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Abstract

This paper presents an excitation controller design process for multimachine power sys-
tems with synchronous generators using an adaptive backstepping approach to ensure
robust performance against parametric uncertainties as well as to improve the transient sta-
bility during large disturbances. In this work, electrical dynamics of synchronous generators
are described using two-axis models while excitations systems are represented as the IEEE
Type II exciter which mainly captures electrical dynamics while swing equations are used
to capture mechanical dynamics. The proposed adaptive backstepping control approach is
then employed to derive the excitation control law. The proposed adaptive backstepping
scheme uses all nonlinearities, which are mainly due to the interconnections and rota-
tions of rotors in synchronous generators, within the dynamical models to improve the
transient stability during severe disturbances. Furthermore, this excitation control scheme
uses estimated values of parameters appearing in the dynamical models of power system
which are estimated using adaptation laws based on real-time measurements and hence, it
provides robustness against parametric uncertainties. The theoretical stability of the pro-
posed scheme is assessed using the Lyapunov stability theory, that is, by checking the
negative definiteness or semi-definiteness of the derivative of control Lyapunov func-
tions (CLFs). Rigorous simulations are conducted on an IEEE 39-bus 10-machine test
power system for evaluating the performance of the proposed scheme under different
operating conditions. Simulation results clearly demonstrate the superiority of the adaptive
backstepping excitation controller over existing nonlinear controllers including an existing
adaptive backstepping excitation controller that is designed using the classical model of
synchronous generators.

1 INTRODUCTION

Excitation controllers paly a key role for augmenting the
overall transient stability of power grids when these grids expe-
rience severe disturbances. Excitation controllers are mainly
designed to deliver the desired damping toque into power sys-
tems during transient conditions. Since power systems exhibit
continuously changing behaviors, excitation controllers must
be capable to ensure the stability with changes in operating
conditions and this needs to be considered while designing
excitation controllers. Furthermore, the damping capability of
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excitation controllers directly depends on the parameters of
synchronous generators and excitation systems along with the
dynamical models as these parameters appear in the control
signal [1]. Hence, the effects of such parameter variations and
model accuracies also need to be considered while designing an
excitation controller.

Power system stabilizers (PSSs) are traditional excitation con-
trollers for synchronous generators in power systems which
are utilized for enhancing transient stability under small dis-
turbances [2, 3]. However, linearized models of transient level
synchronous generators are used to design PSSs which do not
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FIGURE 1 Speed deviation of G4 with variations in different parameters

have the ability to cope with large perturbations due to large
disturbances within the network. Some advanced excitation lin-
ear control schemes are designed for synchronous generators
with the assumption that there are only small variations in
operating points. The examples of such linear excitation con-
trol schemes include the H∞ scheme based on solving linear
matrix inequalities (LMIs) and the linear quadratic regulator
(LQR)-based approach that are designed using the solution of
Riccati equations as discussed in [4, 5]. However, these lin-
ear excitation controller are still not capable to ensure the
stable operation during the major grid events (e.g. sudden
loss of generations due to short-circuit faults at their output
terminal, sudden tripping of transmission lines etc.) despite
their effectiveness under known upper and lower bounds of
steady-state operating conditions. Moreover, the assumption
for slight variations in operating point is valid when syn-
chronous generators are used to supply base loads without
any external faults which is not the general case as contin-
uous changes in loads or faults are very obvious in modern
power grids. Therefore, excitation controllers should be capa-
ble to manage the large disturbances under any operating
conditions.

Nonlinear excitation controllers can be designed using non-
linear models of synchronous generators for ensuring the stable
operation without relying on a fixed set of operating condi-
tions. Different nonlinear controller design techniques such as
the feedback linearization [6–8], adaptive backstepping [9, 10],
and sliding mode [11, 12] approaches are generally used to deter-
mine excitation control inputs in conjunctions with different
linear control techniques.

Three different feedback linearization techniques, for exam-
ple, direct, exact, and partial feedback approaches are reported
in the existing literature to design and implement excitation
controllers in power networks [7, 13–15]. Direct and exact feed-
back linearization techniques use state and nonlinear coordinate
transformation techniques, respectively, in order to linearize
the nonlinear power system. With both of these approaches,
the orders of the original nonlinear systems and transformed
linear systems remain the same. As a result, the rotor angle
(which is not available from the direct measurement) of syn-
chronous generators needs to use as the feedback to implement
the excitation control law obtained from direct and exact feed-
back linearization schemes. Therefore, additional observers are
required for implementing these excitation controllers and such
observers are not considered as cost-effective solutions [16].

The measurements of rotor angle associated with the imple-
mentation of the excitation controllers using direct and exact
feedback linearization scheme can be overcome using par-
tial feedback linearizing excitation controllers [15]. Moreover,
the application of the partial feedback linearization technique
simplifies the original power system model into a reduced-
order one using nonlinear coordinate transformations which
in turn makes the controller design process simple. However,
the main problem associated with all these feedback lineariz-
ing excitation controllers is that these are designed using the
transient level (i.e. one-axis) models of synchronous genera-
tors. Though a more realistic higher-order (two-axis) model
is used in [17] to determine the excitation control input for
synchronous generators using the obtain partial feedback lin-
earization scheme, the performance of all these controllers
are drastically affected if parameters appearing in the control
law are slightly perturbed. Furthermore, the feedback lineariza-
tion techniques cancel some useful nonlinearities of power
systems.

Nonlinear excitation controllers using the sliding mode con-
trol technique ensure robustness against perturbed parameters
including transient condition due to severe external distur-
bances [11, 12, 18]. These sliding mode excitation controllers are
designed based on time-varying sliding surfaces whose selection
process is complicated for synchronous generators represented
by higher-order models. As a result, existing excitation con-
trollers using the sliding mode control scheme are mostly
designed using one-axis models of synchronous generators.
However, the unmodeled dynamics of synchronous genera-
tors excite the responses during the transient events whose
severity is more for large disturbances. Though an advanced
synchronous generator model having a higher-order configu-
ration is used in [19] to avoid the excitements arising from
unmodeled dynamics, the responses exhibit huge chattering
effects even with the cost of huge complexities during the
implementation.

The adaptive backstepping control scheme can be considered
as another straightforward and effective way to obtain the exci-
tation control law which utilizes all nonlinearities in the system
model and assists to avoid parameter sensitivity problems as
well as steady-state chattering effects [20, 21]. Excitation con-
trollers based on the adaptive backstepping approach guarantee
the desired tracking of all states appearing in the dynamical
model and dynamically adapt all parameters in the model as
this approach has parameter adaptation features [22]. A neu-
ral network (NN)-based adaptive excitation control scheme is
presented in [23] in which dynamic characteristics are esti-
mated using a two-layer NN. However, the approach in [23] still
uses the typical third-order dynamical model as the reference
model. Similar models are used in [24–27] to design excitation
controllers using an adaptive approach where the parameter
adaptation includes only the estimation of the damping coef-
ficient rather than all parameters appearing in the model. Since
the damping coefficient is not only the parameter that affects
the stable operation of power systems, these controllers are not
capable to ensure the overall stability with perturbations in other
parameters including the parameters of the excitation system



ROY AND MAHMUD 3

FIGURE 2 The overall flowchart of the proposed ABEC

FIGURE 3 The implementation block diagram of the proposed control scheme

that are not considered in most of the existing literature so far
presented here.

The adaptive excitation controller as presented in [28] esti-
mates all parameters appearing within the dynamical model
capturing dynamics of power systems where the synchronous
generator is modeled as the classical third-order one with a
first-order model of an IEEE Type II exciter. This model can-
not accurately capture some useful dynamic characteristics of
synchronous generators, for example, the terminal voltage of
synchronous generators relies on the voltages of both direct-

and quadrature-axis and the third-model only considers the
dynamic of the quadrature-axis voltage. Hence, the excitation
controller designed from such models (i.e. without having some
important dynamics) will not be capable to enhance the stabil-
ity [29]. This issue is resolved in [30] through a robust adaptive
approach by incorporating the dynamic of direct-axis transient
voltage in addition to the existing model used in [29]. The
robust excitation controller in [30] estimates all parameters
while modeling external disturbances in terms of measurement
noises. The main problem of this robust excitation controller
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FIGURE 4 IEEE Test system (39-bus 10-machine) for assessing the
performance of the ABEC

in [30] is that some known bound need to be imposed on exter-
nal disturbances which in turn restrict the stability of power
systems. The condition for bounding uncertainties can easily
be avoided by inherent including the effects of external distur-
bances within the model. By considering this fact, an adaptive
excitation controller is designed in [31] for the synchronous

generator connected to an infinite bus where the generator is
represented by the two-axis model. The controller in [31] also
uses estimated values of key parameters in the model. How-
ever, synchronous generators exhibits different characteristics
in real power systems which comprise more than a single gener-
ator. Moreover, the damping coefficients and inertia constants
of synchronous generators are still considered as known in [30,
31] though these significantly disturb the stable operation of
power systems. For this reason, it is essential to design an adap-
tive backstepping excitation controllers (ABEC) that will be
capable to estimate all parameters for multiple synchronous
generators in a power system and ensure the stability during
severe transients.

The previous works based on the third-order model of
synchronous generators a multimachine power system using
a similar nonlinear adaptive backstepping approach mostly
neglect the effects of the automatic voltage regulator though
it plays a significant role in the voltage control. Hence, the
existing works mostly ensure the angle stability by main-
taining the synchronous speed and do not play any roles
for the voltage control. The unique feature of the proposed
scheme is the consideration of the dynamic of the auto-
matic voltage regulator during the controller design process
and the relevant parameter (e.g. time constant) as unknown.
This is extremely important as the automatic voltage regula-
tor continuously adjusts the terminal voltage which causes the
variation in the time constant. The variation of this parame-

FIGURE 5 Terminal voltages with a symmetrical 3LG fault at
the terminal of G4
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FIGURE 6 Speed deviations with a symmetrical 3LG fault at the terminal of G4

ter significantly affect the stability margin of power systems.
Furthermore, this work considers a fast excitation system with
the reduced-order fast dynamic model which are not con-
sidered in the existing backstepping controllers that use the
third-order model of the synchronous generator. In this work,
the ABEC in [31] is extended for multimachine power systems
where the nonlinear dynamical models include the mechanical
dynamics, electrical dynamics (for both direct- and quadrature-
axis), and dynamics of excitation systems. The main novelty
of the proposed scheme as compared to the approaches as
presented in [9, 20–22, 27, 28, 30] are summarized in the
following:

∙ The use of two-axis model for capturing electrical dynamics
and guaranteeing the convergence of all states in the dynam-
ical model to their desired values. The proposed adaptive

backstepping control approach can handle both steady-state
and transient stability effectively. It is well-known that the
variations of stability sensitive parameters are very common
in power systems and these parameters in real power system
depend on the transient behaviors. Therefore, it is benefi-
cial to consider parametric uncertainties in the synchronous
generator and incorporate these during the controller design
process. Thus, in such cases, an excitation controller needs
to be designed in such a way that it not only stabilizes
the nominal system at a desired equilibrium point but also
guarantees robustness with respect to unknown parameter
variations. In such cases, the adaptive controller can handle
these parameter variations and quickly stabilize the transient
behaviors.

∙ The adaptation of all parameters in the dynamical model
without imposing any bounds. It is worth to note that all
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FIGURE 7 Rotor angles with a symmetrical 3LG fault at the terminal of G4

parameters have their own bounds for a real physical system
and though the controller is designed for unbounded parame-
ters, the simulations are carried out for around 10% variation
in all parameters from their nominal values. Please note that
the estimation of all parameters will not increase the over-
all complexity of the control law rather it will increase the
number of the adaptation laws.

In the proposed scheme, adaptation laws are derived to
estimate all parameters in the dynamical model of each syn-
chronous generator and the newly proposed excitation control
scheme uses these estimated values to guarantee the conver-
gence of all states which in turn ensure the overall stability
during major disturbances on power systems. The proposed

ABEC does not neglect any nonlinearities within the power
system model like other existing methods, for example, the
feedback linearization scheme. This enables the controller to
provide sufficient damping and the relevant control Lyapunov
functions (CLFs) are formulated during each step of the con-
troller design process for analyzing the theoretical stability.
An IEEE test system having 39-bus and 10 synchronous
generators, which is often known an New England power
system, is used for validating the effectiveness of the pro-
posed ABEC under different operating scenarios while applying
large disturbances. The comparative results are also presented
where these comparisons are made with an existing ABEC
(EABEC), partial feedback linearizing, and sliding mode
controllers.
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FIGURE 8 Output active power responses with a symmetrical 3LG fault at the terminal of G4

2 DYNAMICAL MODEL OF
SYNCHRONOUS GENERATORS IN
POWER SYSTEMS

The dynamical model of multimachine power systems needs
to be developed for deriving the excitation control signal. This
section presents mechanical dynamics, electrical dynamics con-
sidering two-axis, and fast dynamic of the excitation system. The
dynamics of synchronous generators dominate the operation
of traditional power networks [2]. Since synchronous gener-
ators convert the mechanical power into electrical power, it
is essential to consider both mechanical and electrical dynam-
ics. The dynamical models are considered in a generalized
way by considering N interconnected synchronous genera-
tors through transmission lines and transformers. In such a

system, all synchronous generators exhibit similar dynamic
behaviors where the effects of interconnections are captured
through the power and current flowing through different
parts of the system. Swing equations represent the mechani-
cal dynamics which can be expressed through following two
equations [17, 32]:

𝛿̇i = 𝜔i − 𝜔0i

𝜔̇i = −
Di

2Hi
(𝜔i − 𝜔0i ) +

𝜔0i

2Hi
(Pmi − Pei )

. (1)

The symbols in Equation (1) are defined in a similar way as
presented in [17, 32]. For two-axis models of synchronous gen-
erators, the electrical dynamics of ith synchronous generator can
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be expressed as:

Ė ′
qi = −

1

T ′
doi

E ′
qi −

(xdi − x′di )

T ′
doi

Idi +
1

T ′
doi

E fdi

Ė ′
di = −

1

T ′
qoi

E ′
di +

(xqi − x′qi )

T ′
qoi

Iqi

, (2)

where symbols in Equation (2) can be defined in a way as dis-
cussed in [17, 32]. This work considers a fast excitation system
and the reduced-order fast dynamic of such an exciter can be
represented as [17, 32]:

Ė fdi = −
E fdi

TAi
+

KAi

TAi
(ΔVi +Vci ), (3)

where ΔVi = Vre fi −Vti and symbols in Equation (3) can be
defined in a similar manner as presented in [17, 32]. The relevant
algebraic equations demonstrating the voltage-current relation-
ship, that is, the effects of interconnections can be represented
as [17, 32]:

Vdi = E ′
di − Rsi Idi + x′qi Iqi , Vqi = E ′

qi − Rsi Iqi + x′di Idi

Vti =
√

V 2
di +V 2

qi

Idi =

n∑
j=1

Yi j [E
′
di cos(𝛿i j + 𝜃i j ) − E ′

qi sin(𝛿i j + 𝜃i j )]

Iqi =

n∑
j=1

Yi j [E
′
qi cos(𝛿i j + 𝜃i j ) + E ′

di sin(𝛿i j + 𝜃i j )]

Pei = E ′
qi Iqi + E ′

di Idi , Qei = E ′
qi Idi − E ′

di Iqi

, (4)

where all symbols carry their usual meanings in power systems
that are presented in [17, 32]. The algebraic equations for d - and
q-axis currents along with the electrical power are used with the
dynamical models and the final model can be represented as:

𝛿̇i = 𝜔i − 𝜔0i

𝜔̇i = −
Di

2Hi
(𝜔i − 𝜔0i ) +

𝜔0i

2Hi
[Pmi − (E ′

qi Iqi + E ′
di Idi )]

Ė ′
qi = −

1

T ′
doi

E ′
qi −

(xdi − x′di )

T ′
doi

Idi +
1

T ′
doi

E fdi

Ė ′
di = −

1

T ′
qoi

E ′
di +

(xqi − x′qi )

T ′
qoi

Iqi

Ė fdi = −
E fdi

TAi
+

KAi

TAi
(ΔVi +Vci )

. (5)

The excitation control problem can be formulated using this
dynamical model by considering variations in parameters. The
parameter dependency of the EABEC can be determined by
looking at the response of a particular generator while varying
parameters from their nominal values. The parameters which
severely affect the stability can be incorporated as unknown
in Equation (5). The following section discusses the effects
of such variations through the speed deviation response of
a generator and the control problem is formulated accord-
ingly and then adaptation laws are used for adapting all these
parameters.

3 FORMULATION OF THE
EXCITATION CONTROL PROBLEM

Parameters of different components appear in the final dynam-
ical model in Equation (5). Since excitation controllers are
generally implemented locally, these excitation control law
should include for parameters related to transmission lines that
connect different buses [16]. However, the implementation of
excitation controllers cannot avoid parameters associated with
synchronous generators and excitation systems for tackling
transient behaviors due to large disturbances. As a result, the
performance of such controllers is heavily reliant on the para-
metric information and other feedback variables (e.g. voltage,
current, active power, reactive power, speed etc.) that can be
obtained from measurements. At the same time, it is hard to use
the proper values of parameters as many of these such as tran-
sient parameters (e.g. T ′

doi and T ′
qoi ) change when power systems

experience disturbances.
The impacts of changes in parameter on an EABEC are

investigated in terms of managing the stable operation by apply-
ing this EABEC an IEEE test system having 10 synchronous
generator and 39 buses as shown in Figure 4 in which dif-
ferent parameters of generators and exciters are varied from
their nominal values. The speed deviation of G4 at bus-33, is
monitored to analyze these effects. Here, the main objective
of Figure 1 is to present the effects of parameter sensitiv-
ity on the speed deviation of G4 with variations of different
parameters appearing in the dynamical mode as represented by
Equation (5). The speed deviation of G4 is maintained at zero as
shown in Figure 1 when the proper values (commonly known as
the nominal values) of parameters are used which is mainly due
to no changes in parameters. This clearly demonstrates the oper-
ation of G4 at the synchronous speed. However, this operating
scenario is disturbed by changing parameters from their nominal
values where these changes are basically 10% from their nom-
inal values. The following sequences are considered to change
the values of parameters:

∙ change of Di ;
∙ change of Di and Hi ;
∙ change of Di , Hi , and T ′

doi ;
∙ change of Di , Hi , T ′

doi , and T ′
qoi ; and

∙ change of Di , Hi , T ′
doi , T ′

qoi and TAi .
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In all cases, the speed deviation response of G4 is disturbed
due to variations in parameters. If all these parameters in
Equation (5) are considered as unknown, it can be written as:

𝜃1i = −
Di

2Hi
, 𝜃2i =

𝜔0i

2Hi
, 𝜃3i =

1

T ′
doi

, 𝜃4i = −
(xdi − x′di )

T ′
doi

,

𝜃5i = −
1

T ′
qoi

, 𝜃6i =
xqi − x′qi

T ′
qoi

, 𝜃7i = −
1

TAi
, 𝜃8i =

KAi

TAi

. (6)

It is worth to mention that the variations in parame-
ters are considered as global instead of restricting within
a range as discussed in [22]. It is also worth noting that
these parameters will be adapted by sensing the transient
characteristics.

The proposed ABEC will provide robust operation when
power systems experience severe transients that cause signif-
icant variations in parameters. This will be possible if the
dynamical model is represented in terms of unknown param-
eters and these parameters estimated using adaptation laws.
The incorporation of these unknown parameters will simplify
Equation (5) as:

ẋ1i = x2i

ẋ2i = 𝜃1ix2i + 𝜃2i (Pmi − Iqix3i − Idix4i )

ẋ3i = −𝜃3ix3i + 𝜃4i Idi + 𝜃3ix5i

ẋ4i = 𝜃5ix4i + 𝜃6i Iqi

ẋ5i = 𝜃7ix5i + 𝜃8i (ΔVi +Vci )

, (7)

where x1i , x2i , x3i , x4i , and x5i represent 𝛿i , 𝜔i − 𝜔0i , E ′
qi , E ′

di ,
and E fdi , respectively. The excitation control and parameter
adaptation laws derived from this model will ensure the aug-
mentation of the transient stability where these derivations are
discussed in the section below.

4 PROPOSED ADAPTIVE EXCITATION
CONTROL SCHEME

A step-by-step process is presented in this section to derive the
excitation control and parameter adaptation laws using the pro-
posed scheme. Each step analyzes the stability of relevant error
dynamics for both states and unknown parameter while the
relationship among different states is presented by introducing
virtual control law to ensure intermediate stability until the final
excitation control and parameter adaptation laws are achieved.
Adaptation laws estimate all parameters that are assumed as
unknown and the excitation control law uses these estimated

values for ensuring the stability during large faults and robust-
ness against variations in parameters which are discussed in the
following steps.

Step 1: The controller design process needs to start with
analyzing the stability of the tracking error (e1i ) for the first
state, that is, the rotor angle finally represented as x1i . If
x1di corresponds the desired value of x1i , e1i can be written
as:

e1i = x1i − x1di , (8)

and its dynamic will be as:

ė1i = ẋ1i = x2i . (9)

As the excitation control input and unknown parameters do not
appear in (9), the next state (x2i ) can be treated as a virtual con-
trol input for stabilizing ė1i where it actually corresponds to the
speed deviation, that is, ė1i = x2i . The CLF for analyzing the
convergence of e1i can be formulated as:

W1i =
1
2

e2
1i , (10)

and the simplified form of its derivative as:

Ẇ1i = e1ix2i . (11)

The convergence of e1i depends on the values of Ẇ1i and it will
converge if Ẇ1i ≤ 0 (i.e. negative semi-definite) or Ẇ1i < 0 (i.e.
negative definite). If 𝛽i , a new control variable with 𝛽i ≈ x2i
assists to ensure Ẇ1i ≤ 0; 𝛽i has to be a feedback controller of
the following form for minimizing e1i :

𝛽i = −k1i e1i , (12)

where k1i represents a user-defined positive value that controls
the convergence speed of e1i . Using 𝛽i = −k1i e1i in Equa-
tion (13), the stability of ė1i can be ensured as the following
condition holds:

Ẇ1i = −k1i e
2
1i , (13)

which indicates Ẇ1i ≤ 0 for any values of e1i and thereby, guar-
anteeing e1i → 0. To further proceed with the design process, 𝛽i
needs to be used as a reference value of x2i and since ė1i = x2i ,
𝛽̇i can be obtained as:

𝛽̇i = −k1ix2i . (14)

Step 2: Since 𝛽i is the reference value of x2i , e2i can be
defined as:

e2i = x2i − 𝛽i , (15)
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and ė2i will be as:

ė2i = 𝜃1ix2i + 𝜃2i (Pmi − Iqix3i − Idix4i ) + k1ix2i . (16)

If 𝜃̃1i and 𝜃̃2i represent the parameter estimation errors with
𝜃̂1i and 𝜃̂2i as estimated values corresponding to parameters 𝜃1i
and 𝜃2i , respectively; these can be expressed as:

𝜃̃1i = 𝜃1i − 𝜃̂1i and 𝜃̃2i = 𝜃2i − 𝜃̂2i . (17)

With these, Equation (16) can be rewritten as:

ė2i = (𝜃̂1i + 𝜃̃1i )x2i + (𝜃̂2i

+ 𝜃̃2i )(Pmi − Iqix3i − Idix4i ) + k1ix2i .
(18)

The convergence of e2i can be analyzed through the following
CLF:

W2i = W1i +
1
2

e2
2i , (19)

and its derivative will be as:

Ẇ2i = −k1i e
2
1i + e2i [(𝜃̂1i + 𝜃̃1i )x2i + (𝜃̂2i + 𝜃̃2i )

(Pmi − Iqix3i − Idix4i ) + k1ix2i ],
(20)

which can be rewritten as:

Ẇ2i = −k1i e
2
1i + e2i [𝜃̂1ix2i + 𝜃̂2i (Pmi − Iqix3i − Idix4i )

+ k1ix2i ] −
1
𝛾1i

𝜃̃1i (
̇̂
𝜃1i − 𝛾1i e2ix2i )−

1
𝛾2i

𝜃̃2i [
̇̂
𝜃2i − 𝛾2i e2i (Pmi − Iqix3i − Idix4i )],

(21)

where 𝛾1i and 𝛾2i are positive adaption gains that are used
for controlling the convergence speed of 𝜃̃1i and 𝜃̃2i ,
respectively.

Since the excitation control input and remaining unknown
parameters are not yet appeared, the remaining states (e.g. x3i
and x4i ) can be used as virtual control inputs to demonstrate
their relationship with previous states. To achieve Ẇ2i ≤ 0, the
new forms of controllers (i.e. 𝛽1i ≈ x3i and 𝛽2i ≈ x4i ) can be
obtained as:

𝛽1i =
1

𝜃̂2i Iqi

(𝜃̂1ix2i + 𝜃̂2iPmi + k1ix2i )

𝛽2i =
1

𝜃̂2i Idi

k2i e2i

, (22)

where k2i represents a user-defined positive value that controls
the convergence speed of e2i . At this stage, parameter adaptation
laws are not decided for estimating unknown parameters 𝜃1i and

𝜃2i as the excitation control law is not obtained yet and there
will be over- or under-parameterization problems if these are
estimated now. However, it is essential to ensure the stability
with the virtual variables 𝛽1i and 𝛽2i for which the following
tuning functions are defined:

𝜏1i = 𝛾1i e2ix2i and 𝜏2i = 𝛾2i e2i (Pmi − Iqix3i − Idix4i ). (23)

With these (i.e. Equations (22) and (23)), the simplified form of
Equation (21) will be:

Ẇ2i = −

2∑
j=1

k ji e
2
ji −

1
𝛾1i

𝜃̃1i (
̇̂
𝜃1i − 𝜏1i )

−
1
𝛾2i

𝜃̃2i (
̇̂
𝜃2i − 𝜏2i ).

(24)

The first term in Equation (24) will be negative semi-definite
for any values of e1i and e2i while the last two terms will

be the same if ̇̂
𝜃1i ≤ 𝜏1i and ̇̂

𝜃2i ≤ 𝜏2i . However, the last two
terms are associated with 𝜃2i and 𝜃2i and no decisions are
made for these estimations. The estimation problems for these
parameters will be sorted out during the final stage when the
excitation control input will be determined. Hence, it is essen-
tial to analyze the characteristics of other steps as discussed
below.

Step 3: Since 𝛽1i ≈ x3i and 𝛽2i ≈ x4i , the corresponding
errors (i.e. e3i and e4i ) will be as:

e3i = x3i − 𝛽1i and e4i = x4i − 𝛽2i . (25)

The derivative of e3i , by incorporating the third equa-
tion in (7) can be written as:

ė3i = 𝜃4i Idi − 𝜃3ix3i + 𝜃3ix5i − T1i

+ T2i − T4i𝜃1i − T5i𝜃2i ,

(26)

with

𝛽̇1i = T1i − T2i + T4i𝜃1i + T5i𝜃2i , (27)

where

T1i =

̇̂
𝜃2iPmi + 𝜃̂2i Ṗmi + x2i

̇̂
𝜃1i

𝜃̂2i Iqi

,

T2i =
( ̇̂𝜃2i Iqi + 𝜃̂2i İqi )[𝜃̂2iPmi + x2iT3i ]

𝜃̂2
2i I

2
qi

,

T3i = 𝜃̂1i + k1i , T4i = T3ix2i , and

T5i = T3i (Pmi − Iqix3i − Idix4i ).

(28)
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FIGURE 9 Control signals with a symmetrical 3LG fault at the terminal of G4

If 𝜃̃3i = 𝜃3i − 𝜃̂3i and 𝜃̃4i = 𝜃4i − 𝜃̂4i are corresponding
parameter estimation errors for 𝜃3i and 𝜃4i with their estimated
values of 𝜃̂4i and 𝜃̂4i , respectively; the substitutions of these
values into Equation (26) yield:

ė3i = −(𝜃̂3i + 𝜃̃3i )(x3i − x5i ) + (𝜃̂4i + 𝜃̃4i )Idi − T1i

+ T2i − T4i (𝜃̂1i + 𝜃̃1i ) − T5i (𝜃̂2i + 𝜃̃2i ).

(29)

The same approach will yield the dynamic of e4i as:

ė4i = (𝜃̂5i + 𝜃̃5i )x4i + (𝜃̂6i + 𝜃̃6i )Iqi − 𝛽̇2i , (30)

where 𝜃̂5i and 𝜃̂6i are the estimated values of 𝜃5i and 𝜃6i , respec-
tively; and the estimation errors for 𝜃5i and 𝜃6i are expressed as
𝜃̃5i = 𝜃5i − 𝜃̂5i and 𝜃̃6i = 𝜃6i − 𝜃̂6i , respectively. The CLF for
analyzing the convergence of e1i to e4i can be formulated as:

W3i = W2i +
1
2

(e2
3i + e2

4i +
1
𝛾3i

𝜃̃2
3i

+
1
𝛾4i

𝜃̃2
4i +

1
𝛾5i

𝜃̃2
5i +

1
𝛾6i

𝜃̃2
6i ),

(31)

where 𝛾3i , 𝛾4i , 𝛾5i , and 𝛾6i are positive adaptation gains. For
analyzing the stability of ė1i to ė4i and convergence of 𝜃̃1i to 𝜃̃6i ,
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FIGURE 10 Estimated unknown parameters of G4 with a symmetrical 3LG fault at the terminal of G4

Ẇ3i can be determined as:

Ẇ3i = −

2∑
j=1

k ji e
2
ji + e3i [𝜃̂4i Idi − 𝜃̂3i (x3i − x5i )

− T1i + T2i − T4i 𝜃̂1i − T5i 𝜃̂2i ] + e4i (𝜃̂5ix4i + 𝜃̂6i

− 𝛽̇2i ) −
1
𝛾1i

𝜃̃1i (
̇̂
𝜃1i − 𝜏1i + 𝛾1i e3iT4i ) −

1
𝛾2i

𝜃̃2i

( ̇̂𝜃2i − 𝜏2i + 𝛾2i e3iT5i ) −
1
𝛾3i

𝜃̃3i [
̇̂
𝜃3i + 𝛾3i e3i

(x3i − x5i )] −
1
𝛾4i

𝜃̃4i (
̇̂
𝜃4i − 𝛾4i e4i Idi )

−
1
𝛾5i

𝜃̃5i (
̇̂
𝜃5i − 𝛾5i e4ix4i ) −

1
𝛾6i

𝜃̃6i (
̇̂
𝜃6i − 𝛾6i e4i Iqi ).

(32)

A new control variable, 𝛽3i ≈ x5i needs to be determined as
follows for ensuring the stability of ė3i and ė4i :

𝛽3i =
1

𝜃̂3i

[𝜃̂4i Idi − 𝜃̂3ix3i − T1i + T2i

− T4i 𝜃̂1i − T5i 𝜃̂2i − k3i e3i ]

𝜃̂5ix4i + 𝜃̂6i Iqi − 𝛽̇2i = −k4i e4i ,

(33)

where k3i and k4i represent user-defined positive values that
control the convergence speed of e3i and e4i , respectively. As
there are still two unknown parameters 𝜃7i and 𝜃8i which are
not appeared yet during the analysis, the values of 𝜃1i , 𝜃2i , 𝜃3i ,
𝜃4i , 𝜃5i , and 𝜃6i are not estimated in this step for avoiding over-
parameterization problems. Despite not updating the values of
𝜃̂1i , 𝜃̂2i , 𝜃̂3i , 𝜃̂4i , 𝜃̂5i , and 𝜃̂6i ; the corresponding tuning functions
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FIGURE 11 Terminal voltages with a symmetrical
3LG fault on the line connecting bus-16 and bus-19

need to be defined as follows for ensuring the stability:

𝜏11i = 𝜏1i − 𝛾1i e3iT4i , 𝜏22i = 𝜏2i − 𝛾2i e3iT5i

𝜏3i = 𝛾3i e3i (x3i − x5i ), 𝜏4i = 𝛾4i e3i Idi ,

𝜏5i = 𝛾5i e4ix4i , and 𝜏6i = 𝛾6i e4i Iqi .

(34)

The substitutions of Equations (33) and (34) into Equation (32)
yield:

Ẇ3i = −

4∑
j=1

k ji e
2
ji −

1
𝛾1i

𝜃̃1i (
̇̂
𝜃1i − 𝜏11i ) −

1
𝛾2i

𝜃̃2i (
̇̂
𝜃2i − 𝜏22i )

−
1
𝛾3i

𝜃̃3i (
̇̂
𝜃3i + 𝜏3i ) −

1
𝛾4i

𝜃̃4i (
̇̂
𝜃4i − 𝜏4i )

−
1
𝛾5i

𝜃̃5i (
̇̂
𝜃5i − 𝜏5i ) −

1
𝛾6i

𝜃̃6i (
̇̂
𝜃6i − 𝜏6i ).

(35)

The negative semi-definiteness of Ẇ3i can be clearly seen
from the right side of Equation (31), except the last four terms.
The decisions about remaining terms are not made in this step

due to the absence of other parameters and excitation control
input which will be fixed in the final step. Before moving to the
final step, 𝛽3i can be obtained as:

𝛽̇3i = Ai − Bi (x3i − x5i )𝜃1i + BiIdi𝜃2i +C1i , (36)

where

Ai =
1

𝜃̂1i

(𝛽1i −
̇̂
𝜃2i Idi − İdi 𝜃̂2i + k3i 𝛽̇1i ) −

̇̂
𝜃1i

𝜃̂2
1i

(𝛽̇1i − 𝜃̂2i Idi

− k3i e3i ), Bi = 1 −
k3i

𝜃̂1i

, and C1i = Ṫ2i − Ṫ1i − Ṫ4i 𝜃̂1i

− T4i
̇̂
𝜃1i − Ṫ5i 𝜃̂2i − T5i

̇̂
𝜃2i − k3i ė3i .

(37)

The next step will be the final step which will present the
derivation of parameter adaptation and excitation control laws.

Step 4: As 𝛽3i ≈ x5i , the corresponding error (i.e. e5i ) can be
expressed as:

e5i = x5i − 𝛽3i , (38)
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FIGURE 12 Speed deviations with a symmetrical 3LG fault on the line connecting bus-16 and bus-19

and its dynamic as:

ė5i =𝜃7ix5i + 𝜃8i (ΔVi +Vci ) − Ai + Bi (x3i − x5i )

𝜃1i − BiIdi𝜃2i −C1i .
(39)

If 𝜃̃7i = 𝜃7i − 𝜃̂7i and 𝜃̃8i = 𝜃8i − 𝜃̂8i are parameter estimation
errors for unknown parameters 𝜃7i and 𝜃8i with their estimated
values as 𝜃̂7i and 𝜃̂8i , respectively; Equation (39) will have the
following form:

ė5i = (𝜃̂7i + 𝜃̃7i )x5i + (𝜃̂8i + 𝜃̃8i )(ΔVi +Vci ) − Ai+

Bi (x3i − x5i )(𝜃̂3i + 𝜃̃3i ) − BiIdi (𝜃̂4i + 𝜃̃4i ) −C1i .
(40)

Equation (40) includes ll stability parameters which need to
be estimated and the excitation control input Vci . Hence, it is the
time to decide about the parameter estimation and the excitation
control laws in a way that e1i → 0, e2i → 0, e3i → 0, e4i → 0,
e5i → 0, 𝜃̃1i → 0, 𝜃̃2i → 0, 𝜃̃3i → 0, 𝜃̃4i → 0, 𝜃̃5i → 0, 𝜃̃6i →

0, 𝜃̃7i → 0, and 𝜃̃8i → 0 as t →∞ while capturing all nonlin-
earities in the excitation control input so that it can provide
adequate damping into the system for preserving the stability
against large disturbances. For analyzing these, the final CLF
will be as:

W4i = W3i +
1
2

(
e2
5i +

1
𝛾7i

𝜃̃2
7i +

1
𝛾8i

𝜃̃2
8i

)
, (41)
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FIGURE 13 Rotor angles with a symmetrical 3LG
fault on the line connecting bus-16 and bus-19

and its derivative as:

Ẇ4i = −

4∑
j=1

k ji e
2
ji + e5i [𝜃̂7ix5i

+ 𝜃̂8i (ΔVi +Vci )] − Ai + Bi (x3i − x5i )𝜃̂3i − 𝜃̂4iBi

Idi −C1i ] −
1
𝛾1i

𝜃̃1i (
̇̂
𝜃1i − 𝜏11i ) −

1
𝛾2i

𝜃̃2i (
̇̂
𝜃2i − 𝜏22i )

−
1
𝛾3i

𝜃̃3i [
̇̂
𝜃3i + 𝜏3i − 𝛾3i e5iBi (x3i − x5i )] −

1
𝛾4i

𝜃̃4i (
̇̂
𝜃4i − 𝜏4i + 𝛾4i e5iBi Idi ) −

1
𝛾5i

𝜃̃5i (
̇̂
𝜃5i − 𝜏5i )

−
1
𝛾5i

𝜃̃4i (
̇̂
𝜃6i − 𝜏6i ) −

1
𝛾7i

𝜃̃7i (
̇̂
𝜃7i − 𝛾7i e5ix5i )

−
1
𝛾8i

𝜃̃8i [
̇̂
𝜃8i − 𝛾8i e5i (ΔVi +Vci )].

(42)

The following adaptation laws will eliminate the effects of
𝜃̃1i , 𝜃̃2i , 𝜃̃3i , 𝜃̃4i , 𝜃̃5i , 𝜃̃6i , 𝜃̃7i and 𝜃̃8i in Equation (42):

̇̂
𝜃1i = 𝜏11i ,

̇̂
𝜃2i = 𝜏22i

̇̂
𝜃3i = −𝜏3i + 𝛾3i e5iBi (x3i − x5i )

̇̂
𝜃4i = 𝜏4i − 𝛾4i e5iBi Idi

̇̂
𝜃5i = 𝜏5i ,

̇̂
𝜃6i = 𝜏6i ,

̇̂
𝜃7i = 𝛾7i e5ix5i

̇̂
𝜃8i = 𝛾8i e5i (ΔVi +Vci )

. (43)

The adaptation laws in Equation (42) will simplify Equation (42)
as:

Ẇ4i = −

4∑
j=1

k ji e
2
ji + e5i [𝜃̂5ix5i −C1i + 𝜃̂6i (ΔVi +Vci )]

− Ai + Bi (x3i − x5i )𝜃̂1i − 𝜃̂2iBi Idi ].

(44)
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FIGURE 14 Control signals with a symmetrical 3LG fault on the line connecting bus-16 and bus-19

The following excitation control law, that is, Vci will ensure the
convergence of all errors:

Vci = −
1

𝜃̂6i

[𝜃̂6iΔVi + 𝜃̂5ix5i − Ai

+ Bi (x3i − x5i )𝜃̂1i − 𝜃̂2iBi Idi −C1i + k5i e5i ].

(45)

This is the final control law and the values of 𝜃̂1i to 𝜃̂8i can be
obtained from the set of equations in (43). The expressions for
Ai , Bi , and C1i are listed in Table 1.

The value of Vci in Equation (45) will simplify Equation (44)
as:

Ẇ5i = −k1i e
2
1i − k2i e

2
2i − k3i e

2
3i − k4i e

2
4i − k5i e

2
5i ≤ 0 (46)

TABLE 1 Expressions for Ai , Bi , and C1i in the control law

Ai =
1

𝜃̂1i
(𝛽1i −

̇̂
𝜃2i Idi − İdi 𝜃̂2i + k3i 𝛽̇1i ) −

̇̂
𝜃1i

𝜃̂2
1i

(𝛽̇1i − 𝜃̂2i Idi

−k3i e3i ), Bi = 1 −
k3i

𝜃̂1i
, and C1i = Ṫ2i − Ṫ1i − Ṫ4i 𝜃̂1i

−T4i
̇̂
𝜃1i − Ṫ5i 𝜃̂2i − T5i

̇̂
𝜃2i − k3i ė3i

which clearly indicates the condition for ensuring the stability
with the newly derived adaptation and excitation control laws.
The proposed control is actually a generalized one and it can
be employed on any nonlinear models of synchronous genera-
tors. For example, it has already been implemented in [22] on
synchronous generators represented by the third-order model.
The proposed controller requires the measurement of state vari-
ables and all these states can be obtained from the algebraic
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FIGURE 15 Estimated unknown parameters of G4 with a symmetrical 3LG fault on the line connecting bus-16 and bus-19

equations, that is, the steady-state model of power systems. To
clearly present the proposed control scheme, a flowchart high-
lighting each step is presented in Figure 2. At the same time, the
implementation block diagram of the proposed ABEC is shown
in Figure 3 which includes the key equations (e.g. the system
equation as represented by (7) and the control equation in (45))
and the feedback variables. From Figure 3, it can be found
that all feedback variables are measured variables which clearly
justify the feasibility of the proposed ABEC. It is worth men-
tioning that the variables appearing in the control signal (45) are
internally converted into variables that can directly be measured
in order to make the controller applicable to the practical sys-
tem. Also, all calculations appeared in this section can be done
offline and the final control and parameter adaptation laws can
be used achieve the desired control objectives. The following
section presents simulation results with the proposed scheme
under different conditions.

5 CONTROLLER PERFORMANCE
EVALUATION

A large test power system is considered here for evaluat-
ing the performance of the designed ABEC over a range of
operating conditions. The most commonly used model for eval-
uating the performance of such a newly designed controller
for enhancing the stability, is an IEEE test system having 39
buses and 10 synchronous generators as depicted in Figure 4.
The MATLAB/SIMULINK SimPowerSystem Toolbox is used

for simulating the test system with the ABEC where several
user-defined S -function blocks are developed adaptation and
excitation control laws. The total power generation in this test
power system is 6193.41 MW while having the net demand
as 6150.5 MW. This is an interconnected system with 10 syn-
chronous generators (G1 to G10) where transformers and
transmission lines are used for interconnecting generators and
loads through different buses. One of these 10 synchronous
generator, that is, the first synchronous generator (G1) is used
as an infinite bus during the simulation and represented through
the classical model (GENCLS). The remaining 9 synchronous
generators are represented with the two-axis models whose exci-
tation systems are considered as the commonly used IEEE Type
II exciters. The simulation model is developed based on all
parameters used in [33].

As there are high chances that the excitation voltage may
exceed its rated voltage during large disturbances, limiters are
used to limit this voltage. In this work, the excitation volt-
ages for each synchronous generator are limited from 0 to 5
pu in order to protect the excitation coil from the overvoltage
problem. The designed ABEC can be implemented on all syn-
chronous generators as the excitation control law is obtained in
a decentralized manner where this control law is the function of
parameters and physical properties of the local generator. How-
ever, the application of the designed ABEC to all synchronous
generators is not a cost-effective solution as the similar perfor-
mance can be guaranteed by applying designed ABECs only
to those synchronous generators that are vulnerable to large
disturbances, that is, changes in operating scenarios due to
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FIGURE 16 Active power flowing through the line connecting bus-15 and bus-16 with the temporary disconnection

FIGURE 17 Estimated unknown parameters of G4 when the line connecting bus-15 and bus-16 is temporarily disconnected

transients. The small signal-stability analysis is performed for
the system in Figure 4 to determine the effects of different
synchronous generator on the overall stability of the power sys-
tem. The modal analysis based on state participation factors of
different generators are used in this work for the small-signal
analysis. The modal analysis is a well-established method to
identify these vulnerable synchronous generators [2]. Based on
the small-signal analysis, the vulnerable generators are identi-
fied by considering the damping factor. Actually, the generators
which have less than 5% damping are considered as critical
generators. In this work, the modal analysis performed on the
test system in Figure 4 identifies the synchronous generator
(G3) at bus-32 and G4 at bus-33 as the most critical gener-
ators whose states severely affect the damping of the system.
Therefore, the excitation systems of G3 and G4 are consid-

ered as the best choices for implementing the designed ABEC.
The detailed modal analysis is not presented in this paper as
it is out of the scope of this work. Three different situations
are considered for validating the effectiveness of the designed
ABEC as these situation reflect the operation of the system
under different conditions while considering large disturbances.
These three situations are captured through following three
cases:

∙ Application of a symmetrical, that is, three-phase 3LG fault
at the terminal of a vulnerable generator,

∙ Application of symmetrical fault at the middle of a key
transmission line between two buses, and

∙ Temporary disconnection of a key transmission line between
two buses.
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For the first two cases, symmetrical faults, which are also
known as the three-phase short-circuit or three line-to-ground
(3LG) faults where the system experiences fault at t=18 s which
is then cleared at t=18.2 s. Here, the fault duration is consider-
ably larger, that is, 0.2 s which is mainly for demonstrating large
disturbances. Comparative results are also presented where the
comparisons are made with the EABEC as presented in [30],
existing partial feedback linearizing controller (EPFBLC) [17],
and existing sliding mode controller (ESMC) [18] for three
different operating conditions in three cases. The excitation
control laws for the EABEC, PFBLC, and ESMC are not pro-
vided here as these can be found from [30], [17], and [18],
respectively. Please note that the time-domain results are shown
from t=12 s as the responses are in the steady-state and the
inclusion of these responses from the beginning will affect the
visibility of the responses of interests, that is, few seconds after
clearing the temporary faults.

∙ Case 1: Effectiveness of the controller for a symmetrical

3LG fault at the terminal of a vulnerable generator

As discussed earlier in this section, G3 and G4 are deter-
mined as the most critical generators affecting the stable
operation and the symmetrical 3LG applied at the terminal of
one of these generators will assist to assess the performance
of the ABEC. It is worth mentioning that the protection sys-
tem will disconnect the generator from the system during this
period due to the application of this fault. Hence, the terminal
voltage of G4 will be reduced to zero for the fault duration,
that is, from t=18 s to t=18.2 s and the output power gener-
ated by this generator will also be zero. At the same time, other
responses of G4 (e.g. the speed deviation and rotor angle) will be
disturbed but will not be reduced to zero as it takes time to fully
stop the rotation of the rotor. Soon after clearing the fault (i.e.
at t=18.2 s), G4 will be reconnected with the system through
the relay coordination and it will start delivering power into the
system. However, the post-fault responses of the system, that is,
the terminal voltages, speed deviations, rotor angles, and control
signals of other generators will still have oscillating characteris-
tics even after clearing the fault. These oscillations can easily be
damped if the excitation controller is more effective. Otherwise,
these oscillations will sustain for a while which will make the
system unstable.

The terminal voltage responses of few other generators
including G4 (i.e. G2, G3, G4, G7, and G10) are shown in
Figure 5 from where it can be observed that this becomes zero
only for G4 during the fault condition and there are oscillations
when the fault is cleared. The terminal voltages of other gen-
erators in Figure 5 shows similar post-fault responses though
these are reduced to non-zero values for the fault duration.
From Figure 5, it is clear that the designed ABEC eliminates
the post-fault oscillations in the terminal voltage responses of
these generators in a better way than the EABEC, PFBLC, and
ESMC. However, oscillating behaviors in the terminal voltage is
less severe as compared to other responses as the stability issues
are mainly dominated by the angle stability which has direct the
relationship with the speed deviation and output active power of

the generator. From Figure 6 shows that the synchronous oper-
ations of G2, G3, G4, G7, and G10 are disturbed during the
fault and the post-fault oscillations in the speed deviations of
these generators are effectively damped with the ABEC when
the comparisons are with the three other controllers. The sever-
ity of the fault can be clearly observed from the rotor angle
responses of all these generators as presented in Figure 7. How-
ever, the ABEC damps out the post-fault oscillations in a much
better way than other nonlinear controllers. The output active
power also exhibits similar oscillating behaviors to that of rotor
angles which can be observed in Figure 8 though the active
power for G4 becomes zero during the fault duration. However,
the output active power of other generators does not reduce to
zero while it is being severely disturbed as shown in Figure 8.
However, the post-fault oscillations are quickly eliminated by
the designed ABEC. The excitation control signals for G2, G3,
G4, G7, and G10 are shown in Figure 9 which further validate
the effectiveness of the ABEC over other excitation controllers
as these signals reach to their physical limits during the fault as
well as for few cycles even after clearing the fault. However, the
stable control signals are finally obtained for exciters in G2, G3,
G4, G7, and G10 which are more stable for the scenario when
the ABEC is used.

The effectiveness of the ABEC depends on the efficacy
of the parameter adaptation laws for estimating unknown
parameters. Figure 10 shows the estimated values of unknown
parameters which are used as inputs for the excitation control
inputs of G4. Similarly, the same parameters are also estimated
for G3 as the ABEC for this generator uses similarly estimated
parameters. In Figure 10, there are transients at the beginning
of the estimation process which are mainly due to the ran-
domness initial values of corresponding unknown parameters.
However, the steady-state values of these parameters are eas-
ily determined within few seconds. Figure 10 also shows that
the parameter estimation process is disturbed at the instance
of occurring the fault. However, the adaptation laws efficiently
adapt all unknown parameters after clearing the fault which can
also be observed from Figure 10.

∙ Case 2: Effectiveness of the controller while applying a

symmetrical 3LG at the middle of a key transmission

line between two buses

The transmission line between bus-16 and bus-19 can be
considered as one of the key transmission line for the test sys-
tem in Figure 4 as two major synchronous generators (G5 and
G4) including a vulnerable one connected with bus-19. In this
case, the effectiveness of the ABEC is assessed by applying
a symmetrical 3LG fault at the middle of the line connecting
these two buses, that is, bus-16 and bus-19 for which the fault
sequence is considered as similar to that of the previous case
study. The application of this fault will disturb the terminal volt-
age of G2, G3, G4, G7, and G10 which can clearly be found
from Figure 11. Similar responses ad discussed in the previ-
ous case (i.e. speed deviations, rotor angles, and control signals)
of these four generators will be disturbed that can be evi-
denced from Figures 12, 13, and 14, respectively. From all these
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TABLE 2 Quantitative results for Case 1 in terms of the percentage overshoot and settling time for the speed deviation with different controllers

PFBLC ESMC EABEC ABEC

Generator Percentage Settling Percentage Settling Percentage Settling Percentage Settling

overshoot time (s) overshoot time (s) overshoot time (s) overshoot time (s)

G2 0.5 6.36 0.51 5.8 0.5 2.9 0.094 1.18

G3 0.53 3.92 0.53 5.08 0.9 3.9 0.17 2.78

G4 0.52 5.18 0.32 7.94 0.93 3.66 0.17 2.87

G7 0.94 5 0.945 4.98 0.57 2.82 0.06 1.18

G10 0.52 5.15 0.3 7.37 0.17 3.08 0.11 1.2

responses, severe post-fault oscillations can be observed for
vulnerable generators (i.e. G3 and G4) than other generators.
The ABEC quickly damps these oscillation in order to ensure
the faster settling time as compared to three other nonlinear
controllers.

It is necessary to choose the initial values of the
unknown parameters before estimating them. In this
case study, the initial values are chosen as 𝜃i (0) =
(−0.3; 0.15; 0.2; −0.4; −0.8; 1.2; −50; 14000) and these ini-
tial values are selected based on the nominal values accessible
in [33]. As shown in the block diagram, the adaptation laws
will now estimate these parameters based on the convergence
of desired outputs. It will take some time for the intended
outputs to settle down to the values that will allow them to
attain their steady-state. As shown in Figure 15, all unknown
parameters settle down to their steady-state values after a
few seconds. The adaptation gains, which are utilized in the
adaptation laws, determine the settling time. The estimation
of these parameters will be disrupted when a three-phase
short-circuit fault is occurred on the line connecting bus-16
and bus-19, as shown in Figure 15. At t = 18 s, a three-phase
short-circuit fault is applied, which is cleared at t = 18.2 s. As
soon as the fault is cleared, the estimated parameters return
to their pre-fault levels. This clearly demonstrates the superi-
ority of the designed control scheme in estimating unknown
parameters.

∙ Case 3: Effectiveness of the controller in the case of a

temporary disconnection of a transmission line between

two-buses

The transmission line linking two buses, that is, bus-14 and
bus-15 is an important line which is temporarily disconnected
for 0.2 s. That is the line is tripped at t=18 s while recon-
nected through the action of the an autorecloser at t=18.2 s.
From the observation of the active power flowing through the
line, it can be seen from Figure 16 that there is no power flow
for the fault duration while there are oscillations after recon-
necting the line at t=18.2 s. Figure 16 clearly demonstrates that
there are more oscillations when existing nonlinear controllers
are used and these oscillations sustain for a longer duration with
other controllers.

The initial values of the unknown parameters in this
case study are 𝜃i (0) = (−0.7; 0.05; 0.06; −0.2; −0.3; 0.8; −70;
12000) which differs significantly from the previous case study.
The estimated parameters are presented in Figure 17 from
where it can be observed that the estimation takes some time to
settle down to the appropriate values for the intended outcomes.
The steady-state values in this situation are comparable to those
in the prior case. When the line is disconnected for 0.2 s, these
estimated values are disrupted but these return to the steady-
state when the line is reconnected due to the designed control
action. Therefore, it is obvious that the designed controller
can estimate unknown parameters under various conditions,
including various initial values.

Based on all these comparative results, it can easily be sum-
marized that the ABEC is capable to fully ensure the stable
operation during severe transients. Furthermore, the changes in
operations do not affect the damping capability of the ABEC
even without knowing any parameter within the dynamical
model. The quantitative results corresponding to the speed
deviations for different generators during the 3LG fault at the
terminal of G4 as discussed in Case 1 are shown in Table 2.
These are shown in terms of key factors (i.e. the percentage
overshoot and the settling time) for evaluating the steady-state
behavior of any responses. Table 2 confirms the superiority of
the ABEC over other controllers.

6 CONCLUSIONS

An adaptive backstepping scheme is used to derive the excita-
tion control and parameter adaptation laws considering a more
realistic model of synchronous generators. The designed con-
troller has several advantages and one of the major advantages
is the utilization of nonlinearities rather than cancelations while
another benefit is its is insensitivity to parameter variations.
The designed scheme allows to estimate any parameter which
is incorporated as the unknown parameter within the dynamical
model and there is no requirement of bounding uncertain-
ties. Both excitation control and parameter adaptation laws are
determined by guaranteeing the steady-state operation of all
properties appeared in the dynamical model. Simulation results
over a range of operating conditions reveal that the designed
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adaptive excitation controller is more effective while compar-
ing its existing counterparts. The designed controller exhibits
faster settling time as it provides more damping than exist-
ing controllers which helps the disturbed responses to settle
down to their pre-fault steady-state values. As a part of the
future work, the proposed scheme will be employed to design
coordinated excitation and steam-valve controllers for multi-
machine power systems in order to tackle large load variations.
The future works can also be devoted to design nonlinear state
observers so that the states can be directly determined using
only the measurement of outputs instead of using algebraic
relationships. Moreover, the load is considered as the constant
and the dynamic of the mechanical power input representing
the dynamic of the turbine-governor system is neglected in
this work. Future works will consider this dynamic and ana-
lyze the equal area criterion for each fault in order to further
demonstrate the effectiveness of the proposed scheme.
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