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Gait assessment is essential to understand injury prevention mechanisms

during running, where high-impact forces can lead to a range of injuries in

the lower extremities. Information regarding the running style to increase

e�ciency and/or selection of the correct running equipment, such as shoe

type, canminimize the risk of injury, e.g., matching a runner’s gait to a particular

set of cushioning technologies found in modern shoes (neutral/support

cushioning). Awareness of training or selection of the correct equipment

requires an understanding of a runner’s biomechanics, such as determining

foot orientation when it strikes the ground. Previous work involved a low-

cost approach with a foot-mounted inertial measurement unit (IMU) and

an associated zero-crossing-based methodology to objectively understand a

runner’s biomechanics (in any setting) to learn about shoe selection. Here, an

investigation of the previously presented ZC-based methodology is presented

only to determine general validity for running gait assessment in a range

of running abilities from novice (8 km/h) to experienced (16 km/h+). In

comparison to Vicon 3D motion tracking data, the presented approach can

extract pronation, foot strike location, and ground contact time with good

[ICC(2,1) > 0.750] to excellent [ICC(2,1) > 0.900] agreement between 8–

12 km/h runs. However, at higher speeds (14 km/h+), the ZC-based approach

begins to deteriorate in performance, suggesting that other features and

approaches may be more suitable for faster running and sprinting tasks.

KEYWORDS

algorithm, gait, inertial measurement unit (IMU), running, wearable

Introduction

Running has become one of the most popular sports, promoting health benefits

through increased physical activity while remaining readily accessible to all (Shipway

and Holloway, 2010). With the increased uptake of running and running-based exercise,

the incidence of lower-extremity injuries associated with running, has risen e.g., Achilles

tendinopathy and Plantar Fasciitis, (Dempster et al., 2021). Injuries, if not treated, can

exacerbate in beginner and novice runners (Linton and Valentin, 2018), with a higher

injury rate linked to self-devised, informal training plans compared to well-informed
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approaches, i.e., novice runners may not access or are unaware

of information leading to efficient, safe running practices to

minimize injury. Prominently, it has been shown that a high

incidence of injuries is due to impact-load management issues

where a better understanding of the biomechanical properties

within each running style plays a key role in understanding

the type of injury. For example, rear-foot (heel) strikers are

significantly more likely to incur an injury than those who do

forefoot running (Daoud et al., 2012). More specifically, over-

pronation during running can lead to medial tibial stress and

plantar fasciitis (Rolf, 1995; Hintermann and Nigg, 1998).

Selection of the correct running equipment, such as shoe

type, has been shown to minimize injury risk by optimizing

load distribution through the use of various cushioning

technologies. For example, a support shoe will include anti-

pronation cushioning to minimize the roll of the foot on

impact (Jafarnezhadgero et al., 2019). However, challenges arise

when selecting the correct running shoe. Typically, a runner

is manually assessed by an individual who (i) visually assesses

the fall of the foot during walking or running overground or

on a treadmill and/or (ii) observes the wear pattern of previous

running shoes to understand pronation severity and foot strike

location (Higginson, 2009). However, visual assessments are

intrinsically flawed through a lack of subjectivity and reliability

(Higginson, 2009). In particular, it has been shown that while

the visual assessment of foot strike pattern is highly accurate,

visually assessing pronation is unreliable between assessors, with

agreements between 42 and 56% (Meyer et al., 2018). As such,

the use of technology is essential for accurate instrumentation of

running gait.

Three-dimensional (3D) motion capture video-based

systems are generally considered the reference/gold standard

in gait assessment, consistently demonstrating validity and

reproducibility in a range of applications (Baskwill et al.,

2017; Albert et al., 2020; Jakob et al., 2021). However, the

use of a 3D motion tracking system demonstrates obvious

pragmatic issues through high costs, an intrusive nature (i.e.,

users must be fitted with a range of anatomical markers), as

well as the need for technical expertise (Schlagenhauf et al.,

2018; Sharma et al., 2019), limiting the use of technology in

low-resource, real-world settings. As such, wearable inertial

measurement units (IMU) have seen a recent usage uptake

in running gait assessment by providing a low-cost apparatus

capable of detecting intricate running gait outcomes (Young

et al., 2020; Benson et al., 2022). Typically, IMUs contain a

combination of inertial accelerometer and gyroscope sensors to

provide an understanding of acceleration and rotation (Ahmad

et al., 2013). IMUs can measure a wide range of running

biomechanics, including gait phase estimation (Sui et al.,

2020; Young et al., 2021), impact analysis (Tan et al., 2020),

flexion angles (Cooper et al., 2009; Nagahara et al., 2020), foot

orientation (Falbriard et al., 2020), and asymmetry measures

(Ueberschär et al., 2019; Benson et al., 2022). Crucially, their use

enables reproducible, objective gait outcomes that can enable

standardization within the domain, especially in opposition to

traditional visual assessments (Higginson, 2009; Chew et al.,

2018; Benson et al., 2022). Furthermore, with a small form

factor and relatively low cost, IMUs can measure beyond the

lab (Strohrmann et al., 2011; Benson et al., 2022), which can

help understand running gait of varying lengths in a variety

of environments, from short capture sessions (e.g., sprinting

Schmidt et al., 2016) under observation in low-resource settings

to prolonged periods over the ground, e.g., marathons (Meyer

et al., 2021).

IMUs are typically reliant on algorithms to extract useful

gait features from inertial signals. Algorithms can generally

be described as software-based methodologies, translating raw

(sample level) data into meaningful and quantifiable gait

outcomes. To date, a plethora of IMU-based algorithms have

been developed for running gait assessments (Mason et al.,

2022). Typically, algorithms rely upon the identification of initial

contact events from the inertial data to segment the gait cycle for

specific phases of analysis (Gujarathi and Bhole, 2019; Young

et al., 2021). One common approach is the zero-crossing (ZC)

technique (Mason et al., 2022), which is particularly useful

when used in conjunction with other inertial feature extraction

methods such as gradient maxima (i.e., peak detection)—

often used to extract peaks in corresponding inertial signals

(Alahakone et al., 2010; Norris et al., 2014). In particular, bouts

of running gait naturally exhibit higher acceleration during

impact, creating easily identifiable peaks within acceleration

signals, justifying the use of a ZC gradient maxima algorithm

to segment gait. Consequently, using an accelerometer can

inform gyroscope-based outcomes (e.g., foot roll and impact

location). This benefit of that multi-modal sensing strategy

is particularly evident when IMU devices are placed on the

lower extremities (e.g., feet), increasing the sensitivity to

ground-impact biomechanical-related inertial signal features

(Panebianco et al., 2018), which has been demonstrated in

running gait (Alahakone et al., 2010; Young et al., 2020).

Furthermore, ZC has pragmatic utility in comparison to

recent approaches such as artificial intelligence and machine

learning within the wider gait assessment field, which, despite

their ability to provide comprehensive gait outcomes (Zhang

et al., 2019; Xu et al., 2022), are both computationally intensive

(Khera and Kumar, 2020) and require complex logistics such as

setup, training, and hosting. Conversely, ZC methods require

low computational power for more immediate deployment for

running gait assessment tasks (Hölzke et al., 2020), as the

technique is more readily deployable (i.e., does not require the

building of datasets and complex implementation), indicating

suitability for low-resource deployment, e.g., on a tablet or

smartphone without cloud connectivity. Previous work (Young

et al., 2020, 2021) developed a low-power IMU ZCmethodology

with a foot-mounted IMU to assess biomechanical properties

such as foot strike location, pronation, and ground contact time
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to recommend shoe type while participants ran at a single set

pace (8 km/h). Nevertheless, the validity of the ZC approach

has not been investigated comprehensively for general use in

running analysis. Here, we conduct a thorough investigation of

the fundamental ZC methodology for foot strike identification

and pronation ground contact time at varying speeds, cross-

referenced with a 3D-motion capture system and slow-motion

video reference streams. We hypothesize that the ZC is a useful

approach for examining running gait outcomes across a range

of speeds.

Methods

Participants

Ethical approval was granted by the Northumbria

University Research Ethics Committee (Reference: 21603).

All participants were provided with the necessary information

before participating, and they gave verbal and written consent

before performing treadmill-based testing in Northumbria

University’s Gait and Biomechanics Laboratory. One-third of

the healthy participants (34.5 ± 9.67 years; 1.75 ± 0.3m; 76.2

± 4.1 kg; 20M:11F) were recruited from running clubs in the

Northeast of England. Participants exhibited a range of running

abilities from ≈30min (amateur) to ≤ 20min (experienced) for

a 5 km pace. Inclusion criteria required that participants could

run unassisted for short periods and must be under the age of

60 years. Participants were screened for running-related injury

history, as well as any gait/mobility-affecting conditions (e.g.,

orthopedic and cardiovascular) that would adversely impact

running ability. No participants reported any current running

gait-affecting injuries or pre-existing conditions to warrant

exclusion. Participants were provided with a standardized,

neutral-cushioning running shoe (Saucony Guide Runner) for

use during testing to minimize impact at higher speeds.

Instrumentation: IMU

All participants were fitted with two wearable IMUs

(AX6, Axivity, UK, https://axivity.com/, tri-axial accelerometer,

and tri-axial gyroscope, 23.0 × 32.5 × 8.9mm, 11g) on

the talus joint of each foot with medical tape (Figure 1).

IMUs were programmed in Axivity’s omGUI software suite,

configured with ± 16 g accelerometer range, and 2,000 dps

gyroscope range polling at 60Hz. The location of the IMU

on the talus is essential to reproducing the ZC methodology

under investigation. Specifically, tracking the orientation of

the talus provides an optimal representation of foot rotation

throughout the running gait cycle (Hontas et al., 1986) to

determine the foot strike pattern, pronation, and ground

contact time.

Instrumentation: Reference

For standard reference, a three-dimensional (3D) 14-camera

motion tracking system (Vertex, Vicon, UK, www.vicon.com)

was used. The 14 Vicon Vertex motion tracking cameras were

distributed around a space of 9.8 × 7.9 × 3.2 m3, polling

at 200Hz to provide a high-resolution observation of the

participant’s running gait. Participants were fitted with 16 neo-

reflective markers for use with the Vicon 3D motion tracking

system in the following locations: (1) calcaneal tuberosity (heel),

(2) lateral malleoli (ankle), (3) base of the second metatarsal

(front-foot/toe), (4) lateral mid-shank, (5) lateral knee joint line,

(6) mid-lateral thigh, (7) anterior superior iliac spine, and (8)

posterior superior iliac spine (Figure 1).

Data capture

Participants initially performed a static pose (arms to the

side and feet shoulder-width apart) to calibrate the 3D motion

tracking system. Subsequently, participants were prompted to

walk for short periods within the 3D tracking environment,

providing synchronized data between the 3D tracking, video,

and IMU data streams. To ensure synchronization between

Vicon and IMU data streams, digital timestamps were created

consistently in software for both systems based upon the

operating system clock in “milliseconds since epoch” format.

Upon successful configuration, participants stood still on the

treadmill to provide a baseline reading from IMU devices and to

account for any local inclination error or misalignment during

fitting. Participants were then asked to perform short, 1-min

bouts of treadmill running at four set speeds (8, 10, 12, and

14 km/h) in line with guidelines in previous work (Young et al.,

2020) and to ensure participants could successfully complete

the tests despite their running ability. A period of 1-min was

chosen, as it generally aligns with other similar studies in the

field with data capture periods ranging from the 20 s (McGrath

et al., 2012) to the 90 s (Bailey and Harle, 2014; Tan et al., 2020).

Additionally, participants also ran at a speed comparable to

their most recent outdoor 5 km pace (15.1 ± 0.8 km/h). If their

self-selected pace was below or equal to pre-defined speeds, no

self-selected pace was captured. All runs captured inertial, 3D

motion, and video data (240 FPS side and rear perspectives).

Tests were conducted twice after a short break (≈1min) to

provide multiple running bouts for participants at each pace.

As such, a total of 148 running bouts were assessed during

this study.

Data labeling

Foot strike location, pronation severity, and ground contact

time were manually labeled by-hand through observation of 3D
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FIGURE 1

Example of a participant mounted with the full range of markers and sensors. (A) A macro view of a runner during testing, donning (B) 16

neo-reflective 3D motion tracking markers and 2 AX6 IMU devices. (C) Illustrates a zoomed view of the foot with the markers at the heel, ankle,

and front-foot positions; with the AX6 at the talus joint of the foot.

motion tracking data and slow motion video reference streams

in accordance with labels of the previous studies (Young et al.,

2020, 2021) by a team of trained researchers (sports science

biomechanics) such that each foot may exhibit: neutral, slight

or pronated roll of the foot; or heel, mid or fore foot strike

location (Figure 2). Labels are generated by observing skeletal

output generated by the Vicon system in cross-reference with

slow-motion video streams such that pronation is the angle

between the heel, ankle, and leg angle (Figure 2B), and foot strike

location denotes the impact location of the foot (Figure 2C).

A runner is considered pronated should they exhibit 5◦ or

greater foot roll during initial contact, in line with previously

outset guidelines (Young et al., 2020). Due to different sampling

resolutions between 3D motion capture (200Hz) and IMU

signals (60Hz), ground contact time is measured and labeled

with respect to milliseconds to standardize the measurements.

For example, ground contact time from 3D motion capture

could output 38Hz, whereas the IMU could output 11Hz.

Consequently, each method is resampled to 190ms and 183ms

for 3D motion tracking and IMU data, respectively. Ground

contact time is measured as the time elapsed (ms) between

initial contact (foot first makes contact with the ground) and

final/terminal contact (foot last leaves the ground). Of the 148

running bouts observed, a total of 9,327 strides (mean steps per

test = 57.2 ± 4.09) were extracted, labeled, and assessed as part

of the study.

Data processing and the algorithm

Data handling and processing have been described

previously (Young et al., 2020, 2021). In brief, acceleration and

rotation data are extracted and analyzed in a Jupyter notebook

Python 3.7 environment for the execution of the algorithm.

Data were prepared/filtered by a Butterworth band-pass filter

performing at 60Hz with a sampling frequency of 3Hz, and a

cut-off frequency of 5Hz is applied to the vertical acceleration

plane and vertical/horizontal rotational velocity to account for

signal noise.

IMU algorithm methodology

The method analyses tri-axial accelerometer and tri-axial

gyroscope signals in tandem during running to quantify foot

strike location, pronation severity, and ground contact time. The

method relies on the identification of initial contact from ZC

to inform gait feature extraction surrounding impact. A short

breakdown of the algorithm is presented below:

(a) Initial contact identification (Figure 3A): A ZC gradient

maxima algorithm is deployed for detecting the peaks

in the vertical acceleration plane; it is deployed for

initial contact identified by observing significant gradient
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FIGURE 2

Illustrated the view of the labeling process of pronation and foot strike between three neo-reflective markers located at the ankle, heel, and

frontfoot positions. The pronation angle is derived based on the angle of the leg in comparison to the angle of the foot, (A,B). Foot strike (C) is

determined as the first point that made contact with the ground (red x): heel, mid, or forefoot.

changes. Operating within a dynamic threshold based

upon the signal maxima, the ZC gradient maxima

algorithm effectively identifies initial contact peaks in

vertical acceleration.

(b) The rotational velocity of the foot in vertical and

horizontal planes is observed around identified points of

initial contact (Figure 3B). An average is taken of each

feature, providing a final output of pronation severity and

foot strike location.

(c) Final contact identification and ground contact time

estimation: The same ZC gradient maxima algorithm is

used to identify an inverse peak in the acceleration signal

within a 500ms region of interest following an identified

initial contact event. Ground contact time is consequently

calculated as the time between an initial contact event and

the final contact event.

Statistical analysis

The examination of the performance of the proposed

algorithms and their respective videos was conducted in SPSS

v27. The Shapiro–Wilks tests indicated a normal distribution

of all data (p < 0.05). Consequently, intra-class correlation

[ICC(2,1)] models examined absolute agreement between the

IMU algorithm and 3D reference/slow motion video streams.

A predefined ICC performance scale was deployed (Koo and

Li, 2016), defined as poor (< 0.500), moderate (0.500–0.750),

good (0.750–0.900), or excellent (> 0.900). The mean errors

were calculated between the algorithm and 3D motion data for

descriptive purposes and are observed as an accuracy metric

in ground contact time. Furthermore, the Bland Altman plot

(Bland and Altman, 1986) and the box plot were used to visually

assess the agreement between ground truth and algorithm

outcomes for ground contact time.

Results

Of the 31 participants, no data loss or dropout was

experienced during treadmill running sessions. Upon

preliminary observation of the quantified algorithm outcomes,

no significant outliers were identified. A total of 148 running

bouts containing 9,327 strides were analyzed as part of the study.

Initial contact

Intraclass correlation performance degrades at higher speeds

in identifying points of initial contact, demonstrating excellent

agreement between 8–10 km/h [ICC(2,1) > 0.900) and good

agreement (ICC(2,1) 0.750) at 14 km/h and higher self-selected

paces; see Table 1. The ZC gradient approach to initial contact

identification tends to overestimate the number of initial contact

events, especially at higher speeds.

Foot strike location and pronation
severity

Intraclass correlations demonstrate excellent agreement

between the algorithm and reference streams for foot strike

identification (ICC(2,1) > 0.900), particularly demonstrating
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FIGURE 3

Data illustration of the evaluated algorithm at the key stages of execution (A) initial/final contact identification and (B) gait feature extraction at

the point of contact.

TABLE 1 Initial contact identification performance in comparison to

reference labels from 3D-tracking data at di�ering speeds.

Reference Algorithm output

Average

no. of steps

Average

no. of steps

ICC (2,1)

8 km/h 54 55 0.963

10 km/h 56 56 0.981

12 km/h 56 57 0.945

14 km/h 59 65 0.821

Self-selected Pace 60 72 0.783

The average number of steps denotes the mean steps per participant per foot across the

range of datasets.

robustness at the full range of speeds with low error rates

throughout; see Table 2. Between 8–12 km/h, the pronation

identification algorithm demonstrates good agreement (ICC(2,1)

> 0.750) but begins to depreciate at 14 km/h + with moderate

(ICC(2,1) > 0.500) agreement.

Ground contact time

The ground contact time identification approach

demonstrates low mean errors at 8, 10, and 12 km/h (9

−17ms) when compared to 3D motion tracking labels; see

Table 3. In a similar vein, observing the median and upper/lower

range at lower speeds demonstrates an ability to estimate the

ground contact time of varying lengths (Figure 4). Conversely,

the mean error rate is slightly higher (21 ms−27ms) at the

higher speeds (14 km/h +) while additionally demonstrating

a wider deviance from the median and upper/lower range in

comparison to labeled data (Figure 4).

Discussion

Understanding running gait is crucial in injury prevention,

particularly when quantifying pragmatic biomechanical

properties. This can reduce impact-related or strain injuries

commonly associated with over-pronation (Daoud et al., 2012).

The proposed work investigates and evaluates the performance

of a ZC methodology at different running speeds to assess

suitability to quantify the foot strike location, pronation, and

ground contact time. It was found that the ZC method had

reduced agreement when compared to a standard reference at

higher running speeds, suggesting its use for running analysis

may be suitable for amateur runners only (i.e., those with a

5 km time > 20min) compared to elite athletes and their gait

assessment at higher speeds.
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TABLE 2 Gait feature extraction performance in agreement with reference labels from 3D-tracking data at di�ering speeds.

8 km/h 10 km/h 12 km/h 14 km/h Self-selected pace

Pronation Foot

strike

Pronation Foot

strike

Pronation Foot

strike

Pronation Foot

strike

Pronation Foot

strike

Mean error 0.184 0.131 0.184 0.105 0.342 0.112 0.382 0.029 0.312 0.025

ICC(2,1) 0.867 0.918 0.833 0.915 0.779 0.915 0.687 0.987 0.712 0.989

TABLE 3 Performance of ground contact time extraction layer in comparison with labels from 3D tracking data between 8km/h and a self-selected

speed (avg = 15.1 k m/h).

Speed (km/h) 8 10 12 14 Self-selected

Mean algorithm output (ms) 335.5± 44.78 317.5± 31.52 282.5± 35.06 272± 27.86 272± 28.83

Mean labeled data (ms) 344.5± 46.55 316.5± 31.64 279.5± 33.06 261.5± 28.61 245.5± 29.95

Mean Error (Hz) 3.58 2.15 2.93 4.21 5.48

Mean Error (ms) 9 11 15 21 27

Mean Error (%) 2.65 0.32 1.07 3.94 10.24

Results are observed in milliseconds to standardize measurements between reference (Vicon; 200Hz) and IMU (Axivity; 60Hz) output. For illustrative purposes, the mean error is shown

in both Hz and seconds and refers to the average error between the algorithm and labeled data.

FIGURE 4

Box plots illustrating the performance of the contact time algorithm at 8, 10, 12, 14 km/h, and a self-selected pace. A refers to actual (labeled)

contact time, and P refers to predicted (ZC algorithm) contact time.
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Performance of zero-crossing
methodology

In line with studies utilizing a ZC gradient approach for

gait cycle segmentation (Bastas et al., 2018; Han et al., 2019),

our IC identification algorithm demonstrated excellent absolute

agreement across the lower range of speeds (ICC(2,1) > 0.9) and

good agreement (ICC(2,1) > 0.75) at higher speeds by identifying

peaks in vertical acceleration above a dynamic threshold. The ZC

approach to initial contact identification demonstrates a mean

error of between 9 and 27ms between the algorithm and labeled

output dependent upon speed; see Table 3.

By observing the Bland Altman plots of the initial contact

identification approach at higher speeds (Figure 5), (14 km/h+),

we could observe that it is evident that the approach successfully

identifies labeled initial contact events, likely due to higher

impact forces exerting significant vertical acceleration that

gradient analysis can easily identify. However, false positives

are occasionally encountered at higher speeds where extraneous

noise is often present (Supplementary material, signal-to-noise

analysis) following a large impact; see Figure 6. The evaluated

methodology attempts to remove false positives based upon a

dynamic threshold, estimated through an observation of the

average quantified stride length (Young et al., 2020); however,

the process is not consistently performant in warranting use

at higher speeds. Recently, the use of deep learning has

demonstrated utility in identifying temporal gait outcomes in

both normal (Gadaleta et al., 2019) and running gait (Gholami

et al., 2020; Johnson et al., 2020) from wearable inertial sensors

but requires further investigation and validation (i.e., in a range

of speeds) before adoption. Should such approaches exhibit a

range of validity within the domain, their use could be warranted

to inform impact-related gait feature extraction outcomes.

In contrast to gyroscope-only based methods that perform

gait cycle segmentation through estimating the rotation of the

foot for mid-swing analysis, the use of a ZC approach in vertical

acceleration (accelerometer) for initial contact identification

can help a wider understanding of running gait outcomes at

the point of impact due to their sensitivity to ground forces

(Falbriard et al., 2018). Crucially, by using initial contact as a

marker from an accelerometer, we can search for rotation-based

outcomes surrounding initial contact (e.g., pronation and foot

strike location).

Ground contact time

Ground contact time is essential to understand due to

the implications for running the economy (Di Michele and

Merni, 2014). The evaluated approach performs smoothly

when observing mean errors from labeled data, demonstrating

efficacy between 8–12 km/h (mean error 0.32–2.65%), with a

degradation at 14 km/h + (3.94% mean error at 14 km/h; 10+

% mean error at self-selected); see Table 3. However, observing

box and Bland Altman plots—see Figures 4, 5—one can observe

that despite low deviation from average labels at higher speeds

(14 km/h+), there is a significantly wider range of estimated

values. These findings are comparable to similar work within

the field. For example, Falbriard et al. (2018) assessed a range

of signal features (e.g., min/max, ZC) for the identification of

temporal gait outcomes, including ground contact time. Similar

to the evaluated algorithm, utilizing optimally selected features,

the approach presented a degradation in accuracy with respect to

speed. However, the observed work also provides a discussion of

alternate, lesser-performant features (i.e., the minimum of pitch

angular velocity within the IC zone and the maximum of vertical

acceleration in the TC zone) that are not significantly affected

by speed, which may warrant further investigation for use in

high-speed running.

Gait feature extraction

The gait feature extraction layer of the algorithm relies

upon observing the horizontal and vertical angular velocity

of the foot at impact for pronation and foot strike location,

respectively. Table 1 illustrates the performance of the gait

feature extraction layer, demonstrating consistently excellent

performance across multiple speeds for foot strike location

identification, but showing degraded performance in pronation

identification at higher speeds.

Upon investigating the horizontal (pronation) and vertical

(foot strike location) rotational velocity planes, extraneous

noise became apparent surrounding an initial contact event

within the vertical rotational velocity plane at higher speeds;

see Figure 6. Supplementary Table 1 shows the average noise-

to-signal ratio across the range of speeds in both vertical and

horizontal rotational velocity within a 167ms (10Hz) window

of an initial contact event. The experiment demonstrates an

obvious and significant increase in noise (+10.1%) in horizontal

roll between slow and high speeds, explaining the degradation

in pronation accuracy. Conversely, there is noticeably less noise

in the vertical rotation plane at all rotational speeds, which

is accompanied by consistently excellent test results. The use

of a continuous wavelet transform (CWT) may be warranted

in future iterations due to high performance in single-sensor

applications through noise suppression by the removal of

extraneous signal fluctuations, leading to clearer gait feature

extractions (McCamley et al., 2012).

The proposed approach performs comparably with similar

work within the field. For example, Murai et al. (2018)

utilized a single, foot-mounted IMU to observe the angular

velocity of the foot during impact to assess pronation at

a correlation of r = 0.800, coinciding with our ICC(2,1)

score of 0.779–0.867 between 8–12 km/h. However, our
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FIGURE 5

Bland-Altman plots of the ground contact time between ground truth and algorithm output. Blue and orange lines denote mean ± STD of the

error.

evaluated approach provides a significantly higher number of

participants (31 runners of varying demographics: evaluated

approach, ten male runners: observed study) and insight into

the speed of the runners and how it affects performance,

providing a more generalizable assessment of IMU-based

pronation assessment.

Implications of free-living running gait
assessment

Through developing and evaluating an IMU-based

algorithm with promising results, the approach provides scope

for implementation in low-cost commercial technologies,

reducing reliance on expert analysis and/or gold-standard,

high-cost technologies (Young et al., 2020). The methodology

investigated here primarily focuses on gait feature extraction

during treadmill running for use in habitual or low-resource

environments. However, there is some debate about the efficacy

of treadmill-based gait assessment due to gait kinematics

differing in overground and outdoor running scenarios (Lafferty

et al., 2021; Benson et al., 2022), potentially inhibiting the utility

of the evaluated ZCmethod. Consequently, the approach should

be validated in outdoor scenarios to assess its performance in

uncontrolled settings. In performing outdoor validation, the use

of IMU-based methods could contribute to a full-scale running

gait analysis, providing relatively sparse, long-term observations

such as gait monitoring across 10 km or marathon running

(Benson et al., 2018; Meyer et al., 2021).

Limitations

Due to the potential for high impact forces at greater

speeds, the use of a running shoe during testing was warranted

to minimize the risk of impact-related injuries (Sun et al.,

2020). The deployed running shoes in this study (Saucony

Guide Runner) exhibit a neutral-cushioning shoe and, thus, do

not provide pronation-minimizing support. However, running

shoes are widely accepted to influence and change aspects

of a runner’s gait in opposition to barefoot running (Stacoff

et al., 1991; Aguinaldo and Mahar, 2003; Jandová et al.,

2018). Consequently, although the evaluated algorithms can

extract pronation, foot strike location, and ground contact

time in comparison to labeled data, the outcomes may not

be indicative of the runner’s “true” gait, i.e., when running

barefoot. Additionally, running shoes reduce impact force on

the lower extremities (Aguinaldo and Mahar, 2003), potentially

minimizing acceleration on impact observed by the IMU

in comparison to previous work (Young et al., 2020). As

such, although the evaluated ZC approach to IC identification

performs well within the constraints of the study, it should be

noted that the ZC approach may not scale between different

running shoes, i.e., those that exhibit larger levels of support.
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FIGURE 6

Comparison of a runner’s vertical acceleration data at two di�erent speeds, 8 km/h and 16 km/h. As observed, within higher speeds, a

considerable increase in noise is noticed after an initial contact event. Additionally, the signals have obvious di�erences between speeds due to

(i) noise and (ii) potential of changing gait with respect to speed (e.g., fore strike at 8 km/h and heel strike at 16 km/h). Consequently, extracting

gait features around a point of impact could be significantly impacted at higher speeds.

IMUs are susceptible to drift errors due to high-frequency

noise within micro-electro-mechanical systems (Narasimhappa

et al., 2019) and the potential for local misalignment. Although

the evaluated algorithm takes into account local alignment

error and uses a Butterworth filter to account for noise,

this approach may not be drift-free among different running

patterns, which may impact gait outcomes. Therefore, to ensure

that the approach is not hindered by drift, it may be necessary

to implement a drift-minimizing algorithm (Falbriard et al.,

2020). This could be especially useful in analysis at higher speeds,

where sensors may be more susceptible to drift due to extensive

exposure to high-impact forces.

Future work

Currently, the evaluated algorithm degrades in performance

at higher speeds (14 km/h+) due to extraneous noise

encountered at higher impact speeds and misidentification

of initial contact events. Some shortcomings have been

identified for future iterations of the algorithm, namely

requiring the use of CWT processing and the potential

implementation of artificial intelligence for the identification of

IC events in anomalous signals. Future work will validate the

approach in overground (i.e., off-treadmill), outdoor running

to assess IMU-based running gait assessment over extended

running bouts.

Conclusion

The proposed work investigates and evaluates a ZC

methodology for the extraction of a range of biomechanical

properties from a single foot-mounted IMU that could

be useful for general running gait analysis. The evaluated

method has demonstrated utility in quantifying foot
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strike location, pronation severity, and ground contact

time during treadmill running at speeds up to 12 km/h,

exhibiting good and excellent agreements with 3D

motion capture. By conducting this investigation on

the ZC methodology for running gait assessment, we

contribute to understanding the efficacy and utility

of wearable IMUs during running gait. Particularly,

providing approaches to understanding running with

low-cost apparatus to promote personalized and objective

running gait assessment and reduce reliance on traditional,

subjective approaches.
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