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Abstract: Wireless sensor networks (WSNs) are currently being deployed in everyday objects13

to collect and transmit information related to humidity, temperature, heartbeat, motion, etc. Such14

networks are part of the massive machine-type communication scenario (mMTC) within the15

fifth/sixth generation of wireless networks. In this paper, we consider the optimization and design16

of an optical WSN composed of multiple battery-powered sensor nodes based on light-emitting17

diode transmitters. Extending our previous work, we take into account both line-of-sight and18

diffuse light propagation, and show that in indoor scenarios, diffuse radiation can improve link19

availability under shadowing/blocking and extend battery life. In order to optimize the optical20

wireless link parameters, we use a machine-learning approach based on a genetic algorithm to21

ascertain the performance limits of the system. The presented results indicate that the proposed22

system is a viable wireless option for WSNs within the context of mMTC.23

© 2022 Optica Publishing Group under the terms of the Optica Publishing Group Publishing Agreement24

1. Introduction25

The internet-of-things (IoT) [1] constitutes one of the main drivers for the information and26

communication technology (ICT) industry. The fifth generation (5G) wireless networks have27

identified massive machine-type communications (mMTC) as a key enabler, encompassing28

use cases where multiple low-power sensor nodes (SNs) sporadically transmit information at29

relatively low data rates. Typical examples include smart-grids [2], smart cities [3], infrastructure30

monitoring [4], asset tracking [5], healthcare [6] and others. Wireless sensor networks (WSNs)31

composed of spatially distributed SNs within 5G/6G networks come with ever-increasing demands32

for higher energy efficiency and longer life spans [7].33

WSNs offer unique features of network scalability, distributed control, etc. A range of radio34

frequency (RF) wireless technologies have been developed for industrial applications [8] but35

encounter problems such as tight wireless bandwidth resources, increased crosstalk (especially in36

multi-hop scenarios [9]), easy signal interception, fading, and relatively low power efficiency.37

Optical wireless communications (OWC) covering the infrared [10] and visible [11] part of38

the spectrum are being considered as part of future 5G/6G enabling technologies in certain39

applications, where RF-based systems are not the preferred option [12]. Typical applications40

include smart manufacturing [13], information proclaiming to the public [14], underwater IoT [15],41

intelligent transportation [16], agriculture [17] and smart health-care [18]. OWC-based WSN42

may offer higher data throughputs, inherent security, lower energy usage [13], [14]. However,43

due to the limitations of line-of-sight (LOS), energy-efficient network models and routing44

protocols must be used. In [19], an industrial monitoring system based on an optical camera45
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communication system with an artificial neural network-based group detection mechanism for46

industry applications was proposed and implemented. In [20] and [21], channel modeling and47

characterization of indoor visible light communication for medical body-area networks were48

investigated. In [22], a triple-hop underwater WSN based on the hybrid RF and OWC links49

with the relay between the SNs and the access point was investigated by means of Monte-Carlo50

simulation. In [23], energy harvesting and energy efficient modulation schemes for visible light51

communication (VLC) in industrial applications were investigated.52

In [24], we studied an indoor OWC-based WSN using a VLC down-link and an infrared (IR)53

up-link to connect master nodes (MN) and SNs. The system under consideration is shown in54

Figure 1. Figure 1a shows a number of SNs that are periodically sending sensor readouts to one or55

multiple MNs using IR OWC up-links. The MN uses a VLC down-link to send acknowledgments56

and coordinate transmissions. Light signals transmitted from the SN can reach the MN through57

the LOS path or via multiple reflections from various surfaces of the room (diffuse path). Figure58

1b shows the transceiver diagram. At the transmitter (TX), the sensor information modulates59

the intensity of the IR LED(s) via the driver circuit. At the receiver (RX), an optical bandpass60

filter is used for limiting the ambient light noise prior to optical-to-electrical conversion using a61

PIN photodiode and a trans-impedance amplifier (TIA). In addition to the actual sensors, the62

node contains a micro-controller unit (MCU), which coordinates the node data transmission63

cycle. The MN architecture is similar except for exchanging the transmitting/receiving to use a64

LED-based VLC system for simultaneous communication and illumination. Considering the65

LOS contribution only, one may obtain significant battery lifetimes.66

(a)

Sensor MCU

Driver + IR LED

PIN FilterTIA visible light

IR light

RX

TX

(b)

Fig. 1. (a) Hybrid VLC/IR network architecture and (b) SN subsystem.

The contribution of the present work lies in several areas. First of all, we provide a more67

practical analysis of the OWC-based WSN. Compared to our previous work [24], where we only68

considered LOS, in this work, we now account for the contribution of diffuse light resulting from69

beam reflections at various room surfaces. For relatively high data-rate links, it is well known70

that such reflections may result in inter-symbol interference (ISI) [25]. However, we initially use71

a ray tracing scheme to show that the optical wireless channel can be considered approximately72

flat for the data rates considered in typical IoT applications (i.e., of the order of kb/s). Therefore,73

at the MN RX, diffuse radiation simply adds up to the LOS contribution, thus improving the74

signal-to-noise ratio (SNR). This implies prolonged battery life, which is highly desirable in75

WSNs.76

Second, we provide an efficient and low-complexity received power estimation scheme in order77

to estimate the link budget, taking into account the diffuse light contribution. Our approach is, in78

fact, a simplified version of the impulse response estimation model presented in [26]. Since the79

diffuse channel can be considered as flat, there is no need to track arrival times of the diffuse80



components, and hence the power estimation is considerably simplified requiring much less81

computational time and memory resources, compared to full-blown ray tracing simulations.82

Third, we adopt a machine-learning approach based on a specially tailored genetic algorithm83

(GA) [27] to optimize link design in terms of the battery life time. Using established diffuse84

impulse response estimation models such as those based on ray-tracing would render such85

optimizations impractical. Our simplified link budget model discussed above, however, renders86

such optimizations feasible. Various parameters are included in the optimization pertinent to the87

SN/MN arrangement considering the indoor environment (wall configuration, surface reflectivity,88

etc). To the best of the authors knowledge, such an application of a GA for optimizing the optical89

wireless link parameters in the context of IoT applications has not been reported in the literature.90

The fourth area of our contribution is the fact that, as evidenced by the obtained results, the91

achieved battery life times of the SNs are considerable, indicating the potential of optical wireless92

for WSNs. We pay special attention to scenarios where no LOS power is received (e.g. due to93

blocking) and show that optimizing the TX beam-width can lead to significant power savings.94

Our results can therefore pave the way for adopting optical wireless technologies in the context95

of WSNs and IoT.96

It is worth mentioning that, in every system optimization problem, there are two basic97

ingredients: the system model and the optimization engine. The rest of the paper is organized in98

order to reflect these two points. Section 2 describes the model developed to describe the OWC99

link and the energy usage for the application scenario at hand. Initially, we use ray-tracing to100

show that in typical indoor scenarios, the diffuse channel is effectively flat and can therefore101

be simply described by a channel gain coefficient. We then outline how the received diffuse102

power can be efficiently calculated. For a target up-link bit error rate (BER), we can therefore103

estimate the required transmission power and the driving current at the LED of the SN. Given the104

transmission cycle of the SN, this information can also be used to estimate the battery life time.105

The model of Section 2 then feeds a GA to optimize the battery life of the SNs, which is outlined106

in Section 3. Next, Section 4 presents the results obtained and their impact on WSN-based107

applications. Section 5 concludes the paper, providing also a research outlook.108

2. System Model109

We consider two rooms of different dimensions as outlined in Table 1. Configuration A is a small110

room and is identical to the one considered in [26], whereas configuration B is a larger room111

indicative of office spaces, storage rooms, etc. The reflectivity values in Table 1 correspond to112

typical white paint on plasterboard or acoustic tiles for the sidewalls/ceiling and light gray tiles113

for the floor.114

2.1. Optical wireless channel115

The OWC channel is a linear, time invariant (LTI) system described by its impulse response ℎ(𝑡).116

The LOS contribution is described by a Dirac delta function ℎMN𝛿(𝑡 − 𝑡MN) [26], where ℎMN is117

the LOS channel gain, 𝑡MN = 𝑅MN/𝑐 the propagation delay between the SN and the MN, 𝑅MN118

their distance and 𝑐 the speed of light. The total impulse response ℎ(𝑡) equals the sum of the119

LOS and the diffuse light component ℎD (𝑡), i.e.:120

ℎ(𝑡) = ℎMN𝛿(𝑡 − 𝑡MN) + ℎD (𝑡) (1)

We use an in-housePython implementation of the modified Monte Carlo ray-tracing method [28]121

to obtain ℎD (𝑡) and then use the fast Fourier transform (FFT) to determine the diffuse channel122

frequency response 𝐻D ( 𝑓 ) = F {ℎD (𝑡)}, where F {·} denotes the Fourier transform. We123

assume purely diffusive ideal Lambertian reflectors.124

Figure 2 shows 𝐻D ( 𝑓 ) obtained for the up-link for configurations A and B of Table 1125

and for MN positioned in the middle of the ceiling, rMN = [𝐿/2,𝑊/2, 𝐻] while the SN is126



Table 1. Simulation parameters

Parameter Config. A Config. B

Length, 𝐿 5 m 10 m
Width, 𝑊 5 m 10 m
Height, 𝐻 3 m 4 m

Window height, 𝐻w 1 m 2 m
Window width, 𝑊w 1 m 2 m

Peak spectral irradiance, 𝑝n 2 W/nm/m2

Ambient light temperature, 𝑇K 5800 K

Wall reflectivity, 𝜌w 0.8
Ceiling reflectivity, 𝜌c 0.8
Floor reflectivity, 𝜌f 0.3

MN field-of-view, FOVMN 𝜋/2
SN field-of-view, FOVSN 𝜋/2

MN orientation, nMN ẑ
SN orientation, nSN −ẑ

MN transmission power, 𝑃MN 6 W
Maximum SN transmission power, 𝑃SN 25 mW

IR LED half intensity angle, Φ1/2 60◦
IR LED pattern order, 𝑚 1

IR LED driver curve TSFF5210 [24]
Max SN driver current, 𝐼max 100 mA

Responsivity model BPV10NF [24]
VLC rejection filter model VTB5051BH [24]
IR rejection filter model BPV10NF [24]

Maximum data rate, 𝑅max 10 kb/s
Target error rate, BER0 10−3

Spectral efficiency, [eff 0.4 bit/s/Hz
Up-link message length, 𝐿u 200 bits

Down-link message length, 𝐿d 200 bits
Feedback resistance, 𝑅F 1 MΩ

Modulation type OOK
RMS voltage noise density, 𝑉rms 15 nV/

√
Hz

RMS current noise density, 𝑉rms 400 fA/
√

Hz
Voltage noise corner frequency, 𝑓cv 1 kHz
Current noise corner frequency, 𝑓ci 1 kHz

Sleep mode current, 𝐼SL 400 nA
Wake-up current, 𝐼WU 1.3 mA
Read out current, 𝐼RO 1.3 mA
Wake-up time, 𝑡WU 20 ms
Read-out time, 𝑡RO 40 ms
Cycle period, 𝑡CY 1 min

Battery capacity, 𝑄TOT 220 mAh



(a) (b)

Fig. 2. Diffuse channel impulse response |𝐻D ( 𝑓 ) | for: a) configuration A and b)
configuration B.

positioned at two different locations along the floor diagonal: rSN = r1 = [𝐿/2,𝑊/2, 0] and127

rSN = r2 = [𝐿/4,𝑊/4, 0]. The SN and MN are directed according to Table 1. Figure 2a,128

corresponding to configuration A, shows that for both SN positions, 𝐻D ( 𝑓 ) varies in the MHz-129

range and can therefore be considered effectively flat in the sub-MHz frequency range. The half130

width 1 dB bandwidth 𝐵1dB values of |𝐻D ( 𝑓 ) |2 are 8.2 and 7.3 MHz for rSN = r1 and rSN = r2131

respectively. A similar behavior is obtained for configuration B, where 𝐵1dB is now 7.2 and 5.3132

MHz for rSN = r1 and rSN = r2, respectively. These results indicate that the diffuse channel can133

be considered flat for WSN applications and can therefore be described by a scalar channel gain134

coefficient ℎ′MN. The total channel gain will simply be equal to the sum of the LOS and diffuse135

channel gains:136

ℎTOT
MN = ℎMN + ℎ′MN (2)

where137

ℎ′MN =

∫ +∞

−∞
ℎD (𝑡)d𝑡 (3)

There are two basic aspects of the physical layer model that we present in this section: the link138

budget model discussed in subsection 2.2 and the transceiver model discussed in subsection 2.3139

which includes power consumption.140

2.2. Diffuse power and link budget141

Assuming a generalized Lambertian-type TX of order 𝑚, located at r = rS, oriented along the142

unitary vector nS, and a receiver placed at r = rR, which is oriented along nR and has an effective143

area 𝐴R and field-of-view equal to FOV, the channel gain is determined by:144

ℎ(rR, nR, rS, nS) =
𝑚 + 1
2𝜋𝑅2 cos𝑚 𝜙 cos \𝐴R𝑈

(
\

FOV

)
(4)

where145

cos \ =
nR · (rS − rR)

𝑅
(5a)

146

cos 𝜙 =
nS · (rR − rS)

𝑅
(5b)

147

𝑅 = |rS − rR | (5c)



Fig. 3. Estimation of the diffuse light channel gain.

As part of our optimizations and in order to avoid adopting time-consuming ray-tracing148

schemes as in Section 2.1, we use a faster simulation method, where all room surfaces are149

represented by a collection of elementary sub-surfaces 𝐴𝑖 , as shown in Figure 3. We first calculate150

the incident power 𝑃 (1)
𝑖

on each 𝐴𝑖 from the SN using (4), i.e., at the first light bounce. We151

also calculate the intra-subsurface LOS gain ℎ𝑞𝑝 assuming 𝐴𝑝 and 𝐴𝑞 are the TX and the RX,152

respectively. For 𝐴𝑝 , the transmit power is 𝑟𝑝𝑃 (0)
𝑝 , where 𝑟𝑝 is the reflectivity of 𝐴𝑝 . Following153

the second bounce, the power received by 𝐴𝑞 is written as the sum of powers received by all154

other elementary surfaces. More generally, the power received at the 𝑏th bounce is given by:155

𝑃
(𝑏)
𝑞 =

𝑁E∑︁
𝑝=1

ℎ𝑞𝑝𝑟𝑝𝑃
(𝑏−1)
𝑝 (6)

In (6), 𝑁E is the number of elementary surfaces within the room. If ℎMN
𝑞 are the channel gains156

assuming 𝐴𝑞 is the TX and MN the RX, then the diffuse-light power 𝑃 (𝑏)
D is the sum of the157

received power from all 𝐴𝑞 and therefore, the total diffuse power is given as:158

𝑃D =

𝑁B∑︁
𝑏=1

𝑃
(𝑏)
D =

𝑁B∑︁
𝑏=1

𝑁E∑︁
𝑞=1

ℎMN
𝑞 𝑟𝑞𝑃

(𝑏)
𝑞 (7)

where ℎMN
𝑞 is the channel gain between 𝐴𝑞 and the MN. Using (6) and (7) is analogous to the159

impulse response estimation adopted in [26], except that the channel here is considered to have160

flat response, and hence we simply add power contributions from consecutive bounces, speeding161

up computations significantly.162

Assuming the SN is positioned on various points along the diagonal rSN = [𝑥, 𝑥, 0] and its163

orientation is vertical, i.e. nSN = ẑ, we have investigated the power distribution profiles 𝑃 (𝑏)
D in164

Figure 4a for configuration B. Interestingly enough, the power for 𝑏 = 1 is smaller than 𝑏 = 2.165

For 𝑏 = 1, most of the IR power illuminates the ceiling elements and therefore lies outside the166

field-of-view (FOV) of the MN. For 𝑏 = 2, the MN captures optical power from sidewall elements167

that are now illuminated by the ceiling. Figure 4b, depicts the power distribution profiles for the168

LOS and diffuse paths, as well as the total power level for configuration B. Note that, near the169

center of the diagonal (𝑥 � 𝐿/2), the LOS path is much stronger than the diffuse path. This is170

because for 𝑥 � 𝐿/2, the alignment is optimal, since both rSN and rMN lie on the line between171

the transceivers. Near the edges of the room, the diffuse component contributes greatly to the172

total received power, since alignment is worse.173



(a) (b)

Fig. 4. a) Diffuse power contribution depending on bounce 𝑏 and b) comparison of
each propagation path contribution to the received power.

2.3. Transceiver model and energy efficiency174

The transceiver model includes the transmission spectra of nodes, RX filter spectra, photodiode175

responsivity, ambient light noise and TIA noise. Here we briefly describe the model features and176

the interested reader is referred to [24] for an in-depth analysis.177

The SN transceiver is modeled based on the characteristics of the TSFF5210 IR LED and the178

VTB5051BH silicon photodiode with an IR rejection filter (Table 1). The IR LED transmission179

spectra 𝑆T (_) is described by a Gaussian profile with a full width at half maximum (FWHM) of180

Δ_ = 40 nm, peaking around _ = 870 nm. The optical power-current characteristic 𝑃T = 𝑓 (𝐼D)181

is obtained by polynomial fitting of the actual light-current curve of TSFF5210. We assume a182

super-Gaussian profile for the IR rejection filter of order 3 with a 10 dB bandwidth of 230 nm183

peaking at 435 nm while the responsivity R(_) of the detector is described by a polynomial with184

respect to _ with coefficients extrapolated by curve-fitting from the BPV10NF responsivity.185

The MN transceiver is modeled based on typical spectra of warm white phosphorescent186

LEDs [29]. We describe the transmission spectra using a sum of two Gaussian profiles,187

corresponding to the blue and the phosphor components peaking at 470 and 600 nm, respectively,188

with FWHM equal to 20 and 100 nm, respectively. The daylight blocking filter is described by189

a 3rd order super-Gaussian peaking at 870 nm with a 10 dB bandwidth of 300 nm. Given the190

spectral properties of the transceiver, we determine the effective responsivity Reff describing191

the matching between the transmission spectra, the receiver’s rejection filter and responsivity.192

Following the approach of [24], we obtain 0.49 and 0.32A/W for Reff in the up-link and down-link,193

respectively.194

The RX noise is mainly due to the ambient light-induced shot noise and the TIA thermal noise,195

where the former is usually dominant and can be characterized by its spectral irradiance, which196

in our model follows a black-body radiation model with an absolute temperature of 5800 K.197

Given the position and orientation of the emitting surfaces (e.g. windows), (4) can be modified198

to estimate the ambient light power incident at the RX. We assume a 1 and 4 m2 window for199

configurations A and B, respectively, (Table 1) with a peak spectral irradiance of 2 W/nm/m2.200

We note that, Reff for ambient light is 0.09 A/W for the MN and 0.13 A/W for the SN [24].201

Assuming on/off keying (OOK) modulation, then for a given SNR the transmit power 𝑃T and202

thus the LED drive current 𝐼D can be determined. The energy usage at the SN can be calculated203

considering the currents drawn by the transceiver and the MCU during various phases. Table204

1 quotes typical values for each cycle [24]. Based on these, we can calculate the charge 𝑄CY205

drawn from the battery at each cycle and determine the node battery lifetime 𝑡BL given the battery206



capacity 𝑄TOT (assumed 220 mAh, typical of a coin-cell battery).207

3. Link Optimization208

start

initialize population

convergence check

crossover

mutate

replace

end true

false

Fig. 5. The flowchart of the genetic algorithm used in this work.

In Figure 5, we show the flowchart of the GA used to optimize the system parameters such as209

the SN orientation and data rate. Initially, we randomly choose a population consisting of 𝑁INIT210

realizations of the system (chromosomes). The algorithm then proceeds to select candidates by211

generating offsprings using a crossover operation, which transfers part of the parent genes to the212

offsprings. The genes of the offsprings are also mutated, i.e. randomly changed in an attempt to213

increase diversity. If a chromosome is produced that is stronger than the weakest chromosome214

in the existing pool, then the former chromosome is replaced by the latter. We then carry out215

a convergence check to see whether the algorithm’s termination criteria are met and if not, we216

repeat the previous steps.217

In each iteration, the strongest 50 % of the chromosomes constitute the mating pool. We218

choose two parents through tournament selection and we calculate the offspring using uniform219

crossover, which consists of tossing an unbiased coin and randomly selecting the value of each220

offspring gene from either the first or the second parent. The mutation is achieved by adding a221

random correction factor Δ𝑣𝑘 to each of the offspring genes 𝑣𝑘 . The corrections are determined222

by Δ𝑣𝑘 = 𝛼𝛽𝑘𝑣𝑘 , where 0 ≤ 𝛼 ≤ 1 is the mutation factor, and 𝛽𝑘 are randomly chosen from a223

uniform distribution inside [−1, 1]. The chromosome values considered for the optimization224

are the inclination and azimuth angles \ and 𝜙, respectively, as well as the data rate 𝑅b. The225

angles determine the orientation of the SN, nSN = [cos 𝜙 sin \, sin 𝜙 sin \, cos \], while 𝑅b is226

related to the required bandwidth 𝐵 and the transmission time 𝑡TX. Note that, the strength of227

each chromosome is determined by a fitness function. In our case, we let 𝑡BL determine the228

fitness of each system in order to optimize the energy efficiency at the SN. It is important to229

ensure that the maximum driving current should not exceed a specified value 𝐼max due to the230

LED specifications, see Table 1. If this condition is not met, we set the fitness value equal to zero231

to avoid a non-viable solution.232

The overall model including the GA which is available under an open-source license [30], is233

implemented in Python using standard libraries such as numpy, scipy and matplotlib.234

In order to speed-up the code execution, we choose to rely on vectorization, avoiding loops as235



much as possible. For example, it is much more efficient to determine all intra-channel gains ℎ𝑞𝑝236

simultaneously using a vector/matrix approach. In addition we only need to calculate ℎ𝑞𝑝 once,237

since they only depend on the positioning and orientation of the sub-surfaces 𝐴𝑞 . This speeds up238

the fitness evaluations considerably. In our simulations we also took advantage of Python’s239

multiprocessing package to distribute computations in multiple processor cores. The full240

link and energy consumption models and the optimization engine of our proposed approach,241

implemented in Python, are freely made available under an open-source license [30].242

4. Results and Discussions243

In the proposed optimization scheme, we seek to determine the optimal values of [𝜙, \, 𝑅b]244

for every position in the floor diagonal rSN = [𝑥, 𝑥, 0]. We examine three cases: in the first245

and second variations, we only account for either the LOS or diffuse light power, respectively,246

when calculating 𝑡BL. In the third variation, we sum up both contributions. The population247

has 𝑁INIT = 50 chromosomes and we use a mutation factor 𝛼 = 0.1. The algorithm terminates248

when either a maximum number of crossovers occurs (in our case 20000) or the population’s249

fitness values 𝑓𝑖 do not differ significantly from each other. The population fitness smoothness250

is determined as 𝑆 = ( 𝑓max − 𝑓min)/ 𝑓max where 𝑓max and 𝑓min are the maximum and minimum251

values of 𝑓𝑖 , respectively. We terminate the algorithm if 𝑆 < 0.05%.252

(a) (b)

(c)

Fig. 6. Optimization results for room configuration A: a) battery lifetime, b) optimal
elevation angle and c) optimal data rate

Figure 6a depicts the fitness function (i.e. 𝑡BL) across the diagonal of the room [𝑥, 𝑥, 0]253

obtained by the GA for configuration A, assuming LOS, diffuse and a combination of both. It is254



(a) (b)

(c)

Fig. 7. Optimization results for room configuration B: a) battery lifetime, b) optimal
elevation angle and c) optimal data rate

interesting to note that the LOS component 𝑡BL is symmetrical around 2.5 m with a peak value of255

1400 days dropping at a rate of 400 day/m compared to the diffuse, which is almost flat at 750256

days, for 0 ≤ 𝑥 ≤ 5 m. This is due to the fact that as the MN/SN distance is increased, the power257

budget worsens. Considering both LOS and diffuse components, energy efficiency is improved258

particularly near the edges of the diagonal. Figures 6b and 6c show the optimal elevation angle259

\ and the data rate 𝑅b. For LOS, the optimal \ increases when we move away from the center260

(𝑥 = 2.5 cm) to better align with the MN, whereas the diffuse scenario favors \ ≈ 0, in which261

case the SN is almost pointing directly upwards, nSN ≈ ẑ. The obtained data rate is given by262

𝑅b ≈ 10 kb/s = 𝑅max, which is the maximum allowable value given by system constraints. The263

fact that higher 𝑅b are favored can be explained through the RX electrical SNR in the case of264

OOK, given as:265

SNR =
𝑅2

eff𝑃
2
R

2𝜎2 (8)

where 𝑃R is the received optical signal power (proportional to the transmit power 𝑃T) and 𝜎2
266

is the RX noise power. Neglecting the TIA noise, we have 𝜎2 = 2𝑞𝐼amb𝐵, where 𝐼amb is the267

DC current due to ambient light, 𝑞 is the electron charge, 𝐵 = 𝑅b/[eff , the signal bandwidth268

and [eff is the spectral efficiency. Thus, with reference to (8), 𝑃T ∝
√
𝑅b. Assuming linear269

light-current characteristic at the SN LED, we can also deduce that 𝐼D ∝
√
𝑅b. Since the duration270

of the transmission phase 𝑡TX is proportional to the bit duration 1/𝑅b, we readily see that the271

charge drawn from the node battery is 𝑄TX ∝ 1/
√
𝑅b. This implies that provided that 𝐼D ≤ 𝐼max,272
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Fig. 8. Optimization results for diffuse light propagation configuration A: a) 𝑡BL, b)
Φ1/2 and c) 𝑅b.

increasing 𝑅b leads to improved energy efficiency.273

Figure 7 shows the optimized results for configuration B. As shown in Figure 7a, the diffuse274

path offers the lowest battery lifetime with an average of ≈ 96 days. However it can still increase275

the overall battery lifetime considerably, especially at the edges of the diagonal. The optimal276

elevation angles exhibit a similar variation as those in Figure 6b, implying that if the diffuse277

component alone is considered, the optimal SN orientation is still nSN ≈ ẑ. As expected, the278

optimal SN elevation angles increase with the distance from the floor center, in order to improve279

SN/MN alignment. Figure 7c depicts the optimal data rate, which is not always ≈ 10 kb/s since280

the required driving current must not exceed 𝐼max. Considering only the diffuse component, the281

optimal 𝑅b ≈ 2 kb/s. For the LOS component, 𝑅b is much higher except for the points near the282

edge of the diagonal. Assuming both contributions from LOS and diffuse paths, we obtain an283

optimal data rate ≥5 kb/s for all SN positions considered (orange curve in Figure 7c).284

For the LOS path, an obvious way to improve the link budget is to choose a smaller beam-width285

Φ1/2 thereby reducing beam spreading at the expense of tighter alignment control and limited286

mobility. It is interesting to investigate the optimal beam pattern for the diffuse path as well287



(a) (b)

Fig. 9. Optimization results for diffuse light propagation configuration B: a) 𝑡BL, b)
Φ1/2 and c) 𝑅b.

considering many possible positions for the SN. Figures 8 and 9, show the results for the two room288

configurations assuming that the beam-width Φ1/2 is also included in the optimization inside a289

range of [10◦, 20◦]. Figures 8a, 8b, and 8c depict the values of 𝑡BL, Φ1/2 and 𝑅b respectively290

obtained for configuration A, assuming a 10 × 10 grid on the floor of the room. A minimum291

value of 𝑡BL obtained was 890 days at the room corners. The optimal value for Φ1/2 was near292

10◦. This does not change even if we widen the allowed range for Φ1/2 in the GA and indicates a293

non-directed scenario where a tight beam impinges on the nearby room sidewall and light reaches294

the MN by a diffuse path. For all SN positions considered, the optimal 𝑅b obtained is � 10 kb/s.295

The results for configuration B are shown in Figure 9. In this case, the minimum value of 𝑡BL is296

186 days and is maximized near the sidewalls reaching up to 450 days. Again, the algorithm297

favors beam-widths near 10◦ while the optimal data rate ranges from 3.6 to 9.4 kb/s.298

5. Conclusions and future directions299

In this work, we took a deeper look at the potential of optical technologies for WSNs and IoT300

applications, which are relevant for mMTC applications within 5G and beyond networks. We301



presented a realistic model for describing a hybrid VLC/IR WSN, which included diffuse-light302

propagation. We showed that for typical data rates pertinent to most indoor mMTC applications,303

the diffuse channel can be effectively considered flat and simply be described by a channel gain.304

This allowed us to implement an efficient link budget model that can be used to significantly speed305

up computations in system optimizations. To maximize battery life, we used a machine learning306

approach based on a GA to optimize MN/SN configurations and showed that substantially307

increased SN battery lifetimes are obtained, even for coin-cell battery capacities. We also308

investigated scenarios where only the diffuse light contribution was considered and the SN TX309

beam-widths were included in the optimization. For data rates envisioned in such applications,310

diffuse light propagation can improve the up-link power budget as well as energy efficiency.311

This is true for both small and larger room configurations such as those examined in this work.312

The optimizations show that when the LOS path is blocked, the diffuse path actually favors313

non-directed configurations with narrower beam-widths, where the IR light is aimed at the room’s314

sidewalls, reaching the MN via single and multiple bounces. Both the proposed model and315

the optimization engine are available freely on the web under an open-source license for other316

researchers to use and can form a basis, where GA optimizations can be carried out possibly317

applying different channel modeling approaches for indoor [31] or even underwater systems [32].318

319

The results obtained in this paper point towards some interesting research directions to320

implement VLC/IR WSNs. A key question is whether the SN configuration can be changed321

in an adaptive manner. One could envision controlling the IR LED radiation pattern using322

micro-electromechanical systems [33] while the direction of transmission could be also controlled323

using low-cost servo-motors mounted at the SN. It would also be interesting to develop algorithms324

for the real-time optimization of the up-link performance that can converge quickly, to limit325

power dissipation during the optimization stage. Another interesting scenario would be to326

investigate multi-hop scenarios where SNs, which are far from the MN or their LOS paths might327

experience shadowing and blocking, communicate with the MN via other SNs. It is our intention328

to investigate some of these research directions as part of our future research.329
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