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Abstract 

Gait assessment is essential to understand injury prevention mechanisms during running where high 

impact-forces can lead to a range of injuries in the lower extremities. Informing running style to 

increase efficiency and/or selection of the correct running equipment such as shoe type can minimize 

risk of injury through e.g., matching a runner’s gait to a particular set of cushioning technologies found 

in modern shoes (neutral/support cushioning). Informing training or selection of the correct equipment 

requires understanding of a runner’s biomechanics such as determining foot orientation when it strikes 

the ground. Previous work involved a low-cost approach with a foot mounted inertial measurement 

unit (IMU) and associated zero-crossing (ZC) based methodology to objectively understand a runner’s 

biomechanics (in any setting) to inform shoe selection. Here, an investigation of the previously 

presented ZC-based methodology is presented only to determine general validity for running gait 

assessment in a range of running abilities from novice (8km/h) to experienced (16km/h+). In 

comparison to Vicon 3D motion tracking data, the presented approach can extract pronation, foot strike 

location and ground contact time with good (ICC(2,1) > 0.750) to excellent (ICC(2,1) > 0.900) agreement 

between 8-12km/h runs. However, at higher speeds (14km/h+) the ZC-based approach begins to 

deteriorate in performance, suggesting other features and approaches may be more suitable for faster 

running and sprinting tasks.  

1 Introduction 

Running has become one of the most prevalent sports, promoting health benefits through increased 

physical activity whilst remaining readily-accessible for all (Shipway and Holloway, 2010). With the 

increased uptake of running and running-based exercise, the incidence of lower-extremity injuries 

associated with running e.g., Achilles’ tendinopathy and Plantar Fasciitis has risen (Dempster et al., 

2021). Injury can be exacerbated in beginner and novice runners (Linton and Valentin, 2018), with a 

higher injury rate linked with self-devised, informal training plans compared to well informed 

approaches i.e., novice runners may not access/are unaware of information leading to efficient, safe 

running practices to minimize injury. Prominently, it has been shown that a high-incidence of injuries 

are due to impact-load management issues where a better understanding of the biomechanical 
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properties within each running style plays a key role to understand type of injury. For example, rear-

foot (heel) strikers are significantly more likely to incur an injury over those who run fore-foot (Daoud 

et al., 2012). More specifically, over-pronation during running can lead to medial tibial stress and 

Plantar Fasciitis (Rolf, 1995, Hintermann and Nigg, 1998).  

Selection of the correct running equipment such as shoe type has shown to minimize injury risk 

through various cushioning technologies influencing load-management. For example, a support shoe 

will include anti-pronation cushioning to minimize roll of the foot on impact (Jafarnezhadgero et al., 

2019). However, challenges arise when selecting the correct running shoe. Typically, a runner is 

manually assessed by an individual who (i) visually assesses the fall of the foot during walking or 

running overground or on a treadmill and/or, (ii) observes the wear pattern of previous running shoes 

to understand pronation severity and foot strike location (Higginson, 2009). However, visual 

assessments are intrinsically flawed through a lack of subjectivity and reliability (Higginson, 2009). 

Particularly, it has been shown that while the visual assessment of foot strike pattern is highly accurate, 

visually assessing pronation is unreliable between assessors, with agreements between 42% and 56% 

(Meyer et al., 2018). As such, the use of technology is essential for accurate instrumentation of running 

gait. 

Three-dimensional (3D) motion capture video-based systems are generally considered the 

reference/gold-standard in gait assessment, consistently demonstrating validity and reproducibility in 

a range of applications (Baskwill et al., 2017, Albert et al., 2020, Jakob et al., 2021). However, use of 

a 3D motion tracking system demonstrates obvious pragmatic issues through high costs, an intrusive 

nature (i.e., users must be fitted with a range of anatomical markers) as well as need for technical 

expertise (Schlagenhauf et al., 2018, Sharma et al., 2019); limiting the technology’s use in low-

resource, real-world settings. As such, wearable inertial measurement unit’s (IMU) have seen a recent 

usage uptake in running gait assessment through providing a low-cost apparatus capable of detecting 

intricate running gait outcomes (Benson et al., 2022, Young et al., 2020). Typically, IMUs contain a 

combination of inertial accelerometer and gyroscope sensors to provide an understanding of 

acceleration and rotation, respectively (Ahmad et al., 2013). IMUs can measure a wide range of running 

biomechanics including gait phase estimation (Young et al., 2021, Sui et al., 2020),  impact analysis 

(Tan et al., 2020), flexion angles (Nagahara et al., 2020, Cooper et al., 2009), foot orientation (Falbriard 

et al., 2020) and asymmetry measures (Ueberschär et al., 2019, Benson et al., 2022). Crucially, their 

use enables reproduceable, objective gait outcomes that can enable standardization within the domain, 

especially in opposition to traditional visual assessments (Benson et al., 2022, Chew et al., 2018, 

Higginson, 2009). Furthermore, with a small form factor and relatively low cost, IMUs can measure 

beyond the lab(Strohrmann et al., 2011, Benson et al., 2022), which can help to understand running 

gait in a variety of environments and of varying lengths, from short capture sessions under observation 

in low-resource settings to prolonged periods over ground e.g., marathons (Meyer et al., 2021). 

IMUs are typically reliant on algorithms to extract useful gait features from inertial signals. 

Algorithms can be generally described as the software-based methodology, translating from raw 

(sample level) data into meaningful and quantifiable gait outcomes. To date there have been a plethora 

of IMU-based algorithm developed for running gait assessment (Mason et al., 2022). Typically, 

algorithms rely upon the identification of initial contact events from the inertial data to segment the 

gait cycle for specific phases of analysis (Young et al., 2021, Gujarathi and Bhole, 2019). One common 

approach is the zero-crossing (ZC) technique (Mason et al., 2022) which is particularly useful when 

used in conjunction with other inertial feature extraction methods such as gradient maxima (i.e., peak 

detection), often used to extract peaks in corresponding inertial signals (Norris et al., 2014, Alahakone 

et al., 2010). Particularly, bouts of running gait naturally exhibit higher acceleration during impact, and 

as such create easily identifiable peaks within acceleration signals, justifying the use of a ZC gradient 

maxima algorithm to segment gait. Consequently, use of an accelerometer can inform gyroscope-based 

outcomes (e.g., roll of the foot, impact location). This benefit of that multi-modal sensing strategy is 
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particularly evident when IMU devices are placed on the lower extremities (e.g., foot), increasing the 

sensitivity to ground-impact biomechanical related inertial signal features (Panebianco et al., 2018), of 

which has been demonstrated in running gait (Alahakone et al., 2010, Young et al., 2020).  

Furthermore, ZC has pragmatic utility in comparison to recent approaches such as artificial 

intelligence and machine learning within the wider gait assessment field, which, despite their ability to 

provide comprehensive gait outcomes (Xu et al., 2022, Zhang et al., 2019) are both computationally 

intensive (Khera and Kumar, 2020), and require complex logistics such as setup, training and hosting. 

Conversely,  ZC methods require low computational power for more immediate deployment for 

running gait assessment tasks (Hölzke et al., 2020) as the technique is more readily deployable (i.e., 

do not require building of datasets and complex implementation), indicating a suitability for low-

resource deployment e.g., on a tablet or smartphone without Cloud connectivity. Previous work (Young 

et al., 2020, Young et al., 2021) developed a low-power IMU ZC methodology with a foot mounted 

IMU to assess biomechanical properties such as foot strike location, pronation, and ground contact 

time to recommend shoe type while participants ran at a single set pace (8km/h). Yet, the validity of 

the ZC approach has not been comprehensively investigated for general use in running analysis. Here, 

we conduct a thorough investigation of the fundamental ZC methodology for foot strike identification, 

and pronation ground contact time at varying speeds, cross-referenced with 3D-motion capture system 

and slow-motion video reference streams. We hypothesize that the ZC is a useful approach for 

examining running gait outcomes across a range of speeds. 

2 Methods 

2.1 Participants 

Ethical approval was granted by the Northumbria University Research Ethics Committee (Reference: 

21603). All participants were supplied with informed consent and gave verbal and written consent 

before performing treadmill-based testing in Northumbria University’s Gait and Biomechanics 

Laboratory. Thirty-one healthy participants (34.5 ± 9.67 years; 1.75m ± 0.3m; 76.2 ± 4.1 kg; 20M:11F) 

were recruited from running clubs in the Northeast of England. Participants exhibited a range of 

running abilities from ≈30minute (amateur) to ≤20-minute (experienced) for a 5Km pace. Inclusion 

criteria required participants could run unassisted for short periods and must be under the age of 60 

years. Participants were screened for running-related injury history, as well as any gait/mobility-

affecting conditions (e.g., orthopedic, cardiovascular) that would adversely impact running ability. No 

participants reported any current running gait affecting injuries or pre-existing conditions to warrant 

exclusion. Participants were provided with a standardized, neutral cushioning running shoe (Saucony 

Guide Runner) for use during testing in an effort to minimize impact at higher speeds. 

 

2.2 Instrumentation: IMU 

All participants were fitted with two wearable IMUs (AX6, Axivity, UK, https://axivity.com/, tri-axial 

accelerometer and tri-axial gyroscope, 23.0mm × 32.5mm × 8.9mm, 11g) on the talus joint of each 

foot with medical tape, Figure 1. IMUs were programmed in Axivity’s omGUI software suite, 

configured with  16g accelerometer range, 2000dps gyroscope range polling at 60Hz. The location of 

the IMU on the talus is essential to reproduce ZC methodology under investigation. Specifically, 

tracking the orientation of the talus provides an optimal representation of foot rotation throughout the 

running gait cycle (Hontas et al., 1986) to determine foot strike pattern, pronation and ground contact 

time. 

 

2.3 Instrumentation: Reference 

For standard reference, a 3-dimensional (3D) 14 camera motion tracking system (Vertex, Vicon, UK, 

www.vicon.com) was used. The 14 Vicon Vertex motion tracking cameras were distributed around a 

https://axivity.com/
http://www.vicon.com/
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space of 9.8 × 7.9 × 3.2m3, polling at 200Hz to provide a high-resolution observation of the 

participant’s running gait. Participants were fitted with 16 neo-reflective markers for use with the 

Vicon 3D motion tracking system in the following locations: (1) calcaneal tuberosity (heel), (2) lateral 

malleoli (ankle), (3) base of the second metatarsal (front-foot/toe), (4) lateral mid-shank, (5) lateral 

knee joint line (6) mid-lateral thigh, (7) anterior superior iliac spine (8) posterior superior iliac spine, 

Figure 1.  

 

2.4 Data Capture 

Participants initially performed a static pose (arms to the side, feet shoulder-width apart) to calibrate 

the 3D motion tracking system. Subsequently, participants were prompted to walk for short periods 

within the 3D tracking environment, providing synchronized data between 3D tracking, video and IMU 

data streams. To ensure synchronization between Vicon and IMU data streams, digital timestamps 

were consistently created in-software for both systems based upon the operating system clock in 

“milliseconds since epoch” format.  Upon successful configuration, participants stood still on the 

treadmill to provide a baseline reading from IMU devices and to account for any local inclination error 

or misalignment during fitting. Participants were then asked to perform short, 1-minute bouts of 

treadmill running at four set speeds (8, 10, 12 and 14 km/h) in line with guidelines in previous work 

(Young et al., 2020) and to ensure participants could successfully complete the tests despite their 

running ability. A period of 1-minute was chosen as it generally aligns with other similar studies in the 

field with data capture periods ranging from 20s (McGrath et al., 2012) to 90s (Tan et al., 2020, Bailey 

and Harle, 2014). Additionally, participants also ran at a speed that was comparable to their most recent 

outdoor 5km pace (15.1 ± 0.8 km/h). If their self-selected pace was below or equal to pre-defined 

speeds, no self-selected pace was captured. All runs captured inertial, 3D-motion and video data 

(240FPS side and rear perspectives). Tests were conducted twice after a short break (≈1 minute) to 

provide multiple running bouts for participants at each pace. As such, a total of 148 running bouts were 

assessed during this study.  

 

2.5 Data labelling 

Foot strike location, pronation severity and ground contact time were manually labelled by-hand 

through observation of 3D motion tracking data and slow motion video reference streams in accordance 

with labels of the previous studies (Young et al., 2020, Young et al., 2021) by a team of trained 

researchers (sports science, biomechanics) such that each foot may exhibit: neutral, slight or pronated 

roll of the foot; or heel, mid or fore foot strike location, Figure 2. Labels are generated by observing 

skeletal output generated by the Vicon system in cross reference with slow-motion video streams such 

that: pronation is the angle between heel, ankle and leg angle (Figure 2B) and foot strike location 

denotes the impact location of the foot (Figure 2C). A runner is considered pronated should they exhibit 

5° or greater of foot roll during initial contact, in line with previously outset guidelines (Young et al., 

2020). Due to different sampling resolutions between 3D motion capture (200Hz) and IMU signals 

(60Hz), ground contact time is measured and labelled with respect to milliseconds to standardize the 

measurements. For example, ground contact time from 3D motion capture could output 38Hz, whereas 

the IMU could output 11Hz. Consequently, each method is resampled to 190ms and 183ms for 3D 

motion tracking and IMU data respectively. Ground contact time is measured as the time elapsed (ms) 

between initial contact (foot first makes contact with the ground) and final/terminal contact (foot last 

leaves the ground). Of the 148 running bouts observed, a total of 9327 strides (mean steps per test = 

57.2  4.09) were extracted, labelled and assessed as part of the study. 

 

2.6 Data processing and algorithm 

Data handling and processing have been described previously (Young et al., 2020, Young et al., 2021). 

In brief, acceleration and rotation data are extracted and analyzed in a Jupyter notebook Python 3.7 
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environment for execution of the algorithm. Data were prepared/filtered by a Butterworth band-pass 

filter performing at 60Hz with a sampling frequency of 3Hz and a cut-off frequency of 5Hz is applied 

to the vertical acceleration plane and vertical/horizontal rotational velocity to account for signal noise. 

2.7 IMU algorithm methodology 

The method analyses tri-axial accelerometer and tri-axial gyroscope signals in tandem during running 

to quantify foot strike location, pronation severity and ground contact time. The method relies on the 

identification of initial contact from ZC to inform gait feature extraction surrounding impact. A short 

breakdown of the algorithm is presented below: 

(a) Initial contact identification, Figure 3A: A ZC gradient maxima algorithm is deployed for 

detection of peaks in the vertical acceleration plane is deployed for initial contact identification 

through observing significant changes in gradient. Operating within a dynamic threshold based 

upon the signal maxima, the ZC gradient maxima algorithm is effective in identifying initial 

contact peaks in vertical acceleration.  

(b) The rotational velocity of the foot in vertical and horizontal planes is observed around identified 

points of initial contact, Figure 3B. An average is taken of each feature, providing a final output 

of pronation severity and foot strike location. 

(c) Final contact identification and ground contact time estimation: The same ZC gradient maxima 

algorithm is used to identify an inverse peak in the acceleration signal within a 500ms region 

of interest proceeding an identified initial contact event. Ground contact time is consequently 

calculated as the time between an initial contact event and proceeding final contact event. 

 

2.8 Statistical analysis 

Examining the performance of the proposed algorithms and their respective videos was conducted in 

SPSS v27. Shapiro-Wilks tests indicated a normal distribution of all data (p<0.05). Consequently, intra-

class correlation (𝐼𝐶𝐶(2,1)) models examined absolute agreement between IMU algorithm and 3D 

reference/slow motion video streams. A predefined ICC performance scale was deployed (Koo and Li, 

2016), defined as poor (<0.500), moderate (0.500-0.750), good (0.750-0.900) or excellent (>0.900). 

Mean error were calculated between algorithm and 3D motion data for descriptive purposes and are 

observed as an accuracy metric in ground contact time. Furthermore, Bland Altman (Bland and Altman, 

1986) and box plot were used to visually assess the agreement between ground truth and algorithm 

outcomes for ground contact time. 

 

3 Results 

Of the 31 participants, no data loss or dropout was experienced during treadmill running sessions. Upon 

preliminary observation of the quantified algorithm outcomes, no significant outliers were identified. 

A total of 148 running bouts containing 9327 strides were analyzed as part of the study. 

 

3.1 Initial contact  

Intraclass correlation performance degrade at higher speeds in identifying points of initial contact, 

demonstrating excellent agreement between 8-10km/h (ICC(2,1) >0.900), and good agreement (ICC(2,1) 

>0.750) at 14km/h and higher self-selected paces, Table 1. The ZC gradient approach to initial contact 

identification tends to over-estimate number of initial contact events, especially at higher speeds. 

 

3.2 Foot strike location and pronation severity 

Intraclass correlations demonstrate an excellent agreement between algorithm and reference streams 

for foot strike identification (ICC(2,1) >0.900), particularly, demonstrating robustness at the full range 

of speeds, with low error rates throughout, Table 2. Between 8-12km/h, the pronation identification 
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algorithm demonstrates good agreement (ICC(2,1) >0.750), but begins to depreciate at 14km/h+ with 

moderate (ICC(2,1) >0.500) agreement. 

 

3.3 Ground contact time 

The ground contact time identification approach demonstrates low mean error at 8, 10 and 12km/h 

(9ms – 17ms) when compared to 3D motion tracking labels, Table 3. Equally, at the lower speeds, 

observing the median and upper/lower range demonstrates an ability to estimate ground contact time 

of varying length, Figure 4. Conversely, mean error rate is slightly higher (21ms – 27ms) at the higher 

speeds (14km/h +), while additionally demonstrating a wider deviance from median and upper/lower 

range in comparison to labelled data, Figure 4. 

 

4 Discussion 

Understanding running gait is crucial in injury prevention; particularly, quantifying pragmatic 

biomechanical properties. That can reduce impact-related or strain injuries commonly associated with 

e.g., over pronation (Daoud et al., 2012). The proposed work investigates and evaluates the 

performance of a ZC methodology at different running speeds to assess suitability to quantify foot 

strike location, pronation and ground contact time. It was found that the ZC method had reduced 

agreement when compared to a standard reference at higher running speeds suggesting that use for 

running analysis may be suitable for amateur runners only (i.e., those with 5Km time >20minutes) 

compared to elite athletes and their gait assessment at higher speeds. 

 

4.1 Performance of zero-crossing methodology 

In line with studies utilizing a ZC gradient approach for gait cycle segmentation (Han et al., 2019, 

Bastas et al., 2018), our IC identification algorithm demonstrated excellent absolute agreement across 

the lower range of speeds (ICC(2,1) > 0.9) and good agreement (ICC(2,1) > 0.75) at higher speeds through 

identifying peaks in vertical acceleration above a dynamic threshold. The ZC approach to initial contact 

identification demonstrates a mean error between 9 and 27ms between algorithm and labelled output 

dependent upon speed, Table 3.  

Through observing Bland Altman plots of the initial contact identification approach at higher 

speeds, Figure 5, (14km/h+), it is evident the approach successfully identifies labelled initial contact 

events, likely due to higher impact forces exerting significant vertical acceleration that gradient 

analysis can easily identify. However, false positives are occasionally encountered at higher speeds 

where extraneous noise is often present (supplementary material, signal-to-noise analysis) following a 

large impact, Figure 6.  The evaluated methodology attempts to remove false positives based upon a 

dynamic threshold, estimated through observation of the average quantified stride length (Young et al., 

2020); however, the process is not consistently performant to warrant use in higher speeds. Recently, 

the use of deep learning has demonstrated utility in identifying temporal gait outcomes in both normal 

(Gadaleta et al., 2019) and running gait (Gholami et al., 2020, Johnson et al., 2020) from wearable 

inertial sensors; but require further investigation and validation (i.e., in range of speeds) before 

adoption. Should such approaches exhibit a ranged validity within the domain, their use could be 

warranted to inform impact-related gait feature extraction outcomes.  

In opposition to gyroscope-only based methods, e.g., (Falbriard et al., 2018) that perform gait 

cycle segmentation through estimating the rotation of the foot for mid-swing analysis, the use of a ZC 

approach in vertical acceleration (accelerometer) for initial contact identification can inform a wider 

understanding of running gait outcomes at the point of impact due to their sensitivity to ground forces. 

Crucially, by using initial contact as a marker from an accelerometer, we are able to search for rotation-

based outcomes surrounding initial contact (e.g., pronation, foot strike location). 

 

4.2 Ground Contact Time 
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Ground contact time is essential to understand due to the implications on running economy (Di Michele 

and Merni, 2014). The evaluated approach performs amicably when observing mean error from 

labelled data, demonstrating efficacy between 8-12km/h (mean error 0.32 – 2.65%), with a degradation 

at 14km/h+ (3.94% mean error at 14km/h; 10+% mean error at self-selected), Table 3. However, 

observing box and Bland Altman plots, Figure 4, Figure 5, one can observe that despite low deviation 

from average labels at higher speeds (14km/h+), there is a significantly wider range of estimated 

values. These findings are comparative to similar work within the field. For example, (Falbriard et al., 

2018) assessed a range of signal features (e.g., min/max, ZC) for identification of temporal gait 

outcomes including ground contact time. Similar to the evaluated algorithm, utilizing optimally 

selected features the approach presented a degradation in accuracy with respect to speed. However, the 

observed work also provides discussion of alternate, lesser-performant features (i.e., minimum of pitch 

angular velocity within IC zone and the maximum of vertical acceleration in TC zone) that are not 

greatly affected by speed, which may warrant further investigation for use in high-speed running. 

 

4.3 Gait Feature Extraction 

The gait feature extraction layer of the algorithm relies upon observing horizontal and vertical angular 

velocity of the foot at impact for pronation and foot strike location respectively. Table 1 illustrates the 

performance of the gait feature extraction layer, demonstrating consistently excellent performance 

across multiple speeds for foot strike location identification; but showing degrading performance in 

pronation identification at higher speeds.  

Upon investigation of the horizontal (pronation) and vertical (foot strike location) rotational 

velocity planes, extraneous noise became apparent surrounding an initial contact event within the 

vertical rotational velocity plane at higher speeds, Figure 6. Supplementary Table 1 shows the average 

noise-to-signal ratio across the range of speeds in both vertical and horizontal rotational velocity within 

a 167ms (10Hz) window of an initial contact event. The experiment demonstrates an obvious and 

significant increase in noise (+10.1%) in horizontal roll between slow and high speeds, offering an 

explanation as to the degradation in pronation accuracy. Conversely, the vertical rotation plane 

demonstrates far lower noise, consistent across all speeds, concurrent with consistently excellent 

results in testing. The use of a continuous wavelet transform (CWT) may be warranted in future 

iterations, due to high performance in single-sensor applications through noise suppression by removal 

of extraneous signal fluctuations leading to clearer gait feature extractions (McCamley et al., 2012). 

The proposed approach performs comparably with similar work within the field. For example, 

(Murai et al., 2018) utilized a single, foot-mounted IMU to observe the angular velocity of the foot 

during impact to assess pronation at a correlation of r = 0.800, coinciding with our ICC(2,1) score of 

0.779 – 0.867 between 8-12km/h. However, our evaluated approach provides a significantly higher 

number of participants (31 runners of varying demographic: evaluated approach, 10 male runners: 

observed study) and insight into the speed of the runners and how it affects performance, providing a 

more generalizable assessment of IMU-based pronation assessment. 

 

4.4 Implications on free-living running gait assessment 

Through development and evaluation of an IMU-based algorithm with promising results, the approach 

provides scope for implementation in low-cost commercial technologies, reducing reliance on expert 

analysis and/or gold-standard, high-cost technologies (Young et al., 2020). The methodology 

investigated here primarily focuses on gait feature extraction during treadmill running for use in 

habitual or low resource environments. However, there is some debate as to the efficacy of treadmill-

based gait assessment due to gait kinematics differing in overground, outdoor running scenarios 

(Lafferty et al., 2021, Benson et al., 2022), potentially inhibiting the utility of the evaluated ZC method. 

Consequently, the approach should be validated in outdoor scenarios to assess the performance in 

uncontrolled settings. In performing outdoor validation, the use of IMU-based methods could 
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contribute to a full-scale running gait analysis, providing relatively sparce, long-term observations such 

as gait monitoring across 10km or marathon running (Benson et al., 2018, Meyer et al., 2021). 

 

4.5 Limitations 

Due to the potential of high impact force at greater speeds, the use of a running shoe during testing was 

warranted in order to minimize the risk of impact-related injuries (Sun et al., 2020). The deployed 

running shoes in this study (Saucony Guide Runner) exhibit a ‘neutral’ cushioning shoe, thus, do not 

provide pronation-minimizing support. However, running shoes are widely accepted to influence and 

change aspects of a runner’s gait in opposition to barefoot running (Stacoff et al., 1991, Aguinaldo and 

Mahar, 2003). Consequently, although the evaluated algorithms can extract pronation, foot strike 

location and ground contact time in comparison to labelled data, the outcomes may not be indicative 

of the runner’s ‘true’ gait, i.e., when running barefoot. Additionally, running shoes reduce impact force 

upon the lower extremities (Aguinaldo and Mahar, 2003), potentially minimizing acceleration at 

impact observed by the IMU in comparison to previous work (Young et al., 2020). As such, although 

the evaluated ZC approach to IC identification performs well within the constraints of the study, it 

should be noted that the ZC approach may not scale between different running shoes i.e., that exhibit 

larger levels of support.  

IMUs are susceptible to drift error in due to high-frequency noise within micro electro 

mechanical systems (Narasimhappa et al., 2019), and the potential of local misalignment. Although the 

evaluated algorithm takes into account local alignment error and uses a Butterworth filter in an attempt 

to account for noise, the approach may not be drift-free among different running patterns, and as such, 

may impact gait outcomes. As such, to ensure the approach is note hindered by drift, it may be 

necessary to implement a drift-minimizing algorithm e.g., (Falbriard et al., 2020). This could be 

especially useful in analysis at higher speeds, where sensors may be more susceptible to drift due to 

extensive exposure to high impact forces. 

 

5 Future Work 

Currently, the evaluated algorithm degrades in performance at higher speeds (14km/h+) due to 

extraneous noise encountered at higher impact speeds and misidentification of initial contact events. 

Some shortcomings have been identified for future iterations of the algorithm, namely requiring the 

use of CWT processing and potential implementation of artificial intelligence for identification of IC 

events in anomalous signals. Future work will validate the approach in overground (i.e., off-treadmill), 

outdoor running to assess IMU-based running gait assessment over extended running bouts. 

 

6 Conclusion 

The proposed work investigates and evaluates a ZC methodology for the extraction of a range of 

biomechanical properties from a single foot mounted IMU that could be useful for general running gait 

analysis. The evaluated method has demonstrated utility in quantifying foot strike location, pronation 

severity and ground contact time during treadmill running at speeds up to 12km/h; exhibiting good and 

excellent agreements with 3D motion capture. Through conducting this investigation on the ZC 

methodology running gait assessment, we contribute to understanding the efficacy and utility of 

wearable IMUs during running gait. Particularly, providing approaches to understanding running with 

low-cost apparatus to promote personalized and objective running gait assessment and reduces reliance 

on traditional, subjective approaches. 
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14 Tables 

Table 1: Initial contact identification performance in comparison to reference labels from 3D-

tracking data at differing speeds. Average no. of steps denotes the mean steps per participant per foot 

across the range of datasets. 

  Reference Algorithm Output 

  Average no. of steps Average no. of steps ICC(2,1) 

8km/h 54 55 0.963 

10km/h 56 56 0.981 

12km/h 56 57 0.945 

14km/h 59 65 0.821 

Self-Selected 60 72 0.783 

 

Table 2: Gait feature extraction performance in agreement with reference labels from 3D-tracking 

data at differing speeds 

  8km/h 10km/h 12km/h 14km/h Self-Selected 

  
Pronatio

n 

Foot 

Strike 

Pronatio

n 

Foot 

Strike 

Pronatio

n 

Foot 

Strike 

Pronatio

n 

Foot 

Strike 

Pronatio

n 

Foot 

Strike 

Mean 

Error 
0.184 0.131 0.184 0.105 0.342 0.112 0.382 0.029 0.312 0.025 

ICC(2,1) 0.867 0.918 0.833 0.915 0.779 0.915 0.687 0.987 0.712 0.989 

 

Table 3: Performance of ground contact time extraction layer in comparison with labels from 3D 

tracking data between 8km/h and a self-selected speed (avg=15.1km/h). Results are observed in 

milliseconds to standardize measurements between reference (Vicon; 200Hz) and IMU (Axivity; 

60Hz) output. Mean error is shown in both Hz, seconds and percentage difference for illustrative 

purposes, and refers to average error between algorithm and labelled data. 

 
Speed (km/h) 8 10 12 14 

Self-

Selected 

 Mean Algorithm Output (ms) 335.544.78 317.531.52 282.535.06 27227.86 27228.83 

 Mean Labelled Data (ms) 344.546.55 316.531.64 279.533.06 261.528.61 245.529.95 

 Mean Error (Hz) 3.58 2.15 2.93 4.21 5.48 

 
Mean Error (ms) 9 11 15 21 27 

 
Mean Error (%) 2.65 0.32 1.07 3.94 10.24 
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15 Figures 

Figure 1: Example of a participant mounted with the full range of markers and sensors. Figure shows: 

A) a macro view of a runner during testing, donning B) 16 neo-reflective 3D motion tracking 

markers and 2 AX6 IMU devices. C) Illustrates a zoomed view of the foot with the markers at heel, 

ankle and front-foot positions; with the AX6 at the talus joint of the foot. 

 

Figure 2: Illustrated view of the labelling process of pronation and foot strike between three neo-

reflective markers located at the ankle, heel and front-foot positions. Pronation angle is derived based 

upon the angle of the leg in comparison to the angle of the foot. Foot strike is determined as the first 

point that made contact with the ground (red x): heel, mid or fore foot. 
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Figure 3: Data illustration of the evaluated algorithm at the key stages of execution: a) initial/final 

contact identification and b) gait feature extraction at point of contact 

 

Figure 4: Box plots illustrating the performance of the contact time algorithm at 8,10,12,14km/h and 

a self-selected pace. A refers to actual (labelled) contact time, P refers to predicted (ZC algorithm) 

contact time. 

 

 

 

 



 
16 

Figure 5: Bland-Altman plots of the ground contact time between ground truth and algorithm output. 

Blue and orange lines denote mean  STD of the error. 

 

Figure 6: Comparison of a runner's vertical acceleration data at two different speeds, 8kmh and 

16kmh. As observed, within higher speeds a considerable increase of noise is experienced after an 

initial contact event. Additionally, the signals have obvious differences between speeds due to (i) 

noise and (ii) potential of changing gait with respect to speed (e.g., fore strike at 8km/h and heel 

strike at 16km/h). Consequently, extracting gait features around a point of impact could be 

significantly impacted at higher speeds. 
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