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Forgetting Practices in the Data Sciences

ANONYMOUS AUTHOR(S)

HCI engages with data science through many topics and themes. Researchers have addressed biased dataset problems, arguing that

bad data can cause innocent software to produce bad outcomes. But what if our software is not so innocent? What if the human

decisions that shape our data-processing software, inadvertently contribute their own sources of bias? And what if our data-work

technology causes us to forget those decisions and operations? Based in feminisms and critical computing, we analyze forgetting

practices in data work practices. We describe diverse beneficial and harmful motivations for forgetting. We contribute: (1) a taxonomy

of data silences in data work, which we use to analyze how data workers forget, erase, and unknow aspects of data; (2) a detailed

analysis of forgetting practices in machine learning; and (3) an analytic vocabulary for future work in remembering, forgetting, and

erasing in HCI and the data sciences.

CCS Concepts: • Human-centered computing → Computer supported cooperative work; HCI theory, concepts and models; •
Computing methodologies→ Cooperation and coordination; Supervised learning.
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1 INTRODUCTION

...and our songs about the stories we’ve forgotten;

and all that we’ve forgotten we’ve forgotten...

–Pádraig Ó Tuama [161]

Researchers’ work in the data sciences has inspired important and diverse themes in HCI and related research areas,

such as crowdmarket labor [100, 101], fairness [13], bias reduction [27, 109], surveillance capitalism [235], human

centered data science [121, 232], human centered machine learning [30], labeling [67, 157], explainable AI/XAI [59, 231],

co-creativity [44, 137], and the specialized work of AI teams [172, 227, 234]. As we store more and more data about one

another, ourselves, and things, we assume that our databases can ”remember” what we need to know. As Bowker wrote

in Memory Practices in the Sciences, human work in many scientific fields requires attention to what we remember, how

we remember, how we store or otherwise preserve what we remember, how we re-find what we know (or what we

once knew), and whom we remember with [20].

We also forget. Forgetting may initially seem like a ”bad” thing in the sciences. And yet, scholars have argued that

forgetting can be beneficial to memory [131, 217], and that remembering and forgetting may be seen as facets of a single,

unitary phenomenon [148, 152, 224]. Spiel, for example, advocates the gradual removal of less relevant information, in

a way that mimics gradual memory degradation in humans [207].
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Consistent with this view, in a related field, de Souza and colleagues showed that much of software engineering

involves a reversible kind of forgetting through the use of application programming interfaces (APIs) and other strategies

of separation of concerns [51, 166], which allows developers to focus on their immediate task while encapsulating non-

focused complexities outside of their current scope of attention and action [41, 42]. They described several types of

tensions in this work, leading to a redefinition of APIs in a more social and infrastructural context (e.g., [43]). Through

a series of thoughtful examinations of software practices, they asked to what extent and in what ways separation could

be beneficial or harmful [42, 193]. We see encapsulation as a type of reversible forgetting - i.e., if complexity is forgotten

through encapsulation in a particular function call, a computer scientist or engineer can usually access the source code

of the function - thus effectively remembering the complexity upon need. In this way, separation of concerns may be

seen as a combination of strategized forgetting and strategized remembering.

Data science work seems to involve similar strategies ”where data becomes a first-class citizen, on a par with

code” [213]. There are similar de facto practices of forgetting complexities in favor of pattern-finding in data, and

hiding complexities through the addition of layers of sophistication and abstraction during data-cleaning and feature-

engineering [97, 150]. Each layer involves its own complexities and challenges, encouraging a data science team to focus

on a single problem at-a-time [114, 156, 189]. On this basis, we claim that data science uses both software engineering

tools
1
and also software engineering heuristics of work practices through hiding complexity (e.g., [127]). For example,

one data science worker may replace certain missing values through a form of missing-values imputation. A second

data science worker will then receive that dataset, and will not know which values were initially missing.

We argue that - unlike the software engineering practices of encapsulation and separation of concerns (discussed

above) - much of the forgetting practices in data science are, in practical terms, non-reversible. Our concern in this paper

is to examine how we forget in the data sciences, what we may lose thereby, and how these forms of forgettance [217]

(i.e., the inverse of remembrance) may be implicated in the broader politics of data science and ”big data.” We question

the meta-narratives (per Lyotard’s influential analysis [141]) that AI technologies are objective and/or infallible (e.g., as

critiqued by [23, 36, 74]).

To summarize so far, we propose that forgetting practices can be both beneficial and harmful. The beneficial aspects

allow us to focus on particular problems and to build useful higher-level concepts (abstractions). The harmful aspects

occur when we forget that we have engaged in those forgetting practices, thereby losing metadata that we may need

to understand the surprising, biased, unfair, or injurious outcomes of our work. We will take up additional beneficial

aspects of certain socially-motivated strategies of forgetting, when we discuss data silences in Section 2.3. In that

section, we will also examine additional harmful aspects of other socially-motivated strategies of forgetting.

In this paper, we consider both extrinsic and intrinsic issues in the work of data science. From an extrinsic perspective,

we acknowledge the important discussions of bias in the large-scale selection of entire datasets in data science (e.g.,

[13, 27, 144, 163, 170, 198]). From an intrinsic perspective, we extend that analysis to show how forgetting occurs

within the detailed work practices of data work [151, 175, 197] - i.e., planning, choosing, cleaning, curating, (feature)

engineering, and labeling records at the level of the data records themselves. We describe forgetting and forgettance as

important human actions that inevitably put a human interpretation into the data in the dataset [156, 192, 198].

We have structured this essay as follows: In Section 2, we begin with a broader consideration of forgetting as social

and scientific practices and then briefly review well-known discussions of bias in datasets in Section 3. Section 4

presents our detailed critique of work practices in data work, and the ways in which humans add their knowledges

1
E.g., libraries, packages, and even Knuth’s literate programming [120] in the form of Jupyter notebooks

2



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Forgetting Practices in the Data Sciences CHI 2022, 30 April - 6 June, 2022, New Orleans, LA, US

and interpretations into the detailed data within data records. Following this, we integrate the data work practices of

Section 4 with the forgetting practices of Section 2, and we propose changes to those practices that may provide a better

balance between strategic forgetting and strategic re-remembering.

With this discussion of strategic forgetting and re-remembering, this paper makes the following contributions: we

present a classification of (1) data work practices related to forgetting, omitting, obliviating, and silencing, organized

into three higher-level categories of silences; (2) an analysis of forgetting during the detailed steps of data work; and (3)

implications of those silences and forgettings in the broader politics of data and algorithms.

1.1 Positionality Statement

The two authors of this paper are actively involved in critical computing. One of us has studied both formal and informal

arrangements in civic life and civil society, including online resources that carefully negotiate visibility and invisibility

for people who are made vulnerable. One of us has studied data science workers through qualitative and survey methods,

including initial investigations into the detailed data work through which data science workers construct the data in

their datasets.

2 TYPOLOGIES OF FORGETTING

Remembering - by individuals, groups, and via technological or social mediation - has been a major theme in HCI and

in data science [2–4, 6, 20, 35, 82, 154]. In this paper, we attempt an inversion [21, 203], by focusing on the unattended

aspects of forgetting as part of memory work. We build on the forgetting aspects of the work of Bowker [20], Engestrom

[61], Easterby [58], Connerton [35], Minarova-Banjac [149], and Vinitzky-Seroussi [225], and feminist technoscience

work by Harding [85–87], Bardzell [10], Costanza-Chock [36], D’Ignazio and Klein [49], Mulvin [158], Strohmayer

et al. [211, 212], and Bellini et al. [14], along with selected political perspectives which turn out to be applicable

[28, 129, 165, 184]. We will begin with praise for forgetting, followed by accounts of harms of forgetting. We then focus

on an integrated analysis of types of forgetting, which will help to guide the rest of the paper.

2.1 Forgetting Considered Beneficial

On one hand, forgetting can be understood as beneficial. Initially, it seems that forgetting is opposed to remembering.

However, recent thinking in the humanities and the social sciences argues for a more complementary and even syncretic

view. Lamers et al. suggest that forgetting serves to highlight what we need or want to remember [131]. Mills writes of

this phenomenon as ”Forgetting is an important part of memory work” ([148]; see also [224]). Momigliano anticipated

this complexity, writing that ”to learn something new or to be reminded of something we had forgotten... is almost the

same” [152]. Bowker observed that archives - our large institutional memory repositories - function ”by remembering

all and only a certain set of facts/discoveries/observations, consistently and [thereby] actively engage... in the forgetting

of other sets” ([20]; see also [58]). Writing in the Conference on Artificial General Intelligence, Thórisson et al. described

this memory strategy as forgettance, which they defined as ”Removing the least relevant and necessary knowledge, if

needed” ([217]; see also [71]).

As we discussed in the previous section, forgetting is also an implicit strategy in data science. If we think of data

science as a kind of ”stack” of refinements on data - i.e., from data-acquisition to data cleaning etc. to modeling - then

data science workers tend to focus their efforts on the current layer of refinement, and to forget the complexities and

uncertainties of the prior layers. As is common in many human activities, we forget the past in order to concentrate on

the present. In Section 4, we will consider the potential costs of this implicit strategy.

3
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2.2 Forgetting Considered Harmful

On the other hand however, forgetting in data science can also be harmful or cause violence, not least because our

choice of what we deem unimportant enough to forget to improve our memory, impacts on our understanding of

histories, data, exploitation, harm, and so on. Similarly forgetting is often considered harmful in political arenas. Forché

titled her anthology of human rights poetry Against Forgetting, based on her experiences with politically-motivated

efforts to erase an inconvenient past so as to valorize an authoritarian present [66]. Orwell famously wrote of memory

holes into which non-conformant or currently dangerous information could be placed for immediate destruction [165].

For Minarova-Banjac, ”Collective forgetting refers to how states and citizens selectively remember, misremember, and

disremember[,] to silence and exclude alternative views and perspectives that counter the official discourse” [149].

In ancient Rome, the current ruler might try to obliterate all memory of a former ruler under the rubric of damnatio

memoriae. [229]. More recently, Panagopoulou-Koutnatzi proposed the word oubli to indicate the information that is to

be un-remembered [168].

The research literature on HCI and particularly on infrastructuring also argues against forgetting. Bowker’s Memory

Practices is a thoughtful, sometimes-ironic, encyclopedic treatment of the nuanced values of remembering in the sciences

[20]. Large-scale repositories - in effect, databases of datasets - tend to be carefully constructed and classified for re-use by

the original creators of datasets and by other researchers in global communities of scholars in multiple disciplines [126].

Ackerman and colleagues explored technological and work-practice activities to preserve knowledge in organizations

[2–4, 82]. Two types of organizational memory - of skills and of facts - were said to be necessary foundations for

meeting new challenges through organizational improvisations [154]. Others have emphasized transactive memory

systems - i.e., knowing whom to ask - as a third necessary resource, either online [162] or in communities of practice as

knowledge-holders [105, 136].

And yet, some researchers are also aware of limitations in how ”welcoming” a data repository may be for information.

The reduction of gender identity to a simplified female/male binary has been documented as causing significant harms

to people whose identities go beyond that binary [36, 195, 206]. Engestrom discusses ways in which non-conformant

information may not be recorded in a structured repository that is designed for only certain categories of data [61].

Bowker concurs, critiquing repositories for including expected forms of data while excluding unexpected forms of data

([20]; see also [22, 88]). Earlier, De Certeau described how data may be distorted when they are transformed to fit

preconceptions or available structures of knowledge ([38]; see also [56, 158, 222]):

“[T]he operation of walking can be traced on city maps... These thick or thin curves only refer, like words,

to the absence of what has [been] passed by... They allow us to grasp only a relic set in the nowhen of a

surface of projection. Itself visible, it has the effect of making invisible the operation that made it possible.

These fixations constitute procedures for forgetting. The trace left behind is substituted for the practice.”

In summary, despite the widespread view that forgetting may be harmful, there is ample evidence that we deliberately

and perhaps necessarily lose data in HCI and data science through diverse forms of what Lamers et al. called ”engines of

forgetting” in their study of scholarly forgetting [131]. In the next section, we use Onuoha’s conception of data silences

([164]; see also [49]) as a structuring principle for a discussion of multiple analyses of diverse types of forgettings.

4



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Forgetting Practices in the Data Sciences CHI 2022, 30 April - 6 June, 2022, New Orleans, LA, US

Table 1. Definitions and Types of Forgetting

Number Definition Source

1 Data Silences. ”blank spots that exist in spaces that are otherwise data-saturated.” [164]

2 Syntactic Silences | Exclusionary Principles. Small instances of unparseable [20, 53, 61, 88]

data that can form patterns of un-inclusion for unnoticed sub-populations.

3 Inferential Silences. Developing an interpretation based on isolated or hand- [88]

picked factors

4 Substitution of Trace for Actual Experience or Data. Use of traces or other [38, 158]

proxies in place of actual events themselves or persons.

5 WYSIATI (”What You See Is All There Is”) Assumption that easily available data [88, 106]

are all that are needed.

6 Annulment. Forgetting what is unimportant, or what would interfere with [35]

remembering what is important.

7 Prescriptive Forgetting. Alleged consensus that certain things are best forgotten. [35]

8 Repressive Erasure. Use of [political] power to destroy records so as to benefit [35]

the powerful

9 Humiliated Silence. Pressure to forget (or not to mention) what is socially- [35]

constructed as ”shameful.”

10 Colonial Unknowing. Attempt to render Indigenous knowledges as ”impossible [60, 79, 223]

and inconceivable... . normative acts of ignoring, disavowal, and epistemicide” of

national identities that pre-date the ”colonial present.”

11 Structural Amnesia. A person [206], institution, or state [35] wants to control [6, 35, 190]

how it/they will be remembered - related to impression management [76]

12 Redacted Data. Deliberate obfuscation or removal of data to protect vulnerable [47, 185, 209]

persons or groups.

13 Covert Silences | Sanitized Erasures | Historical Amnesia. Removal or [20, 129, 225]

alteration of selected data - typically about others - such that the alteration cannot

be easily detected

14 Selectively Legible Data. Data are available but serve as boundary objects, [25, 187]

interpreted differently by different persons or groups.

2.3 Data Silences

Data silences are physical or conceptual sites of forgetting - i.e., in the language of Thórisson et al. [217], sites where

forgettance is practiced. The concept of data silences may help to bridge between domains of analysis, such as HCI,

data science, critical computing, and contemporary social concerns. Onuoha defined data silence as follows:

”‘Missing data sets’ are the blank spots that exist in spaces that are otherwise data-saturated. Wherever

large amounts of data are collected, there are often empty spaces where no data live... Spots that we’ve

left blank reveal our hidden social biases and indifferences.” [164]

Table 1 is an inevitably incomplete synthesis of positions and descriptions of, or related to, data silences. For breadth

of coverage, we include descriptions from HCI/CSCW, data science, and more diverse fields of study. We will focus in

this paper on the silences that are related to human practices in data science.

We divided the rows in Table 1 into three groups. The silences in the first group of rows (1-6), ”Modest Silences,”

are often relatively innocuous actions that are likely to happen, but without negative intentions. The silences in the

second group of rows (7-10), ”Silence as Force,” are more deliberate, and may represent intentions to erase or obscure

5
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information to the disadvantage of others. The silences in the last group of rows (11-14), ”Ambivalent Silences,” are

complex actions that may be done for mixed or uncertain motivations. Context is important to interpret any of these

silences, but is particularly important for the silences in rows 11-14.

2.3.1 Modest Silences (rows 1-6). Above, we stated that forgetting can be understood to be beneficial as well as harmful;

though of course some of these ”practices” of forgetting may be more complicated. Having said this, these practices

contribute to the selective silences that Onuoha wrote about. When Bowker [22] and Engestrom [61], describe data

repositories that resist non-conformant data, these are examples of Syntactic Silences and Exclusionary Principles

(Table 1 row 2) - e.g.,

”One data silence is syntactic gaps, which is a proportionately small amount of data in a very large data

set that will not parse (be converted from raw data into meaningful observations with semantics or

meaning) in the standard way. A common response is to ignore them under the assumption there are

too few to really matter. The problem is that oftentimes these items fail to parse for similar reasons and

therefore bear relationships to each other. So, even though it may only be .1% of the overall population, it

is a coherent sub-population that could be telling us something if we took the time to fix the syntactic

problems.” (Bradley S. Fordham, quoted in [88])

Syntactic Silences have the effect of denying aspects of some people’s experiences, identities, or realities. They are thus

aspects of epistemic injustice [69, 128]. Examples include databases that code ”gender” as either female or male, which

deny the existence of LGBTQIA2S+ people [36, 206], or restrictions of ascii characters that can be used in ”name” fields,

which render some Indigenous names as non-recordable in official records [153].

As Seager observed, ”what gets counted counts” [196]. Systematic patterns of Syntactic Silences may cause certain

populations to be undercounted or entirely uncounted. The result is a selective silence. As analysts, we may not be

aware that our data processing has caused us to forget a systematic part of our data, and therefore we forget as well a

part of our understanding of the people or phenomena that we are studying. As a civic society, we may not properly

fund, care for, or otherwise support the people whom we have under-counted or uncounted - i.e., whom we have

forgotten. In some cases, it may be necessary to write data from or about certain sources or people, back into the

dataset - or to record these data in a separate dataset. As an example, through generations of activism and struggle

[55, 103, 222], the Indigenous Nations in North America have begun to make their own tally of murdered and missing

Indigenous women and girls (#mmiwg and #mmiwg2s)
2
[204, 221], because most non-Indigenous police departments

do not keep such statistics [83, 205]. Syntactic Silences are summarized in row 2 of the Table 1.

We now move to Substitution (Table 1 row 4). Earlier in this section, we discussed de Certeau’s example of how a

trace of activity may take the place of original data [38]. When we make this kind of substitution, we create a silence in

the data that obscures (forgets) the original data for which we have chosen a substitute or proxy value [158].

The principle of selective-forgetting-to-remember-what-matters [20, 131, 148, 152, 224] is an aspect of Annulment

in row 6 of Table 1. We render certain phenomena silent, so as not to be distracted by them: We annul them. In the

Introduction, we discussed separation of concerns and encapsulation, which may also be understood as reversible forms

of Annulment.

2
The abbreviation ”2s” refers to Two-Spirit people as a generic reference to well-established non-female, non-male gender identities in some North

American Indigenous cultures [54]). Two-Spirit people may share some experiences with non-binary people in non-Indigenous cultures, but they may

also have a distinct roles and positions within Native cultures [186, 215].
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2.3.2 Silence as Force. The second set of silences (rows 7-10) are more active, and therefore more likely to have been

strategized. Prescriptive Forgetting (Table 1 row 7) is based on a consensus that certain things are best forgotten [35].

But who is included in that consensus? Value Sensitive Design (VSD) suggests that we consider the interests of multiple

stakeholders in a design, practice, or policy [70, 90]. Feminist standpoint theories also encourage us to consider the

perspectives of multiple other persons, roles, and interested parties - as well as our own perspectives [85, 86, 139]

- often starting from the margins [10, 14, 133]. We may thereby ask: Who is included in the group, nation, class, or

workplace-constituency that forms the consensus in Prescriptive Forgetting? If the claimed consensus is incomplete or

illusory, then Prescriptive Forgetting may devolve into one of the more abusive forms of silence in rows 8-11 - either

through intention or inadvertence. When a majoritarian position of binary gender is presented as a kind of consensus

view, then people with non-binary identities may suffer. These harmful silences can be repaired. For example, several

governments recently took steps towards reducing harms, by adding non-binary options for gender identities on

passports, thus relieving some trans* people of the burden of being misgendered [17].
3

Repressive Erasure and Humiliated Silence (rows 8-9 of Table 1) are more related to the political realms that we

mentioned in our earlier discussion of the harmful aspects of forgetting - i.e., the imposition of silence on people

who wish to be known, seen, heard. We briefly note here that Syntactic Silences may, in the extreme, become an

implementation of a kind of Repressive Erasure.

Colonial Unknowing (Table 1 row 10) may provide distinct lessons for data science. In the classic form of Colonial

Unknowing, a powerful group attempts to suppress knowledge of certain subordinate persons or peoples, or to hide

knowledge of crimes done against those groups [79, 223]. There is a related concept of Colonial Amnesia [60] which

may seem less deliberate - i.e., ”lost” knowledge rather than ”suppressed” knowledge.

The strong case of unknowing may help us to think about certain politics of data and knowledge. Earlier in this

Section, we mentioned the concept of damnatio memoriae, in which information about a prior ruler is suppressed by

the current ruler. In Whitling’s account [229], this practice often led to ironic outcomes, causing greater interest in

the deposed ruler. Damnatio memoriae thus involves information that is simultaneously remembered and forgotten -

but by different interested parties. The non-reversible forgetting practices of data science, which we described in the

Introduction, present a similar case: Data science workers at each step are aware of the complexities of data-processing,

but data science workers at the next step prefer not to know about these complexities (see also Section 4). When the data

reach the model, the claims of modeling excellence are dependent on no longer remembering any potential weak-points

in how the dataset was processed.

A contemporary example of Colonial Unknowing is the on-going crisis of the so-called ”residential schools” in former

British colonies [146].
4
Tens of thousands or hundreds of thousands of Indigenous children (the Stolen Generation

[28]) were legally abducted from their parents and sent to boarding schools, where they were physically punished for

speaking their birth languages, and were minimally educated for menial occupations in the colonizers’ economies [77].

At the time of writing, Indigenous-led use of ground-penetrating radar [202] has revealed the unmarked and/or hidden

graves of nearly 10,000 of children at the locations of the North American ”residential schools.” Survivor testimony

makes it clear that these thousands of children died through malnourishment, physical and sexual abuse, additional

forms of torture, and preventable diseases [1, 34, 146, 218].

3
We note that this approach - while an improvement - continues to treat gender-identity as a single, fixed attribute, and thus does not reflect the realities

of people who are gender-fluid and/or intersex.

4
Where possible, we have cited Indigenous scholars’ works [146], or works that were written by mixed groups of Indigenous and non-Indigenous authors

[34, 218]. In the remaining citations, we have consulted non-Indigenous scholars who call for ”unsettling the settler within” [184] or whose collections of

papers contain contributions from Native and non-Native scholars in dialog [56, 221, 222].
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Many non-Indigenous people in these former colonies are learning about this genocide for the first time in 2021,

despite the existence of multiple authoritative books [68, 77, 184], the Truth and Reconciliation reports in Canada [218]

and in the US State of Maine [34], and the Abouresk hearings in the US Senate in 1978 [1]. Clearly, the Indigenous

Nations know the bitter truth of these institutions [146]. The religious organizations that operated most of these places

kept records (currently sealed or sent overseas [102]), and thus are also in a position to know what they have done.

In some cases, the religious institutions remembered enough to remove grave markers [160], and in other cases local

governments remembered enough to pave over the gravesites [96]. Colonial Unknowing is a way of constructing

a selective silence - a selective forgetting - among a public who might condemn the genocide. In this case, it is not

that the information has simply ”become unknown.” Similarly to Whitling’s description of damnatio memoriae [229],

Colonial Unknowing becomes a form of motivated forgetting, in which a knowledgeable party tries to perform an act of

forgettance - of silence - upon the knowledge of others. Some people might argue that Colonial Unknowing is a form

of Prescriptive Forgetting (Table 1 row 7) - i.e., the alleged consensus that some things are best forgetten. However, this

claim would require that the prescriptive ”consensus” deliberately excludes the Indigenous Nations, who very much

want their view of history to be told. We will return to the topic of motivated forgetting in Section 4.

2.3.3 Ambivalent Silences. The last four rows of Table 1 are more multi-valent. Structural Amnesia (Table 1 row 11)

involves an attempt to control one’s impression to others - what Goffman called the ”frontstage” or public view of

self, which could be managed through ”backstage” work [76]. Certain aspects of the discussion (above) about Colonial

Unknowing may be relevant here (e.g., distortions in historical records), but so are the practices of asserting a new

identity following e.g. a gender-identity transition (e.g., [36, 206]). In the latter case, the to-be-forgotten information

(the oubli, in the language of Panagopoulou-Koutnatzi [168]) may remain known to others (e.g., as a deadname), but

it is clearly not the preferred self-presentation. Institutions (publishers, universities) may sometimes resist this kind

of individually-based Structural Amnesia, if those institutions fail or refuse to propagate new identities from one

record-keeping system to other such systems. They pit one individual form of Structural Amnesia against a second

institutional form of Structural Amnesia. Like other forms of motivated forgetting, it is important to consider Structural

Amnesia in personal, institutional, and political contexts.

Sometimes data silences can also be seen as mechanisms of safety. Unlike Structural Amnesia, Redacted Data (Table

1 line 12) is a deliberate effort to obscure one’s own data - usually for reasons of safety. A benign example is the right to

be forgotten under the European Union’s General Data Protection Regulation [32]. In other cases, this is not an easy or

clear-cut task and something that can mean losing parts of oneself to be safer. A particularly current and prescient

example of this is currently taking place in Afghanistan. At the time of writing this article, the Taliban have taken

over leadership of the country after the US’s and NATO’s removal of troops. This take-over resulted in a scramble to

try to bring out of the country many Afghan citizens and others who had worked for the West, because their prior

work would make them a target for the Taliban. Stokel-Walker spoke to a former translator, known as Muhibullar, who

burned the documents that showed that he had worked for the US [209]. As Stokel-Walker writes, he did this ”knowing

that such paperwork is vital to gain a visa and a potential route out of Afghanistan. But it remains a horrific quandary:

Taliban militia are already reportedly going door-to-door to find those who have worked with foreign governments and

non-governmental organisations.”

In another article [185] an unnamed Afghan woman writes about how she has hidden or burned all of her school

certificates - achievements she has been proud of and worked towards for her whole life. She writes ”Why should we
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hide the things that we should be proud of? In Afghanistan now we are not allowed to be known as the people we are.”

Later in the article, she writes: ”Having any ID card or awards from the American University is risky now.”

Both of these examples show how data, paperwork, and other pieces of information about us can cause us harm - and

how we can silence these data for our safety. However, this safety is complex - in Muhibullar’s case the documents he

and others like him have burned are also perhaps their only way of proving that they worked with the West, meaning

it may be their only way of leaving the country. In the case of the women who have had to hide their educational

certificates, they must do this as being affiliated with an American university can be dangerous for them. In doing this

though, they must hide important parts of their selves, identities, jobs, experiences - they are a little more safe than

before, but they are no longer whole.

To explain the concept of Selectively Legible Data (Table 1 row 14), we begin with a song:

When the sun comes back and the first quail calls,

Follow the Drinking Gourd.

For the old man is a-waiting for to carry you to freedom

Follow the Drinking Gourd

–Traditional Freedom Spiritual, US, ”Follow the Drinking Gourd”

A particular form of selective legibility takes advantage of specialized knowledge among marginalized or at-risk

people. The song ”Follow the Drinking Gourd” provides an historical example from the US. The spiritual is a song map,

i.e., a map that uses words - usually in an oral culture - to communication geographic knowledge [25, 187]. Using only

words, it told enslaved people in the US South how to reach a particular point along the Ohio River where someone

could ferry them across to a non-slave-holding region. Beyond that safer free state was an assisted path north to greater

safety in a non-slave-holding country. Martin Luther King Jr. wrote,

”Our spirituals... were often codes... One of our spirituals, ’Follow the Drinking Gourd,’ in its disguised lyrics

contained directions for escape. The gourd was the big dipper, and the north star to which its handle pointed

gave the celestial map that directed the flight to the Canadian border.” [115]

Later verses of the song provided more navigational details, such as two smaller rivers, a pass between two hills, and

dead trees to ”show you the way.” Brunson reminds us that the verse about the dead trees ”refers to the fact that in the

northern hemisphere, moss grows on the north side of the trees and can thus be used to point travelers in the right

direction in the absence of the North Star.” [25].

Because of the differential legibility of the song, enslaved people could sing it and teach it without punishment -

sometimes even within the hearing of the enslavers (for whom the content was not legible). Among people who were

not allowed to own property, the song was a fully portable map that could be carried and used anywhere, because

it persisted solely in human memory and human voices. The selective legibility of the song made it memorable for

enslaved people, and forgettable for the enslavers.

A contemporary example makes a similar point in an inverse way. The US conducts a decennial count of the

population (a census). Two aspects of the census are crucial for this paper: (a) The census is a count of people, not

limited to citizens; (b) There has historically been a clear, protective data-boundary (a localized silence) between census

data and law-enforcement agencies. That is, the census data-collection was explicitly defined with Selective Legibility,

to encourage a full count which would safely include people who needed to remain unknown to legal authorities.

The outcome of the census is used to compute governmental aid to localities, and to revise the number of elected

representatives, as well as who can vote for which reprsentatives. However, under a reactionary President, there was a
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threatened breach of that Selective Legibility (between census and law enforcement) in the 2020 census, which would

allow immigration police to discover and deport people who did not have citizenship or immigration papers. In this case,

the preceding guarantees of selective legibility (through de-identified Census data) were placed into doubt, apparently

with an intention to reduce Census counts from urban and Latinx areas [117].

We also find issues of Selective Legibility in contemporary HCI research. For example, Bellini et al. describe the

tensions between the safety of silence and the importances of connected conversations among people who are survivors

of domestic violence and those who support them [14]. Similarly, Strohmayer et al. describe how sex workers need to

share life-saving information about potentially dangerous clients at the community level, to keep one another safe.

However, they must do this in ways that are only selectively legible to ensure that this information remains illegible to

non-sex working communities and some legal authorities [210, 212]. These communications are often shared in various

media and formats, both digitally and non-digitally (such as on flyers or in online fora), in non-public venues with

varying degrees of privacy. Looking towards a different community, Yarosh and colleagues explored tensions between

privacy concerns and participation in both face-to-face and online twelve-step programs [93, 188], also indicating the

need for selectively legible data that can help support those within the program, while ensuring their privacy remains

intact outside of the program.

3 SOURCES OF BIAS

As we have shown in section 2, forgetting is complicated and may further the safety of individuals and communities,

but may also cause additional harm. But why is it that we forget, intentionally or not? Here, we want to distinguish

between two major approaches to bias in data science: extrinsic bias and intrinsic bias.

Extrinsic bias is concerned with a view of a biased dataset ”from the outside.” The argument is that an already-biased

dataset can cause even innocent software to produce a biased outcome - and may look like people saying things such

as ”the data made me do it.” This has already been well-documented as a domain of active study in the data science

literature, particularly when looking towards discourses on ”fairness” - such as [11, 13, 27, 49, 91, 140, 144, 163, 182, 198].

Recent important projects are developing ways to detect, analyze, and mitigate bias in datasets [13, 182], and there are

now so many definitions of fairness that entire papers are written to compare those conceptual and computational

models and whom to include in evaluating those models [11, 144, 181, 198]. If we fail to remember that a dataset is

biased, then we may treat it as ”fair” or ”representative,” harming people who have been excluded from it.

But what if our software is not so innocent? Through practices of data wrangling, curation, and feature-engineering,

humans make a series of decisions about how to treat their data, and those decisions may inadvertently introduce bias

into the data (see detailed examples in Aragon et al. [7]). Researchers have paid less attention to intrinsic bias - i.e., the

ways in which we change the data ”from the inside” of data science work-processes while we are preparing the data

for modeling. Some of the current research in this area was summarized in [156, 192]. We extend those arguments in

the next section of this paper, and we propose sociotechnical improvements in Section 5.2. We claim that forgetting

currently occurs in many of the activities related to data-preparation. This kind of bias is concerned with a view of

potentially biased data work practices - a view ”from the inside” of the ways that we add distortions to particular records

and fields through methods like cleaning, curating, wrangling, etc. We understand that these are necessary steps in

data work, and we emphasize that people with goodwill, will try to do these steps as responsibly as they can [157, 192].

The classes of problems that we want to highlight are paired:
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• Much of our work to make these necessary changes is not governed by concerns for bias, fairness, or even a

strong awareness of the consequences of our actions. We do the work that needs to be done, and we make

changes that appear to be obvious and common-sense (e.g., [189]). Sadly, unexamined common-sense decisions

can introduce bias beyond the intentions of the practitioner [33, 181].

• For each change that we make, there is little infrastructure (of practices or of technologies) to record those

changes, and even less infrastructure to record the rationale for those changes.

Having had a look at both extrinsic and intrinsic bias in our understanding of how we forget in the data sciences,

we claim that forgetting currently occurs in many of the activities related to data-preparation. But it is also our

understanding, that there is the relative lack of tooling to detect, analyze, and mitigate bias within the processing steps

of record-by-record or variable-by-variable data work [29]. We present a description of how this happens in practice, in

section 4, by building a forgettance stack as it occurs in machine learning projects.

4 INTRINSIC BIAS: BUILDING A FORGETTANCE STACK IN MACHINE LEARNING

“Why don’t we know what we don’t know any longer?”

–Proctor and Schiebinger [180]

In their provocative definition of agnotology (a science of forgetting - see also amnesiology [177]), Proctor and

Schiebinger ask a series of questions about how forgetting happens in organizations and societies, and what the positive

and negative consequences may be [180]. In this section, we attempt to answer their plaintive question (above) as it

applies to data sciences, and specifically to machine learning projects.
5
This is important, because ”[c]urrent practices

of data cleaning and data readiness assessment for machine learning tasks are mostly conducted in an arbitrary manner”

[5], and machine learning practices tend not to preserve disciplined histories of what was done to data, or how it was

done, or by whom [112, 114]. Later in this section, we will consider the broader issues that may motivate the forgettance

in data science.

Data science work in machine learning typically goes through a series of stages. It has sometimes been convenient

to think of machine learning as a sequential process [81, 125, 138, 156, 227]. However, more recently, researchers and

practitioners have described a more iterative process [94, 226, 230]. Nonetheless, as with many scientific endeavors

[132], data science workers tend to focus on the current step, and to move forward to the next sequential challenge after

they have solved that problem. Often, the current step is demanding, and data science workers may concentrate all of

their energy on informal problem-solving activities [114] rather than on documenting their work - i.e., on exploration

rather than explanation [189].

In this paper, we are concerned with what we forget at each step in this process - and so far, we have described what

some of the reasons for this forgettance may be. Now, we present a specific example of how this forgettance is put into

practice - intentionally or not - through data science work. We describe machine learning as a process in which data

science workers gradually create layers of knowledge [156, 171], with each layer built ”on top of” the previous layers, as

shown diagrammatically in Figure 1. The layers become a kind of ”stack” in which the data are processed from bottom

to top, and in which the knowledge extracted from the data becomes more and more sophisticated and productively

abstracted as the data move ”up” the stack [57, 123, 236]. Our concern in this paper is for the knowledge that we lose

while building this stack. We will show in this section that, while we are building more sophisticated knowledge, we

5
We have focused on supervised machine learning for convenience. Nearly all of our concerns about the human construction of data apply equally to

unsupervised machine learning, reinforcement learning, genrative AI, etc.
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Fig. 1. Forgettance stack of data work on the records and variables of data science. Each action tends to push previous actions
into the infrastructure, where the action itself and its consequence are easily forgotten. We indicate this reduction in legibility and
remembrance by partially overlapping the layers, such that lower layers are made less legible by upper layers.

are also forgetting earlier knowledge. Later, we will consider the nature of those forgetting processes, and their possible

motivations.

Multiple machine learning lifecycle models have been published (e.g., [72, 179, 226]). For this section, we built on an

earlier sequential description of specifically human actions during the machine learning lifecycle [156]. We believe that

the points we make in this section apply to other published models. Using this description, we will build one of many

possible forgettance stacks of data science, and we will describe the forgettance that occurs at each level of the stack.

4.1 Measurement Plan / Syntactic Silences; WYSIATI

There are many diverse accounts of the data science cycle or process. As Pine and Liboiron have shown [176], most

accounts begin with a ”measurement plan” that describes data sources, analytic intentions, expected outcomes, and

sometimes clients or customers. As Pine and Liboiron describe explicitly, there is often a politics to these measurement

plans [176].

Though often described as ‘raw,’ this data is produced by techniques of measurement that are imbued

with judgments and values that dictate what is counted and what is not, what is considered the best unit

of measurement, and how different things are grouped together and “made” into a measurable entity... It is

usually assumed that the human element has been scrubbed from the database and that significant political

and subjective interventions come from the analysis or use of data after the fact. Instead, we argue that

human-computer interactions start before the data reaches the computer because various measurement

interfaces are the invisible premise of data and databases, and these measurements are political.

Aspects of these problems may have their roots in a data science team’s understanding of what problem they are trying

to solve - which can be a complex and difficult process to solve [143, 170]. Working to reduce bias from an extrinsic

12



625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Forgetting Practices in the Data Sciences CHI 2022, 30 April - 6 June, 2022, New Orleans, LA, US

perspective (see above), Selbst et al. describe five types of errors (”traps”) that can lead to biased outcomes through

mismatches of human needs with existing or prior systems [198]. Martin et al. propose that data science teams should

include a larger and more diverse group of stakeholders, including the people and organizations that may be affected

by a data science system or deployment. They note that the language of data science analysis may present an obstacle

to community involvement, and they hope that a more participatory approach might solve that problem [144].

Crucially, a measurement plan defines not only timelines and project activities, but also the data themselves - i.e.,

what measurements are considered to be ”data” [48, 176, 196]? What are the quantitative or qualitative attributes of

the data? What data attributes qualify as ”valid”? These are human decisions [156] requiring human discernment

[64, 171] that are often the reflection of human social negotiations [95, 176], especially in inter-disciplinary projects

and in bespoke projects that have to meet both intrinsic definitions of rigor and extrinsic client-originated definitions

of relevance [157].

One of the problems with measurement plans is the changing understanding of the people who are doing the

planning. Mao et al. described the often-lengthy process through which teams initially try to determine how to find an

answer to a question, only to discover that they need to revise or redefine the question itself - or to find a different and

more powerful question [143]. Passi and Barocas [170] criticize simple applications of known or ”normative” problem

assessments (similar to the ”traps” of Selbst et al. [198]. They observe that ”the specification and operationalization of

the problem are always negotiated and elastic.” They emphasize that the data science team has to perform a translation

task from a problem in-the-world, into a problem in-the-business, and then into a data science formulation. Their

work, along with that of Mao et al. [143], adds an extended temporal dimension to the analysis of Pine and Liboiron

[176]. Each translation step requires additional interpretation into data sources and data formulations, imposing further

decisions upon the humans who carry out the work.

Measurement plans tend to record conclusions, not rationales [176]. Other people then work with those conclusions,

and have no way to access those unrecorded rationales. The intentional or unintentional omissions may lead to the

unintentional creation of Syntactic Silences (Table 1 row 2). If the data are incomplete (perhaps through Syntactic

Silences), then there is the further risk of assuming that the data are nonetheless sufficient - e.g., WYSIATI (”what you

see is all there is,” Table 1 row 5). Are these social-process criteria recorded? Do we forget the initial criteria, and their

intentions, as we revise the questions and rewrite the plan? And what happens to the measurement plan in the next

stages of data science?

4.2 Choosing the Data / Substitutions; Annulments

The measurement plan is intended to guide the selection of data for analysis. Within the data sciences, ”the data”

are usually considered as a concrete, unquestionable set of ”facts” that describe a similarly unquestioned ”real world”

[92, 220]. However, according to D’Ignazio and Klein [48] and boyd and Crawford [23], the selection of data is also a

human process, requiring human discernment. Bilis goes a step further, distinguishing between data that are ”discovered”

vs. data that are ”captured” ([16]; see also [89]). While the action of capture implies active human intervention, even the

action of discovery requires a human to perform or make that discovery. Further, data science teams often replace one

data source with another to respond to project needs - e.g., from surveys to videos to mobile phone records [156]. As

we switch from one data source to another - often for reasons of efficiency or economy - then we may also be moving

from relatively direct data and into indirect traces of the data (Substitution, Table 1 row 4) [38, 56]. While we may use

processes of Annulment (Table 1 row 6) to focus attention on a subset of data of particular problem of interest, there is

again the risk of WYSIATI if we forget how we focused our attention through Annulment.
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In this process of human recognition and selection of data, there is a subtle shift in the status of the data itself. The

perspective of the data sciences might initially treat data in the abstract as having an ”objective” existence that is

independent of human action. However, by the time we have discovered or captured the data, we have engaged in

multiple human and collective interpretive actions (see again [170] for a discussion of interpretation and translation in

data science). The origin of the data may remain in a realistic world, but the data as taken for use in data science now

also reflect the views, assumptions, and biases (conscious or unconscious) of the humans who engaged in the speech

act of saying ”These are the data in our project.” The contents of the measurement plan set up these speech acts by

defining data in certain ways, and implicitly refusing to define data in other ways. The supposed realism of the data is

constructed (reified) in the measurement plan.

However, the relevance of the measurement plan seems to fade as data science workers improvise their data sources

when faced with issues of effort, scale, and cost. As the measurement plan becomes less relevant, people are less likely

to record how and why they deviated from that original plan. The changes in practice, which could also be changes to

the measurement plan, are rarely recorded, and tend to be lost.

4.3 Cleaning the Data / Syntactic Silences; Substitutions; Sanitized Erasures

The effort of choosing data is small compared with the effort of cleaning (or ”wrangling”) the data [81, 108, 183]. While

descriptions of the cleaning of data are often phrased in terms of statistical transformations [183] or the replacement of

missing values (”imputation”), it is clear that these are often human decisions that require human skill and discernment

[52, 156]. In a recent paper about reforming the practices of data cleaning through the MLCLEAN toolset, Tae et al.

provide examples of common-sense reduction of duplicated records and replacement of an outlier data field with ”a

reasonable value” [213]. However, even in this reform effort, the authors adopt the conventions of computer science,

and do not tell us who decides whether two similar (but not identical) records are actually duplicates, and who decides

what a reasonable value may be. Substitution (Table 1 row 4) and Syntactic Silences (Table 1 row 2) appear to be quite

likely - and undetectable afterwards, because we have no way to remember what we did (i.e., Sanitized Erasures, Table

1 row 13).

We know from the standpoint literature ([87]; see also [86, 139]) and the literature on boundary objects [122, 135, 174]

that people with different backgrounds may live and work in different social worlds, where ”reasonable” is a local,

situational, and/or social construction. There are many similar accounts of disembodied reasonableness in the data

cleaning literature [81, 108, 183] that become another form of data science forgetting. When we forget who did the

cleaning, then we correspondingly forget whose definitions of reasonableness were involved. If we do not preserve the

lineage or provenance of these detailed changes to the data, then we cannot inspect, interrogate, and reverse those

changes upon need. We implicitly engage in a form of Prescriptive Erasure (Table 1 fow 8). When we forget who

acted, we also forget how and why they acted, and what they did, and we forget how to reverse those actions. Without

self-documentation of what we have done [189], we may forget our own data-cleaning actions.

In the event of quantitative imputation there are many choices of mathematical methods [18, 130], while in qualitative

imputation (e.g., for classifications or categories) there may be simple statistical approximations [104]. In the cases of

statistical methods, it is often possible to apply the imputation to an entire variable or factor in a single conditional

operation based on the most-frequent of the non-missing classes or cateogory-labels (e.g., ”if missing, compute...”). In

other cases, there may be important dependences on domain knowledge, during a manual process of replacing missing

values on a record-by-record basis [9, 213], especially when human familiarity with the data and its domain suggests

that ”something doesn’t look right” in the data ([46]; see also [72]).
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Knuth proposed literate programming with a goal of rethinking software as a means of communication among

humans, as well as between humans and machines [119]. Thirty years later, a contemporary environment for literate

programming, inspired by Knuth’s ideas, is the Jupyter notebook, in which ”code cells” of software are intermixed

with ”markdown cells” of formatted documentation. Jupyter notebooks are commonly used in data science, and they

seem to offer an opportunity to serve as memory aids [113] in which we write code for processing data (in a code cell)

and simultaneously document the rationale for that code for others or for our future selves (in a markdown cell). At

first glance, a Jupyter notebook appears to be a superb tool for remembering the purpose, rationale, and strategy of

data-processing code.

However, Rule et al. analyzed a million Jupyter notebooks from Github, observing the relative scarcity of self-

documentation [189]. It seems clear that many of these human decisions about imputation strategies and operations go

unrecorded, despite the ease of using Jupyter notebooks in what might be called a ”memorious way” - i.e., a way to

support the writing and sharing of knowledge.

We might think that an analyst could examine a colleague’s code to find out how that colleague wrangled the data.

That strategy could work well if people wrote a single, unified set of code while cleaning their data. However, Rule et

al. also reported that data science workers often pursue multiple, contradictory, parallel or sequential experiments in

finding the best data treatment. To coin a phrase, data science workers are ”coding out loud” (similar to ”thinking out

loud”) as they try different alternatives. Without documentation, it may be too difficult and too uncertain to determine

which transformation was made among many trial transformations, and which imputation scheme was applied among

diverse imputation strategies.

Kery et al. provide examples of this kind of forgetting within data science code [114]. They reported a series of

questions that programmers wished to answer when inspecting their own code and data, such as: “Find me how I

cleaned the data from start to finish”; “What questions did I ask that didn’t pan out?”; and “[P]revious test result for this

particular dataset”. In practice, the details of wrangling are often lost, and so is the ability to ask the kinds of questions

that participants suggested in Kery et al.’s study [114]. Because we can no longer answer questions of this type, we

tend to pass the dataset along to the next step, as if there were no uncertainties and nothing that we might need to

revise later. A strategy of Annulment to focus on the current problem (Table 1 row 6), tends to become an unintentional

strategy for Prescriptive Forgetting in which there seems to be a consensus that certain things are best forgotten (Table

1 row 7). Kery et al. recently created the Verdant system [113] which shows promise for making past coding decisions

more legible and understandable. A more data-centric version of Verdant could provide a memory aid to address some

of the issues we have raised here.

4.4 Curating the Data / Syntactic Silences; Prescriptive Forgettings; Repressive Erasures

Definitions of data curation vary. Some scholars even write about a complex process that includes aspects of wrangling

as part of ”purging of dirty data” [8]. In this section, we are concerned with a narrower interpretation of curation

as data-selection within a dataset [12, 45]. This can become a strategy of Syntactic Silence (Table 1 row 2) that tends

toward Prescriptive Forgetting (Table 1 row 7) and can lead, for certain deliberately-rejected classes of data, to a form of

Repressive Erasure (Table 1 row 8).

In the HCI tradition, curation can refer to how a data science worker prepares data for use by another entity - either

a human [145, 216] or an algorithm [8, 183]. A typical activity is the removal of outliers [8, 65, 107, 108], based on the

values in one or more fields of each data record. We note here that the person who is removing outliers may not be

the person who performed the operations described above in data cleaning. They may not know which values are
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”original” from the dataset, and which values were altered through data-cleaning, or imputed to replace missing values.

In a manner of speaking, the dataset has ”forgotten” about those prior operations, because there is no record of them

(see Syntactic Silences, Table 1 row 2). All data appear with the same degree of confidence or certainty. The experiential

knowledge of which fields have been modified, is often lost.

The stakes of these outlier decisions may be high, especially if each record corresponds to a person or a family

[199]. When faced with the risk of (e.g.) removing most or all BIPOC or disabled people on the basis of income-level

or home-ownership status, then it would be important to know how trustworthy each outlier data value is. We may

need to know which values were altered, but we may not be able to access records of how the data were modified

through human or algorithmic actions. All we have are the data in their current form. While there are multiple proposals

to record the source of individual or combined datasets [26, 110, 201], the corresponding concept of provenance of

individual data records has received less attention. Even the proposed records of data transformations by Glavic et al.

deal with an entire factor or variable at-a-time, without recording individual decisions at the level of the data record

[75]. And so, we do our best to remove outliers, but we forget both the outlier records themselves (i.e., they are no

longer in the dataset) and also the reason why we decided that those records were outliers.

As we showed in Section 4.3, we tend to forget (in mind and in data-records) the metadata that could help with

questions of who, what, why, and how. The same lesson applies to the curation of outliers in this section. We may also

forget any steps that we took (or did not take) to see if our outlier criteria might be erasing categories or classes of

records (e.g., of people).

4.5 Feature Engineering / Prescriptive Forgettings, Structural Amnesias

Many machine learning models make good use of existing values (factors) in the dataset. Often, however, there is

additional information being constructed through non-linear combinations of data fields [167, 219]. As we noted earlier

(Section 4.1), these are human decisions. Data science workers apply their general knowledge or (in some cases) their

domain knowledge to translate [170] those ideas into features that ”make sense” in the context of other data and their

background knowledge of the field [173]. In this way, they design the data that the model will subsequently consume

[63, 64, 197], ”handcrafting” aspects of their data [116, 156]. Common examples of engineered features are ratios (i.e.,

non-linear combinations of more basic predictors), such as weeks of employment divided by total lived weeks to

compute a common sense ”percent of weeks of full employment” during an adult’s employment history.

Even with simple ratios, there can be important decisions. The computation of work history could be constructed as

percent-of-weeks-worked divided by percent-of-weeks-lived. The denominator can make a big difference, especially for

younger people - e.g., was there a correction factor for the number of weeks-in-school? Each form of computation

carries human social knowledge or assumptions, such as an upper-class assumption that people in school do not also

work, or that people below a certain age do not also work while in school. Unless the feature-engineering is carefully

documented, we forget how we designed that part of our data, and we may unintentionally encode our own standpoint

(i.e., the assumptions of our social position, based in class, race, gender...) in this buried step.

We may think of the data in the original dataset as first-order predictors. In that framework, the engineered features

become second-order predictors. The quality of the second-order predictors depends on both the human’s knowledge

and also the quality of its components - i.e., the first-order predictors. If the person who is translating concepts into

features did not also clean and curate the data, then they may not know about uncertainties or reasons to be skeptical

of certain first-order data. The result is engineered features that appear to be reliable. Their earlier history of human

decisions is lost - another possible instance of Annulment (focus on the data of interest) and Prescriptive Forgetting
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(Table 1 rows 6-7). This forgetting is of course convenient for people who performed the earlier data-wrangling, because

their well-intentioned decisions are less subject to scrutiny or question (see Structural Amnesia, Table 1 row 11).

4.6 Labeling and Annotating (Ground Truth Practices) / Prescriptive Forgettings; Colonial Unknowings

Often in machine learning, there is a need to create data. For supervised machine learning, there is usually a need for a

predicted (or ”dependent”) variable that the machine-learning model is supposed to predict, especially if the prediction

is about classes or categories of data [73, 124, 178]. These predicted values are often called ground truth, and may be

produced through anonymous crowdsourcing [78, 142] or through the applied knowledge of domain experts [67, 194].

The contents of the ground truth data-field on a particular record has been called a label or an annotation, and the role

of the people who assign these values has been referred to as both labeler and annotator.

As Bowker and Gitelman have observed, ”’raw data’ is an oxymoron” [20, 74]. Ground truth is often constructed

(”cooked” to remove its rawness, as it were) by humans, and then predicted through training a model. It is worthwhile

to consider how this raw-to-cooked construction takes place. Traditional accounts of machine learning seem to treat the

crowdworkers and domain experts as types of sensors, as if humans could provide an objective and infallible reflection

of the nature of the world. However, studies of the construction of ground truth show that these values are made by

humans (e.g., [63, 64, 197, 214]), and reflect not objective reality, but rather human sensibilities and also the specific

contextualized demands of labeling as situated practices [49, 84, 147, 156, 157]. D’Ignazio and Klein write that ”data

are not neutral or objective,” but are ”products of unequal social relations” [49], and they argue that data begin to lose

their meaning when they are abstracted away from their context. Borgman [19] and Bowker [20] note the importance

of context in the human activity of making sense of data - including both formal data structures and informal social

relations (e.g., [37, 191]). In these terms, ”’Ground truth’ begins to look less like a formal or ’objective’ truth, and more

like a worthwhile social accomplishment” [157].

In many projects, data science workers collect more than one label for each record. This can be a kind of quality

control [67, 157] or even a way to estimate the reliability of citizen science labelers [98]. Miceli et al. showed that people

who create ground truth labels may disagree about the most appropriate label for a particular record, with diverse

protocols used to resolve those conflicting labels ([147]; see also [37, 98, 157]), such as choosing the label that was most

popular among the labelers. In contrast to records on which all labelers agreed on the label, the existence of these

disagreements could signal lower confidence in the contested labels - if we had a way to record that lower confidence,

and if we had a way to use that confidence metadata while computing the model.

Disagreements based on different standpoints or worldviews among the labelers, may be particularly important for

data that have social implications. However, in the data sciences, our practices are designed to forget those disagreements.

In common practice, each record in the dataset is supposed to have a single, unitary ground truth value. Thus, when

data science workers take the dataset to the next stage of the process, all ground truth labels are treated as being equally

and uniformly authoritative. The assumptions of uniformity reflect points that we made earlier in this subsection, about

positivist assumptions of humans as noisy ”sensors” of a single, unified reality. Because labeling is a relatively expensive

part of the data science cycle [67, 183, 194], there may be incentives to forget that contested labels might be less reliable

than unanimous labels, and might require further labeling with a larger number of labelers. Because the epistemology

of data assumes uniformity among labelers, the existence of different perspectives and situated perceptions are also

forgotten. Syntactic Silences again tend to become Prescriptive Forgetting (Table 1 rows 2 and 7). If there are ”minority”

or ”disfavored” perspectives among disagreeing labelers - perhaps reflecting different experiences of gender, race, or

class - or different interests of developers vs. clients - then we may also see genteel forms of Humiliated Silence and/or
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Colonial Unknowing (Table 1 rows 9 and 10). The inconvenient information is silenced. The metadata about potentially

lower-confidence labels is lost.

4.7 Training the Model and Deploying the Pipeline / Prescriptive Forgettings; Repressive Erasures;
Colonial Unknowings

All of these activities become forgotten antecedents when it is time to train a model [183]. As Sambasivan et al. have

observed, ”Everyone wants to do the model work, not the data work” [192]. The antecedent ”data work” [151] tends

to fade into the background, becoming layers of invisible human infrastructural work (e.g., [208]). Hutchinson et al.

observe that the ”Datasets that power machine learning are often used, shared, and reused with little visibility into

the processes of deliberation that led to their creation” [99], because of the devaluing of data work as contrasted with

model work that Sambasivan et al. described [192].

The dataset now becomes ”the data” and becomes infrastructural to the modeling work. There is, within data

science workers, a constituency to support this form of Prescriptive Forgetting (Table 1 row 7) - if only for matters of

convenience - e.g., working with a single dataset is much easier and also less questionable than working with multiple,

partially-contradictory versions of the dataset. People cannot easily perceive or make use of the forgotten knowledges

of choices, improvisations, and uncertainties. After the model has been perfected, it is typically wrapped inside of a

monolithic deployable pipeline [40, 200], which both contains and obscures the ways in which the data have been

captured or discovered, cleaned, wrangled, curated, and labeled.
6
Indeed, some important machine-learning products

are deliberately rendered entirely opaque, with the stated motivation of protecting intellectual property. However, the

products that contain these opaque pipelines influence or control important human decisions in areas such as criminal

justice [24, 140, 228], bank loans [91, 118], and who is stopped and searched by legal authorities [36].

Opaque pipelines are more difficult to challenge or interrogate. We cannot analyze how they operate on data [228].

We can only analyze the outcomes - e.g., through methods for detection, analysis, and mitigation of bias [13, 27, 163].

We forget the complex and tension-filled work that creates ”the data,” which ceases to be construed as a ”dataset” as it

becomes part of an opaque ”system” or ”algorithm.” These deliberately unknowable (or ”pre-forgotten”) algorithms

may provide examples of Repressive Erasure (Table 1 row 8), if there are possible problems with the predictive model.

Because the creators of the opaque algorithms presumably know about potential weaknesses, while the rest of us do

not, these situations may also be analyzed in terms of Colonial Unknowing (Table 1 row 10), in which one interested

party wants to make certain data unknown (i.e., selectively silent, hence forgotten) to other interested parties.

In this case, the verb forget takes on a peculiar, transformative function. In English-language grammar, we might say

that it takes a ”direct object” - i.e., the point of the action is to remove or erase a target kind of memory, to transform

it into an oubli (something that is forgotten) [168] or a damnatio memoriae (something that one person wants other

people to forget) [229]. As we forget the dataset by tranforming it (cognitively) into ”the data”, the data entity (and the

human decisions that have shaped it) fade into the infrastructure [99, 159, 214]. When this happens, the data acquire a

sense of inevitability and objectivity [23, 80], as if they reflected the nature of the world, rather than the constructions

of a particular group of humans [63, 64, 156, 157, 169, 171, 197]. Through that transformative forgetting, we remove the

knowledges of both the uncertainties that people experienced during data-preparation, and the potential weaknesses

or other reasons to re-examine the processes leading to the creation of the data.

6
We note that there are research projects that are experimenting with more transparent pipelines, such as: [31, 99, 134, 233].
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Table 2. Vocabularies of Remembrance and Forgettance

Perspective: Remembrance Forgettance Erasure

Actor: Rememberer Forgetter Obliviator/Unknower

Object: Memory Oubli Damnatio memoriae

Assistance: Aids to memory Engines of forgetting Forces of unknowing

Capability: Memory Forgettery Doublethink/Unknowing

Community: Remembering community Forgetting community Unknowing community

Stakeholders: Beneficiaries Beneficiaries Beneficiaries and Maleficiaries

We are left with a seemingly perfect thing that we call ”data.” That seeming perfection aligns with the meta-narrative

(e.g., [141]) of powerful, objective, and inevitable outcomes that seem to be based in data, rather than in the human

processes of the construction of a dataset, which becomes reified as the data [15, 36, 49, 149]. When we accept those

silences, we contribute to a kind of god-trick [84], in which (inevitably fallible) human actions are made to appear to be

authoritative, naturally-given, ”true,” and consequently difficult to interrogate or challenge.

4.8 Summary: The Forgettance Stack

In Section 4, we provided a linearized sequence of activities in the data science cycle [81, 125, 138, 156, 227], while

acknowledging that the lived work of data science is even more complex than our simplified version [94, 226, 230].

We hope that we have shown how much information is forgotten in the simplified sequence, in which the original

measurement plan may be overridden without being overwritten (so to speak). The decisions about the definitions of

data are quickly forgotten beneath a series of additional decisions, opportunities, improvisations, assumptions, and

enactments - each of which renders previous human actions less and less known. Humans add value to their data,

and they build their value-additions into their processing software. With the best of intentions, humans forget - or

never know - what other humans have done while making the human decisions that result in the data-processing steps

[46, 95, 111, 156, 192]. They may even forget what they themselves have done [114, 189, 234].

5 DISCUSSION

By bringing together the typology of forgetting and the notion of a forgettance stack, we have presented a variety of

ways of ’forgetting’ that take place in data sciences. Throughout the paper, we have presented various contemporary

and historic examples, often focusing on experiences of those who have historically been marginalised or excluded.

5.1 Implications for Conceptualizations

To summarize the detailed arguments of the paper, we propose a simpler vocabulary that can integrate the traditional

HCI concerns of actor and object/artifact, clarified by concepts from studies of remembrance, forgettance, and erasure

(see Table 2).

TheRemembrance column presents a conventional understanding of memory practices, based on Bowker’sMemory

Practices [20]. In this rendering, HCI and data science workers collectively strive to record, curate, and categorize matters

of shared concern for use by selves or by a future community of scholars and engineers, using well-known and powerful

aids to memory (e.g., databases) [2–4, 82, 125, 136, 154, 162]. The view of stakeholders is similarly straightforward - i.e.,

as benficiaries of the sociotechnical work of remembrance, workers and scholars gain knowledge and computational

power from from these records. This view reflects the assumption of innocent software that correctly and completely
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models the data for non-injurious use by others. Any bias in the outcome is assumed to be due to problems with the data,

and not with the human decisions that shape the software [13, 27, 49, 163, 198]. We combined concepts from human

centered data science [121, 155, 156, 232], human centered machine learning [30], ground-truth labeling/annotation

studies [67, 157] and feminist technoscience [14, 36, 47, 84, 86, 158, 211] to trouble this simple view.

The Forgettance column summarizes our perspective in this paper , which we propose as a necessary and com-

plementary view to that of Remembrance. Workers in HCI and datascience use well-recognized tools for forgetting

(principally curation practices for datasets) to help self and others to focus on the data of current concern. As discussed

in Section 2, Forgettance has been considered as both the opposite of Remembrance [66, 129, 149, 165, 229], and also as

a component of Remembrance (i.e., of successful memory practices) [20, 39, 58, 131, 148, 152, 224]. In these terms, the

stakeholders for Forgettance are as uncomplicated as those for Remembrance - i.e., workers in HCI and data science

are primarily beneficiaries of Forgettance in the service of Remembrance. Bowker [20] and Lamers [131] wrote of the

heuristic need to remember what matters by forgetting what doesn’t matter (e.g., [148, 152, 224]). We noted in Section

1, de Souza and colleagues described a reversible kind of forgetting in their study of API-related work-practices in

programming [41, 42, 42, 43, 193], and we showed in Section 4 that much of the work-practices of data science do

not provide such reversibility in our data science forgetting practices [48, 95, 145, 157, 176, 216]. Nonetheless, the

Forgettance column is also a predominantly ”innocent” view, which reflects some of the less worrisome silences

from Table 1, namely: Syntactic Silences (row 2), Inferential Silences (row 3), Substitution (row 4), WISIATI (row 5),

Annulment (row 6), and often Prescriptive Forgetting (row 7).

We therefore summarize a third perspective, the Erasure column, which could also be called the Unknowing
column. What distinguishes this column from the Forgettance column is primarily matters of intention. The social forces

that practice erasure or unknowing are generally intended to hide or erase data that others may wish to know. There

may be helpful reasons for erasure or for selective legibility (e.g., [14, 206, 209, 211, 212], but there may also be harmful

reasons for such actions [28, 34, 146, 146, 218]. This third perspective provides an re-entry-point to the more critical

perspectives of the paper. As we discussed in Sections 2.3 and 4, forgetting can become a form of obscuring, of hiding

what we wish to forget, or what we wish someone else will forget, or of what we want to prevent someone else from

ever knowing. When motivated, this kind of erasure can become a form of deliberately silencing or obliviating. Here is

where we might apply the more worrisome concepts from Table 1, including Repressive Erasure (row 8), Humiliated

Silence (row 9), Colonial Unknowing (row 10), Structural Amnesia (row 11). In the two previous propositions, we could

assume benevolent intent. However, for Erasure, the characterization of stakeholders becomes more complicated as we

consider who benefits (beneficiaries) and who may be harmed (maleficiaries) through these strategies and actions.

Scholars of value sensitive design [70, 90] and feminist technoscience [10, 36, 85–87, 158] have argued that we need to

look not only at the data - we must also consider the people involved, as well as their intentions and contexts. We propose

that these lessons apply as well to our readings and formalisms for remembrance, forgettance, and erasure. As we have

presented in Table 2, the notions of remembrance, forgettance, and erasure relate to the actor (person or persons doing

the remembering, etc.), as well as the object and any assistance they have with the practices (e.g., [145, 156, 170, 216]).

This then of course also relates to the capabilities (e.g., memory, forgettery, and doublethink/unknowing). Of course, all

of this relates to the communities in which these practices sit [21, 131], as well as the various stakeholders who are

involved in these processes. In keeping with these thoughts, we recognize that four of the complex silences from Table

1 are more difficult to describe as being either simply ”innocent” or ”harmful”:

20



1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Forgetting Practices in the Data Sciences CHI 2022, 30 April - 6 June, 2022, New Orleans, LA, US

• Structural Amnesia - which could be beneficial for someone in gender transition, or harmful if enacted as

propaganda;

• Redacted Data - which could be beneficial for people who redact their own data because do not want to be found

by authorities, or harmful if someone wants to remove knowledge of other people;

• Covert Silences - which could be beneficial to secure the effects of protective Redacted Data, or harmful if it

amounts to removing/erasing evidence;

• Selective Legibility - which could be live-saving, as in the example of ”The Drinking Gourd”, or harmful, as in

the example of covert political messaging sometimes known as ”dog-whistles.”

5.2 Implications for Sociotechnical Practices

Improvements to work-practices and to infrastructures could (a) clarify the intentions of remembrance and forgettance,

and (b) reduce the extent of subtle erasures.

Data wrangling, feature engineering, and labeling are actions taken through technologies that make a dataset

fit-for-purpose - i.e., well-formed for modeling [151, 192]. As we noted above, these actions inenvitably assert human

interpretations into the data [64, 145, 156, 170, 197, 216]. We propose that data science and HCI workers should engage

in memory-practices while using these technologies, recording the changes that they make to the data. Correspondingly,

we propose that the technologies should be enhanced with straightforward tools that support these remembrance

actions. In effect, we are recommending that sociotechnical software engineering concepts, such as separation of

concerns and encapsulation [50, 119], should be applied to the sociotechnical practices and infrastructures of data

science tools as well. One way to think about this is to add a change-history to conventional dataframes - preferably in

ways that support transparency but not surveillance. The change-history could include both simple data-transformations

and (where this can be done safely) an automated signature of the data science worker who made that change, as

suggested by Passi and Barocas [170]. In appropriate circumstances, a rationale could also be attached.

We note also that some aspects of bias occur subtly, over a range of data records. For example, during curation of

records [145, 216], a data science worker might inadvertently exclude members of marginalized or minoritized groups.

The exclusion would be difficult to detect while doing the work. Using today’s tools, the exclusion might go unnoticed,

or might have to await a post-wrangling or post-modeling bias analysis such as described by Bellamy et al. [13]. We

propose a second sociotechnical approach in which a diligent data science worker could pre-designate a set of sensitive

or protected attributes, such as race, class (e.g., ownership-status in housing), or gender-identity in a new form of

work-tracking tool in the wrangling software. The software would keep a running tally of inclusions, exclusions, and

potentially other outcomes, summarized across records, while the wrangling work proceeded. The data science worker

could then check their outcomes on a periodic basis; they also might set some threshold exclusionary values, and

request to be notified by the wrangling software if they exceeded the limits that they themself had set.

The effort to configure this kind of tool would be minimal - simply designate a small number of factors to be watched,

and then use the automated tallies of the values of those factors. If the social signature (from the preceding paragraph)

were included, then the data science worker could revisit the records that they had modified, to understand the patterns

of their work, and to make changes where needed. Such a tool would enable people to prevent harm by becoming aware

of the intended and unintended consequences of their wrangling work while there was still time to make changes.

Principles of social translucence [62] could be applied, so that individual workers could revisit their own changes, but

other workers and managers would only be able to perceive that the data had been anonymously changed.
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6 CONCLUSION

To conclude this paper, we have complicated and unpicked our understanding of ”forgetting” in data science practices,

with the intention of advocating for increased understanding of and attention paid to forgetting and forgettance in HCI,

CSCW, and data science communities. To begin the paper, we summarized prior work on the benefits and harms of

forgetting. With this, we presented our first contribution: a classification of data practices related to forgetting, omitting,

obliviating, and silencing by presenting a typology of forgettance (as outlined in table 1). In this typology, we analyse

three classes of silences that can cause or invoke forgetting: modest silences, silence as force, and ambivalent silences.

Following this typology, we look towards our second contribution: a detailed description of where these kinds of

forgetting take place in the data science process, by building a forgettance stack. In doing this, we provide a detailed

analysis of forgetting the data work in data science, with an emphasis on silences that lead to different dynamics of

forgetting throughout the data work cycle.

Data silences and forgettance within data work are complex and multi-valenced processes. We hope to have inspired

data scientsits to consider how their data work relates to forgettance, and hope to see other scholars expand our typology,

forgettance stack, and thinking by writing about their own categories of silences, and their own interpretations.
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