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On the Limitations of Hyperbola Fitting for
Estimating the Radius of Cylindrical Targets in
Non-Destructive Testing and Utility Detection

Iraklis Giannakis, Feng Zhou, Craig Warren, and Antonios Giannopoulos

Abstract—Hyperbola fitting is a mainstream interpretation

technique used in ground penetrating radar (GPR) due to

its simplicity and relatively low computational requirements.

Conventional hyperbola fitting is based on the assumption that

the investigated medium is a homogeneous half-space, and that

the target is an ideal reflector with zero radius. However, the

zero-radius assumption can be easily removed by formulating

the problem in a more generalized way that considers targets

with arbitrary size. Such approaches were recently investigated

in the literature, suggesting that hyperbola fitting can be used

not only for estimating the velocity of the medium, but also for

estimating the radius of subsurface cylinders, a very challenging

problem with no conclusive solution to this day. In this paper,

through a series of synthetic and laboratory experiments, we

demonstrate that for practical GPR survey, hyperbola fitting is

not suitable for simultaneously estimating both the velocity of

the medium and the size of the target, due to its inherent non-

uniqueness, making the results unreliable and sensitive to noise.

Index Terms—Ground-penetrating radar, GPR, non-

destructive testing, utility detection, concrete, hyperbola fitting,

radius estimation, utility detection, rebars.

I. INTRODUCTION

G
ROUND Penetrating Radar (GPR) has been extensively
used in various fields, from non-destructive testing and

landmine detection to glaciology and environmental science
[1]. Two of the most mainstream applications of GPR are
utility detection and concrete inspection [2]. These applica-
tions, although different in many ways, they share the same
objective, which is to detect cylindrical targets in relatively
homogeneous half-spaces [3], [4].

To that extent, for both rebar and utility detection, similar
signal processing approaches have been suggested over the
years to remove the antenna cross-coupling, increase the
overall signal to clutter ratio, and ultimately enhance the
reflected signal from the subsurface cylindrical targets [5].
Apart from processing, various interpretation methods have
also been suggested, from conventional radar approaches [6]
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Fig. 1. A) The generic scenario under consideration in hyperbola fitting. B)
The characteristic hyperbolic arrival times of cylindrical targets.

to full-waveform inversion [7] and machine learning [4]. One
of the most frequently used interpretation approaches in GPR
is hyperbola fitting, a simple and elegant method that utilises
the characteristic hyperbolic signatures of cylinders to infer
their depth and size [8]–[12], and the bulk velocity of the host
medium [1].

Different methods have been suggested for implementing
hyperbola fitting [13]. Graphical representations via trial and
error are extensively used in commercial GPR processing
softwares [13]. More advanced methods like Hough transform
[14] and probabilistic fitting [15] have also been successfully
applied; and recently machine learning has been used for auto-
matically detecting and characterizing hyperbolas in processed
radargrams [16], [17]. All of these methods are based on the
same assumptions that the measurements are taken perpen-
dicular to a cylindrical target buried in a homogeneous half-
space. Most importantly, all hyperbola fitting methodologies,
utilise only the shape formed by the individual arrival times of
the target reflections, without taking amplitudes into account.
As a result, conventional hyperbola fitting cannot be used
for estimating the dielectric properties of the targets [13]. In
this paper we argue that, for the level of accuracy needed
for practical engineering applications such as utility detection
and concrete inspection, and in the absence of any a priory
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Fig. 2. Utility detection: hyperbola fitting (4) for different levels of Gaussian
noise. 120 realisations of the optimization in (4) are executed for each level
of noise. The real {d,R, ✏r} are shown on the titles of the subplots. With
blue colour is the range of {d,R, ✏r} that equally fits the noisy data. It is
apparent, than even just 2% error can result to up to 500% error on radius
estimation, falsely estimating the radius of the pipe anywhere from 0 up to
0.6 m. This range includes the whole spectrum of utility sizes, adding no
additional information to what is already expected.

knowledge of the medium’s velocity, hyperbola fitting cannot
be used for estimating the radii of cylindrical targets neither.

II. HYPERBOLA FITTING

Conventional hyperbola fitting assumes that ground-coupled
GPR antennas move along the x-axis perpendicular to the
main axis of a cylindrical target buried in a non-magnetic
half-space with uniform permittivity distribution (Fig. 1).
Although hyperbola fitting can be modified to address non-flat
surfaces [18] and air-coupled antennas [19], nonetheless, the
scenario mentioned above is the most typical and mainstream
case study under consideration. Hyperbola fitting only utilises
the shape of the hyperbola, meaning that it is amplitude-
agnostic. Therefore, it is affected neither by the conductivity
of the medium nor the permittivity of the cylindrical target.
Consequently, hyperbola fitting cannot be be used to infer any
of those properties.

From Fig. 1, through some elementary geometry it can be
derived that, for small offset w, the two-way arrival time t (s)
of the target’s response is given by

t =
(DT +DR)� 2R

c0

p
✏r (1)

where c0 ⇡ 2.99 · 108 (m/s) is the velocity of light in free
space, R is the radius (m) of the cylindrical target, ✏r is the
relative permittivity of the homogeneous non-magnetic half-
space, and DT and DR are the distances (m) from the center
of the target to the transmitter and the receiver, respectively.
It is easy to show using Pythagoras theorem that

DT =
p
(x+ w � x0)2 + (d+R)2 (2)

DR =
p
(x� w � x0)2 + (d+R)2 (3)

where x is the position of the mid-point of the GPR transmit-
ting and receiving antennas (m), x0 is the projection of the
center of the target to the x-axis (m), 2w is the distance (m)
between the transmitter and the receiver, and d is the cover
depth (m) of the cylindrical target.

The first step in hyperbola fitting is to pick the arrival times
T 2 Rn in n different points x = [x1, x2, x3...xn]. This
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Fig. 3. Three almost identical hyperbolas with different {d,R, ✏} are plotted
together to illustrate the non-unique results of hyperbola fitting in the presence
of noise. Solid line: d = 1 m, R = 0.1 m, ✏r = 10; circles: d = 0.97 m,
R = 0.2 m, ✏r = 10.6; stars: d = 0.91 m, R = 0.4 m, ✏r = 12.1.

can be done manually, although various automatic approaches
are also available [20]. Using (1)-(3), we can calculate the
synthetic arrival times t 2 Rn for these x 2 Rn values subject
to a given set of {x0, d, R, ✏r}. Given a set of real (T) and
synthetic (t) measurements, we can express hyperbola fitting
as an optimization problem to find the best {x0, d, R, ✏r} that
minimize the summation of the squared differences between
the real and the synthetic arrival times, as described by

argmin
d,R,✏r2R

(t � T) · (t � T)T (4)

In order to avoid local minimal and potential optimization
plateau [16], a hybrid approach is used here that combines
particle swarm optimization (PSO) and convex optimization.
PSO, which is a global optimizer, is initially employed, and
the resulting {x0, d, R, ✏r} are then used as initial points to
the simplex method. The choice of PSO and simplex method
is arbitrary, the optimization in (4) can be executed using any
global optimizer (genetic algorithms, ant colony optimization
etc.) combined with any convex method (non-linear least
squares, gradient descent etc.).

III. NON-UNIQUENESS

In the following, we argue that conventional hyperbola fit-
ting as described in (4) is not reliable for estimating R, for the
level of accuracy needed in practical engineering applications
such as utility detection and non-destructive testing. Through a
series of numerical and laboratory experiments, we showcase
that even a small amount of noise makes the problem ill-posed
resulting to non-unique solutions. A minimum level of noise
is expected even in clinical datasets due to A) errors in the
digitisation of the hyperbola, B) non-homogeneous permittiv-
ity distributions, C) antenna positioning errors, D) surrounding
clutter, E) antenna noise and F) errors in GPR time-zero cor-
rection. Consequently, apart from clinical numerical studies,
where noise can be completely absent, conventional hyperbola
fitting is not reliable for radius estimation.
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Fig. 4. Concrete inspection: 120 realisations of hyperbola fitting (4) for
different sets of Gaussian noise in each execution. The real {d,R, ✏r} are
shown on the titles of the subplots. The error for R can go up to 500% with
less than 2% of noise level, falsely estimating the radius of the rebar anywhere
from 0 up to 0.06 m. This range includes the whole spectrum of rebar sizes,
adding no additional information to what is already expected.

For the first numerical case study, we consider a utility
detection scenario, where a cylindrical pipe with R = 0.1
m is buried at d = 1 m in a homogeneous non-magnetic
half-space with ✏r = 10. The antenna is considered to be
monostatic (w = 0), and the hyperbola is mapped at 2 meters
symmetrically around x0 with a 0.05 m step. The synthetic
arrival times were calculated using (1) - (3). In the absence
of noise, the optimization in (4), using PSO coupled with
the simplex method, always converges to the correct results.
This gives the false impression that hyperbola fitting can be
used to accurately estimate the radius of cylindrical targets
as discussed in [16]. Nonetheless, if the arrival times are
corrupted with Gaussian noise, the problem becomes ill-posed
and the solution to (4) is no longer unique. Executing the
optimization in (4) 120 times, we get 120 different sets of
{d,R, ✏r} that equally satisfy the noisy data. The uncertainty
of the results with respect to the level of noise is shown in
Fig. 2. The non-uniqueness of the problem is more clearly
showcased in Fig. 3 where three different hyperbolas with
different {d,R, ✏r} are plotted and are almost identical. The
first one (solid line) corresponds to d = 1 m, R = 0.1 m,
✏r = 10, the second one (circles) to d = 0.97 m, R = 0.2 m,
✏r = 10.6, and the third one (stars) to d = 0.91 m, R = 0.4
m, ✏r = 12.1. From Fig. 2 and 3 it is apparent, that with
minimum level of noise both the permittivity and the depth
of the target can be estimated within an accepted range of
error. For the radius, the error can go as high as 500% falsely
estimating the radius of the pipe anywhere from 0 up to 0.6
m. This range includes the whole spectrum of utility sizes,
adding no additional information to what is already expected.

The second numerical study is based on a scenario typically
encountered in non-destructive testing, and in particular in
rebar detection and characterization. A cylindrical rebar with
R = 0.01 m is buried at d = 0.12 m in a non-magnetic
homogeneous half-space with ✏r = 8. The antenna is con-
sidered monostatic (w = 0), and the hyperbola is mapped
symmetrically 0.5 m around the target with a 0.01 m step.
Similarly to the previous example, in the absence of noise,
hyperbola fitting using (4) always converges to the correct
solutions. Adding Gaussian noise to the arrival times, results to
non-unique solutions as shown in Fig. 4. The non-uniqueness
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Fig. 5. Three almost identical hyperbolas with different {d,R, ✏r} are plotted
together to illustrate the non-unique results of hyperbola fitting in the presence
of noise. Solid line: d = 0.12 m, R = 0.01 m, ✏r = 8; circles: d = 0.118
m, R = 0.03 m, ✏r = 8.5; stars: d = 0.116 m, R = 0.05 m, ✏r = 9.1.
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Fig. 6. The effect of time-zero error to the estimated {d,R, ✏r}. The noise
level is 1% for all the experiments. With blue colour is the range of {d,R, ✏r}
that equally fits the arrival times. The real {d,R, ✏r} are shown on the titles
of the subplots.

of the problem is more clearly shown in Fig. 5 where 3
different hyperbolas with different {d,R, ✏r} are plotted and
are almost identical. The first one (solid line) corresponds to
d = 0.12 m, R = 0.01 m, ✏r = 8, the second one (circles) to
d = 0.118 m, R = 0.03 m, ✏r = 8.5, and the third one (stars)
to d = 0.116 m, R = 0.05 m, ✏r = 9.1. The range of radii
that sufficiently fit the hyperbola is within the expected range
of rebar sizes, adding no useful information to the survey.

Next we examine the effects of time-zero correction to the
overall accuracy of hyperbola fitting. The previous case study
(R = 0.01 m, d = 0.12 m, ✏r = 8) is now further corrupted
with artifacts from non-optimum time-zero correction, that
manifests as an added constant to the arrival times. The results
are shown in Fig. 6. Errors in time-zero mostly affect the
estimated depth and radius, while they don’t have major effects
to the estimated permittivity.

IV. EXPERIMENTAL VERIFICATION

Two case studies are presented in this chapter to further
support the premise that hyperbola fitting is not reliable
for radius estimation. The first one is a coherent numerical
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simulation of a typical scenario in utility detection, and the
second is a laboratory experiment for concrete inspection.

A. Numerical Case Study
The investigated model is illustrated in Fig. 7. Three pipes

with radii R1 = 0.05 m, R2 = 0.1 m and R3 = 0.15 m
are buried at d1 = 0.65 m, d2 = 0.9 m, d3 = 0.9 m,
respectively. All cylinders are uniform low dielectric targets
with ✏r = 3. They are buried in a realistic medium with
stochastically varying dielectric properties (✏r ⇡ 4 � 9). In
particular, the host medium has 50% sand and 50% clay, the
bulk density of the soil is 2 gr/cm3, the bulk density of the
particles is 2.66 gr/cm3 and the volumetric water fraction
varies from 2 � 10 %. The transmitter is a ground-coupled
ideal Hertzian dipole with polarization parallel to the main
axis of the pipes, and a 500 MHz central frequency. The offset
between the transmitter and the receiver is w = 0.04 m, and
measurements are taken every 0.03 m.

To simulate this model, we used gprMax [21], an open
source electromagnetic solver that solves Maxwell’s equations
using a second order in both space and time finite-difference
time-domain method. The spatial step of the model is �x =
�y = �z = 0.009 m, and the time step is set equal to 0.99
of the stability Courant limit. The dielectric properties of the
soils are calculated based on the Dobson-Peplinski, the semi-
empirical model available in gprMax [21].

The raw data were processed using time-zero correction,
time-varying gain and singular value decomposition filter [18].
Furthermore, static components due to conductivity were fitted
using a second order polynomial and subsequently removed
from every trace. Fig. 8 shows the resulting processed BScan,
and the fitted hyperbolas using (4). It can be seen that the fit is
not perfect because the arrival times are misshaped and asym-
metrical due to soil’s heterogeneity. Hyperbola fitting manages
to sufficiently approximate the permittivity ✏r = [6.2, 7.1, 5.1]
and the cover depth of the targets d = [0.76, 0.95, 1.08]
m (⇡ 13% error). As expected based on the results in the
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Fig. 8. The processed B-Scan from the model shown in Fig. 7. The fitted
hyperbolas are not perfect due to the misshaped asymmetrical arrival times
from the velocity variations. The resulting radii are R = [0, 0.32, 0] m, with
an average of 140 % error.

previous section, the radii of the pipes were not estimated
correctly R = [0, 0.32, 0] m, with an average of ⇡ 140 %
error making hyperbola fitting unreliable for radii estimation.

B. Laboratory Experiment
The investigated case study is shown in Fig. 9. The mea-

surements were taken at the non-destructive testing laboratory
at The University of Edinburgh. A mature concrete slab with
six metallic rebars is scanned in order to showcase the ill-
posed nature of conventional hyperbola fitting. The rebars
have two different sizes R = 0.00127 m (#8 imperial size)
and R = 0.0079 m (#6 imperial size). The measurements
were taken perpendicular to the main axis of the rebars using
the GSSI 2000MHz palm antenna. The measurement step is
�x = 0.0078125 m, and the offset between the transmitter
and the receiver is 2w = 0.04 m.

The processed BScan is shown in Fig. 10. Time-zero
correction, zero-offset, background removal and time-gain are
applied to the raw data. The hyperbolas for all six rebars are
clearly visible in the processed BScan. Using hyperbola fitting
to simultaneously estimate {d,R, ✏r} results to arbitrary values
that can change picking slightly different arrival times. The
unstable ill-posed nature of the problem is illustrated in Fig.
10 where the optimization in (4) is executed for each of the
hyperbolas while constraining the radius to a specific size. The
investigated radii are R = [0, 0.015, 0.03, 0.045] m. For all
the investigated R, hyperbola fitting manages to find a set of
{d, ✏r} that sufficiently fits the measured hyperbolas. Depend-
ing on the assumed value of R, the estimated permittivities
vary from ✏ ⇡ 7 � 11 while the cover depths have a ±1 cm
accuracy.

From Fig. 10 it is apparent that conventional hyperbola
fitting is unreliable for estimating the radii of rebars in concrete
inspection. The non-unique nature of the problem makes it
unstable regardless of the methodology chosen to interpret
the measured hyperbola. The only way to overcome this is
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Fig. 10. The processed BScan for the case study shown in Fig. 9. Hyperbola
fitting is used to interpret the measured arrival times for each target. The
optimization in (4) is executed four times for each of the hyperbolas while
constraining the radius to be equal with R = [0, 0.015, 0.03, 0.045] m. The
non-unique nature of the problem is apparent from the fact that there is a
set of {d, ✏r} for all the investigated radii that sufficiently fits the measured
arrival times.

to have clinically noise-less data-sets (which is unrealistic),
or constrain the problem using independent methodologies for
estimating either the permittivity of the medium or the cover
depth of the target.

V. CONCLUSIONS

Through a series of numerical and laboratory experiments
we have shown that conventional hyperbola fitting is not
reliable for estimating the radii of cylindrical targets at the
level of accuracy needed for practical utility detection and
concrete inspection. Hyperbola fitting, can sufficiently estimate
the permittivity and depth of the targets, but regarding radius,
errors up to 500% can occur in the presence of minimum level
of noise. It is evident that unless perfectly noiseless data are
available the current hyperbola fitting approaches are not able
to reliably retrieve useful information about the radius of a
target as it has been claimed in the literature.
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