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Abstract 

Nowadays, decentralized microgrids (DC-MGs) have become a popular topic due to the 

effectiveness and the less complexity. In fact, DC-MGs resist to share their internal information 

with the distribution system operator (DSO) to protect their privacy and compete in the 

electricity market. Further, lack of information sharing among MGs in normal operation 

conditions leads to form a competitive market. However, in emergency operation conditions, 

it results numerous challenges in managing network outages. Therefore, this paper presents a 

hierarchical model consisting of three stages to enhance the resilience of DC-MGs. In all 

stages, the network outage management is performed considering the reported data of MGs. In 

the first stage, proactive actions are performed with the aim of increasing the network readiness 

against the upcoming windstorm. In the second stage, generation scheduling, allocation of 

mobile units and distribution feeder reconfiguration (DFR) are operated by DSO to minimize 

operating costs. In the final stage, the repair crew is allocated to minimize the energy not served 

(ENS). Uncertainties of load demand, wind speed and solar radiation are considered, and the 

effectiveness of the proposed model is investigated by integrating to the 118-bus distribution 
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network. Finally, the results of the simulation indicate that DFR and proactive actions decrease 

the ENS by 19,124 kWh and 4,101 kWh, respectively. Further, the sharing of information 

among MGs leads to a 48.16% growth in the supply service level to critical loads, and 

consequently a 3.47% increase in the resilience index. 

Highlights 

 Presenting a hierarchical framework for distribution system resilience enhancement  

 Increasing network readiness through performing proactive actions  

 Sending mobile units to sensitive nodes to reduce ENS and accelerate system recovery 

 Reducing ENS in critical consumers through data sharing among DC-MGs 

 Reducing computational burden by dividing the problem to the three-stage  

Keywords: Decentralized Microgrids; Renewable Energy Sources; Resilience Enhancement; 

Distribution Feeder Reconfiguration; Mobile Emergency Units.  

Word Count: 11369 
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1. Introduction 

1.1. Background and Motivation 

In recent years, improving the resilience of electric power systems against extreme weather 

events has become one of the main concerns of researchers as these events occur more frequent. 

However, as most of the distribution systems are designed to operate under normal condition, 

these events could result serious damages to the distribution systems. [1]. Therefore, numerous 

short-term and long-term measures have been investigated in recent years to deal with these 

events. Long-term measures include hardening of the distribution system, placement of 

sectionalizing switches and backup generators, while short-term measures include proactive 

actions, distribution feeder reconfiguration, allocation of mobile emergency units (generators 

and storage systems), and execution of demand response (DR) programs [2]. This study focuses 

on short-term measures to deal with high impact low probability events. 

Proactive actions include pre-positioning of mobile units and crew teams, and implementing 

DFR to deal with upcoming events [3]. Further, multiple studies have shown that the 

deployment of mobile units and crew teams at network stations in the pre-disturbance phase 

could reduce the load shedding and increase the network recovery in the post-disturbance 

phase. DFR is also one of the most effective approaches to enhance the resilience of distribution 

systems Consequently, DFR reroutes power flow by changing the status of manual and 

automatic switches, thus leading to enhanced system resilience.  Therefore, in this model, 
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proactive actions including pre-positioning of mobile units and DFR are performed to enhance 

the system resilience during emergency conditions. 

Nowadays, one of the trending topics in the field of distribution systems is the resilience 

enhancement of the active distribution network in multiple MGs. These MGs consist of 

distributed energy resources (DERs) and energy storage systems (ESSs) that supply the load 

of their customers through their DERs and purchases from upstream grid. Further, MGs can 

operate in both on-grid and off-grid modes [4]. 

In modern distribution systems with several MGs, the system operator faces many challenges 

to improve network resilience than traditional distribution systems, because these MGs resist 

to share their internal information. This has motivated the authors of this paper to provide a 

hierarchical framework to enhance the resilience of a 118-bus distribution system consisting of 

8 MGs, which investigates the effect of MG data sharing on system resilience. 

1.2. Literature Review 

In recent years, several studies have been conducted with the aim of enhancing the resilience 

of MGs to deal with extreme weather conditions. For instance, in Ref. [5], a multi-stage 

stochastic model is presented to improve the resilience of interconnected MGs, in which AC 

power flow constraints are considered. In this study, electric vehicles participate in load supply 

during emergency conditions, and the results demonstrate that the proposed model significantly 

reduces the solution time by dividing the operation problem into a multi-stage problem. In Ref. 

[6], optimal size of MESSs have been determined to enhance the resilience of DC-MGs. 

Further, the optimization problem is modeled as a three-level problem and solved by adaptive 

genetic algorithm (GA). Moreover, uncertainties due to load demand and DERs output power 

were considered in the model and the results indicate that the proposed model leads to improved 

system resilience by determining the exact size of MESSs. Authors in Ref. [7] use the potential 

of electric vehicles (EVs) to improve the resilience of MGs under emergencies. In this study, 
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each MG first reports information about the amount of energy stored in its EVs to the central 

control system, and then the central control system sends the EVs to islanded MGs. Further the 

simulation results indicate that the proposed method leads to enhanced system resilience. 

Many studies in recent years have shown that connecting MEGs and MESSs to vital nodes 

during emergency conditions could reduce load shedding in the system. Besides, several 

studies have shown that performing proactive actions in the pre-disturbance phase has a great 

impact on the recovery speed of the network. In this regard, in Ref. [8], the effect of proactive 

actions on system resilience and recovery speed has been investigated and the results indicate 

that timely pre-positioning of crew teams and MEGs leads to increased recovery speed. In 

addition, Ref. [9] indicates that performing proactive actions has improved the resilience of a 

47-bus distribution system, and the results demonstrate that the predictability of upcoming 

events has a high impact on reducing the amount of load shedding in the system. Furthermore, 

Ref. [10] presents a stochastic MILP model to improve the resilience of a distribution network, 

in which the DSO changes the network topology during emergency conditions through manual 

and automatic switches. Moreover, the results of this study demonstrated that pre-positioning 

of service teams and MEGs in the pre-disturbance phase could lead to a reduction in load 

shedding. In Ref. [11], the problem of resilience enhancement of a 33-bus distribution system 

in the presence of residential, industrial and agricultural loads is investigated. In particular, 

back up diesel generators, MESSs and DR programs have been used to enhance the system 

resilience and the results demonstrate that this model has led to a 16.5% reduction in operating 

costs during emergency condition. Further, Ref. [12] presents a model based on deep 

reinforcement learning for the planning of distribution system hardening over a 100-year 

horizon. The optimization problem is modeled as a Markov decision process and it is solved 

by integrating novel ranking strategy, neural networks, and reinforcement learning. Finally, the 

simulation results show that the proposed model has increased the system resilience by 30%. 
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Moreover, Ref. [13] proves that the installation of ESS on sensitive nodes of the network along 

with hardening of lines significantly improves system resilience. In Ref. [14], the discharge of 

not-in-service electric buses has been utilized to improve the resilience of a distribution system 

during emergencies. In fact, the objective function of this model is to minimize the load 

shedding and the results show that electric buses as temporary mobile power sources have a 

high potential to increase the speed of system recovery. 

In addition, numerous studies have proven that DFR is one of the most effective approaches to 

enhance the system resilience during emergency conditions Further, DFR is performed through 

changing the status of manual and automatic switches [15]. The optimal placement of 

sectionalizing switches is performed in Ref. [16] to enhance the resilience of a 33-bus 

distribution system. In particular, the uncertainties of fault occurrence, generation of renewable 

energy resources (RERs) and load demand are considered to accomplish the operation 

conditions in the model. In the proposed strategy, DSO changes the network topology and 

forms several self-sufficient MGs to prevent the spread of faults in the network. Finally, the 

results confirm that reconfigurable topology and the formation of MGs optimize the resilience 

under emergency conditions. In Ref. [16], a two-layer method based on the model predictive 

control is presented, in which the structure of each MG is determined in the first layer and the 

second layer performs DERs scheduling. Thereafter, the two-layer model is transformed into a 

one-layer optimization problem by strong duality theory and implemented on the 37-bus 

distribution system. The results define that the proposed method has improved the resilience 

of the distribution system during the outage of DERs. Moreover, Ref. [17] presents a MILP 

model for network outage management which apply DFR to enhance the resilience. The rank-

based constraint is considered to guarantee the radiality of the network structure during DFR, 

e and the model is implemented on the 69-bus and the 123-bus distribution networks. Finally, 

the results indicate that the proposed strategy reduces load shedding in emergency situations. 
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1.3. Research Gap and Contribution  

The comprehensive review of the above literatures has illustrated that most studies have 

examined the problem of resilience enhancement in a centralized MGs and only a limited 

number of research have examined the resilience enhancement of DC-MGs. Further, Table 1 

provides a detailed comparison between this study and recent papers. It expresses that the 

proposed model in this work is considered the impact of proactive actions, mobile units’ 

deployment, reconfigurable topology, and data sharing on the resilience enhancement of DC-

MGs, while other papers have considered only some of these items in their model. Overall, this 

paper presented a hierarchical model consisting of three stages for enhancing the resilience of 

decentralized networks, where the outage management of the main network is functioned by 

considering the MGs data. In the first stage, proactive actions are performed to increase the 

network readiness to deal with the upcoming windstorm. In the second stage, generation 

scheduling, allocation of mobile units and DFR are fulfilled by DSO and according to the MGs 

data. Ultimately, in the third stage, the damaged lines are repaired. In general, the main 

contributions of this paper could be highlighted as follow: 

 Presenting a hierarchical framework for distribution system resilience enhancement in 

the presence of DC-MGs 

 Increasing network readiness through performing proactive actions  

 Sending MEGs and MESSs to sensitive nodes of the network to reduce ENS and speed 

up system recovery 

 Reducing ENS of critical consumers through data sharing among DC-MGs 

 Reducing computational burden by dividing the optimization problem into a three-stage 

model 

 Employing a scenario-based method for modeling load demand, wind speed and solar 

radiation uncertainties
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Table 1. Comparison between the proposed model and previous papers. 

Refs. MGs 
Proactive 
Actions 

Mobile Units Crews 
DFR ESS DR RER Uncertainty 

Fault 
Scenarios 

Load 
Priority 

Data 
Sharing MEG MESS Switching Repair 

[18]               
[19]               
[20]               
[11]               
[21]               
[22]               
[23]               
[24]               
[25]               
[26]               
[27]               
[28]               
[6]               

[29]               
[30]               
[31]               
[32]               
[33]               
[34]               

This Paper               
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2. Model Development 

2.1. System Description 

Figure 1 depicts the modified 118-bus IEEE distribution system studied in this paper, and the 

information on network is in accordance with Ref. [35].Furthermore, this network consists of 

8 MGs that are operated in a decentralized manner and each MG supplies its consumers through 

DERs and network purchases. Consequently, an ESS is installed next to each RES. The 

network is equipped with five MEGs and four MESSs, which are connected to vital buses to 

participate in load supply in case of an emergency. Moreover, in the proposed model, DSO is 

able to change the network topology through manual (on-site control) and automatic (remote 

control) switches. In this regard, five crew teams are considered that are dispatched to the 

location of the manual switches to change the status. Moreover, as it can be seen in the Fig. 1, 

the network is divided into three regions and the wind speed is varying in each of them. In the 

proposed model, wind speed is considered constant along the entire region. Note that the solar 

radiation is assumed to be different in each region, so that the maximum values of radiation in 

regions 1 to 3 are 500 W/m2, 450 W/m2 and 400 W/m2 respectively [36]. 
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Fig. 1. Modified IEEE 118-bus distribution system structure. 

 

2.2. Mathematical Modeling 

In this section, the proposed hierarchical framework is formulated as a MILP optimization 

problem. In fact, the first stage represents the pre-disturbance phase while the second and third 
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stages represent the post-disturbance phase. Further, Figure 2 shows that at each stage of the 

proposed model, the scheduling problems of MGs and the main grid are modeled in the form 

of a bi-level optimization problem. It can also be seen, that the scheduling problem of MGs is 

solved in a decentralized manner, and in all three stages, the scenario-based method has been 

utilized to model the uncertainties of load demand, wind speed and solar radiation. 

 

Fig. 2. The structure of the proposed model. 

 Stage 1 

In the first stage of the proposed study, proactive actions are performed for maximizing load 

supply to deal with upcoming windstorm threats. At this stage, the operation problem is solved 

for fault scenarios. In particular, the fault scenarios are generated through the fragility function 

and the predicted speed for the upcoming windstorm. 

Equations (1) and (2) respectively represent the objective functions of MGs and DSO in the 

first stage. According to Eq. (1), at the upper-level, each MG schedules to maximize the load 

supply and reports its power shortage/surplus to the DSO. Then at the lower-level (according 

to Eq. 2), the DSO plans the entire network according to the data reported by the MGs to 

optimize the load supply. Moreover, at this stage DSO changes the network topology through 
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manual and automatic switches based on fault scenarios and also sends mobile units from the 

depot to the stations. 
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 Stage 2 

The second stage of this work is solved as a bi-level optimization problem in the post-

disturbance phase. In fact, at this stage, the problem is solved for the most probable scenario 

of fault and by considering the uncertainties of load demand, wind speed and solar radiation. 

In the upper-level, the MGs plan their next hours with to minimize the operating costs and 

report their power exchange data to the DSO. Then, at the lower-level, the DSO plans the entire 

network with regard to data by MGs for reducing the operating cost. Moreover, the DSO at this 

level performs network scheduling by allocating mobile units and implementing DFR.  

Equation (3) states that the objective function of each MG is to minimize the cost of purchasing 

power from the grid, the operating cost of DERs, the operating cost of ESS, and the ENS 

penalty. In addition, Eq. (4) defines that the DSO objective function is to minimize the cost of 

purchasing power from the upstream network, the operating cost of network equipment, the 

operating cost of mobile units, the penalty for ENS and the penalty for not observing schedules 

of MGs. 

, , , , , , ,
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min
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(4) 

 Stage 3 

At this stage, DSO sends repair crews to the damaged lines locations. Particularly, the repair 

crews are equipped between 14:00 and 15:30 and then at 15:30 DSO sends them to the location 

of damaged lines. Moreover, Eq. (5) shows that the DSO objective function at this level is to 

minimize the penalty for ENS and the penalty for not observing schedules of MGs. 
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 (5) 

 

 Power Flow Constraints  

All stages of the proposed model are solved by considering linear AC power flow constraints 

to prevent overflows in branches of the network. These constraints can be found in Eqs. (a1)-

(a9) [37].The susceptance and conductance of each line are calculated through Eqs. (a1) and 

(a2), respectively. Further, active and reactive power flow in each line are calculated via Eqs. 

(a3) and (a4), respectively, which are a function of the susceptance, conductance, voltage 

magnitude and its angle [37]. The apparent power of each line is also calculated via Eq. (a5), 

which depends on the active and reactive power flow in that line, while Eq. (a6) limits the 

apparent power of each line. The binary variable , , ,i j t sy  determines the active/inactive state of 
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each line at scenario s and time t, which is multiplied by a large positive number (M) to prevent 

the constraint (a6) from being applied to inactive lines. Eqs. (a7) and (a8) are used to calculate 

the magnitude and angle of the voltage at bus i and time t, respectively. Lastly, the losses of 

each line are calculated via Eq. (a9) [38].  

.
, 2 2

, ,

i jLine
i j

i j i j

x
B

r x



 (a1) 

.
, 2 2

, ,

i jLine
i j

i j i j

r
G

r x



 (a2) 
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, ,
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, ,
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, , , . , , , , , ,
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i j t s i j i j t s i j t sP r P Q    
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 Switching Constraints  

Constraints (b1)-(b4) allow the DSO to perform DFR [39]. In this regard, changing the status 

of lines equipped with switches is specified through inequalities (b1) and (b2). In fact, these 

constraints state that if the status of the switch changes at time t, the value of its binary variable 

( , , ,i j t s ) becomes 1.  The number of switching is restricted via Eq. (b3). Finally, the constraint 

(b4) indicates that the network topology could be changed only through the lines equipped with 

the switch. 

, , , , , , , , 1, , , ,i j t s i j t s i j t s i j t sy y      (b1) 

, , , , , , , , 1, , , ,2i j t s i j t s i j t s i j t sy y      (b2) 

, , ,
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0
T

Max
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t

 


   (b3) 

, , , ,
1

T

i j t s i j
t

x M


  (b4) 
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 Radiality Constraints  

Constraints (c1)-(c3) guarantee the radial structure of the network topology during DFR [40]. 

In particular, the constraint (c1) identifies parent buses, and it states that if the value of , , ,i j t sk

is 1, the power flow direction is from bus i to bus j, and vice versa. Furthermore, each bus could 

be connected to a parent bus at most, which is modeled by constraint (c2). Finally, constraint 

(c3) is imposed to prevent the slack bus from connecting to the parent buses. 

, , , , , , , , ,0 i j t s j i t s i j t sk k y    (c1) 

, , ,
1

1
J

j i t s
j

k


  (c2) 

, 1, ,
1

0
J

j i t s
j

k 


  (c3) 

 Load Control Constraints  

Load control constraints are given in (d1)-(d7). In fact, constraints (d1) and (d2) state that the 

amount of ENS of normal and critical consumers at bus i and time t must be equal to or less 

than the load demand of these consumers at same bus and time. Equation (d3) expresses that 

the load of each bus could contain both normal and critical loads, while Eq. (d4) states that the 

ENS of each bus could contain the ENS of normal and critical consumers. The constraint (d5) 

balances the interruption of active and reactive loads. Bus
i  is the ratio of active to reactive load 

at each node. Moreover, the ENS penalty is calculated by Eq. (d6), which is a function of the 

type of load and its penalty. Finally, the resilience index of the system is calculated using Eq. 

(d7). This index is the ratio of the amount of load supplied between t1 to t2 to the total amount 

of demand within this period. In addition, RI index will be equal to 1 when MG can fully supply 

its load. RL  and CL  are weighted coefficients that determine the value of normal and critical 

loads, respectively.  

, ,
, , ,0 ENS RL Demand RL

i t s i tP P   (d1) 
, ,

, , ,0 ENS CL Demand CL
i t s i tP P   (d2) 

, ,
, , , , , ,
Demand Demand RL Demand CL

i t s i t s i t sP P P   (d3) 
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, , , ,
ENS Bus ENS

i t s i i t sP Q  (d5) 

 , , , ,
, , , , , ,
ENS ENS RL ENS RL ENS CL ENS CL
i t s i i t s i i t sC P P t     (d6) 

   
2

1

2

1

, , , ,
, , , , , , , ,

, ,

t
CL Demand CL ENS CL RL Demand RL ENS RL

i t s i t s i t s i t s
t t

t
Demand

i t s
t t

P P P P

RI

P

 



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 DERs Operating Constraints 

Equation (e1) indicates that the power generated by PV panel is a function of solar radiation at 

scenario s and time t, standard radiation, panel capacity and efficiency [41]. Further, Eq. (e2) 

indicates that the power generated by wind turbine is calculated through a three-part function. 

The first part states that, if the wind speed in scenario s and time t is outside the acceptable 

range of the turbine, the output power will be zero. The second part of the function states that, 

if the wind speed at time t is within the range , ,i w t s rv v v  , the power generated by the 

turbine is calculated through given function. The third part of this function expresses that. if 

the wind speed at time t is within the range , ,r w t s ov v v  , the power generated by the turbine 

is equal to its rated power. iv , , , w t sv , rv and ov are cut-in speed, wind speed at time t, rated 

speed and cut-out speed, respectively. Active and reactive power generated by gas turbine are 

limited by constraints (e3) and (e4), respectively, while the operation cost of the gas turbine is 

calculated via Eq. (e5). 
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


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
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, , , ,
Gen Gen Gen
g t s g g t sC P t   (e5) 

 

 ESS Constraints 

ESS constraints (f1)-(f7) are incorporated into model. Particularly, constraint (f1) limits the 

level of energy stored in the ESS, whereas the hourly charge and discharge values of the ESS 

are limited by constraints (f2) and (f3), respectively. Further, constraint (f4) prevents 

simultaneous charging and discharging of the ESS. The energy level of the ESS at the current 

hour is calculated by Eq. (f5) [42], while constraint(f6) states that the energy level of the initial 

hour must be equal to a predetermined value. In addition, constraint (f7) indicates that the 

energy level of the ESS in the final hour must be equal to or greater than its energy level in the 

initial hour. Lastly, the operating cost of ESS is calculated via Eq. (f8). 

min max
, ,e e t s eE E E   (f1) 

,
, , , , , ,
Ch Ch Max Ch

e t s e t s e t sP P I  (f2) 
,

, , , , , ,
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, , , ,0 1Ch Dch
e t s e t sI I    (f4) 
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e t s y e t s e t s e Dch
e

P
E E P t
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 
     

 
 (f5) 

. , 0,
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e t s eE E   (f6) 

, 0, , 24,e t s e t sE E   (f7) 

 , ,, ,, ,
ESS ESS

t
Ch Dch

e t s e se t sC P tP    (f8) 

 

 Crew Team Deployment in Pre-Disturbance Phase 

Equation (g1)–(g11) present the constraints required for modeling routing of crew teams in the 

pre-disturbance phase. The time required to travel and change the status of each manual switch 

is calculated using Eq. (g1). In fact, ,
CT

n ctT and ,
Travel

n mT  denote the time of presence at point n and 

the travel time between points n and m, respectively; SW
mT represents the time required to 

change the status of the switch; the binary variable , ,
CT
n m ctD  determines the travel path of crew 

teams. For example, if the crew team is dispatched from origin n to destination m, , ,
CT
n m ctD  
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becomes 1. It is worth noting that the delay due to traffic ( ,
Traffic
n m ) is also considered in the 

model. The constraint (g2) expresses that changing the status of manual switches is only 

possible if crew teams are dispatched to those locations, while constraint(g3) ensures that crew 

teams leave the depot in the pre-disturbance phase. Further, constraint (g4) deploys crew teams 

at stations, whereas constraint (g5) prevents crew teams from returning to the depot. Besides, 

to ensure the presence of crew teams in the station at the end of the pre-disturbance phase, 

constraint (g6) is provided. Constraint (g7) expresses that crew team must leave the site after 

switching, while constraint(g8) states that only one team can be dispatched to the switch 

location. Moreover, Eq. (g9) calculates the switching time. According to Eq. (g10), if the crew 

team does not travel to point n, the value of its binary variable ( ,
CT

n ctT ) becomes 0. Ultimately, 

Eq. (g11) expresses that the crew could only leave point n if they have been sent to that point. 

A simplified model is used to model the transportation system between origin and destination 

points of crew teams and mobile units, [39]. Figure 3 presents the three steps of modelling 

phrases. In the first step, the length of the lines is calculated based on their resistance. In the 

second step, the coordinates of origin and destination points are determined and the distance 

between the origin and destination points are calculated as a straight line, in the third step. 
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Fig. 3. Simplified transportation system. 

 Crew Team Constraints in Post-Disturbance Phase 

The routing constraints of the crew teams in the post-disturbance phase (stages two and three) 

are the same as the constraints introduced for the pre-disturbance phase (stage one) and only 

the travel direction is different. Further, in the post-disturbance phase, crew teams are 

dispatched from the stations to the location of manual switches and return to the depot after 

changing the status of the switches. In this regard, constraints (g3)-(g5) with (h1)-(h3) and 

constraints (g10)-(g11) with (h4)-(h5) are replaced. 
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 Repair Crew 

Equations (l1)-(l9) are provided to model repair crew routing at stage three [43]. In fact, these 

constraints are similar to the routing constraints of crew teams and only the indices and 

variables are different. Moreover, the repair crews are equipped between 14:00 and 15:30 and 

then dispatched to the location of damaged lines with the aim of ENS penalty minimization.  

Eventually, after repairing all the damaged lines, the repair crews return to the depot. 
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 Mobile Units Allocation Constraints 



23 
 

The equations for pre-positioning of mobile units in the pre-disturbance phase are presented in 

(j1)-(j4) [9]. In the pre-disturbance phase, mobile units are sent from the depot to the stations. 

Equation (j1) presents the limitation of sending mobile units to each station, while constraint 

(j2) is provided to prevent the deployment of each mobile unit in more than one station. In 

addition, time of mobile units is calculated using Eq. (j3), while constraint (j4) guarantees the 

deployment of mobile units at stations before the event. 
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 Mobile Units Operating Constraints 

Constraints required for the allocation and operation of mobile units in the post-disturbance 

phase are given in Eqs. (k1)-(k11) [44]. In this phase, mobile units are sent from stations to the 

buses. In fact, Eq. (k1) states that the dispatch of mobile units from station n to bus i is subject 

to their presence at the station. Further, constraint (k2) indicates that only one mobile unit could 

be sent to each bus, while constraint(k3) states that the injection of power by mobile units in 

each bus is subject to the presence of these units in the related buses. Constraint (k4) states that 

the mobile unit can only inject power into the grid after dispatch and connection to the bus, 

whereas Eq. (k5) calculates the time required to travel from station n to bus i and connect to it. 

In addition, the limitations on the amount of active and reactive power generated by MEG are 

presented in constraints (k6)-(k7), respectively. Constraint (k8) restricts the hourly discharge 

of MESS, while constraint(k9) states that the total energy discharged from the MESS must be 

less than or equal to the energy stored in it. Finally, the operating costs of MEGs and MESSs 

are calculated via Eqs. (k10) and (k11), respectively. 
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 Power Balance Constraints in Pre-Disturbance Phase 

Active and reactive power balance constraints in the pre-disturbance phase are presented in 

Eqs. (l1) and (l2), respectively. These constraints guarantee the balance of power generation 

and consumption per bus. 
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 Power Balance Constraints in Post-Disturbance Phase 
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In Eqs. (m1) and (m2), the active and reactive power balance constraints in the post-disturbance 

phase are presented. Further, the mobile units participate in supplying the load, the active and 

reactive power balance constraints are rewritten considering the power injected by these units. 
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 Scenario Generation and Reduction 

As mentioned above, the first stage of the proposed model is solved by considering fault 

scenarios arising from upcoming events. In this regard, 1000 fault scenarios are generated by 

the fragility function and according to the speed and path predicted for the storm. Thereafter, 

the number of initial scenarios is reduced to 10 by the backward scenario reduction algorithm 

to reduce the computational burden, In Eq. (n1), the failure probability of each line is calculated 

according to the wind speed in that area [45]. Where, 0
( , )l i j  is the failure probability of a 

standard line;  ,   and   are the mean, standard division and log-normal distribution 

function, respectively; The values of  ,   are equal to 0 and 0.25, respectively.  criv  And colv  

denote critical and collapse velocities, accordingly.  

In Eq. (n2), the status of each line (damaged/normal) is determined respect to the failure 

probability obtained. further, this function states that if the failure probability of line l is greater 

than a random value (r), that line is broken, and vice versa. In addition, this random value is 

generated for scenario s and time t by the uniform distribution function. Finally, the function 

given in Eq. (n3) states that the status of line l at the current hour depends on its status at the 

previous hour. 
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3. Methodology 

 The solution method of the proposed hierarchical framework is illustrated in figure 4. 

Specifically, the developed MILP model is solved by the CPLEX solver in GAMS. According 

to the flowchart in the first step, scenario generation and reduction process is performed. Table 

2 presents the pseudocode of this process. It is worth to mention that 1000 fault scenarios are 

generated by the fragility function. Further, 1000 scenarios for load demand, wind speed and 

solar radiation are generated through normal, Weibull and beta distribution functions, 

respectively. Moreover, to increase the solution speed, the scenarios generated for each 

parameter are reduced to 10 by the backward scenario reduction method [46]. 

In the second step, the first stage of the proposed model is solved. At this stage, proactive 

actions are performed in the pre-disturbance phase to maximize the load supply. Furthermore, 

the proactive actions include dispatching mobile units to stations and DFR. In the third step, 

the third stage of the proposed model is solved in the restoration phase. At this stage, the MGs 

firstly plan their upcoming hours with the aim of minimizing operating cost and report their 

power exchange data to the DSO. Thereafter, the DSO performs the final network scheduling, 

including generation planning, mobile units’ allocation, and DFR, with observance of data 

reported by MGs, to optimize the operating cost.  Ultimately, in the fourth step, the third stage 
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of the proposed model, which is the allocation of repair crews with the aim of minimizing the 

ENS penalty, is solved., where the solution process ends after repairing all damaged lines.  

Table 2. Pseudocode to illustrate the generation and reduction process of fault scenarios. 

Sc
en

ar
io

 G
en

er
at

io
n 

Step 1 

For each line l, do: 
   For each time t, do: 
      Calculate failure probability of each line l with fragility curve, Eq. (n1). 
   End 
End 
 

Step 2 

For each line l, do: 
   For each time t, do: 
      For each scenario s, do: 
         Generate a random number r between 0 and 1 with uniform function for each 
         time-based scenario. 
         Define the damage status of each line l based-on failure probability, Eq. (n2). 
         Calculate probability of each scenario based-on number of normal and 
         damaged lines. 
      End 
   End 
End 
 

Step 3 

For each line l, do: 
   For each time t, do: 
      For each scenario s, do 
         Define availability status of each line l based-on the damage status from 
         windstorm start time to t, Eq. (n3). 
      End 
   End 
End 
 

Sc
en

ar
io

 R
ed

u
ct

io
n

 

Step 4 

For each scenario pair (s and s’), do: 
   Compute the distance between s and s’.    
End 
 

Step 5 

Find the scenario r with minimum distance from scenario s. 
Compute the pd value between scenario r and other scenarios. 

, ' , 'r s s r spd d
 

Find scenario d with minimum pd value. 
 

Step 6 

Update the probability of scenario r. 
Remove scenario d from the set of scenarios. 
Update the set of scenarios. 
 

Step 7 

If the required number of scenarios is achieved, Then: 
   Return the set of scenarios. 
Else: 
   Go To Step 4. 
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Fig. 4. Flowchart of the proposed hierarchical model. 

4. Results 

4.1. Input Data 

In this section, the effectiveness of the proposed model is tested by implementing it on a 

modified IEEE 118-bus distribution system and solving 6 case studies. In fact, the problem is 

solved for a typical day in October, and the case studies are presented in Table 3. Moreover, 

the case studies have been selected to investigate the impacts of mobile units, proactive actions, 

reconfigurable topology, and data sharing among MGs on improving system resilience. 
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Furthermore, the power trade refers to the power exchange of each MG, while the load priority 

refers to the type of loads (regular or critical). Table 4 presents the data required to simulate 

the proposed model, whereas the obtained scenarios for faults are presented in Table 5. This 

table lists the line number on which the fault occurred, and the numbers in parentheses indicate 

the buses at both ends of the line. The scenarios of load, wind speed and solar radiation are 

depicted in Figs. 5a-5c, respectively. Finally, the price of electricity is according to Ref. [37]. 

Table 3. Case studies and their assumptions. 

Case 
Data Sharing by MGs Reconfigurable 

Topology 
MEGs MESSs 

Proactive 
Actions Power Trade Load Priority 

1       
2       
3       
4       
5       
6       

 

Table 4. Data required for simulating the proposed model. 

Operation Parameters 

Stage 1 (h) Stage 2 (h) Stage 3 (h) 
M
t  

($/kWh) 
Max    M  

10:00-
14:00 

14:00-
15:30 

15:30-
23:00 

0.25 40 1e-5 1e5 

iv  (m/s) rv  (m/s) ov  (m/s) mg  

($/kW) 
CL
mg / CL  CL

mg / CL  , ,i j mg  

2 14 26 5 2 1 1 

stdG (W/m2) Min
gQ / Max

gQ  
criv / colv  
(m/s) 

Min / Max  MinV / MaxV  t (h) PV (%) 

1000 
-60% / 

60% Max
gP  20/45  /  0.9/1.1 1 95 

mg ($/kWh) 0
l (%) 

,ENS RL
i

($/kWh) 

,ENS CL
i

($/kWh) 
MEG ($/kWh) 

MESS
($/kWh) 

Gen
g

($/kWh) 
5 2 1 3 0.07 0.02 0.61 

ESS Parameters 

ch
e  (%) dch

e  (%) initial
eE (%) 

ESS
($/kWh) 

,
, ,
ch Max

e t sP

(%) 

,
, ,
dch Max

e t sP

(%) 

min
eE / max

eE  
(%) 

95 95 50 0.02 40 40 20/90 
Crew Teams & Repair Crew Parameters 

SW
nT  (min.) R

nT  (min) M
iT  (min.) ,

Traffic
n m  / ,MEG MESS Max

nN  EP  (min) 

5 30 10 1.3 2 60 
Generation Units Parameters 
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Wind Turbines 
Locations 

Solar Panels Gas Turbines 

Locations 
25 – 62 – 32 – 47 - 84 
67 – 92 – 101 – 117 

14 – 44 – 87 – 74 
96 – 113 

17 – 20 – 7 – 57 – 40 – 52 
78 – 98 – 106 – 115 

Capacity (kW) 
500 – 450 – 600 
500 – 450 – 550  
 500 – 400 – 500 

150 – 100 – 150 – 100 
100 – 150 

700 – 750 – 650  
700 – 600 – 650 

700 – 600 – 800 – 750 
 

 

Table 5. Scenarios obtained for faults. 

Scenario 
No. 

1 2 3 4 5 6 7 8 9 10 

Line 

32 
(100-114) 

68 
(38-39) 

55 
(33-34) 

20 
(70-71) 

76 
(51-52) 

119 
(8-24) 

14 
(58-59) 

114 
(114-115) 

70 
(41-42) 

54 
(32-33) 

20 
(70-71) 

32 
(100-114) 

98 
(81-82) 

112 
(110-
111) 
93 

(95-96) 
52 

(29-30) 
77 

(52-53) 
81 

(67-68) 
17 

(29-46) 
63 

(59-60) 
40 

(12-13) 
73 

(47-48) 
119 

(8-24) 
54 

(32-33) 
5 

(10-11) 

46 
(20-21) 

33 
(2-3) 
100 

(83-84) 
65 

(61-62) 
71 

(42-43) 
87 

(75-76) 
12 

(30-31) 
110 

(108-
109) 
119 

(8-24) 
13 

(29-54) 
107 

(104-
105) 
115 

(115-
116) 

2 
(1-63) 

66 
(36-37) 

82 
(68-69) 

49 
(25-26) 

82 
(68-69) 

97 
(79-80) 

73 
(47-48) 

80 
(66-67) 

36 
(6-7) 
106 

(103-
104) 
54 

(32-33) 
80 

(66-67) 
106 

(103-
104) 
35 

(5-6) 
51 

(28-29) 
70 

(41-42) 
56 

(34-35) 

94 
(90-97) 

5 
(10-11) 

55 
(33-34) 

5 
(10-11) 

123 
(99-75) 

66 
(36-37) 

115 
(115-
116) 
49 

(25-26) 
112 

(110-
111) 
33 

(2-3) 
115 

(115-
116) 
113 

(111-
112) 
51 

(28-29) 
79 

(64-65) 

45 
(19-20) 

35 
(5-6) 
60 

(55-56) 
51 

(28-29) 
74 

(48-49) 
28 

(80-85) 
81 

(67-68) 
22 

(89-90) 
25 

(97-98) 
107 

(104-
105) 
31 

(109-
110) 

3 
(1-100) 

113 
(111-
112) 
27 

(80-81) 
1 

(1-2) 
111 

(110-
113) 
30 

(105-
106) 
31 

(109-
110) 
81 

(67-68) 
39 

(2-10) 
105 

(102-
103) 
112 

(110-
111) 
120 

(59-43) 

89 
(64-89) 

11 
(4-28) 

67 
(37-38) 

112 
(110-
111) 
34 

(2-4) 
30 

(105-
106) 
106 

(103-
104) 
63 

(59-60) 
20 

(70-71) 
30 

(105-
106) 
83 

(69-70) 
71 

(42-43) 

36 
(6-7) 
52 

(29-30) 
46 

(20-21) 
99 

(82-83) 
18 

(49-50) 
114 

(114-
115) 
37 

(7-8) 
63 

(59-60) 
99 

(82-83) 
86 

(73-74) 
88 

(76-77) 
17 

(29-46) 
120 

(59-43) 
112 

(110-
111) 

65 
(61-62) 

86 
(73-74) 

124 
(94-
108) 
16 

(40-41) 
95 

(98-99) 
105 

(102-
103) 
99 

(82-83) 
25 

(97-98) 
55 

(33-34) 
2 

(1-63) 
41 

(13-14) 
17 

(29-46) 
57 

(30-44) 
73 

(47-48) 

Probability 0.076 0.091 0.16 0.153 0.094 0.164 0.017 0.144 0.059 0.042 
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(a) Load demand 

 

(b) Wind speed 

 

(c) Solar radiation 

Fig. 5. Scenarios obtained for uncertain parameters. 

4.2. Results of Cases 1 & 2 
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Tables 6 and 7 present the results of case studies 1 and 2, respectively. In fact, the network 

topology in cases 1 and 2 is assumed to be fixed and dynamic, respectively. Further, the results 

illustrate that in case 2 the total operation cost and ENS of the system are respectively reduced 

by 19.33% and 21.6% compared to case 1, due to the rerouting of power flow via DFR. In 

addition, Table 8 shows the open switches at each time step, and its analysis indicates that the 

network topology is changed 21 times. Moreover, Figure 6 depicts the load supply curve in 

cases 1 and 2. According to the figure, from 12:30 to 20:30 more load level is provided in case 

2. It should be noted, that the reason for providing more load in case 2 is the possibility of 

extracting more power from DERs. Figures 7a and 7b depict the power injected into the 

network by RERs and gas turbines, respectively. Further, RERs and gas turbines have injected 

more power into the network in case 2. Therefore, the results prove that DFR leads to more use 

of DERs capacity and more load supply. 

Table 6. Results obtained for the case 1. 

Time Period Pre-Disturbance 
(10:00-12:00) 

During Disturbance 
(12:00-14:00) 

Post-Disturbance 
(14:00-15:30) 

Restoration 
(15:30-23:00) Sum 

MG 1 
OC ($) -478.21 -443.43 -289.07 -691.72 -1902.43 

ENS (kWh) 0 0 0 0 0 

MG 2 
OC ($) 81.72 3.37 176.35 814.44 1075.88 

ENS (kWh) 0 0 0 0 0 

MG 3 
OC ($) -544.71 105.72 0.17 20.59 -418.23 

ENS (kWh) 0 106.07 0 0 106.07 

MG 4 
OC ($) 2310.44 10943.19 25617.59 115289.91 154161.1 

ENS (kWh) 0 1856.77 4715.42 21106.48 27678.67 

MG 5 
OC ($) 188.25 1884.75 4139.08 18017.3 24229.38 

ENS (kWh) 0 396.03 859.87 3607.02 4862.92 

MG 6 
OC ($) 296.07 3186.02 5701.86 21555.14 30739.09 

ENS (kWh) 0 447.71 816.94 3000.01 4264.66 

MG 7 
OC ($) 98.77 8416.48 9350.57 22951.96 40817.78 

ENS (kWh) 0 1265.08 1397.41 3447.09 6109.58 

MG 8 
OC ($) 2706.75 27643.72 22490.59 55876.3 108717.4 

ENS (kWh) 0 4969.58 4011.96 9173.69 18155.23 

DSO 
OC ($) 6694.64 34329.1 36351.87 117457.62 194833.2 

ENS (kWh) 0 5015.96 5461.85 16880.89 27358.7 

Sum 
OC ($) 11353.72 86068.92 103539.01 351291.54 552253.2 

ENS (kWh) 0 14057.2 17263.45 57215.18 88535.83 
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Table 7. Results obtained for the case 2. 

Time Period Pre-Disturbance 
(10:00-12:00) 

During Disturbance 
(12:00-14:00) 

Post-Disturbance 
(14:00-15:30) 

Restoration 
(15:30-23:00) Sum 

MG 1 
OC ($) -478.21 -437.73 -291.66 -697.93 -1905.53 

ENS (kWh) 0 0 0 0 0 

MG 2 
OC ($) 81.72 1713.36 1211.04 5119.18 8125.3 

ENS (kWh) 0 304.14 246.65 924.45 1475.24 

MG 3 
OC ($) -544.71 -549.15 -399.61 -651.52 -2144.99 

ENS (kWh) 0 0 0 0 0 

MG 4 
OC ($) 2310.44 2112.17 6121.51 75730.09 86274.21 

ENS (kWh) 0 67.5 708.36 11050.69 11826.55 

MG 5 
OC ($) 188.25 4379.89 4265.55 17830.02 26663.71 

ENS (kWh) 0 919.51 888.31 3569.85 5377.67 

MG 6 
OC ($) 296.07 5976.32 12158.62 20579.89 39010.9 

ENS (kWh) 0 1026.41 2164.98 3401.32 6592.71 

MG 7 
OC ($) 98.77 5696.54 7312.96 40389.89 53498.16 

ENS (kWh) 0 904.76 1174.52 6280.5 8359.78 

MG 8 
OC ($) 2706.75 26605.48 24758.64 52419.68 106490.6 

ENS (kWh) 0 3781.76 3599.09 7193.09 14573.94 

DSO 
OC ($) 6694.64 13777.68 17693.44 91340.15 129505.9 

ENS (kWh) 0 2415.68 3377.82 15411.97 21205.47 

Sum 
OC ($) 11353.72 59274.56 72830.49 302059.45 445518.2 

ENS (kWh) 0 9419.76 12159.73 47831.87 69411.36 

 

Table 8. Status of switches in case 2. 

Time Period Open Switches 

12:00 118 
(27-62) 

119 
(8-24) 

120 
(59-43) 

121 
(48-85) 

122 
(80-73) 

123 
(99-75) 

124 
(94-108) 

125 
(118-110) 

126 
(25-35) 

12:30 8 
(11-18) 

17 
(29-46) 

29 
(100-101) 

32 
(100-114) 

119 
(8-24) 

120 
(59-43) 

122 
(80-73) 

123 
(99-75) 

126 
(25-35) 

13:00 8 
(11-18) 

13 
(29-54) 

17 
(29-46) 

26 
(65-78) 

29 
(100-101) 

89 
(64-89) 

120 
(59-43) 

124 
(94-108) 

126 
(25-35) 

13:30 8 
(11-18) 

13 
(29-54) 

26 
(65-78) 

32 
(100-114) 

89 
(64-89) 

119 
(8-24) 

120 
(59-43) 

121 
(48-85) 

124 
(94-108) 

14:00 8 
(11-18) 

13 
(29-54) 

26 
(65-78) 

29 
(100-101) 

32 
(100-114) 

89 
(64-89) 

119 
(8-24) 

120 
(59-43) 

121 
(48-85) 

14:30 8 
(11-18) 

13 
(29-54) 

26 
(65-78) 

29 
(100-101) 

32 
(100-114) 

89 
(64-89) 

118 
(27-62) 

119 
(8-24) 

121 
(48-85) 

15:00 13 
(29-54) 

26 
(65-78) 

32 
(100-114) 

89 
(64-89) 

118 
(27-62) 

119 
(8-24) 

121 
(48-85) 

124 
(94-108) 

126 
(25-35) 

15:30 8 
(11-18) 

13 
(29-54) 

26 
(65-78) 

29 
(100-101) 

32 
(100-114) 

89 
(64-89) 

118 
(27-62) 

119 
(8-24) 

121 
(48-85) 

16:00 8 
(11-18) 

13 
(29-54) 

26 
(65-78) 

32 
(100-114) 

89 
(64-89) 

119 
(8-24) 

121 
(48-85) 

124 
(94-108) 

126 
(25-35) 

16:30 8 
(11-18) 

13 
(29-54) 

17 
(29-46) 

29 
(100-101) 

32 
(100-114) 

89 
(64-89) 

118 
(27-62) 

122 
(80-73) 

126 
(25-35) 

17:00 13 
(29-54) 

32 
(100-114) 

89 
(64-89) 

118 
(27-62) 

119 
(8-24) 

121 
(48-85) 

122 
(80-73) 

124 
(94-108) 

126 
(25-35) 

17:30 8 
(11-18) 

13 
(29-54) 

17 
(29-46) 

26 
(65-78) 

29 
(100-101) 

89 
(64-89) 

118 
(27-62) 

124 
(94-108) 

126 
(25-35) 

18:00 13 
(29-54) 

17 
(29-46) 

26 
(65-78) 

29 
(100-101) 

89 
(64-89) 

118 
(27-62) 

119 
(8-24) 

124 
(94-108) 

126 
(25-35) 
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18:30 8 
(11-18) 

13 
(29-54) 

17 
(29-46) 

89 
(64-89) 

119 
(8-24) 

120 
(59-43) 

122 
(80-73) 

124 
(94-108) 

125 
(118-110) 

19:00 8 
(11-18) 

13 
(29-54) 

17 
(29-46) 

29 
(100-101) 

89 
(64-89) 

119 
(8-24) 
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(80-73) 

124 
(94-108) 

126 
(25-35) 
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(27-62) 

119 
(8-24) 

124 
(94-108) 

20:00 26 
(65-78) 

29 
(100-101) 

34 
(2-4) 

89 
(64-89) 

118 
(27-62) 

119 
(8-24) 

120 
(59-43) 

124 
(94-108) 

126 
(25-35) 

20:30 8 
(11-18) 

13 
(29-54) 

17 
(29-46) 

26 
(65-78) 

29 
(100-101) 

89 
(64-89) 

119 
(8-24) 

124 
(94-108) 

126 
(25-35) 

21:00 26 
(65-78) 

29 
(100-101) 

32 
(100-114) 

34 
(2-4) 

89 
(64-89) 

118 
(27-62) 

119 
(8-24) 

120 
(59-43) 

126 
(25-35) 

21:30 17 
(29-46) 

118 
(27-62) 

119 
(8-24) 

120 
(59-43) 

122 
(80-73) 
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(99-75) 
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(94-108) 

125 
(118-110) 

126 
(25-35) 

22:00 13 
(29-54) 

26 
(65-78) 

32 
(100-114) 

34 
(2-4) 

89 
(64-89) 

119 
(8-24) 

120 
(59-43) 

121 
(48-85) 

124 
(94-108) 

22:30 13 
(29-54) 

17 
(29-46) 

32 
(100-114) 

119 
(8-24) 

120 
(59-43) 

122 
(80-73) 

123 
(99-75) 

124 
(94-108) 

126 
(25-35) 

23:00 26 
(65-78) 

32 
(100-114) 

34 
(2-4) 

89 
(64-89) 

118 
(27-62) 

120 
(59-43) 

121 
(48-85) 

124 
(94-108) 

126 
(25-35) 

 

 

Fig. 6. Load supply curve in cases 1 and 2. 

 

(a) RERs 
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(b) Gas turbines 

Fig. 7. Power injected into the network by DERs in cases 1 and 2. 

4.3. Results of Cases 3 & 4 

Table 9 presents the results of case 3, and in the post-disturbance phase, MEGs are dispatched 

from the depot to the optimal buses and participate in the load supply. In fact, the results of this 

case indicate that the allocation of MEGs has led to a reduction in ENS and operation cost. 

Furthermore, numerical results illustrate that ENS and total operating cost are reduced by 

27.16% and 23.5% compared to case 2, respectively. As shown in Fig. 8, after the occurrence 

of the disturbance (14:00), MEGs were dispatched from the depot to buses 45, 54, 75, 76, and 

77 and participated in the load supply. 

Table 10 presents the results obtained from case 4, and in addition to MEGs, MESSs are also 

dispatched from the depot to the optimal buses and participate in load supply. Moreover, the 

results of Table 10 illustrate that ENS and total operating cost decrease by 3.89% and 3.67% 

compared to case 3, respectively. Figure 9 depicts the scheduling obtained for MEGs and 

MESSs in case 4. Consequently, MEGs were sent to the buses 45, 55, 73, 74 and 90, while 

MESSs were to the buses 68, 71, 100 and 115. 

Figure 10 compares the load supply curves in cases 2, 3 and 4. As can be observed, the level 

of load supply before and during disturbance in these cases is similar, while after connecting 
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the mobile units to the network the load supply level has dramatically increased in cases 3 and 

4. 

Table 9. Results obtained for the case 3. 

Time Period Pre-Disturbance 
(10:00-12:00) 

During Disturbance 
(12:00-14:00) 

Post-Disturbance 
(14:00-15:30) 

Restoration 
(15:30-23:00) Sum 

MG 1 
OC ($) -478.21 -437.73 -289.07 -715.62 -1920.63 

ENS (kWh) 0 0 0 0 0 

MG 2 
OC ($) 81.72 1713.36 1220.88 5145.02 8160.98 

ENS (kWh) 0 304.14 246.65 924.45 1475.24 

MG 3 
OC ($) -544.71 -549.15 -389.26 -694.17 -2177.29 

ENS (kWh) 0 0 0 0 0 

MG 4 
OC ($) 2310.44 2112.17 4810.64 56127.9 65361.15 

ENS (kWh) 0 67.5 513.82 7579.09 8160.41 

MG 5 
OC ($) 188.25 4379.89 4508.5 18509.83 27586.47 

ENS (kWh) 0 919.51 939.33 3709.12 5567.96 

MG 6 
OC ($) 296.07 5976.32 9511.29 10950.73 26734.41 

ENS (kWh) 0 1026.41 1613.2 1478.24 4117.85 

MG 7 
OC ($) 98.77 5696.54 4367.47 24424.37 34587.15 

ENS (kWh) 0 904.76 709.87 3773.36 5387.99 

MG 8 
OC ($) 2706.75 26605.48 26998.92 57531.63 113842.8 

ENS (kWh) 0 3781.76 3922.47 7961.5 15665.73 

DSO 
OC ($) 6694.64 13777.68 12785.75 35397.31 68655.38 

ENS (kWh) 0 2415.68 2366.89 5398.71 10181.28 

Sum 
OC ($) 11353.72 59274.56 63525.12 206677 340830.4 

ENS (kWh) 0 9419.76 10312.23 30824.47 50556.46 

 

Table 10. Results obtained for the case 4. 

Time Period Pre-Disturbance 
(10:00-12:00) 

During Disturbance 
(12:00-14:00) 

Post-Disturbance 
(14:00-15:30) 

Restoration 
(15:30-23:00) Sum 

MG 1 
OC ($) -478.21 -437.73 -289.07 -715.62 -1920.63 

ENS (kWh) 0 0 0 0 0 

MG 2 
OC ($) 81.72 1713.36 1220.88 5112.04 8128 

ENS (kWh) 0 304.14 246.65 924.45 1475.24 

MG 3 
OC ($) -544.71 -549.15 -377.11 -695.94 -2166.91 

ENS (kWh) 0 0 0 0 0 

MG 4 
OC ($) 2310.44 2112.17 3346.93 57422.46 65192 

ENS (kWh) 0 67.5 298.38 7725.53 8091.41 

MG 5 
OC ($) 188.25 4379.89 4382.73 17548.43 26499.3 

ENS (kWh) 0 919.51 915.52 3507.6 5342.63 

MG 6 
OC ($) 296.07 5976.32 10150.77 12566.66 28989.82 

ENS (kWh) 0 1026.41 1751.57 1777.37 4555.35 

MG 7 OC ($) 98.77 5696.54 8971.63 22476.48 37243.42 
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ENS (kWh) 0 904.76 1387.96 3482.62 5775.34 

MG 8 
OC ($) 2706.75 26605.48 20315.66 48864.01 98491.9 

ENS (kWh) 0 3781.76 2940.67 6606.33 13328.76 

DSO 
OC ($) 6694.64 13777.68 14078.11 33324.66 67875.09 

ENS (kWh) 0 2415.68 2624.27 4978.85 10018.8 

Sum 
OC ($) 11353.72 59274.56 61800.53 195903.18 328332 

ENS (kWh) 0 9419.76 10165.02 29002.75 48587.53 

 

 

 
Fig. 8. Location of MEGs in the case 3. 
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Fig. 9. Location of MEGs and MESSs in the case 4. 

 

Fig. 10. Load supply curve in cases 2, 3 and 4. 

4.4. Results of Cases 5 & 6 

The results of case 5 are presented in Table 11. The proactive actions are performed before the 

occurrence of the disturbance to increase the resilience of the system in this case. In fact, these 

actions include DFR and dispatching mobile units from the depot to the stations. Figure 11 

depicts the topology obtained for the network after performing proactive actions, where DSO 
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has changed the network topology according to the fault scenarios. Figure 12 depicts the route 

of mobile units and crew teams in the pre-disturbance phase. According to the figure, the crew 

teams have travelled from the depot to the location of the manual switches, and went to the 

stations after changing the status of the manual switches. This figure Further indicates that the 

mobile units are sent from the depot to the stations.  

Table 12 indicates that performing proactive actions have reduced in ENS in the post-

disturbance phase. Further, numerical results illustrate that the total operating cost and ENS 

are reduced by 6.74% and 8.44% compared to case 4 (without proactive actions), respectively. 

It is worth mentioning that these values are the sum of operating costs / ENS of MGs and DSOs. 

Figure 13 depicts the load supply curve in cases 4 and 5. In fact, the analysis of this figure 

indicates that at 14:30 and 15:00 the load supply level in case 5 is considerably higher than 

case 4, due to the faster connection of mobile units to the network in this case. Moreover, 

because of the stations are closer to the network buses than the depot, the mobile units in case 

5 have connected to the network earlier than case 4 and thus injected more power into the 

network. Finally, Figure 14 depicts the power injected into the network by mobile units in cases 

4 and 5, and this figure. indicates that the mobile units in case 5 started producing earlier than 

case 4.  
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Fig. 11. Topology obtained for the network by considering proactive actions. 
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Fig. 12. The rout of mobile units and crew teams in the pre-disturbance phase in case 5 

 

 

Fig. 13. Load supply curve in cases 4 and 5. 
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Fig. 14. Power injected into the network by mobile units in cases 4 and 5. 

 

Table 11. Results obtained for the case 5. 

Time Period Pre-Disturbance 
(10:00-12:00) 

During Disturbance 
(12:00-14:00) 

Post-Disturbance 
(14:00-15:30) 

Restoration 
(15:30-23:00) Sum 

MG 1 
OC ($) -478.21 -443.43 -289.07 -715.62 -1926.33 

ENS (kWh) 0 0 0 0 0 

MG 2 
OC ($) 81.72 478.93 1229.53 7682.63 9472.81 

ENS (kWh) 0 117.7 246.65 1301.78 1666.13 

MG 3 
OC ($) -544.71 -557.78 -375.31 -695.64 -2173.44 

ENS (kWh) 0 0 0 0 0 

MG 4 
OC ($) 2310.44 2101.82 2204.43 52238.65 58855.34 

ENS (kWh) 0 67.5 127.2 7164.39 7359.09 

MG 5 
OC ($) 188.25 4815.84 3675.98 17236.95 25917.02 

ENS (kWh) 0 1013.47 759.82 3444.31 5217.6 

MG 6 
OC ($) 296.07 8575.57 6124.13 12250.28 27246.05 

ENS (kWh) 0 1464.49 906.96 1693.73 4065.18 

MG 7 
OC ($) 98.77 5463.16 3224.95 23460.95 32247.83 

ENS (kWh) 0 895.31 507.6 3592.52 4995.43 

MG 8 
OC ($) 2706.75 26424.56 18909.54 49427.81 97468.66 

ENS (kWh) 0 3768.12 2624.77 6582.26 12975.15 

DSO 
OC ($) 6694.64 10249.19 6187.47 35959.55 59090.85 

ENS (kWh) 0 1710.66 990 5506.85 8207.51 

Sum 
OC ($) 11353.72 57107.86 40891.65 196845.56 306198.8 

ENS (kWh) 0 9037.25 6163 29285.84 44486.09 

 

Table 12 presents the results of case 6. In this case, the load type data are also shared by MGs 

in addition to power exchange data. The results indicate that the amount of ENS has increased 
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in the main grid and MGs 2,3 and 5, while the ENS has decreased in MGs 4, 6, 7 and 8. 

However, MGs 1 and 5 do not contain critical loads. Therefore, the results demonstrate that 

sharing load type data with DSO could increase the supply level of critical loads., Further, the 

supply of more critical loads in case 6 has led to a significant reduction in the operating costs 

of MGs 4, 6, 7 and 8 compared to case 5. Figure 15 depicts the ENS of regular and critical 

loads in different MGs, and the figure illustrate that the supply level of critical load in case 6 

has increased significantly. 

Figure 16 compares the resilience index in different cases, and this figure indicates that 

considering DFR in case 2 has increased the resilience index by r 3.16% compared to case 1. 

Moreover, the allocation of mobile units in case 4 has increased the resilience index by 3.9% 

compared to case 2 (in the absence of mobile units). Eventually, the sharing load type data by 

MGs in case 6 has resulted in a 3.47% growth in resilience index compared to case 5 (non-

sharing of load type data). In addition, Fig. 17 depicts the order of repairing damaged lines in 

case 6 and the priority of repairing damaged lines is determined according to their impact on 

ENS. In other words, repair crews are allocated to reduce ENS.  

Table 12. Results obtained for the case 6. 

Time Period Pre-Disturbance 
(10:00-12:00) 

During Disturbance 
(12:00-14:00) 

Post-Disturbance 
(14:00-15:30) 

Restoration 
(15:30-23:00) Sum 

MG 1 
OC ($) -478.21 -440.84 -292.18 -715.1 -1926.33 

ENS (kWh) 0 0 0 0 0 

MG 2 
OC ($) 81.72 478.93 1229.53 7402.68 9192.86 

ENS (kWh) 0 117.7 246.65 1398.65 1763 

MG 3 
OC ($) -544.71 -557.78 -369.13 -396.34 -1867.96 

ENS (kWh) 0 0 0 63.58 63.58 

MG 4 
OC ($) 2310.44 1646.71 1352.21 34892.47 40201.83 

ENS (kWh) 0 0 0 6146.62 6146.62 

MG 5 
OC ($) 188.25 2517.71 3668.62 20486 26860.58 

ENS (kWh) 0 527.58 759.82 4120.68 5408.08 

MG 6 
OC ($) 296.07 4361.43 5599 6514.41 16770.91 

ENS (kWh) 0 702.63 803.44 776.18 2282.25 

MG 7 
OC ($) 98.77 5179.51 2456.75 9801.65 17536.68 

ENS (kWh) 0 965.46 521.1 1850.3 3336.86 

MG 8 OC ($) 2706.75 22109.91 14699.3 46180.95 85696.91 
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ENS (kWh) 0 2986.65 1946.2 6010.87 10943.72 

DSO 
OC ($) 6694.64 20384.51 10661.58 53107.12 90847.85 

ENS (kWh) 0 3737.23 1885.78 8918.98 14541.99 

Sum 
OC ($) 11353.72 55680.09 39005.68 177273.84 283313.3 

ENS (kWh) 0 9037.25 6163 29285.84 44486.09 

 

 

Fig. 15. ENS of regular and critical loads in cases 5 and 6. 

 

 

Fig. 16. Resilience index of the network in different cases.  
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Fig. 17. Scheduling obtained for repair crews in restoration phase.  

5. Discussion 

In terms of mathematical point of view, the proposed model presents a hierarchical model 

which the solution space could decompose into several layers. This leads to a more accurate 

management of the operation problem and fragmentation of the solution space. Further, 

evaluating the proposed model from the resilience point of view shows that proactive actions, 

dynamic topology, dispatching of mobile units and increasing the level of data sharing among 

DC-MGs could improve the outage management of the system against extreme weather 

conditions. Moreover, the results show that one of the important points to prevent the spread 

of faults in the network is the timely prediction of upcoming events. In terms of the operational 

point of view, the proposed model indicates that timely prediction leads to the rapid scheduling 
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of proactive actions and increases the network readiness to deal with upcoming events. In 

addition, the results show that manual / automatic switches play a key role in rerouting power 

flow and preventing the spread of faults in the network. Finally, in terms of the security point 

of view, the study defines that the rate of information sharing among DC-MGs should change 

according to the operating conditions. In addition, the results clearly show that increasing the 

rate of information sharing during emergency conditions leads to the rescue of many critical 

loads.  

On the other hand, one of the limitations in the proposed model is related to the modelling of 

the windstorm. It should be noted that the uncertain movement of the windstorm is not 

considered in the proposed model, and the wind speed throughout each region is considered 

constant. Therefore, dynamic modeling of the windstorm can be considered in future work to 

achieve more realistic results. In addition, the proposed model does not evaluate the effects of 

fault on system frequency, which also could be addressed in future work. 

6. Conclusion 

This paper presents a hierarchical framework for outage management of DC-MGs. Proactive 

actions, mobile unit allocation and DFR were considered to improve the system resilience in 

the proposed model. It should be noted that, system outage management was performed 

according to the data shared by MGs. Ultimately, the proposed model was implemented on a 

118-bus distribution system and the results could be summarized as follows: 

 The problem of outage management was solved by considering the dynamic topology, 

and the results showed that DSO rerouted the power flow by implementing DFR, thus 

reducing the ENS by 21.6%. Further, it also mirrored that DFR allows more utilization 

of DERs capacity. 
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 Routing and allocation of mobile units were considered in the model, and the results 

indicated that the participation of these units in load supply has led to a reduction of 

30% and 26.3% in ENS and operating cost, respectively. 

 The effect of proactive actions on system resilience was investigated, and the results 

demonstrated that performing proactive actions has led to a reduction in the installation 

time of mobile units and subsequently increased the resilience index of the system. 

 The effects of MG data sharing on system resilience were examined, and the results 

confirmed that load type data sharing has led to a 48.16% increase in critical load 

supply. 

In addition, the results testify that the proposed hierarchical model is an effective approach to 

enhance the resilience of DC-MGs. The future research suggestions cloud be presented as 

follows: 

1- Enhance the resilience of interconnected MGs considering vehicle-to-grid services of EVs 

2- Enhance the resilience of renewable-based MGs considering the translational movement of 

the windstorm  

3- Introduce a hierarchical model to control the voltage and frequency of MGs during extreme 

weather conditions 

Acknowledgments 

This work was supported from DTE Network+ funded by EPSRC grant reference 

EP/S032053/1. 

List of References 

[1] Jufri FH, Widiputra V, Jung J. State-of-the-art review on power grid resilience to 

extreme weather events: Definitions, frameworks, quantitative assessment 

methodologies, and enhancement strategies. Appl Energy 2019;239:1049–65. 

https://doi.org/https://doi.org/10.1016/j.apenergy.2019.02.017. 



48 
 

[2] Mishra DK, Ghadi MJ, Azizivahed A, Li L, Zhang J. A review on resilience studies in 

active distribution systems. Renew Sustain Energy Rev 2021;135:110201. 

https://doi.org/https://doi.org/10.1016/j.rser.2020.110201. 

[3] Huang G, Wang J, Chen C, Qi J, Guo C. Integration of Preventive and Emergency 

Responses for Power Grid Resilience Enhancement. IEEE Trans Power Syst 

2017;32:4451–63. https://doi.org/10.1109/TPWRS.2017.2685640. 

[4] Hossain E, Roy S, Mohammad N, Nawar N, Dipta DR. Metrics and enhancement 

strategies for grid resilience and reliability during natural disasters. Appl Energy 

2021;290:116709. https://doi.org/https://doi.org/10.1016/j.apenergy.2021.116709. 

[5] Wang Y, Rousis AO, Strbac G. A resilience enhancement strategy for networked 

microgrids incorporating electricity and transport and utilizing a stochastic hierarchical 

control approach. Sustain Energy, Grids Networks 2021;26:100464. 

https://doi.org/https://doi.org/10.1016/j.segan.2021.100464. 

[6] Wang Y, Rousis AO, Strbac G. Resilience-driven optimal sizing and pre-positioning of 

mobile energy storage systems in decentralized networked microgrids. Appl Energy 

2022;305:117921. https://doi.org/https://doi.org/10.1016/j.apenergy.2021.117921. 

[7] Ali AY, Hussain A, Baek J-W, Kim H-M. Optimal Operation of Networked Microgrids 

for Enhancing Resilience Using Mobile Electric Vehicles. Energies  2021;14. 

https://doi.org/10.3390/en14010142. 

[8] Omogoye OS, Folly KA, Awodele KO. Review of Proactive Operational Measures for 

the Distribution Power System Resilience Enhancement Against Hurricane Events. 2021 

South. African Univ. Power Eng. Conf. Mechatronics/Pattern Recognit. Assoc. South 

Africa, 2021, p. 1–6. 

https://doi.org/10.1109/SAUPEC/RobMech/PRASA52254.2021.9377252. 

[9] Taheri B, Safdarian A, Moeini-Aghtaie M, Lehtonen M. Enhancing Resilience Level of 



49 
 

Power Distribution Systems Using Proactive Operational Actions. IEEE Access 

2019;7:137378–89. https://doi.org/10.1109/ACCESS.2019.2941593. 

[10] Lei S, Chen C, Zhou H, Hou Y. Routing and Scheduling of Mobile Power Sources for 

Distribution System Resilience Enhancement. IEEE Trans Smart Grid 2019;10:5650–

62. https://doi.org/10.1109/TSG.2018.2889347. 

[11] Mehrjerdi H, Mahdavi S, Hemmati R. Resilience maximization through mobile battery 

storage and diesel DG in integrated electrical and heating networks. Energy 

2021:121195. https://doi.org/https://doi.org/10.1016/j.energy.2021.121195. 

[12] Dehghani NL, Jeddi AB, Shafieezadeh A. Intelligent hurricane resilience enhancement 

of power distribution systems via deep reinforcement learning. Appl Energy 

2021;285:116355. https://doi.org/https://doi.org/10.1016/j.apenergy.2020.116355. 

[13] Venkateswaran V B, Saini DK, Sharma M. Techno-economic hardening strategies to 

enhance distribution system resilience against earthquake. Reliab Eng Syst Saf 

2021;213:107682. https://doi.org/https://doi.org/10.1016/j.ress.2021.107682. 

[14] Li B, Chen Y, Wei W, Huang S, Xiong Y, Mei S, et al. Routing and Scheduling of 

Electric Buses for Resilient Restoration of Distribution System. IEEE Trans Transp 

Electrif 2021;7:2414–28. https://doi.org/10.1109/TTE.2021.3061079. 

[15] Omogoye OS, Folly KA, Awodele KO. Review of Sequential Steps to Realize Power 

System Resilience. 2020 Int. SAUPEC/RobMech/PRASA Conf., 2020, p. 1–6. 

https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9040967. 

[16] Cai S, Xie Y, Wu Q, Xiang Z. Robust MPC-based microgrid scheduling for resilience 

enhancement of distribution system. Int J Electr Power Energy Syst 2020;121:106068. 

https://doi.org/https://doi.org/10.1016/j.ijepes.2020.106068. 

[17] Shi Q, Li F, Olama M, Dong J, Xue Y, Starke M, et al. Network reconfiguration and 

distributed energy resource scheduling for improved distribution system resilience. Int 



50 
 

J Electr Power Energy Syst 2021;124:106355. 

https://doi.org/https://doi.org/10.1016/j.ijepes.2020.106355. 

[18] Erenoğlu AK, Erdinç O. Post-Event restoration strategy for coupled distribution-

transportation system utilizing spatiotemporal flexibility of mobile emergency generator 

and mobile energy storage system. Electr Power Syst Res 2021;199:107432. 

https://doi.org/10.1016/j.epsr.2021.107432. 

[19] Dabbaghjamanesh M, Senemmar S, Zhang J. Resilient Distribution Networks 

Considering Mobile Marine Microgrids: A Synergistic Network Approach. IEEE Trans 

Ind Informatics 2021;17:5742–50. https://doi.org/10.1109/tii.2020.2999326. 

[20] Jiang X, Chen J, Wu Q, Zhang W, Zhang Y, Liu J. Two-step Optimal Allocation of 

Stationary and Mobile Energy Storage Systems in Resilient Distribution Networks. J 

Mod Power Syst Clean Energy 2021;9:788–99. 

https://doi.org/10.35833/mpce.2020.000910. 

[21] Hughes W, Zhang W, Bagtzoglou AC, Wanik D, Pensado O, Yuan H, et al. Damage 

modeling framework for resilience hardening strategy for overhead power distribution 

systems. Reliab Eng Syst Saf 2021;207:107367. 

https://doi.org/10.1016/j.ress.2020.107367. 

[22] Zhang G, Zhang F, Wang X, Zhang X. Fast Resilience Assessment of Distribution 

Systems with a Non-Simulation-Based Method. IEEE Trans Power Deliv 2021:1. 

https://doi.org/10.1109/tpwrd.2021.3077239. 

[23] Ghasemi M, Kazemi A, Bompard E, Aminifar F. A two-stage resilience improvement 

planning for power distribution systems against hurricanes. Int J Electr Power Energy 

Syst 2021;132:107214. https://doi.org/https://doi.org/10.1016/j.ijepes.2021.107214. 

[24] Sedgh SA, Doostizadeh M, Aminifar F, Shahidehpour M. Resilient-enhancing critical 

load restoration using mobile power sources with incomplete information. Sustain 



51 
 

Energy, Grids Networks 2021;26:100418. https://doi.org/10.1016/j.segan.2020.100418. 

[25] Ding T, Qu M, Wang Z, Chen B, Chen C, Shahidehpour M. Power System Resilience 

Enhancement in Typhoons Using a Three-Stage Day-Ahead Unit Commitment. IEEE 

Trans Smart Grid 2021;12:2153–64. https://doi.org/10.1109/tsg.2020.3048234. 

[26] Gharehveran SS, Ghassemzadeh S, Rostami N. Two-stage resilience-constrained 

planning of coupled multi-energy microgrids in the presence of battery energy storages. 

Sustain Cities Soc 2022;83:103952. https://doi.org/10.1016/j.scs.2022.103952. 

[27] Jia L, Kandaperumal G, Pannala S, Srivastava A. Coordinating Energy Resources in an 

Islanded Microgrid for Economic and Resilient Operation. 2021 IEEE Ind Appl Soc 

Annu Meet 2021. https://doi.org/10.1109/ias48185.2021.9677050. 

[28] Jahromi SN, Hajipour E, Ehsan M. Optimal Resilience-Oriented Microgrid Formation 

Considering Failure Probability of Distribution Feeders. Electr Power Syst Res 

2022;209:108012. https://doi.org/10.1016/j.epsr.2022.108012. 

[29] Gilani MA, Dashti R, Ghasemi M, Amirioun MH, Shafie-khah M. A Microgrid 

Formation-Based Restoration Model for Resilient Distribution Systems Using 

Distributed Energy Resources and Demand Response Programs. SSRN Electron J 2022. 

https://doi.org/10.2139/ssrn.4046621. 

[30] Jiang L, Li X, Long T, Zhou R, Jiang J, Bie Z, et al. Resilient service restoration for 

distribution systems with mobile resources using Floyd‐based network simplification 

method. IET Gener Transm &amp; Distrib 2021;16:414–29. 

https://doi.org/10.1049/gtd2.12290. 

[31] Wu H, Xie Y, Xu Y, Wu Q, Yu C, Sun J. Resilient scheduling of MESSs and RCs for 

distribution system restoration considering the forced cut-off of wind power. Energy 

2022;244:123081. https://doi.org/10.1016/j.energy.2021.123081. 

[32] Xin N, Chen L, Ma L, Si Y. A Rolling Horizon Optimization Framework for Resilient 



52 
 

Restoration of Active Distribution Systems. Energies 2022;15:3096. 

https://doi.org/10.3390/en15093096. 

[33] Li Z, Tang W, Lian X, Chen X, Zhang W, Qian T. A resilience-oriented two-stage 

recovery method for power distribution system considering transportation network. Int 

J Electr Power Energy Syst 2022;135:107497. 

https://doi.org/10.1016/j.ijepes.2021.107497. 

[34] Mansouri SA, Nematbakhsh E, Javadi MS, Jordehi AR, Shafie-khah M, Catalão JPS. 

Resilience Enhancement via Automatic Switching considering Direct Load Control 

Program and Energy Storage Systems. 2021 IEEE Int. Conf. Environ. Electr. Eng. 2021 

IEEE Ind. Commer. Power Syst. Eur. (EEEIC / I&CPS Eur., 2021, p. 1–6. 

https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584609. 

[35] Zhang D, Fu Z, Zhang L. An improved TS algorithm for loss-minimum reconfiguration 

in large-scale distribution systems. Electr Power Syst Res 2007;77:685–94. 

https://doi.org/10.1016/j.epsr.2006.06.005. 

[36] Gutiérrez Galeano A, Bressan M, Jiménez Vargas F, Alonso C. Shading Ratio Impact 

on Photovoltaic Modules and Correlation with Shading Patterns. Energies 2018;11:852. 

https://doi.org/10.3390/en11040852. 

[37] Mansouri SA, Ahmarinejad A, Nematbakhsh E, Javadi MS, Jordehi AR, Catalão JPS. 

Energy Management in Microgrids including Smart Homes: A Multi-objective 

Approach. Sustain Cities Soc 2021:102852. 

https://doi.org/https://doi.org/10.1016/j.scs.2021.102852. 

[38] Yuan H, Li F, Wei Y, Zhu J. Novel Linearized Power Flow and Linearized OPF Models 

for Active Distribution Networks With Application in Distribution LMP. IEEE Trans 

Smart Grid 2018;9:438–48. https://doi.org/10.1109/TSG.2016.2594814. 

[39] Ma S, Su L, Wang Z, Qiu F, Guo G. Resilience Enhancement of Distribution Grids 



53 
 

Against Extreme Weather Events. IEEE Trans Power Syst 2018;33:4842–53. 

https://doi.org/10.1109/TPWRS.2018.2822295. 

[40] Jooshaki M, Abbaspour A, Fotuhi-Firuzabad M, Muñoz-Delgado G, Contreras J, 

Lehtonen M, et al. Linear Formulations for Topology-Variable-Based Distribution 

System Reliability Assessment Considering Switching Interruptions. IEEE Trans Smart 

Grid 2020;11:4032–43. https://doi.org/10.1109/TSG.2020.2991661. 

[41] Amir Mansouri S, Javadi MS, Ahmarinejad A, Nematbakhsh E, Zare A, Catalão JPS. A 

coordinated energy management framework for industrial, residential and commercial 

energy hubs considering demand response programs. Sustain Energy Technol 

Assessments 2021;47:101376. https://doi.org/10.1016/j.seta.2021.101376. 

[42] Taheri B, Safdarian A, Moeini-Aghtaie M, Lehtonen M. Distribution System Resilience 

Enhancement via Mobile Emergency Generators. IEEE Trans Power Deliv 2020:1. 

https://doi.org/10.1109/TPWRD.2020.3007762. 

[43] Lin Y, Chen B, Wang J, Bie Z. A Combined Repair Crew Dispatch Problem for Resilient 

Electric and Natural Gas System Considering Reconfiguration and DG Islanding. IEEE 

Trans Power Syst 2019;34:2755–67. https://doi.org/10.1109/TPWRS.2019.2895198. 

[44] Lei S, Chen C, Li Y, Hou Y. Resilient Disaster Recovery Logistics of Distribution 

Systems: Co-Optimize Service Restoration With Repair Crew and Mobile Power Source 

Dispatch. IEEE Trans Smart Grid 2019;10:6187–202. 

https://doi.org/10.1109/TSG.2019.2899353. 

[45] Jose J, Kowli A. Path-Based Distribution Feeder Reconfiguration for Optimization of 

Losses and Reliability. IEEE Syst J 2020;14:1417–26. 

https://doi.org/10.1109/JSYST.2019.2917536. 

[46] Mansouri SA, Ahmarinejad A, Javadi MS, Catalão JPS. Two-stage stochastic 

framework for energy hubs planning considering demand response programs. Energy 



54 
 

2020;206:118124. https://doi.org/10.1016/j.energy.2020.118124. 

 


