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Class-imbalance privacy-preserving federated
learning for decentralized fault diagnosis with
biometric authentication

Shixiang Lu, Student Member, IEEE, Zhiwei Gao, Senior Member, IEEE, Qifa Xu,
Cuixia Jiang, Aihua Zhang, Xiangxiang Wang

Abstract—Privacy protection as a major concern of the in-
dustrial big data enabling entities, makes the massive safety-
critical operation data of wind turbine, unable to exert its great
value because of the threat of privacy leakage. How to improve
the diagnostic accuracy of decentralized machines without data
transfer remains an open issue, especially these machines are
almost accompanied by skewed class distribution in the real
industries. In this study, a class-imbalance privacy-preserving
federated learning framework for fault diagnosis of decentralized
wind turbine is proposed. Specifically, a biometric authentication
technique is first employed to ensure that only legitimate entities
can access private data and defend against malicious attacks.
Then, the federated learning with two privacy-enhancing tech-
niques enables high potential privacy and security in low-trust
systems. After that, a solely gradient based self-monitor scheme
is integrated to acknowledge the global imbalance information
for class-imbalanced fault diagnosis. We leverage a real-world
industrial wind turbine dataset to verify the effectiveness of
the proposed framework. By comparison with five state-of-the-
art approaches and two non-parametric tests, the superiority of
the proposed framework in imbalanced classification is ascer-
tained. An ablation study indicates the proposed framework can
maintain high diagnostic performance while enhancing privacy
protection.

Index Terms—Privacy preserving, class-imbalance classifica-
tion, federated learning, wind turbine, fault diagnosis.

I. INTRODUCTION

NCREASINGLY stringent privacy protection legislations

and increasing data privacy concerns have brought un-
precedented challenges to conventional centralized training
models [1]. For fear of data leakage, data generating entities
(clients) are unwilling to transfer and share real-time data,
resulting in the mode of centralized data collection, storage,
and processing unsustainable [2]. In the industrial field, as the
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core asset of an enterprise, once the fault data of machinery is
illegal acquisition by competitors, the information of schedul-
ing and production capacity will be exposed, which may cause
unpredictable economic costs. To this end, a stringent data
protection regulation, that is, no private data is allowed to
leave local storage, is emerging in real indusries [3].

Biometric authentication, as a security technique to ensure
that only legitimate entities can access private data and defend
against malicious attacks, has been widely used in practice,
such as autonomous vehicles [4], smart devices [5], and
decentralized manufacturing industry [6]. Well-accepted bio-
metric authentication techniques include face recognition au-
thentication [5], iris recognition authentication, and palmprint
authentication [7], among which face recognition authentica-
tion moves away from sensor-based biometric authentication,
making it available for different purposes that previously
required specific sensors. Under the biometric authentication
gateway, innovative methodologies to reconcile data enabling
and privacy security has become an urgent need for academia
and industry [8].

Intelligent diagnosis of wind turbine promotes the transfor-
mation from traditional industry towards smart manufacturing
[9], [10], Recently, the rapid evolution of data-driven methods
in fault diagnosis have generated encouraging performance,
showcasing data-driven auxiliary systems can assist the op-
erators to achieve near-zero unplanned downtime and predic-
tive maintenance [11]-[13]. However, the decentralized data
caused by privacy preservation makes it difficult to realize
the method of centralized training with free data access.
Thus, as a nascent area of fault diagnosis, the concept of
privacy-preserving intelligent diagnosis is proposed to bridge
the gap between data empowerment and data protection. This
motivates us to realize efficient fault diagnosis of decentralized
industrial machinery while protecting privacy.

Federated learning (FL) grabs useful knowledge from de-
centralized data through collaborative model learning, en-
hancing data security, privacy and confidentiality [8], [14].
This paradigm is beneficial to centralized fault diagnosis shift
towards privacy-preserving intelligent diagnosis [3]. [15] pro-
pose a collaborative training framework based on convolution
neural network (CNN) and FL for bearing fault diagnosis.
Through two mechanical diagnosis cases, [16] validate that
the FL with dynamic validation methods can break the isolated
data island problem. [3] propose a federated transfer learning
method to address the problem of non-independent and identi-
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Fig. 1: The schematic of data information inferred by eaves-
dropping on updated parameters of FL.

cally distributed decentralized fault data. However, FL still has
various privacy issues. For example, [17] manipulate a model-
inversion attack that reverse engineering updated parameters
to reconstruct the instance. As shown in Fig. 1, although
each client data can only be accessed by biometric authen-
tication entities, eavesdroppers can still infer the distribution
of privacy data from the updated gradient. To this end, [18]
design a cryptography computing based FL scheme for fault
diagnosis in Internet of Ships. To prevent local updates from
being traced, Anonymous uploading and privacy differential
strategies are integrated into FL for industrial big data analysis
[11]. Although existing FL. methods are effective in privacy
preserving fault diagnosis, few research results are deployed
on wind turbines, because the global balanced data distribution
they assumed are far from the real scenarios [9].

In actual industrial applications, wind turbine works in
a normal state throughout the entire operating cycle, and
failures rarely occur during the operating phase. A research
survey provided by Svenska Kullagerfabriken (SKF), a global
industrial bearing leader, makes this issue more specific. It is
reported that in the whole life cycle of a machine, the ratio
of bearing fault/normal is approximately 1/180, which is a
typical class imbalanced problem. Under this situation, most
existing FL. methods may skew to the normal class which
accounts for a large proportion of the global training, while
the fault class which is more worthy of attention is likely to be
ignored because of its small proportion [9], [19]. Addressing
the issue of class imbalance can facilitate intelligent diagnostic
approaches to enable industrial applications. To this end, cost-
sensitive learning is adopted to diagnose imbalance faults
of wind turbines [20]. In [21], the authors propose a class
rebalancing method to detect blade icing. Additionally, the
local training network in each client may encounter over-fitting
problem caused by serious class imbalance data [22], thus
poisoning the global network and deteriorating the diagnosis
accuracy.

To address the issue of class imbalanced learning, a self-
balancing FL framework is proposed by rebalancing strategy to
relieve the imbalance of training data [2]. However, it increases
the computational burden and delays the update of local

training. [23] introduce a balanced cross entropy loss function
into the FL framework, which only uses shared parameters but
with laborious hyperparameter tuning. In contrast, [19] use
gradient information to infer global data distribution, which
is a promising method. However, the ground-truth gradient
of exposure may be tracked by eavesdroppers to infer local
client information. In addition, when a client with a small and
imbalanced dataset, the problem of gradient explosion may
occur. Enlightened by the good generalization of gradient noise
mechanism [24], we apply it to address the class-imbalance
issue in FL. Another implicit effect is that it provides strict
gradient preservation.

In this paper, we propose a novel class-imbalance privacy-
preserving federated learning framework, entitled CI-PPFL,
for fault diagnosis of decentralized wind turbine. For this
purpose, FL firstly learns the decentralized diagnostic knowl-
edge without sharing the private data. Then, a strategy for
proportionally updating shared parameters and a gradient noise
mechanism are incorporated to prevent tracking the gradient
and inferring the data distribution of the clients. Additional-
ly, a gradient self-monitor algorithm detects the imbalanced
classes, which dynamically reweights the loss via updating
the shared parameters. The effectiveness of CI-PPFL method
is investigated on an industrial wind turbine dataset. Our main
contributions are summarized as follows.

e A biometric authentication based federated learning
framework, namely CI-PPFL, is proposed to address
the privacy-preserving issues for fault diagnosis of wind
turbine. FL reduces privacy leakage caused by data
sharing, and parameter proportional update strategy and
gradient noise mechanism hinder gradient tracking and
information inference.

e A gradient self-monitor scheme for class-imbalanced
fault diagnosis is introduced as well. It acknowledges
the global imbalance and updates classification loss by
the aggregated gradient solely, without posing threats to
privacy.

o A wind turbine imbalanced dataset proves that the pro-
posed CI-PPFL method enables decentralized learning
on class-imbalance fault diagnosis problems. The ex-
perimental results show that the CI-PPFL can not only
enhance the privacy protection, but also significantly
improve the performance of dispersive system in dealing
with class-imbalance.

The remainder of this article proceeds as follows. In Section
II, we briefly review the related work about FL and class-
imbalance learning. Section III presents the proposed frame-
work for decentralized fault diagnosis. Section IV conducts the
state-of-the-art methods comparison, ablation study, sensitivity
analysis and security analysis on an industrial dataset. Section
V summarizes and concludes the article.

II. RELATED WORK
A. Privacy-preserving federated learning

With the ever-increasing concerns about data security, pri-
vacy protection has become a hot and significant issue. FL
distributing data-driven models to the clients for decentralized
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training, rather than centrally aggregating data, is regarded as a
promising approach for privacy confidentiality. In recent years,
FL has been widely used in data-sensitive real-world scenarios,
such as the next word prediction tasks on smartphone [25],
segmentation and classification of medical imaging [8], and
local governance in the setting of the COVID-19 pandemic
[26]. However, recent studies demonstrate that the classical
FL is not a completely privacy-preserving approach [27]. [17]
perform reverse attack engineering to reconstruct images from
shared parameters. To prevent shared parameters from being
tracked and used to infer the data distribution of the clients,
additional privacy-enhancing techniques should be integrated
into FL.

The techniques for privacy-enhancing can be grouped into
three categories: anonymization, secure aggregation, and dif-
ferential privacy (DP). First, anonymization or pseudonymiza-
tion is utilized to mask the critical data before they are
transmitted to the analysis site. For example, [11] anonymize
the client participating in the update, so that the eavesdropper
cannot map the shared parameters to the client, thus success-
fully preventing the inference of the client data. Second, se-
cure aggregation realizes parameter transmission in encrypted
state by homomorphic encryption [1]. [8] propose a secure
aggregation FL framework for non-trivial clinical tasks, and
its security is verified in a gradient-based model inversion
attack. Third, DP provides quantifiable privacy guarantees by
adding a carefully calibrated noise to the gradients [28]. After
performing several tasks of medical image segmentation, [27]
conclude that the FL with strict privacy guarantee can still
achieve excellent classification performance.

B. Class-Imbalance learning

The main challenge of decentralized learning is that the
training data on each client is class-imbalance, which results
in a deterioration in learning accuracy. The authors are mainly
concerned with global imbalance in decentralized learning,
that is, the data collection across all clients is class imbalanced.
It is quite common in fault diagnosis because faults are rare for
every machine, and in most cases a machinery works normally
[9]. To tackle the challenge, several progresses have been made
in class-imbalance learning. We summarize relevant studies
into three categories: data-level, algorithm-level, decision-
making-level methods. Data-level method manipulates sample
distribution, such as manually rebalancing the training by over-
sampling minority classes or under-sampling majority ones
[22], [29]. [2] propose a self-balancing FL framework for
mobile systems, in which a rebalancing technique is adopted
for each client before training begins. In addition to computa-
tional burden, this kind of method may also encounter the mis-
match between local imbalanced and global imbalanced [19].
Algorithm-level method modifies the learning procedure to
make the classifier sensitive toward minority classes, including
meta learning [30] and cost-sensitive learning [9], [29], [31].
Among them, re-weighting misclassification loss via inverse
class frequency [31] and modifying the loss function are two
promising ways. However, aggregating the class frequency of
each client may pose threats to privacy. Such as, in [23], a
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Fig. 2: The proposed CI-PPFL framework.

balanced cross entropy loss is integrated into the FL frame-
work to solve the class imbalance problem while reducing
privacy leakage. Decision-making-level method adjusts the
discriminant probability and tries to move the output threshold
toward minority classes [29]. However, defining an optimal
cut-point value in multi-classification tasks requires much prior
knowledge, which is difficult for decentralized learning.

III. METHODOLOGY

In this section, we present the CI-PPFL framework for
fault diagnosis. Its principle is shown in Fig. 2. Specifically,
biometric authorization technique is adopted to allow only a
legitimate server to access local clients. Then, before being
sent to logic unit, the locally well-trained parameters will add
an appropriate noise mask to prevent the leakage of ground-
truth parameters. Further, the logic unit randomly uploads
the processed parameters to central server, disturbing the
parameter tracking. After that, the uploaded parameters are
aggregated to update the global model, and a monitor is used
to discover the imbalanced knowledge for modifying the loss
function. Finally, the updated parameters and loss function are
broadcast to each biometric authentication client for the next
iteration.

A. Problem definition

We focus on decentralized fault diagnosis of wind turbine
where the classes of instances are severe imbalanced. Let
the decentralized diagnosis system S consists of C' biometric
authentication clients. Any client 5 contains the same feature
space X and label space y = [1,--- , Q], where y is a skewed
distribution. If we feed the i-th instance X; of the class ¢
into a predefined multi-layer feed-forward neural network,
whose output of last hidden layer contains n neurons. The
corresponding output of the hidden layer can be denoted
as H! = [hi,,---,hi,], the output of the last layer is

1 n
O} = |of, - 70;‘1,42] We denote the whole training as
O} = f(W;,X,), where f is the map function and W;
is the overall parameters of the network. The connection
weight from the last hidden layer to the output layer is
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W, = [Wi,Wa, -+ . Wg]. At each iteration ¢, the back-
propagation algorithm is used to calculate the gradient of loss
VLsur (W;(t)) subject to W (t), where Lgasr, (t) is a class
imbalanced self-monitor loss function. Additionally, we denote
the global parameters in FL server as W (t).

B. PPFL network architecture

In order to prevent the private diagnostic data being illegally
accessed by eavesdroppers and indirectly leaked via parameter
updates while training, we design a PPFL network, which
contains the following six steps:

1) Access authorization: To ensure the security of private
diagnostic data, biometric face recognition technology is em-
ployed. The whole biometric authentication process can be
divided into two stages: enrollment, and recognition. In the
first stage, the biometric template data describing the biometric
characteristics of all operators is collected and constructed by
the biometric collector and stored in local biometric database.
In the recognition stage, the newly acquired personnel biomet-
ric data is compared with the enrolled one, and a matching
score is generated. Then, the matching score is used by the
system to judge whether the user currently trying to access
is a legitimate one. The communication between the central
server and each local client can be carried out only under the
authorization of their legitimate personnel. In this case, only
the authorizing central server can access local clients for FL,
thus defending against malicious access by eavesdroppers.

2) Model initialization: First, we build the same network
structure for the global model of the FL server and the local
model of each client. Then, the global parameters W (1)
can be obtained by random initialization. Meanwhile, in the
absence of global information, we assume that the classes are
in global balanced and adopt the cross entropy (CE) loss with
the form

Lsnr(1) = —plog(0), (D

where p is the class label, O is the predicted probability.

3) Parameters broadcast: The FL sever broadcasts the
global parameters and Lg,z, to each client j. Then the local
model can update its own parameters W (t) and the loss
function by

(W;(t), Lj(t) = (Wa(t), Lsmr(t)) - (2)

4) Decentralized training: Focusing on the private diag-
nostic data D; in any client j, the mini-batch gradient descent
algorithm is used for decentralized learning. Specifically, we
first randomly divide the data D; into B; parts with same size
Nb;, and the loss of each part b can be obtained by

Nb;
1 J

Lis(t) = w5 D L (i, f (W), X)) - 3)
Ji=1

Then, the parameter W; ,(¢) is updated by
Wipi1(t) = Wip(t) =1,V Lju(t), @

where 7; is the learning rate of client j, Such updates are
repeated B times in each round, and the training of client j
will stop at a predefined round N ounqd. The final parameters
W p(t) will be regarded as well-trained parameters W (t).

5) Parameters mask and upload: Before being sent to
the FL server, two parameter mask strategies are integrated
into the trained parameters W) (t) to prevent them from
being leaked for information inference. First, we introduce the
method of [24] and [32] to our proposed framework by adding
Gaussian noise. The strategy for Gaussian noises mechanism
can be formulated as

W (t) = Wr(t) + AW,V (1), (5)
where WNs¢(¢) is a set of noise with mean 0 and scale
of Wr(t) (ie.. 0® = 52 (W7 (t))). A controls the ratio of
noise. For each local model updated in parallel, the overall
parameters of the system S can be expressed as W*(t) =
{WO*(t), Wl*(t), I WC*(t)}. Then, a logic unit is adopt-
ed for random sampling of the overall parameters W+ (t). The
selected subset Wy (t), where Wiy (t) € W*(t), will be
uploaded for global updates.

6) Global parameter aggregation: The FL server aggre-
gates the selected Wsub(t) by federated averaging (FedAvg),
and the update of the global parameters can be denoted as

1 M
Wa(t+1) = 57> W k(t), (6)
k=1

where M and Wsub,k(t) denote the cardinality and element
of the set W, (t), respectively.

C. Self-monitor scheme for class imbalance

To address the global class imbalance issue, a self-
monitoring scheme is designed to infer the class distribution
of decentralized systems with uploaded Wy(t). It is worth
noting that the monitor only pays attention to the connection
weight from the last hidden layer to the output layer of the
global model W¢. Assuming that instances in the same class ¢
induce similar OY, their gradient should be very similar, which
can be denoted as

\Wh

4= VLA, (7)

where VL;{M is the gradient of class ¢ with respect to the
i-th instance X; in batch b for any client j, and VL4 denotes
the average value of the gradient of class g. In this case, the
gradient induced by class ¢ in one global epoch is

1 M ” "?,b
_ j q ) .
Aglobal W, = M j:E 1 —ij ZEZI VLj,b,i - Bj - Nj round
?

M

URSa7i N, a
=1 VILa 1
MV <j1 Nb, o

Bj : Nj,round
®)

where ng. , Tepresents the number of instances for class g of
batch b in client j. In the framework of FL, the values of 7,
Nb;, and Nj rounq are usually the same in any client, i.e.,
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n=mn = = nas. Thus, we can rewrite the Eq. (8) as
. M
-t . . . a9 . B.
qlobaqu = _M “Nb Nyound - VLA J_Zl (nj,b BJ)
n — = ’
_ q
= A Np Nrewna VLT Z (N7)
)
where N 7 = - B; denotes the number of instances of

class q 1n chent _] Eq (9) indicates that if we obtain the
VL4 or AW, (AW, = —nV L4), the global instance number
(N9 = Zﬁl (N7)) can be inferred properly.

Leveraging this finding of Eq. (9), a monitor shown in Fig. 2
is able to estimate the class ratio of global instances through
a small size auxiliary data D,, which is voluntarily shared
by any client or actively synthesized by a credit model. In
data D,, each class (g,) has the same number of instances,
denoted as n®"® = n9+, When the instances of each class g,
are fed into the global model solely, its weight update AW,
under nd« instances can be obtained by the monitor. Then, the
average weight update generated l% each g, instance can be
obtained by AW, = AW, = . Therefore, the global
weight updates can be formulated as

Q
AWa(t+1) = Agovu We
qg=1
Q
_ Nrnund (qu)
M - Nb £
q=1
N, C /AW,
_ round Z ( da Nq)
M -Nb 2=\ naa
qa=1
Q
 Newd  AWq, 4 (Zpazl (AWpa)—Aan) -
= Mo (AW oY
M- Nb'_ naw nx - (Q —1)
generated by ¢
generated by other classes
(10)
where J]Cf]'f’”“d is a constant, denoted as Const.

= AW,ihers can be regarded as
the average weight update generated by a non-q instance.
Zp NP — N4 is the total number of non-g instances.

In Eq. (10), expect for N9 and ZQ NP, all the other
variables are known. Therefore, Eq. (167) can be rewritten as

Q
AWg(t + 1) = Const - (Awqa "N+ AWoers - (Z NP — N") >
p=1

Q
= Const - ((Aan — AWothers )

N

Then, the overall sample size of class ¢ in all clients can be
estimated by

AWg(t+1) ANy Q
WD) _ Ry - 2, NP

N = e
(Aan - AWmhers)

(12)

Based on Eq. (12), when all clients upload their sample
size (21?:1 NP) in the t-th global training, the monitor can

N1 + Avahers Z Np) .

estimate the number of instances of each class [N 1....N Q]
in the decentralized system. Using the reverse weighting
strategy of sample frequency, the class imbalance problem can
be solved effectively. The sample size uploaded by each client
may have a small privacy cost, but we believe it is affordable
to effectively address the class imbalance in decentralized
system. The evidence from [33] shows that sharing only the
total sample size across all classes (Zgzl N JP ) is much less
risky than sharing the sample size of each class (N J’-’ ), and the
privacy can be protected by secure aggregation.
Then, the class imbalanced ratio of ¢ can be defined as

L L
(=)
Q—1
After careful calculation of the imbalanced ratio of each
class with Eq. (13), the monitor can obtain the overall class
imbalanced vector at the ¢-th global training (denoted as
R, = [R!,---, R?)). We follow the self-custom loss function
in [31], and de31gn a self-monitoring loss function as

(1 + cd:?t> -p - log(0),

where « is a hyper-parameter with default value of 0.1 in this
study. After that, Lgasr and the updated global parameters
W will be broadcasted to each client for the discretization
training of the next epoch.

13)

Lsmp(t+1) = — (14)

D. Algorithm

We present the solution to the proposed framework in
Algorithm 1.

) Algorithm 1: The pseudo-code of the proposed CI-PPFL.

Input: Number of clients (C), training set ([D1, - - DC]) maximum
epochs (Eep), auxiliary data (D), fraction of noise ()\) upload
fraction of f cal weight (u), the number of local training rounds
(Nzound) learning rate for local update (7)), local batch size

Output: Learned parameters (W, Lsasr)

1 Authorized FL server <— Identify access authorization server with
biometric authentication

2 Processed [D1,---, D¢] < Pre-process [D1,- -+, D] by fast
Fourier transform and reshaping

3 Net <— Construct a CI-PPFL framework

4 (Wg(1),Lspar(1)) + Initialize global weight W (1) and loss

function Lgasr (1

for r € [1, Ecp| do

for each client j € [1,2,--- ,C| parallelly do

Bj <+ split D; to same size Nb

for each round r € [1,2,-++ , Nyound] do

for b € B; do
| W;(t) < W;(t)

en

-nVL;u(t)

end

n Noi

W () < add AW N2 (t) to W (t)
Wiup(t) < random select [W((t), -,

W ()] at the
ratio of p

end

We(t + 1) « aggregate W, (t) with Eq. (6)

17 for instances of class qq, € Dg do

18 \ Wy, < calculate the weight change caused by gq
end

20 [RO, .++, R?| + measure imbalanced ratio with Eq. (13)
Lsyr (t + 1) <— update LS]VIL(t) with Eq. (14)

(Wa(t+1), Lo (t + 1)) < broadcast updated parameters for
local training

end
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Fig. 3: Panoramic view of wind turbine nacelle and horizon-
tally installed sensor.

IV. EXPERIMENTS
A. Experimental Data and Setup

1) Data: The raw vibration data are collected from five bio-
metric authentication wind farms located in Kangbao, Hebei
Province, China. The vibration sensors shown in Fig. 3 are
installed horizontally at the bearing end of a 1.5 MW doubly-
fed induction generator with the sampling rate of 20 kHz.
Each 0.2-second snapshot contains 4096 points. The snapshot
is repeated every 2 h. During the 5-year monitoring of wind
turbine bearings in five wind farms, a total of 213 run-to-
failure trajectories are detected, including 122 bearing outer
race faults (BOF), 45 bearing inner race faults (BIF), 23
bearing cage faults (BCF), and 23 bearing rolling element
faults (BRF). In each kind of fault trajectories of any wind
farm, we randomly select 1000 snapshots for this study.
Finally, 1000 normal instances are also randomly selected in
each client to form our overall dataset together with selected
fault instances.

Before the data is fed into the CI-PPFL method for training,
two pre-processing procedures are conducted. First, the fast
Fourier transform technique is used to convert the signal in
each snapshot from time domain to frequency domain. Owing
to the symmetry of the spectrum, the first 2048 points of each
spectrum form an instance. Second, the instance is reshaped
into a 32x64 matrix to increase diagnosis efficiency.

2) Parameter settings: In our experiments, both the global
and local models adopt the standard ResNet18 [34] as back-
bone. It contains 4 blocks and the number of input channels
is 64. In each block, all kernel sizes are [3x3]. the stride is
1. Before the fully connected layer, an average pooling layer
with the kernel size [2x2] is used to reduce the number of
parameters. Then, after all the pooling results are flattened and
connected to a dense layer with 512 neurons, it will be fed into
the output layer with 1 neuron to diagnose the type of bearing
fault. The adaptive gradient algorithm (Adagrad) is used to
optimize the local model. The auxiliary data is composed of
64 instances randomly selected from each class in the overall
dataset. Some of crucial hyperparameters are shown in Table
I. We randomly collect 10% of the data from each client for
the performance test of the CI-PPFL framework, and the rest
for the training of each local model. Specifically, in the local

training phase, we randomly split the training data of each
client into training set and validation set with the proportion of
4:1. This local training process is supposed to take 20 rounds,
but to improve the training efficiency and avoid over-fitting,
an early stopping trick is adopted. That is, in the case where
there is no improvement for 5 consecutive times, the training
is terminated. Without losing generality, we successively select
[BCF], [BCF, BRF], [BCF, BRF, BIF] and [BCF, BRF, BIF,
BOF] as minority classes, and the remainders as majority
classes. Given the randomness of network initialization, all
reported results are the average of five independent trials.

In training CI-PPFL, the PyTorch framework is used. All
Python codes are run on a Genuine Intel (R) (two-core
1.8GHz) processors with 32 GB RAM and NVIDIA GeForce
GT 720 installed.

TABLE I: The values of crucial hyperparameters.

Hyperparameter  value Hyperparameter value

maximum epochs 60 Local training rounds 20
Local Batch size 32  Fraction of noise 0.01
Fraction of upload 0.8 Learning rate 1073

3) Performance metrics: We appraise the performance of
the proposed CI-PPFL method with three metrics: multiclass
area under curve (AUC), the accuracy of overall classes
(Acc.0), the accuracy of minority classes (Acc.m). First,
as the most popular performance metric in class-imbalance
learning, the AUC varies the decision boundary to generalize
all possible trade-offs between the false and true positive rates
of a classifier, which is defined as

1.2 =
AUC = 3 -sinaﬂ- . ((Z T ~7“i+1> +rg '7“1> , (15)
i=1
where 71,72, -+ ,7g are pairwise AUC scores calculated by
varying the classes as one versus all, and the values are sorted
as rp < 1rg < -+ < 1, @ represents the total number of
classes. Acc.o and Acc.m represent the accuracy of the overall
and minority classes, respectively. They can directly reflect the
classification performance of the model for critical classes with
fewer instances, and are in general defined as

-9 | True Positive;
ZiQ:1 (True Positive; + False Positive;)

Acc.o = ,  (16)

K ..
> True Positive;

S°% | (True Positive; + False Positive;)’

Acc.m = 17
where K is the number of minority classes.

To quantitatively evaluate parameter privacy, two commonly
used metrics, called normalized mutual information (NMI)
[35] and variance difference score (VarScore) [36], are adopt-
ed. NMI is a normalization of the Mutual Information (MI)
score to scale the results between O and 1. Its definition is
given by

I(P; Z)
H(P)+H(Z)’
where P and Z represent the original attribute and distorted
attribute of the signal, respectively. H(-) is the information

NMI(P, Z) =2 - (18)
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entropy, and I(P; Z) is the MI between P and Z. The closer
NMI is to zero, the higher level of privacy preserving provided
by Gaussian noises mechanism.

VarScore measures the variance difference between P and
Z, which is defined as

Var(P — Z)
Var(P)
For this metric, the larger the VarScore, the higher level of

privacy preserving.

VarScore = (19)

B. Comparison with benchmark methods

To illustrate the effectiveness of the proposed CI-PPFL
method in addressing class-imbalance, we compare it with
five benchmark methods, including the standard PPFL with
cross entropy loss (denoted as PPFL-CE) [11], two data-level
methods called random oversampling based PPFL (PPFL-
ROS) and synthetic minority over-sampling technique based
PPFL (PPFL-SMOTE) [2], and two algorithm-level methods
called PPFL with focal loss (PPFL-Focal) [23] and PPFL with
gradient harmonizing mechanism (PPFL-GHM) [37]. Note
that the PPFL-CE method does not contain any imbalance
classification technique, and serves as the baseline method.
Both two data-level methods manually rebalance training sam-
ple through data manipulation, which imposes computational
burden. Both PPFL-Focal and PPFL-GHM concerns minority
classes by modifying the loss function, and the latter is
regarded as a frontier benchmark method. To illustrate the
performance of each model in dealing with imbalanced data
clearly, our comparative experiments are carried out on our
industrial data with four imbalanced ratios (IR) with 1:100,
1:20, 1:10, and 1:5, respectively.

The comparison results are listed in Table II. It can be
seen that when the situation of class imbalance is getting
serious, the performance of each method degrades. Moreover,
the PPFL-CE method performs the worst since it lacks the
corresponding technique to deal with class-imbalance. Both
PPFL-ROS and PPFL-SMOTE can indeed improve the di-
agnostic performance by adding the number of instances of
minority classes, especially when the training set is seriously
out of balance. Regarding algorithm-level benchmark methods,
PPFL-GHM performs better than PPFL-Focal. Among all
the compared methods, the proposed CI-PPFL method is the
prominent, especially in the classification of minority classes.

Statistical tests, such as the Diebold Mariano (DM) test and
Wilcoxon Paired Signed-Rank (Wilcoxon) test, can provide
evidence to the claim that the CI-PPFL is superior to the
five benchmark methods. Specifically, we pair CI-PPFL (M1)
with each of the five benchmark models (M2) and conduct
the two tests. The argument ’alternative’ in both two tests is
set to be ’less’. In other words, the alternative hypothesis is
that M2 is less accurate than M1. In Table II, DM test and
Wilcoxon test are conducted at the 10% significance level, and
the entries which are significantly worse than the proposed CI-
PPFL are marked as * and I, respectively. In almost all the
cases, the proposed CI-PPFL method significantly outperforms
PPFL-CE, PPFL-ROS, and PPFL-Focal. Meanwhile, CI-PPFL
is significantly better than PPFL-SMOTE when IR is 1:5.

(a) IR-1:100 (b) IR-1:20

Auc Acco Acem aue Acco Acem
(¢) IR=1:10 () IR=1:5

00 00
AUC

Acco Acen AUC Acco
. SIT B Standard FL EEE CIFL-NR N CIFL-R BN CI-PPFL

Fig. 4: The comparison of performance on different variants.

It also has a significant advantage in addressing minority
classes compared to PPFL-GHM when the sample is seriously
imbalanced.

C. Ablation Study

To evaluate the role of each component of the proposed CI-
PPFL, an ablation study is conducted. Specifically, we consider
the following model variants.

o Self-isolation training (SIT). This variant only trains the
network based on the local data within one client, and
clients are completely isolated from each other.

o Standard FL. The standard FL method that ignores class-
imbalance and privacy leakage caused by gradient trace-
ability.

o CIFL-NR. Our class-imbalanced self-monitor scheme is
integrated into the standard FL, without the mechanisms
of Gaussian noise and parameter ratio update.

e CIFL-R. This variant adds a Gaussian noise mechanism
to the CIFL-NR.

For a fair comparison, all variants use ResNetl8 as the
backbone, with the same parameter settings as the aforemen-
tioned CI-PPFL. We show the evaluation results in Fig. 4,
where the error bar represents the standard deviation. Some
interesting findings emerge. First, compared with the self-
isolation training method, the FL based methods can im-
prove the diagnostic performance through parameter sharing
and aggregation. Second, the self-monitor scheme for class-
imbalance can significantly improve the accuracy of FL for
minority classes without poisoning the overall performance.
Third, we note that when IR is 1:100, the CIFL-NR is
slightly superior to the CIFL-R. It may indicate that adding
Gaussian noise to the training parameters for the purpose
of privacy protection results in the diagnostic performance a
slight decline, when the sample is seriously out of balance.
This phenomenon is reversed when IR is 1:10 and 1:5. In
addition, comparing the results of CI-PPFL and CIFL-R, we
find that their difference is not obvious except when IR=1:100,
the accuracy of CI-PPFL is slightly lower than that of CIFL-R.

D. Sensitivity Analysis

In this section, we conduct a sensitivity analysis for several
crucial parameters, including the pre-processing methods, the
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TABLE II: Performance comparison among various methods on the real-world industrial data.

Model IR=1:100 IR=1:20 IR=1:10 IR=1:5
AUC (%) Acc.o (%) Acc.o (%) AUC (%) Acc.o (%) Acc.o (%) AUC (%) Acc.o (%) Acc.o (%) AUC (%) Acc.o (%) Acc.o (%)

PPFL-CE 73.99*F  52.14*F  43.27*F 80.17*F  56.90*F  53.49*F 82.84*F 58.87*F  54.49*F 83.25*T  57.89*T  54.63*F
PPFL-ROS 88.82 62.00 46.00** 88.94 67.49 58.35*% 91.41 70.89%  64.83*F 91.55*F  71.91*%  66.18*F
PPFL-SMOTE  85.80 64.52 49.73 88.78%  67.17 59.89 91.56 71.56 65.72 91.85%F  72.06*%  67.34*%
PPFL-Focal 74.85*F  50.21*F  47.61*F 85.64*F  61.18*F  55.66*F 83.54*F  62.49*%F  59.24*% 83.90*% 61.02*%  58.18*F
PPFL-GHM 84.45 58.72 49.08*% 88.75%  67.85 59.30*% 90.63 71.39 65.43% 91.63*  72.26 67.72
CI-PPFL 81.48 58.25 49.89 90.51 68.56 59.89 91.77 71.50 66.45 92.22 72.64 67.85

Notes: boldface represents better result in each column. * and I indicate that the difference between marked method and the proposed method is statistically

using DM test and Wilcoxon test at the 10% significance level, respectively.

AUC Acc.o Ace.m

i STFT RI RII Norm STFT RI RII Norm STFT RI RI Norm

Pre-processing methods Pre-processing methods Pre-processing methods

Fig. 5: Sensitivity analysis of the pre-processing methods.
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Fig. 7: Sensitivity analysis of the fraction of noise (\).

AUC Acco Acem AUC Acc.o Acem
= 3 o o = Fy=m Ep—— T R ———— e —— —
= — — 2 - — ot e gt S Aau St St SRS B R - =
090 |+ moo e R R - o gt e = og | T s |ETEEETT L
-7 e 06 { T % 090 -
AT 065 1577 P - Wi - wii & i
s R0 o120 0.60 Ret20
085 . i— % - 065 | = =
S ¥ s o =4 ~
- 0.60 05 —— 0.85 0.55
_____ P ) L
- nd = - ... | 060
0.80 e 055{ - o NS . . _.—*| 050 e——e——e
—~ e 04 Lezim— - - g g ——— o
02 04 06 08 10 02 04 06 08 10 02 04 06 08 10

Number of client (C) Number of client (C) Number of client (C)

Fig. 6: Sensitivity analysis of the number of clients (C).

number of client (C'), the fraction of noise (\), the fraction of
parameter update (u), the learning rates, the batch sizes, and
the backbone networks.

1) Pre-processing methods: Fig. 5 shows the comparison
results across four data pre-processing methods: (a) convert the
raw signal into two-dimensional time-frequency domain signal
through Short-time Fourier transform (STFT); (b) reshape the
frequency domain signal processed by fast Fourier transform
into a 32x64 matrix (denoted as RI), and a similar trick can
be found [38]; (c) reshape the frequency domain signal into
a 64x32 matrix (denoted as RII); and (d) normalize the two-
dimensional matrix generated by RI (denoted as Norm). It
can be seen that STFT is inferior to the other three methods.
One possible reason is that it is difficult to fully extract
vibration information of variable frequency with a fixed-
length window. Methods RI and RII have similar diagnostic
performance, indicating no significant difference between the
various reshaping methods. Normalization brings a certain
performance improvement in this study. However, it requires
each client to share the maximum and minimum values of its
vibration data, which has the risk of privacy leakage.

2) Number of clients (C'): Fig. 6 shows the performance of
the proposed CI-PPFL method under different client numbers.
It is obvious that the diagnostic accuracy of CI-PPFL does
improve with the increase of client numbers. It indicates
that the proposed framework has the ability to learn the
decentralized knowledge of wind turbine, even though the
local data cannot be communicated and shared.

Fraction of parameter update (L) Fraction of parameter update (L) Fraction of parameter update (1)

Fig. 8: Sensitivity analysis of the upload fraction of local
weight (u).

3) Fraction of noise ()\): Fig. 7 illustrates the effect of
noise parameter A\, which controls the ratio of ground-truth
signal to random noise. Small A\ can maintain the excellent
diagnostic performance of the proposed framework. However,
when A = 0.1, the three metrics dramatically drop. It shows
that the added noise is too loud and harms the proposed
framework. Empirically, we recommend A = 0.01 for the CI-
PPFL method.

4) Upload fraction of local weight (1): Fig. 8 shows that
the upload fraction of local weight 1 has little effect on the
performance of the CI-PPFL. To make a trade-off between
privacy protection and iterations, we choose ;1 = 0.8 in the
proposed framework.

5) Batch sizes: Fig. 9 shows that as the batch size increases,
the performance of the proposed framework degrades on all
four types of imbalanced data. This means that when the batch
size is small, it may be more suitable for fine-tuning the model
parameters, but it brings the burden of increasing the number
of iterations. In this study, when the batch size is 32, a good
trade-off between computational efficiency and accuracy of the
proposed framework can be achieved.

6) Learning rates: Fig. 10 shows that the difference in
the overall performance of the proposed CI-PPFL with four
different learning rates is very small. Only when the learning
rate is 0.0001, the proposed framework gets slightly worse.
One possible reason is that the learning rate is too small to
get rid of the suboptimal solution. Empirically, we recommend
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Fig. 11: Sensitivity analysis of the backbone networks.

the learning rate of the proposed framework is 0.001.

7) Backbone networks: The performance comparison be-
tween the shallow feed-forward network, namely multilayer
perceptron (MLP), one-dimensional convolutional neural net-
work (ID-CNN) [39], and the deep ResNet18 as the backbone
network is shown in Fig. 11. As we can see, the ResNet18-
based framework significantly outperforms the MLP-based
ones. Except for the Acc.m metric with imbalanced ratios of
1:20 and 1:10, the performance of ResNetl8 is similar to or
better than 1D-CNN as well. We recommend the feed-forward
network with deep feature extraction as the backbone network
in CI-PPFL, e.g., ResNetl8.

E. Security Analysis

In this section, we first quantitatively evaluate the security
of parameter privacy by different fraction of Gaussian noise
(A). The comparison results are shown in Fig. 12. It can be
seen that under different imbalanced ratios, the NMI decreases
continuously with the increase of \. This indicates that the
more Gaussian noise added, the higher the level of parameter
privacy protection. The results from VarScore also support this
finding. In addition, we note that when A\ = 0.1, the Gaussian
noise mechanism makes the uploaded parameters have a large
variance with the original parameters, but may sacrifice a
certain prediction accuracy (see Fig. 7).

Additionally, to analyze the security more thoroughly, we
also conduct a qualitative comparison between the proposed
framework and the existing central training [9], conventional
FL [15], and DP-FL [11] in three security attributes, including

NMI VarScore
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Fig. 12: Security analysis of the fraction of noise (\).

data privacy, parameter privacy and anti-malicious access.
The comparison results are presented in Table III. It shows
that the FL-based framework is able to preserve data privacy
compared with central training. Differential privacy technique
can avoid the parameter privacy risk, but there is still the
risk of malicious access. In contrast, our proposed framework
uses biometric authentication technique, which only authorizes
legitimate entities to access private data and defend against
malicious attacks, thus providing more comprehensive securi-

ty.

TABLE III: Security comparison among various learning
frameworks.

Frameworks Data privacy Parameters privacy Anti-malicious access
Central training No No No
FL Yes No No
DP-FL Yes Yes No
Proposed framework Yes Yes Yes

V. CONCLUSION

A class-imbalance privacy-preserving federated learning
framework, namely CI-PPFL, for fault diagnosis of decen-
tralized wind turbine is proposed. FL firstly learns the de-
centralized knowledge of isolated biometric authentication
clients without data sharing, thus alleviating the risk of privacy
leakage. Then, two privacy-enhancing techniques, the gradient
noise mechanism and parameter proportional update strategy,
are designed to hinder gradient tracking and information in-
ference. Besides, a gradient self-monitor scheme is integrated
into the FL to acknowledge the global imbalance information
for class-imbalance fault diagnosis.

The proposed CI-PPFL method is evaluated on a real-world
industrial wind turbine dataset. Its superiority in addressing
class-imbalance issue is validated by compared with several
state-of-the-art methods. Meanwhile, the Wilcoxon test and
DM test make its advantage ascertain. Then, an ablation study
indicates the two privacy-enhancing techniques will not harm
the diagnostic performance. After that, the sensitivity analysis
details the impact of crucial parameters.

Future research in partial federated transfer learning for
imbalance issue is warranted. The proposed CI-PPFL just
focus on the case that the label spaces of each client are
identical. The proposed framework may not work properly
when encountering heterogeneous label subspaces. The partial
domain adaptation technique has the ability to reduce the space
discrepancy of different clients. In addition, the fault diagnosis
scheme integrating wind turbine vibration data and SCADA
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data will become a core of our follow-up study. In this regard,
these improvements can broaden the application scope of CI-
PPFL in practical engineering.
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