gained by SADAE are much improved over
those by the alternatives.

Index Terms—Autoencoder network; Deep learning; Metric
learning; Computer aided diagnosis.

I. INTRODUCTION

AS one of the essential topics for the medical application
of computer aided diagnosis (CAD) systems, the research

on medical image recognition (MIR) has made substantial
progress during the past decades. In general, the performance
of MIR can be improved from two perspectives. The first
approach is to segment the local information of medical
images and enhance those important for further feature ex-
traction and MIR. In [1], each input image is decomposed into
corresponding smooth layer, texture layer and edge layer by
using the local extreme value defined in the spatial domain and
low-pass filter. In [2], a fuzzy-rough refined image processing
framework is proposed to segment the ROI region of each
breast image and perform local enhancement in the region
with the highest positive fuzzy region. The research in [3]
proposes a new deep learning (DL) framework which uses
local descriptor coding strategy and FV coding representation
to classify melanoma images using support vector machines
with Chi-square kernel. The second approach is to enhance
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the discernibility of features to represent samples. In [4],
a two-channel convolutional neural network (CNN) model
for medical hyperspectral image classification is proposed.
In this network, an end-to-end network channel is designed
to obtain the representative global fusion features through a
pixel by pixel mapping between the original MHSI data and
its principal components. In [5], a novel semantic similarity
graph embedding (SSGE) framework is proposed to explicitly
explore semantic similarity between images and optimize
visual feature embedding to improve the performance of multi-
label Chest X-ray image classification. And the research in
[6] advances a deep convolution learning model for automatic
multi-category classification of skin lesions. The network
model adopts a multi-layer and multi-scale filter, which re-
duces the filter and parameter, and improves the efficiency
and performance.

In addition to the DL algorithms, metric learning (ML)
is an alternative way to produce the discriminative features.
In general, the mainstream of ML can be conducted by
unsupervised learning or supervised learning. When operate
unsupervised learning, the ML methods reform the manifold
structure in low dimensional subspace to obtain the discrimina-
tion information of samples [7], [8]. In the case of supervised
learning, the ML methods learn the distance measures which
can maximize the separability of the data in line with their
category information [9]–[11]. Specifically, in [9], the KNN
classification is implemented as a large marginal proximity
classification method to achieve the largest branch among
samples. In [10], a tensor local linear discriminant analysis is
proposed for image representation. This method can preserve
the local discriminant information of image data and the spatial
localization of pixels in the image. The study in [11] relies on
the convex optimization and proposes a learning algorithm for
quadratic Gaussian metric for classification tasks. In order to
obtain the discriminative features from the large-scale data,
the collaboration of ML and DL has been paid much attention
recently [12]–[17]. Generally, these outcomes implement the
supervised ML methods based on the high-level features
learned by a deep network model.

In order to simultaneously value the local information
and extract the discriminative features that will constitute
decent representations of the medical images, this paper co-
opts the advantages of a self-adaptive local ML strategy
[18] and proposes a self-adaptive discriminative autoencoder
(SADAE). The framework of this approach consists of K
local autoencoders (AEs) to learn K subspaces implying the
diverse local distribution of data and a global autoencoder
(AE) to restrict the spatial scale of the learned features. Aided
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by a self-adaptive ML strategy, the proposed SADAE model
can automatically find a proper margin to split the different
classes, so as to further improve the separability of diverse
data. As a result, the image representation learned by SADAE
will be nourished with the discriminative features in medical
images for further recognition. The quality of the extracted
features by SADAE is respectively compared against that
of those extracted by Auto-sklearn [19], Auto-Keras [20],
ResNet [21] and other five ML methods on certain medical
image data sets, including three data sets in MedMNIST
[22], [23]: PneumoniaMNIST [24], BreastMNIST [25] and
DermaMNIST [26], two versions of MIAS with BI-RADS
[27] and Tabár [28] labeling strategies. Moreover, a brief dip
into biometric applications is also conducted over five face
image data sets: AR face [29], LFW [30], CK+48 [31], ORL
[32], Facescrub [33]. The experimental results demonstrate
that, compared to the alternatives, SADAE can effectively
improve the representation of medical and biometric images
with discriminative features while leading to a better medical
image recognition performance.

In general, the novelty and contributions of SADAE are
summarized as follows.

1) SADAE proposes a novel self-adaptive deep ML strategy
to simultaneously evaluate the local information extract
by a community of AEs and optimize the margins be-
tween different classes.

2) The SADAE model can successfully function at the
level of individual categories, thus SADAE enjoys a
significant ability to generate the high-level discriminative
representations of diverse data.

3) The outperformance produced by SADAE reveal the
potential of deep metric learning for medical applications.

The remainder of the paper is organized as follows. Section
II briefly reviews related background. The proposed SADAE
algorithm is described in Section III. Results of comprehensive
experiments are presented in Section IV, leading to conclu-
sions in Section V.

II. BACKGROUND

In this section, the literature is reviewed in two parts: ML
and DL methods for image analysis task.

A. Metric Learning

In the field of image classification and image recognition,
ML provides an effective proxy to manipulate complex ob-
jects. It is supposed to assign spatially large/small margin to
the pairs of examples that are conceptually dissimilar/similar.
Generally, ML can be implemented by either the global metric
or the local metric.

The global metric only transforms the data scale on the
feature space and ignores the local structure of the data space.
It employs a global linear transformation to maximize the
separability of different classes of data. For instance, in [11], a
maximally collapsing ML method is constructed via a convex
optimization whose solution aims to collapse the data in the
same class to a single point and push these data in other classes
infinitely far away. In [34], the information theory ML (ITML)

method is proposed to learn a Mahalanobis distance matrix
based on the multivariate Gaussian distribution. Relevant
component analysis (RCA) [7] uses edge information in the
form of equivalent constraints to solve the problem of metric
learning. The authors demonstrate that this type of additional
information can be obtained automatically without human
intervention.This information is also presented to represent
data to improve classification. Neighbourhood components
analysis (NCA) [35] maximizes the random variable of leave-
one-out kNN score on the training set, while learning a low
dimensional linear embedding of labeled data. Least squared-
residual ML [36] calculates least-squares (LS) residuals using
previously estimated supports in place of observed compressed
sensing (CS). The boundary of CS-residuals is determined,
which is much smaller than the boundary of CS errors if the
sparse mode changes slowly enough.

Local ML can discover the underlying local framework of
certain classes in the complex data sets. For instance, via large
margin nearest neighbor (LMNN) [9], the center of each class
is surrounded by sample of its own class by pulling the data
of the same class together and pushing the data of different
classes away. Large margin nearest neighbor classification with
privileged information (LMNN+) [37] is proposed based on
the LMNN classification framework, which improves decision
function learning by introducing visual features as well as
depth features into training process. The supervised distance
ML algorithm through maximization of the Jeffrey divergence
(DMLMJ) [38] is an optimization model in which the Jeffrey
divergence between two multivariate Gaussian distributions,
respectively derived from the neighborhoods with the same
label and different labels, is maximized. The parametric local
ML method (PLML) [39] learns a smooth metric matrix
function over the data manifold weighted by the neighborhood
of each points. Sparse compositional metric learning (SCML)
[40] produces a sparse combination of local discriminative
metric. The framework can be naturally derived from the
global, multi-task and local measure learning problems. Re-
cently, a new supervised self-adaptive local ML method (SA-
LM2) is proposed in [18]. It adaptively adjust local neighbor-
hood to construct the proper distance to separate the distinct
categories.

B. Deep Learning and deep metric learning

To extract meaningful features that will constitute high-
level representations of the image, many DL methods has
been developed recently. For instance, to effectively use the
information in the untagged medical images, the deep virtual
confrontation self-training method [41] utilizes a virtual ad-
versarial training strategy and a consistent regularization to
exploit the latent knowledge between the labeled and unlabeled
data. In [42], a framework that encodes deep vision and seman-
tic embedding through a three-branch network in the coding
stage is proposed. The output of these three branches is fused
and input into a decoder to generate the report. Local deep-
feature alignment (LDFA) [43] constructs a neighborhood for
each data sample, from which a local stacked shrink AE is
learned to extract local depth features. Affine transformation
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is used to align the local deep features with the global feature
in each neighborhood. In [44], a new attitude restoration
framework is proposed, which adopts multi-manifold learning
and the shared parameter is calculated. The model improves
attitude recovery through global mapping and local refinement.
In [45], a novel joint CNN architecture is designed as Face
detection and attribute recognition networks (FDAR-Net). At
the face detection stage, the face candidate extractor is used to
get quick suggestions, and then a convolution neural network
is used for further analysis.

In order to enhance the discernibility of the extracted high-
level features, the collaboration of ML and DL has been
investigated. In [12], a discriminative CNN is learned by ex-
plicitly imposing an ML regularization term on CNN features.
Discriminative deep ML (DDML) [13] is a global deep metric
method which learns a deep neural network to assign the dis-
tance between the samples in the same class less than a preset
threshold. Deep localized ML (DLML) [14] learns multiple
fine grained deep localized metric by multiple AEs. And the
final sample pair distance is synthesized by calculating the
weight proportion of each subnetwork. Deep clustering-based
asymmetric metric learning (DECAMEL) [15] jointly learns
the feature representation and the unsupervised asymmetric
metric to ease the bias of different views and exploit the
potential cross-view discrimination information of unsuper-
vised person re-identification. Deep transfer metric learning
(DTML) [16] transfers discriminative knowledge from labeled
source domain to unlabeled target domain, and uses a set
of deep ML networks for cross-domain visual recognition.
Subtype clustering-based deep metric learning [17] defines a
new clustering degree to mine classification-oriented subtype
structure. Sample pairs for ML are selected according to the
clustering results.

III. A SELF-ADAPTIVE DISCRIMINATIVE AUTOENCODER

To further extend the usage of DL and ML in the field of
medical image recognition, this paper presents a self-adaptive
discriminative autoencoder (SADAE) model. As illustrated
in Fig. 1, the overall network structure of SADAE mainly
consists of one global AE and K local AEs. In the initialization
stage of SADAE, the global AE and K local AEs are pre-
trained via the clustering strategy of DLML [14] to capture the
underlying spatial distinction of the training data. With the aid
of a self-adaptive ML algorithm, these K + 1 initialized AEs
will be trained as an integral network to produce the repre-
sentation of data with discriminative features. These resulting
discriminative features can ensure that the spatial distance
of two samples from different categories will be penalized
to cross an adaptive threshold. In so doing, the intra-class
diversity and the inter-class gap can be expected to degrade and
increase, respectively, so that the classification performance
relies on the resulting features will improve accordingly.

A. Initialization

The proposed SADAE method is due to adaptively produce
discriminative features to enlarge the divergence between
distinct classes. However, the resulting inter-class variance is

not supposed to be irrationally overlarge. In view of such
tradeoff, this paper adopts a community of AEs, which consists
of K local AEs (AEk, k = 1, . . . ,K) to learn K subspaces
implying the diverse distribution of data and a global AE
(AE0) to restrict the spatial scale of the learned features. For
each sample, its reconstruction loss in an AE can be used to
gauge its significance in the corresponding subspace. A smaller
reconstruction loss indicates a greater probability of belonging
to this space. In this paper, the clustering strategy of DLML
is employed to training these K+1 AEs to initialize SADAE.

In the initialization of SADAE, the updating process of AE0

is independent from that of the local AEs. Specifically, given
a data set X , for AE0, the parameters are updated by using
the gradient descent algorithm over the entire set of training
samples. This iteration of the parameters in AE0 only has one
stop criterion that is the reconstruction loss over all samples
is less than a pre-set threshold.

For AEk, k = 1, . . . ,K, the training strategy is as follows.

1) Each sample x ∈ X is clustered into the subspace in-
duced by a local AE that enjoys minimum reconstruction
loss of x among all local AEs. As a result, X will
be partitioned into K subsets (subspaces), X1, . . . , XK ,
subject to

X = X1 ∪ . . . ∪XK , (1)

and
Xi ∩Xj = ∅, i ̸= j. (2)

2) In light of the clustering results, AEk is updated only with
the samples that belong to Xk. In so doing, the distance
between different clusters is indirectly enlarged.

3) The above two steps are iterated until the clustering
process converges. That is, every Xk, k = 1, . . . ,K
remains unaltered in two successive iterations. To restrict
the running time, another stop criterion of the iterative
process is that the reconstruction loss of each sample in
its local AE is less than a pre-set threshold.

Assume that each AEk, k = 0, . . . ,K, has M layers. Given
a sample x ∈ Xk, let O(0)

k represent the input x. The output
of the m-th layer of the k-th local AE is

O
(m)
k = ψ(W

(m)
k O

(m−1)
k + b

(m)
k ), m = 1, . . . ,M. (3)

Here, W (m)
k and b

(m)
k are the weights and bias connect the

(m − 1)-th layer and m-th layer, respectively. ψ(·) is an
element-wise nonlinear activation function such as ReLU,
Tanh and Sigmoid. . The reconstruction loss of AEk defined
by the Euclidean distance is

θk = ||O(M)
k − x||22. (4)

Based on Eqs. (3) and (4), W (m)
k and b(m)

k can be updated
as follows.

W
(m)
k =W

(m)
k − η ∂θk

∂W
(m)
k

, (5)

b
(m)
k = b

(m)
k − η ∂θk

∂b
(m)
k

, (6)
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Fig. 1. Flowchart of SADAE

where,

∂θk

∂W
(m)
k

= ((O
(m)
k − x)⊙ ψ

′
(O

(m)
k ))(O

(m−1)
k )T , (7)

∂θk

∂b
(m)
k

= (O
(m)
k − x)⊙ ψ

′
(O

(m)
k ). (8)

Here, the operation ⊙ represents the element-wise multipli-
cation of two vectors. That is, for a⃗ = (a1, a2, · · · , an) and
b⃗ = (b1, b2, · · · , bn),

a⃗⊙ b⃗ = (a1b1, a2b2, · · · , anbn). (9)

Based on above calculation, the initialization procedures of
AE0 and AEk, k = 1, . . . ,K are summarized in Algs. 1 and
2. It is noteworthy that the value of K determines the degree
of refinement of the local relationship between samples. When
K = 0, SADAE only has one global AE and is reduced to
the normal deep ML hereafter. However, an excessively large
value of K will consume much running time, and may result
in certain null local AEs that can’t be activated by any sample.

B. Training SADAE

Given a data set X = {xi}ni=1, the set of corresponding
outputs of the AEk is {O(M)

k,i }ni=1, k = 0, . . . ,K. Thus, the
reconstruction loss of xi, with regard to AEk, is

θk,i = ∥O(M)
k,i − xi∥

2
2. (10)

For each AEk, k = 0, . . . ,K, the pair-wise feature distance
with regard to (xi,xj) is measured by

dk(xi, xj) = ∥O(M)
k,i −O

(M)
k,j ∥

2
2. (11)

For each dk(xi, xj), the associated weight is

αk(xi, xj) =
τ(θk,i, θk,j)∑K
l=0 τ(θl,i, θl,j)

, (12)

where
τ(θk,i, θk,j) =

1

θk,i + θk,j
. (13)

Algorithm 1: Initialization of global AE
Input:
X , training set;
M , number of network layers;
S, maximum iterations;
η, learning rate;
ε, threshold of reconstruction loss.

1 ;
Output:
W

(m)
0 , b(m)

0 , parameters, m = 1, . . . ,M .
2 θ0 ← 0;
3 s← 1;
4 Randomly initialize W (m)

0 , b(m)
0 ∈ (−1, 1) ,

m = 1, . . . ,M ;
5 repeat
6 θ̂0 ← θ0;
7 θ0 ← Eq. (4); // Calculate reconstruction loss
8 if | θ0 − θ̂0 |< ε then
9 break;

10 end
11 for m =M,M − 1, . . . , 1 do
12 ∂θ0

∂W
(m)
0

← Eq. (7), ∂θ0
∂b

(m)
0

← Eq. (8);

13 W
(m)
0 ← Eq. (5), b(m)

0 ← Eq. (6);
14 end
15 s← s+ 1;
16 until s == S;
17 return W

(m)
0 , b(m)

0 , m = 1, . . . ,M .

For the entire community of AEk, the weighted sample
pairwise distance of (xi,xj) is

D(xi, xj) =

K∑
k=0

αk(xi, xj)dk(xi, xj). (14)

With the use of the sample pairwise distance defined in
Eq. (14), this paper co-opts the advantage of the ML method
in [18] and further embeds a self-adaptive loss function into
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Algorithm 2: Initialization of local AEs
Input:
X , training set;
K, number of local AEs;
M , number of network layers;
S, maximum iterations;
η, learning rate;
ε, threshold of reconstruction loss.
Output:
W

(m)
k , b(m)

k , parameters, k = 1, . . . ,K, m = 1, . . . ,M .
1 θk ← 0 on X , Xk ← ∅, k = 1, . . .K;
2 s← 1;
3 Randomly initialize W (m)

k , b(m)
k ∈ (−1, 1),

k = 1, . . . ,K, m = 1, . . . ,M ;
4 repeat
5 θ̂k ← θk, k = 1, . . .K;
6 X̂k ← Xk, k = 1, . . .K;
7 θk ← Eq. (4), k = 1, . . .K;
8 if θk == minl θl then
9 Xk ← Xk ∪ x; // Update Xk

10 end
11 θk ← Eq. (4) on Xk;
12 if Xk == X̂k&& | θk − θ̂k |< ε then
13 break;
14 end
15 for m =M,M − 1, . . . , 1 do
16 ∂θk

∂W
(m)
k

← Eq. (7), ∂θk
∂b

(m)
k

← Eq. (8);

17 W
(m)
k ← Eq. (5), b(m)

k ← Eq. (6);
18 end
19 s← s+ 1;
20 until s == S;
21 return W

(m)
k , b(m)

k , k = 1, . . . ,K, m = 1, . . . ,M .

these initialized K+1 AEs to produce the features with decent
discernibility.

Let U = [uij ]n×n, as follows, be an indicator matrix to
identify the samples from different classes in X = {xi}ni=1.

uij =

{
0, xi and xj belong to the same class,
1, xi and xj belong to the different classes.

(15)

Moreover, let ρ denote the uniform radius of the neighbor-
hood of each sample in X . Intuitively, the neighborhood of
a sample is not expected to contain any instance from other
classes. That is, if the distance between two samples is less
than ρ, they are supposed to belong to the same class. This
intuition leads to the primary object rule of SADAE:

∀xi, xj ∈ X : if D(xi, xj) < ρ, then uij = 0, (16)

where, D(xi, xj) is the distance between xi and xj .
Above if-then rule can be inverted into the T -norm logical

expression: ∏
xi,xj∈X

(D(xi, xj) < ρ → ¬uij). (17)

Since in the classical logic, a→ b⇔ ¬a∨b, the expression
(17) can be further transformed into:∏

xi,xj∈X

(D(xi, xj) ≥ ρ ∨ ¬uij). (18)

Moreover, due to the property of the logical NOT operator,
the following is further yielded∑

i,j

(uij ∧ ν(D(xi, xj) < ρ)), (19)

where, ν is the indicator function

ν(x) =

{
1, x = true,
0, x = false.

(20)

As a result, the primary objective rule (16) is equal to the
following hinge loss function:

L1(W, b, ρ) =
∑
i,j

uij [ρ−D(xi, xj)]+

=
∑
i,j

f(uij(ρ−D(xi, xj))).
(21)

Here,
f(x) =

1

β
log(1 + exp(βx)) (22)

is the generalized logistic approximation of the standard hinge
loss [x]+ = max(0, x), with a relatively large value of β.
Geometrically, the intention of L1 is to ensure that a sample
won’t lie in the neighborhood, where the radius is ρ, of those
from different classes.

In light of the principle of structure risk minimization, two
regularization terms will be added to L1. First, in order to
enlarge the margin between different classes, the value of ρ is
designed to adaptively increase during the training procedure
of SADAE. In this case, the first regularization term is

L2(ρ) = −ρ. (23)

Another regularization term L3 is to reduce the sophistica-
tion of W and b to prevent over fitting.

L3(W, b) =

K∑
k=0

M∑
m=1

(∥W (m)
k ∥2F + ∥b(m)

k ∥22). (24)

As the summation of L1, L2 and L3, the general loss
function of SADAE is

L(W, b, ρ) = λ1L1(W, b, ρ) + λ2L2(ρ) +
1

2
λ3L3(W, b)

= λ1
∑
i,j

f(uij(ρ−D(xi, xj)))− λ2ρ

+
1

2
λ3

K∑
k=0

M∑
m=1

(∥W (m)
k ∥2F + ∥b(m)

k ∥22). (25)

Fig. 2 illustrates the ML strategy used in SADAE. In the
original feature space (as shown in Fig. 2(a)), some samples
from different classes locate closer than ρ. Such abnormal
distribution in the neighborhoods of samples may raise the risk
of misrecognition. As shown in Fig. 2(b), by using the loss
function (25), the value of ρ is penalized to increase and the
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(a) Original feature space (b) Optimized feature space

Fig. 2. Illustration of ML strategy in SADAE

distance between the samples from different classes is enlarged
to greater than ρ, simultaneously. In so doing, the discernibility
of features is improved to distinguish different classes.

The stochastic gradient descent (SGD) algorithm is em-
ployed to update the parameters {W (m)

k , b
(m)
k }, k = 0, . . . ,K,

m = 1, . . . ,M , and the radius ρ in the loss function (25). The
derivatives of W (m)

k , b(m)
k and ρ are as follows.

∂L

∂W
(m)
k

=λ1
∑
i,j

(Υ
(m)
k,ij(O

(m−1)
k,i )T +Υ

(m)
k,ji, (O

(m−1)
k,j )T )

+ λ3W
(m)
k (26)

∂L

∂b
(m)
k

= λ1
∑
i,j

(Υ
(m)
k,ij +Υ

(m)
k,ji) + λ3b

(m)
k , (27)

∂L

∂ρ
= λ1

∑
i,j

uijf
′
(c)− λ2. (28)

Here, O(m)
k,i represents the output of the m-th layer of xi in

AEk. And c is defined as:

c ≜ uij(ρ−D(xi, xj)). (29)

Moreover, in AEk, for m = 1, . . . ,M − 1,

Υ
(m)
k,ij = (W

(m+1)
k )TΥ

(m+1)
k,ij ⊙ ψ

′
(o

(m)
k,i ), (30)

Υ
(m)
k,ji = (W

(m+1)
k )TΥ

(m+1)
k,ji ⊙ ψ

′
(o

(m)
k,j ). (31)

And for m =M ,

Υ
(M)
k,ij = −αk(xi, xj)uijf

′
(c)(O

(M)
k,i −O

(M)
k,j )⊙ ψ

′
(o

(M)
k,i ),

(32)
Υ

(M)
k,ji = −αk(xi, xj)uijf

′
(c)(O

(M)
k,j −O

(M)
k,i )⊙ ψ

′
(o

(M)
k,j ),

(33)
where o(m)

k,i and o(m)
k,j are the intermediate functions as follows:

o
(m)
k,i ≜W

(m)
k O

(m−1)
k,i + b

(m)
k , (34)

o
(m)
k,j ≜W

(m)
k O

(m−1)
k,j + b

(m)
k . (35)

According to Eqs. (26), (27) and (28), W (m)
k , b(m)

k and ρ
are updated as follows.

W
(m)
k =W

(m)
k − η ∂L

∂W
(m)
k

, (36)

b
(m)
k = b

(m)
k − η ∂L

∂b
(m)
k

, (37)

ρ = ρ− η ∂L
∂ρ

, (38)

where η represents the learning rate.
Algorithm 3 shows the details of the training process of

SADAE. It is noteworthy that since the derivatives of µk is
rather small in practice, the modification of µk is omitted to
simplify the process of updating the SADAE model.

Algorithm 3: Training of SADAE model
Input:
X , training set;
AEk, initialized AEs using Algorithms 1 and 2,
k = 0, . . . ,K, m = 1, . . . ,M ;
λ1, λ2, λ3, trade-off parameters;
S, maximum iterations;
η, learning rate;
ε, threshold of reconstruction loss.
Output: Oi, i = 1, . . . , n.

1 Initialize ρ;
2 s← 1;
3 L← 0;
4 repeat
5 L̂← L;
6 Calculate loss L ← Eq.(25);
7 if |L− L̂| < ε then
8 break;
9 end

10 for m =M,M − 1, . . . , 1 do
11 ∂L

∂W
(m)
k

← Eq. (26), ∂L

∂b
(m)
k

← Eq. (27);

12 W
(m)
k ← Eq. (36), b(m)

k ← Eq. (37);
13 end
14 ∂L

∂ρ ← Eq. (28);
15 ρ ← Eq. (38);
16 s← s+ 1;
17 until s == S;
18 Oi ← Eq. (39);
19 return Oi, i = 1, . . . , n.

After training the SADAE model, the resulting parameters,
i.e., W (m)

k , b(m)
k , k = 0, . . . ,K, m = 1, . . . ,M , are used to

output the representation enjoys discriminative features for the
input samples as follows.

Oi =

K∑
k=0

1
θk,i∑K

k=0
1

θk,i

O
(M)
k,i , i = 1, . . . , n. (39)

Here, Oi is the improvement of xi used in further medical
image recognition.

IV. EXPERIMENTAL EVALUATION

In this section, the medical image recognition tasks are
conducted on three data sets in MedMNIST [22], [23]:
BreastMNIST (small-size) [25], PneumoniaMNIST (medium-
size) [24] and DermaMNIST (large-size) [26], and MIAS
with two different labeling strategies: BI-RADS [27] and
Tabár [28], respectively. Moreover, a brief dip into biometric
applications is carried out on 5 data sets. The performance
criteria used in this paper include recognition accuracy (ACC),
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TABLE I
MEDMNIST DATA SETS USED FOR EVALUATION.

Data set Samples Training Validation Test Classes Channels
BreastMNIST 780 546 78 156 2 single-channel

PneumoniaMNIST 5856 4708 524 624 2 single-channel
DermaMNIST 10015 7007 1003 2005 7 triple-channel

area under curve (AUC), kappa statistic and confusion matrix.
The performance of the SADAE model with different values
of the local AEs is also discussed.

A. Experiments on MedMNIST data sets

MedMNIST [22] is a collection of 10 pre-processed medical
image datasets with Creative Commons (CC) Licenses. It is
designed to be used as a rapid-prototyping playground and a
multi-modal machine learning/AutoML benchmark in medical
image analysis. This experiment uses three data sets in MedM-
NIST: PneumoniaMNIST, BreastMNIST and DermaMNIST.
For completeness, the official information of these three data
sets is summarized in Table I.

BreastMNIST contains 780 breast ultrasound images [25],
which are divided into three types: normal, benign and malig-
nant. In MedMNIST, these images are simplified into binary
classification by combing normal and benign as dissimilar, and
classify them against malignant as similar. The source data set
is divided into a training set, a verification set and a testing
set in the ratio of 7:1:2, officially. The size of each image is
adjusted to 1× 28× 28.

PneumoniaMNIST is based on a prior data set [24] of 5856
pediatric chest X-ray images. The task is a binary classification
of pneumonia and normal. In MedMNIST, the source training
set is divided into a training set and a verification set in the
ratio of 9:1 and takes the source verification set as the testing
set, officially. Each image is a single channel with a size of
1× 28× 28.

DermaMNIST is based on HAM10000 [26] which is a
large multi-source dermatoscope image collection of common
pigmented skin lesions. The data set consists of 10015 der-
matological images, which are divided into seven different
categories as a multi category classification task. These images
are partitioned into a training set, a verification set and a
testing set in the ratio of 7:1:2, officially. The source images
are 3×600×450 and resized into 3×28×28 in DermaMNIST.

1) Experimental settings: The training samples and test
samples in the three data sets used in the experiment split
by official settings. Each image in BreastMNIST, Pneumo-
niaMNIST and DermaMNIST is transformed into a 784-
dimension vector and normalized via the max-min scaling. It
is noteworthy that in DermaMNIST, each RGB triple-channel
image will be converted into its grayscale equivalence before
being flattened. This is done by setting the grayscale of each
pixel as a weighted average of its RGB color components:

grayscale = 0.299R+ 0.587G+ 0.114B, (40)

where, R, G and B represent the respective luminance values
of a pixel in the RGB channels. And the weighting coefficients

are set in proportion to the perceptual response of the human
vision to each of the red, green and blue color channels [46].
The framework of SADAE consists of 5 local AEs and a global
AE, each of which AEs has 7 layers. In Alg. 3, the parameters
λ1, λ2, λ3 are set to be 0.2, 0.8, 0.0005, respectively. The
learning rate η is set to be 0.0005. The radius threshold ρ
is a random number ranging from 2.4 to 3.0. Moreover, the
classification tasks on the image representations coded by
SADAE are performed in conjunction with the use of SVM
using the linear kernel function, the cosine similarity (Cos)
and the kNN method with 3 nearest neighbors (3NN).

2) Recognition accuracy: The performance of SADAE, in
terms of recognition accuracy (ACC) and AUC, is compared
to the benchmark results reported in [22], achieved by Auto-
sklearn [19], Auto-Keras [20] and ResNet [21], respectively.
Specifically, the model of ResNet is implemented with 18
layers (ResNet-18) and 50 layers (ResNet-50), respectively.
Each implementation is trained with 100 epochs. Since the
standard practice of training ResNet is at the resolution of
224 × 224, to make a comprehensive comparison, two input
resolutions, 28 and 224 (resized from 28), are assigned in both
ResNet-18 and ResNet-50.

In Table II, the respective results of ACC and AUC for the
BreastMNIST, PneumoniaMNIST and DermaMNIST data sets
are recorded with the best results for each data set marked
in bold. For each method, the average results on ACC and
AUC are summarized in the last two columns in Table II,
respectively. On the grounds of the comparative results, it
can be observed that SADAE achieves the highest ACC on
the DermaMNIST (by Cos) data set and the largest values of
AUC on both PneumoniaMNIST (by SVM) and DermaMNIST
(by Cos) data sets. Although in other cases, SADAE takes
the second best positions, its average results (by SVM) are
the best in terms of both ACC and AUC. This demonstrates
that SADAE can consistently provide decent representation
for the medical image recognition tasks in different sizes.
Such outperformance of SADAE may benefit from the use of
local AEs, which can discover the underlying multi-modality
concealed in data. Moreover, the utilization of the self-adaptive
ML strategy can further improve the quality of discriminative
features to recognize the difference between images.

3) Influence of number of local AEs: As mentioned pre-
viously, the framework of SADAE is composed of a global
AE and K local AEs. When K = 0, SADAE is equivalent
to a classical AE in structure. And with the growth of the
value of K, SADAE can partition the data space into more
subspaces. In this subsection, the impact of different values
of K is investigated on the BreastMNIST, PneumoniaMNIST
and DermaMNIST data sets.

With the use of a large number of local AEs, the initial-
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TABLE II
COMPARISONS ON ACC AND AUC.

BreastMNIST PneumoniaMNIST DermaMNIST Average
Methods ACC AUC ACC AUC ACC AUC ACC AUC

Auto-sklearn 0.808 0.848 0.865 0.947 0.734 0.906 0.799 0.900
Auto-Keras 0.801 0.833 0.918 0.970 0.756 0.921 0.825 0.908

ResNet-18 (28) 0.859 0.897 0.843 0.957 0.750 0.911 0.817 0.922
ResNet-18 (224) 0.878 0.915 0.861 0.970 0.727 0.896 0.822 0.927
ResNet-50 (28) 0.853 0.879 0.857 0.949 0.727 0.899 0.812 0.909
ResNet-50 (224) 0.833 0.863 0.896 0.968 0.719 0.895 0.812 0.909
SADAE+SVM 0.859 0.897 0.901 0.983 0.756 0.925 0.839 0.935
SADAE+Cos 0.853 0.897 0.898 0.970 0.759 0.927 0.837 0.931
SADAE+3NN 0.846 0.877 0.876 0.965 0.753 0.923 0.825 0.922

ization and training process of SADAE will become rather
time-consuming. Even worse, certain local AEs may suffer
from useless empty subspaces, where the time is cost in vain.
Thus, in this paper, the value of K is verified in a low value
range.

Specifically, the 6 resulting frameworks of SADAE are
implemented with the values of K = 0, 1, 2, 3, 4, 5,
respectively. And the data representations coded by these
SADAE models are classified by SVM, Cos and 3NN, again.
The respective results are shown in Figs. 3, 4 and 5.

Fig. 3. Recognition accuracy of SADAE with regard to different values of
K for BreastMNIST.

Fig. 4. Recognition accuracy of SADAE with regard to different values of
K for PneumoniaMNIST.

It can be seen that, as the value of K grows, all of the
recognition accuracies gained by SVM, Cos and 3NN exhibit
improvement, consistently. However, the results in Figs. 3, 4
and 5 also demonstrate that, on the three used MedMINST
data sets, the improvement between the recognition accuracies
gained by SADAE with K = 4 and 5, is not significant
already. Therefore, careful off-line selection of an appropriate
K is necessary for the use of SADAE.

Fig. 5. Recognition accuracy of SADAE with regard to different values of
K DermaMNIST.

B. Experiments on MIAS data set

The data employed in this experimental evaluation is de-
rived from the mammographic image analysis society (MIAS)
database [47]. It includes a set of Medio-Lateral-Oblique
(MLO) left and right mammogram of 161 woman (322 sam-
ples). The spatial resolution of the image is 50µm×50µm,
quantized to 8 bits with a linear optical density in the range
0-3.2. In each image of the MIAS data set, an ROI of a
256×256 pixel size is extracted as the sample fibroglandular
disk region [48]. Moreover, in this experiment, mammographic
risk assessment are performed based on the BI-RADS [27],
Tabár [28] labeling schemes (see Fig. 6 for examples).

(a) mdb098 (b) mdb304 (c) mdb252 (d) mdb116 (e) mdb318

Fig. 6. Example mammograms: (a) I, Pattern II; (b) II, Pattern III; (c) II,
Pattern I; (d) III, Pattern IV; (e) IV, Pattern V.

In particular, BI-RADS is used to categorize a mammogram
into one of four classes: BI-RADS I: Breast density is low; BI-
RADS II: There exists some fibroglandular tissue; BI-RADS
III: Breast density is high; BI-RADS IV: Breast is extremely
dense. Numerically, the risk values for BI-RADS I–IV are 1,
1.6, 2.3 and 4.5, respectively.

Tabár describes breast composition of four building blocks:
nodular density, linear density, homogeneous fibrous tissue
and radiolucent adipose tissues. These blocks also define
mammographic risk classification. In particular, the following
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patterns are defined, with Patterns I-III corresponding to lower
breast cancer risk and Patterns IV-V relating to higher risk.

1) Experimental settings: The framework of SADAE con-
sists of 4 local AEs and a global AE, each of which has 7
layers. In Alg. 3, the parameters λ1, λ2, λ3 are set to be 0.2,
0.8, 0.0005, respectively. The learning rate η is set to be 0.005.
The radius threshold ρ is fixed to a random number ranging
from 2.8 to 3.0. In addition, the MIAS data set with both the
BI-RADS and Tabár labeling strategy is randomly split into a
training set and a testing set in the ratio of 7:3.

2) Recognition accuracy: Since MIAS is not a very large
medical image data set, the comparative studies on this data set
is carried out between SADAE and other five ML algorithms,
including ITML [34], LSML [36], NCA [35], LMNN [9] and
SCML [40], which are implemented by using the metric-learn
package [49] in Python. Since the performance of 3NN is
rather poor on the data learned by these ML algorithms, in
order to make a fair comparison, the following classification
tasks are conducted by SVM, Cos and the kNN method with
5 nearest neighbors (5NN).

The resulting recognition accuracies are recorded in Table
III. It can be seen that, via the tests by SVM, Cos and the 5NN,
the proposed SADAE method consistently outperforms other
ML methods on both the BI-RADS and Tabár data sets. This
demonstrates that, even in the same sample space, SADAE
can effectively adapt to the change of labels. In particular, the
lowest improvement gained by SADAE is 0.0618, observed
against ITML with Cos on the BI-RADS data set. Such
superiority of SADAE is due to the use of the community of
global and local AEs which can extract the information in the
local subspaces for the subsequent self-adaptive ML strategy.

TABLE III
COMPARISON ON RECOGNITION ACCURACY.

Methods Classifiers BI-RADS Tabár

ITML
SVM 0.6598 0.6495
Cos 0.7835 0.7320
5NN 0.7525 0.7113

LSML
SVM 0.6495 0.6289
Cos 0.6598 0.6392
5NN 0.7216 0.6907

NCA
SVM 0.6804 0.6082
Cos 0.7320 0.6598
5NN 0.7010 0.6701

LMNN
SVM 0.6186 0.5773
Cos 0.5979 0.6186
5NN 0.6186 0.5979

SCML
SVM 0.5773 0.5773
Cos 0.6289 0.6082
5NN 0.6082 0.5876

SADAE
SVM 0.7629 0.7629
Cos 0.8453 0.8041
5NN 0.8556 0.8247

3) Kappa statistic: To compare with the existing work, in
this paper, the kappa statistic is employed to evaluate the ex-
perimental results also. The kappa statistic is generally thought
to be a more robust measure than simple percent agreement
calculation since it summarises the level of agreement between
observers after agreement by chance has been removed. It tests
how well observers agree with themselves (repeatability) and
with each other (reproducibility).

In Tables IV, the comparison is presented between SADAE
and other ML methods. High values of kappa statistic are
indicative of high agreement between the comparators. Thus,
SADAE provides the best performance consistently in all
cases. In particular, the values of kappa statistic of SADAE
are all higher than 0.60, which means that the results gained
by SADAE indicate highly moderate or substantial agreements
between the comparators.

TABLE IV
COMPARISON ON KAPPA COEFFICIENT STATISTICS.

Methods Classifiers BI-RADS Tabár

ITML
SVM 0.4607 0.4701
Cos 0.6804 0.6180
5NN 0.6279 0.4701

LSML
SVM 0.4451 0.4525
Cos 0.4816 0.4890
5NN 0.5781 0.5567

NCA
SVM 0.5011 0.3917
Cos 0.5911 0.5140
5NN 0.5381 0.5258

LMNN
SVM 0.3900 0.3529
Cos 0.3404 0.4607
5NN 0.3888 0.4044

SCML
SVM 0.2915 0.3928
Cos 0.0542 0.4080
5NN 0.3513 0.3744

SADAE
SVM 0.6426 0.6796
Cos 0.7873 0.7338
5NN 0.8012 0.7622

4) Confusion matrices using Cos classifier: In order to fur-
ther demonstrate the advantage of SADAE, confusion matrix
is employed to offer a standard means to support evaluation
of recognition accuracy. In this work, confusion matrices are
automatically plotted via SciKit-Learn. As shown in Figs. 7
and 8 in response to the use of the BI-RADS and Tabár
criteria, the confusion matrices are yielded by using Cos on the
data representations achieved by SADAE and other five ML
methods, respectively. Specifically, in each confusion matrix,
the entry in the i-th row and j-th column represent the ratio
of the test image of the i-th class to be classified as the j-th
class. And the null entry indicates the fact that no image in
the i-th class is misclassified into the j-th class.

The experimental results in Fig. 7 demonstrate that SADAE
perform consistently well on the identification of the 4 cate-
gories especially class II and class IV. Although ITML, LSML,
NCA and LMNN misclassify less images than SADAE from
class III to class II, SADAE assigns no image in class II to
class III. In general, the SADAE model successfully reduce
the class confusion, such as that between class II and class III
in BI-RADS. This is of practical significance because these
two classes constitute the majority of BI-RADS; it is therefore
more useful, though more difficult, to identify class II and III
separately. The experimental comparisons on the Tabár data set
have also shown that the SADAE model can function better
at the level of individual risk types. Considering the results
shown in Figs. 7 and 8 jointly, it can be seen that SADAE
enjoys a significantly better ability to distinguish distinct types
of medical images than other ML methods.
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(a) ITML (b) LSML

(c) NCA (d) LMNN

(e) SCML (f) SADAE

Fig. 7. Confusion matrices on BI-RADS data set

(a) ITML (b) LSML

(c) NCA (d) LMNN

(e) SCML (f) SADAE

Fig. 8. Confusion matrices on Tabár data set

C. Experiments on Biometrics

In order to further verify the performance of SADAE in
other region, a comparative study on biometrics is conducted

between SADAE and other five metric learning methods used
in Section IV-B. The face image data sets used in this section
are introduced as follows.

The AR [29] data set consists of 2600 images from 50 men
and 50 women. Each person is described by 26 images. In this
paper, 70% images of the AR data set are randomly selected
as the training set, and the rest are used for testing.

The images in the LFW (Labled Face in Wild) [30] data
set are all from natural scenes in life. This experiment uses a
cropped grayscale version of LFW, which contains 500 images
of 10 classes. In particular, 15 photos of each person are taken
for testing and the rest are used for training.

CK+48 [31] is a data set for facial expression recognition.
This paper applies a cropped version of CK+ 48 data set with
top 5 emotions, anger, fear, happy, sadness and surprise. Such
data set contains 750 emotional images which is divided into
a training set and a test set in the ratio of 7:3.

The ORL [32] data set includes 400 face images of 40
different people. The 10 photos of each person represent
different lighting, expressions and facial details. In particular,
7 photos from each person are taken as the training data set,
and the remaining 3 photos are used for testing.

The FaceScrub [33] data set collects the face images celebri-
ties. In this paper, the FaceScrub data set is cropped into two
versions, FaceScrub10 and FaceScrub20, which contains 1041
photos of 10 celebrities and 2053 photos of 20 celebrities,
respectively. For each category in these selected images, 20
photos were randomly selected for testing and the remaining
photos were used for training.

Table V summarizes the information of above data sets.

TABLE V
BIOMETRIC DATA SETS USED FOR EVALUATION.

Data set Samples Training Test Classes
AR 2600 1820 780 100

LFW 500 350 150 10
CK+48 750 525 225 5
ORL 400 280 120 40

FaceScrub10 1041 841 200 10
FaceScrub20 2053 1653 400 20

1) Experimental details and parameter setting: In the ex-
periments, let K be 5 for these data sets. Each of the global and
local AEs adopts a 7-layer network structure. The parameters
λ1, λ2, λ3 are fixed as 0.2, 0.8, 0.0005, respectively. The
learning rate is set to 0.0001. The radius threshold ρ is fixed
to a random number ranging from 3 to 3.8.

2) Recognition results: Again, SVM, Cos and 5NN are
used to perform classification in following experiments. As
shown in Table VI, the features generated by SADAE consis-
tently returns the best results for all data sets, even with dif-
ferent classifiers. Occasionally, ITML+SVM, NCA+SVM and
LMNN+Cos perform competitively, compared against SADAE
on the LFW and Facescrub data sets. These results further
demonstrate the capacity of SADAE to extract discriminative
features from diverse images and disclose the potential of
SADAE for biometric application.

Together with the previous results, overall, it is clear that
SADAE can effectively improve the representation of medical
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TABLE VI
COMPARISONS ON RECOGNITION ACCURACY.

Methods Classifiers AR LFW CK+48 ORL Facescrub10 Facescrub20

ITML
SVM 0.9833 0.6333 0.9867 0.9500 0.7000 0.6225
Cos 0.9282 0.6400 0.9333 0.9500 0.7050 0.5550
5NN 0.8346 0.6333 0.7911 0.9583 0.5050 0.3537

LSML
SVM 0.9782 0.6467 0.9822 0.9583 0.7100 0.6225
Cos 0.6051 0.4867 0.9289 0.9333 0.5850 0.4775
5NN 0.3897 0.5067 0.5511 0.9250 0.4800 0.3475

NCA
SVM 0.9731 0.6667 0.9778 0.9667 0.7200 0.6225
Cos 0.9423 0.5533 0.9778 0.9417 0.6750 0.6025
5NN 0.8923 0.6200 0.7867 0.9250 0.6200 0.5250

LMNN
SVM 0.9885 0.6333 0.9778 0.9417 0.7050 0.6200
Cos 0.9846 0.6467 0.9773 0.9500 0.6850 0.6325
5NN 0.9846 0.6867 0.9867 0.9750 0.6950 0.6700

SCML
SVM 0.9205 0.5933 0.9822 0.9500 0.6550 0.5500
Cos 0.9282 0.5800 0.9778 0.9000 0.6600 0.5525
5NN 0.9013 0.6000 0.9822 0.9500 0.6900 0.5225

SADAE
SVM 0.9905 0.7133 0.9867 0.9667 0.7550 0.6525
Cos 0.9846 0.7067 0.9867 0.9883 0.7500 0.6650
5NN 0.9885 0.7400 0.9911 0.9883 0.7350 0.6875

images and biometric images with discriminative features
while leading to a better recognition performance. This out-
performance of SADAE mainly thanks to the use of the
global and local AEs to discover the local nonlinearity of
data and the self-adaptive deep ML strategy to optimize the
margins between different classes, so as to further improve the
separability of data.

V. CONCLUSION

In this paper, a self-adaptive discriminative autoencoder
(SADAE) algorithm is proposed for medical applications. The
framework of SADAE consists of K local AEs to reveal the
local nonlinearity of data and a global AE to restrict the spatial
scale of the learned representation of images. By using a self-
adaptive deep ML method, SADAE can automatically find a
proper margin to distinguish different classes, so as to further
improve the separability of data. The experimental results
demonstrate that the recognition results gained by SADAE
are much improved over those by other state-of-the-art DL
and ML methods on the used image data sets.

Topics for further research include a more comprehen-
sive investigation of an automatical selection of the optimal
value of K for distinct medical image recognition data set.
Moreover, when the medical images suffer from an irregular
distribution of within-class multi-modality, the initialization
process of SADAE may not successfully reach convergence
within the preset maximum iteration. Thus, the method fo-
cused on sufficiently initializing SADAE for complex data is a
worthwhile avenue of exploration. Last but not least, based on
the framework of SADAE, potential alternative cooperations
of DL and ML methods for image recognition tasks in diverse
application domains remain active research.
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