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Abstract

The problem of selecting a sequence of items
that maximizes a given submodular function ap-
pears in many real-world applications. Exist-
ing study on the problem only considers uniform
costs over items, but non-uniform costs on items
are more general. Taking this cue, we study
the problem of budgeted sequence submodular
maximization (BSSM), which introduces non-
uniform costs of items into the sequence selection.
This problem can be found in a number of appli-
cations such as movie recommendation, course se-
quence design and so on. Non-uniform costs on
items significantly increase the solution complexity
and we prove that BSSM is NP-hard. To solve the
problem, we first propose a greedy algorithm GBM
with an error bound. We also design an anytime al-
gorithm POBM based on Pareto optimization to im-
prove the quality of solutions. Moreover, we prove
that POBM can obtain approximate solutions in
expected polynomial running time, and converges
faster than a state-of-the-art algorithm POSEQSEL
for sequence submodular maximization with cardi-
nality constraints. We further introduce optimiza-
tions to speed up POBM. Experimental results on
both synthetic and real-world datasets demonstrate
the performance of our new algorithms.

1 Introduction
Submodular optimization is a fundamental optimization
problem [Fujishige, 2005] which can be used in many appli-
cations. Most existing studies focus on the problem of select-
ing a subset of items from a whole set in order to maximize
a given submodular function over the set, such as influence
maximization [Kempe et al., 2003] and information gather-
ing [Leskovec et al., 2007].

In many applications, the order of selecting items affects
the utility of item sets, and thus it is desired to select a se-
quence of items instead of a subset. In Fig. 1, we use an
example of movie recommendations to explain why sequence

∗Liang Feng is the corresponding author.

Figure 1: An example of ordered preferences for movie recommen-
dations. A DVD price of a movie is used as its cost.

selection is meaningful and useful. Assume that a utility func-
tion over a sequence of movies measures how users are sat-
isfied with these recommendation results. We can use the
directed edges between two movies to represent that there is
an additional utility in watching them by following the order,
and the self-cycles to represent the utilities of watching indi-
vidual movies. It can be observed that the order of watching
movies affects users’ experience. For example, watching B2 :
Transformers 2 after B1 : Transformers 1 has a higher utility
than watching the two movies in reverse order.

This interesting observation commonly occurs in rec-
ommender systems [McAuley et al., 2015], paper reading
plan [Shahaf et al., 2012], course learning [Parameswaran et
al., 2011], etc. Thus, the problem of selecting a sequence of
items that maximizes a given submodular function over the
sequence has recently received increasing attention [Tschi-
atschek et al., 2017; Qian et al., 2018; Mitrovic et al., 2019;
Sallam et al., 2020].

In many submodular optimization problems, the items have
non-uniform costs [Khuller et al., 1999; Bian et al., 2020;
Amanatidis et al., 2020]. In sequence selection, non-uniform
item costs are common as well. For instance, in the movie
recommendation example, movies could have different costs
(e.g., their DVD prices); in the course sequence design, costs
(i.e., the time cost) of courses are also non-uniform. In addi-
tion, users may have a budget limit on the sequence recom-
mended to them. However, all existing studies on sequence
selection only consider uniform costs of items (i.e. cardinal-
ity constraints), although non-uniform costs of items are more
general in many real-world applications.
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In this paper, we study the problem of Budgeted Se-
quence Submodular Maximization (BSSM) by considering
non-uniform costs of items, and prove the NP-hardness of
the BSSM problem. The BSSM problem adapts the sequence
submodular function proposed by Tschiatschek et al. [Tschi-
atschek et al., 2017], as the function is more expressive and
it can capture the effect of the order of items in the sequence
on the utility of item sets. Note that the sequence submod-
ular function of BSSM is submodular on the sequences, but
not on items. Hence, a simple greedy algorithm that selects
one item in each iteration greedily cannot return results with
a guaranteed error bound [Tschiatschek et al., 2017].

Due to non-uniform costs of items, the state-of-the-art al-
gorithm OMEGA [Tschiatschek et al., 2017] for sequence
selection with uniform costs always obtains sequences with
poor quality (as shown in the experimental study). To solve
this problem, we propose a greedy algorithm GBM which
picks an edge with the largest marginal cost-effective value,
and we prove its error bound by exploiting the properties of
the sequence submodular function.

Similar to traditional greedy algorithms, GBM often gets
trapped at local optima in the search space. To address this
issue and improve the algorithm effectiveness, we develop
an anytime algorithm POBM based on Pareto optimization.
POBM first reformulates the original constrained optimiza-
tion problem as a bi-objective optimization problem that max-
imizes the objective function f and minimizes the cost func-
tion C simultaneously, then utilizes a randomized iterative
method to solve it, and finally selects the best feasible so-
lution from the maintained set of solutions. Our theoretical
analysis shows that POBM not only obtains approximation
solutions in expected polynomial running time, but also has
chances to find the optimal solution. In addition, POBM
has a faster expected rate of convergence compared to the
state-of-the-art algorithm POSEQSEL [Qian et al., 2018] for
Sequence Submodular Maximization with Cardinality Con-
straints (SSMCC).

In summary, our main contributions are fourfold. Firstly,
we propose the BSSM problem and show its NP-hardness.
Secondly, we develop a greedy algorithm GBM, and an any-
time algorithm POBM with some optimizations to solve this
problem. Thirdly, we theoretically analyze the approxima-
tion ratio of GBM, and prove that POBM can achieve the
same approximation guarantee as GBM in a reasonable time
and can escape from the local optimum. Finally, we con-
duct experiments on both synthetic and real-world datasets to
demonstrate the effectiveness and efficiency of our proposed
algorithms. Due to space limitations, the proofs of all theo-
rems and some additional experimental results are presented
in the extended version of this paper1.

2 Related Works
Submodular Optimization. Submodular optimization has
been studied substantially due to its wide range of applica-
tions including viral marketing [Kempe et al., 2003], infor-
mation gathering [Leskovec et al., 2007], deep neural net-
work training [Joseph et al., 2019], region search [Chen et

1https://xincao-unsw.github.io/attaches/pubs/BSSM-Full.pdf

al., 2020] etc. A classical problem of submodular optimiza-
tion is to maximize a non-negative monotone submodular
function under cardinality constraints. To solve this problem,
Nemhaser et al. [Nemhauser et al., 1978] proposed a simple
greedy algorithm with a constant factor approximation ratio
of 1 − e−1 and Das et al. [Das and Kempe, 2011] further
improved the approximation ratio by introducing a submod-
ular ratio. Meanwhile, different types of generalizing sub-
modular optimization have been the focus of many studies
recently. For instance, there exist non-monotone submodular
maximization [Amanatidis et al., 2020], streaming submod-
ular maximization [Halabi et al., 2020], and continuous sub-
modular maximization [Raut et al., 2021], and so on. These
studies aim to select a subset of items rather than a sequence.

Sequence Submodular Maximization. Many studies have
considered sequence submodular maximization, since the se-
quence plays an important role in submodular optimization
applications. Aliaei et al. [Alaei et al., 2010] first considered
sequence selection in submodular maximization by introduc-
ing non-decreasing sequence submodular functions. Zhang et
al. [Zhang et al., 2015] presented a string submodular func-
tion by relaxing the sequence-submodular function. These
two submodular functions fail to consider the effect of the or-
der of items in the sequence on the functions. To fill this gap,
Tschiatschek et al. [Tschiatschek et al., 2017] proposed a new
class of sequence submodular functions on a directed graph.
As this function is expressive, it has been used to study the
submodularity on a hypergraph [Mitrovic et al., 2018] and
adaptive sequence submodularity [Mitrovic et al., 2019]. To
solve all the above problems of sequence submodular max-
imization, Qian et al. [Qian et al., 2018] proposed an algo-
rithm POSEQSEL based on Pareto optimization. Meanwhile,
Sara et al. [Bernardini et al., 2020] offered a unified view
of sequence submodularity, and Gamal et al. [Sallam et al.,
2020] first studied the problem of robust sequence submod-
ular maximization. However, these works only consider uni-
form costs (i.e. cardinality constraints).

Submodular Optimization with Non-uniform Costs
(Knapsack Constraint). Although uniform costs have
been used extensively in existing submodular optimization
studies, non-uniform costs are more general in real-world
applications. Khuller et al. [Khuller et al., 1999] proposed
a budgeted maximum coverage problem which first consid-
ered non-uniform costs in submodular optimization, and they
developed a greedy algorithm with an error bound. Sviri-
denko [Sviridenko, 2004], Krause and Guestrin [Krause and
Guestrin, 2005] presented efficient approximation algorithms
for the budgeted maximization of nondecreasing submodu-
lar set functions. Georgios et al. [Amanatidis et al., 2020]
designed a fast randomized greedy algorithm that achieves
a 5.83 approximation for non-monotone submodular maxi-
mization subject to a knapsack constraint. In recent years,
Qian et al. [Qian et al., 2017] considered a general cost con-
straint on a subset selection which is a type of submodu-
lar maximization, and proposed POMC algorithm based on
Pareto optimization for the problem. To solve the problem
more effectively, Bian et al. [Bian et al., 2020] developed a
new anytime algorithm EAMC with a better approximation
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ratio. None of the existing work considers non-uniform costs
of items for sequence submodular maximization.

3 Problem Formulation
In this section, we formally define the problem of Budgeted
Sequence Submodular Maximization (BSSM) and show its
NP-hardness. Here, we adapt the sequence submodular set-
ting [Tschiatschek et al., 2017], as it considers the effect
of the order of items in the sequence on the utility of item
sets [Tschiatschek et al., 2017; Mitrovic et al., 2018]. We
first present the sequence submodular setting as below.
Definition 1. Item Sequences. Given a set of n items V =
(v1, v2, · · · , vn), a sequence from V is represented as s =
{(s1, s2, · · · , sk)|si ∈ V, k ∈ Z+}, and s ∈ S , where S is
the set of all possible sequences of items from V , and k = 0
represents the empty sequence ∅. For two sequences s and t,
their concatenation is denoted as s⊕ t.

The utility function of sequences can be defined through a
directed graph G = (V,E) where vertices correspond to the
items V , and a set of edges E represents the utility in picking
items in a certain order. An example of G is shown in Fig. 1.
Specifically, the edge eij = (vi, vj) represents the utility in
selecting vj after vi, and the self-cycle eii(vi, vi) represents
the utility of selecting vi individually. We define the utility
function as below.

f(s) = h(E(s)), (1)

where E(s) = {(si, sj)|(si, sj) ∈ E, i ≤ j} is the set of
edges induced by the sequence s, and h : 2E → R+ is a non-
negative monotone submodular set function over the edges.
It means that for an edge e ∈ E, h(E1

⋃
{e}) − h(E1) ≥

h(E2

⋃
{e})− h(E2) if E1 ⊆ E2 ⊆ E and e /∈ E1.

However, the utility function f is neither a set function nor
submodular on items. We use an example to explain this.
As shown in the example of Fig. 1, and assume that h(E(s))
counts the number of edges in E(s), and thus the utilities of
the sequences(A1), (A2), (A1, A2) and (A2, A1) are com-
puted as:
f((A1)) = h({(A1, A1)}) = 1
f((A2)) = h({(A2, A2)}) = 1
f((A1, A2)) = h({(A1, A1), (A2, A2), (A1, A2)}) = 3
f((A2, A1)) = h({(A1, A1), (A2, A2)}) = 2

Note that the order of selecting items affects the utilities of
item sets, i.e., f((A1, A2)) ̸= f((A2, A1)), and the function
f is not submodular over item sets, because f((A1))−f(∅) ≱
f((A1, A2)) − f((A2)) although ∅ ⊂ A2 (i.e., it does not
satisfy the diminishing returns property). On the other hand,
the function f is more expressive than submodular functions
over items. This is because, when the graph G only has self-
cycles and no other edges, f can express any submodular set
function.

Besides the utilities of sequences, we consider the costs
of sequences, and we define the cost score of a sequence as
the sum of the costs on all items in the sequence, which is
computed as: C(s) =

∑
vi∈s cvi , where cvi is the cost of vi.

Formally, we define the BSSM problem as follows:
Definition 2. Budgeted Sequence Submodular Maximiza-
tion (BSSM). Given a set of n items V = (v1, v2, · · · , vn)

with item costs (cv1 , cv2 , · · · , cvn), a utility function f over
the sequences of items, and a budget constraint ∆, the target
is to find a sequence s such that

s = argmaxs∈S f(s)
subject to C(s) ≤ ∆

(2)

For example, consider the instance of movie recommenda-
tion in Fig. 1 again. Given ∆ = 20, the optimal sequence of
the BSSM problem is (B1, B2, B3), as it allows the user to
fully enjoy three movies under the budget constraint.

Theorem 1. The BSSM problem is NP-hard.

4 The GBM Algorithm
In this section, we propose a novel greedy algorithm called
GBM for solving the BSSM problem and prove its error
bound. Instead of picking the edge with the maximum
marginal utility (which is conducted by OMEGA [Tschi-
atschek et al., 2017]), GBM chooses the edge with the maxi-
mum marginal cost-effective value in each step until no more
edges can be inserted into the solution. This can guarantee
the approximation ratio of GBM.

As shown in Alg. 1, GBM starts by initializing a candidate
edges set Eca and an edge set Ese for storing the selected
edges (line 1). After that, the algorithm iteratively and greed-
ily extends Ese until no more edges can be added (lines 2-6).
In each iteration, the algorithm first updates Eca by pruning
the edges whose all vertexes (i.e., items) belongs to V (Ese)
or would make the cost of the selected edge set exceed the
budget constraint (lines 3-4). Next, it selects the edge e∗

with the maximum marginal cost-effective value ∆f/∆C =
f(RE(Ese∪{el}))−f(RE(Ese))

C(Ese∪{el})−C(Ese) to insert into Ese (lines 5-6),
where C(Ese) =

∑
vi∈V (Ese) cvi

, V (Ese) denotes the set
of items in Ese, and RE(Ese) is a function for obtaining
the optimal order with the maximal value of the utility func-
tion over all possible orders of items contained in Ese (i.e.,
RE(Ese) = REORDER(Ese), and the algorithm of im-
plementing function REORDER is shown in the previous
work [Tschiatschek et al., 2017]). After finishing the exten-
sion of Ese, the algorithm obtains the best sequence s1 in Ese

Algorithm 1: GBM Algorithm
Input: G = (V,E), a utility function f , item costs

(cv1 , cv2 , · · · , cvn), ∆
Output: A sequence s

1 Eca ← E, Ese ← ∅;
2 while Eca! = ∅ do
3 Eca ← Eca \ {el = (vi, vj)|vi, vj ∈ V (Ese)};
4 Eca ← Eca \ {el ∈ Eca|C(Ese ∪ {el}) > ∆} ;
5 e∗ ← argmaxel∈Eca

f(RE(Ese∪{el}))−f(RE(Ese))
C(Ese∪{el})−C(Ese)

;
6 Ese ← Ese ∪ {e∗};
7 s1 ← RE(Ese);
8 e′ ← argmaxel∈E,C(el)≤∆f(RE(el));
9 s2 ← RE({e′});

10 s← argmaxsi∈{s1,s2}f(s
i);

11 return the sequence s;
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using RE(Ese) (line 7). It also gets another sequence s2 that
only has one edge with the maximal utility and satisfies the
budget constraint (lines 8-9). Finally, it returns the sequence
with the largest utility as the solution s.

We obtain the approximation ratio of GBM in Theorem 2.
For the sake of clarity, we let cmin = minvi∈V cvi and intro-
duce a parameter β = 4⌊ ∆

cmin
⌋.

Theorem 2. When G is a DAG (not counting self-cycles),

GBM offers an approximation ratio of 1
β+2 (

1
β )

⌊ ∆
cmin

⌋
(1 −

e−1).

Next, we analyze the complexity of GBM. It requires
⌊ ∆
cmin

⌋ iterations in the worst case, and in each iter-
ation, it takes O(n2) time to update Eca, and costs
O(n2⌊ ∆

cmin
⌋log⌊ ∆

cmin
⌋) time to select the edge e∗ for

inserting into Ese, since the number of items in Ese

is less than ⌊ ∆
cmin

⌋ and the complexity of computing
f(RE(Ese)) is O(⌊ ∆

cmin
⌋log⌊ ∆

cmin
⌋). And then, GBM costs

O(⌊ ∆
cmin

⌋log⌊ ∆
cmin

⌋)) time and O(n2) time to obtain s1 and
s2, respectively. Thus, the time complexity of GBM is
O(n2(⌊ ∆

cmin
⌋)2log⌊ ∆

cmin
⌋).

5 The POBM Algorithm
Although GBM can achieve an approximate solution in a rea-
sonable time, it usually gets trapped in a local optimum due
to the greedy rule. To alleviate this issue, we design an any-
time algorithm POBM based on Pareto Optimization [Qian et
al., 2015]. For POBM, most of its steps are similar to those
of POMC [Qian et al., 2017] which is for the problem of
subset selection with a general cost constraint. But POBM
uses a different objective function and adopts the function
RE (which is mentioned in the above section) to obtain the
best sequence from an item set. Note that the input of func-
tion RE can be an item set or an edge set.

Let a Boolean vector p ∈ {0, 1}n represent an item set,
and C(p) =

∑
vi∈p cvi

. POBM reformulates BSSM as a
bi-objective maximization problem.

argmaxp∈{0,1}n(f1(p), f2(p)),

where f1(p) =

{−∞, C(p) ≥ 2∆

f(RE(p)), otherwise
,

and f2(p) = −C(p). It means that POBM maximizes the
utility function f and minimizes the cost function C simulta-
neously. By setting f1 to −∞, we exclude overly infeasible
solutions. In the bi-objective setting, we consider both the
two objective scores to compare two item sets p and p′. p
weakly dominates p′ (i.e., p is better than p′, denoted as
p ⪰ p′) if f1(p) ≥ f1(p

′) and f2(p) ≥ f2(p
′); p dominates

p′ (i.e., p is strictly better than p′, denoted as p ≻ p′) if
p ⪰ p′ and either f1(p) > f1(p

′) or f2(p) > f2(p
′). But

if neither p is better than p′ nor p′ is better than p, they are
incomparable.

The procedure of POBM is presented in Alg. 2. It begins
with initializing a solution set P by adding the empty item
set {0}n into it (line 1). In the following steps, it iteratively
tries to improve the quality of the item sets in P (lines 2-9).

Algorithm 2: POBM Algorithm
Input: G = (V,E), a utility function f , item costs

(cv1 , cv2 , · · · , cvn), ∆, the number T of iterations
Output: A sequence s

1 p← {0}n, P ← {p}, t← 0;
2 while t < T do
3 Obtain p from P uniformly at random;
4 Generate p′ by flipping each bit of p with prob. 1

n
;

5 if ∄z ∈ P such that z ≻ p′ then
6 P ← (P \ {z ∈ P |p′ ⪰ z}) ∪ {p′};
7 t = t+ 1;

8 pbe ← argmaxp∈P,C(p)≤∆f(RE(p));
9 s← RE(pbe);

10 return the sequence s;

In each iteration, a new item set p′ is generated by randomly
flipping bits of an archived item set p selected from the cur-
rent P randomly (lines 3-4); if p′ is not dominated by any
archived item set in P , it will be inserted into P , and mean-
while, the archived item sets which are weakly dominated by
p′ will be pruned from P (lines 5-6). Obviously, P always
contains incomparable item sets. After T iterations, the algo-
rithm obtains the best feasible item set pbe with the maximum
utility score from P , and then gets the best sequence s from
pbe to return as a solution (lines 8-10).

The number T of iterations affects the solution quality of
POBM, we analyze their relation in a theoretical way, and
achieve the approximation ratio of POBM in Theorem 3,
where E(T ) denotes the expected number of iterations, Pmax

denotes the largest size of P during the running process of
POBM, and s∗ denotes an optimal sequence. Generally, we
set cvi ∈ Z+ for each vi ∈ V , thus Pmax ≤ 2∆.
Theorem 3. When G is a DAG (not counting self-cycles),
POBM with E(T ) ≤ ⌊ ∆

2cmin
⌋en2Pmax finds a sequence s

with C(s) ≤ ∆ and f(s) ≥ 1
β+2 (

1
β )

⌊ ∆
cmin

⌋
(1− e−1)f(s∗).

Theorem 3 shows that POBM can obtain the same ap-
proximation ratio as GBM. Next, we explain that POBM has
chances to find a global optimum in the following theorem.
Theorem 4. When G = (V,E) is a DAG (not counting self-
cycles), POBM with E(T ) ≤ en

⌊ ∆
cmin

⌋
Pmax achieves s∗.

Algorithm POSEQSEL [Qian et al., 2018] which is pro-
posed for SSMCC is also an anytime algorithm based on
Pareto Optimization. We observe that POSEQSEL can be
adopted to solve BSSM after replacing its two objective func-
tions with those of POBM. We analyze the approximation ra-
tio of POSEQSEL in BSSM and get the following Theorem.
Theorem 5. When G is a DAG (not counting self-cycles),
POSEQSEL with E(T ) ≤ ⌊ 2∆

cmin
⌋en2Pmax finds a sequence

s with C(s) ≤ ∆ and f(s) ≥ 1
β+2 (

1
β )

⌊ ∆
cmin

⌋
(1− e−1)f(s∗).

Theorem 5 illustrates that, compared to POSEQSEL,
POBM has a better expected rate of convergence for achiev-
ing the approximate solution. We will further verify it in the
experimental study.
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Since POBM is an anytime randomized iterative algorithm,
it would consume a lot of time when the number of itera-
tions is large. To improve the efficiency of POBM Algo-
rithm, we present two optimizations: speeding up computing
E(RE(p)) and the quick dominance check.

We first speed up computing E(RE(p)). As p′ is gener-
ated by flipping each bit of p with probability 1

n , there is one
different bit between p′ and p in average. Thus, we can reuse
E(RE(p)) to compute E(RE(p′)) quickly in two steps.

In step 1, we obtain the items in p and not in p′ (i.e., pde =
{vi ∈ p \ p′}), and then delete all edges which has an item
in pde from E(RE(p)) (i.e., Es1 = E(RE(p)) \ Ede and
Ede = {(vi, vj)|vi ∈ pde||vj ∈ pde}).

In step 2, we first achieve the items in p′ and not in p (i.e.,
pad = {vi ∈ p′ \ p}). After that, we get the edges among
items in pad, and between items in pad and items in p \ pde

(i.e., Ead = {(vi, vj)|vi, vj ∈ pad||vi ∈ pad, vj ∈ p\pde}).
Finally, we can obtain E(RE(p′)) by combining Es1 and
Ead (i.e., E(RE(p′)) = Es1 ∪ Ead)

Next, we describe the optimization for the quick domi-
nance check. For each new solution, POBM needs to do a
dominance check, and then delete all weakly dominated so-
lutions if the new solution is not dominated by any solution in
the archive P . To accelerate this process, we first sort the so-
lutions in P in ascending order of their cost scores. After that,
we can only use the solution p that has the closest cost score
to the new solution p′ and C(p) ≤ C(p′) to check whether
p′ is dominated by any solution in P . If not, we insert p′

into P , and then check p and the solutions after p in P one
by one and delete the weakly dominated solutions, until the
solution’s utility score is larger than that of p′ or all solutions
are scanned.
Remarks. If the graph G is not a DAG, GBM and POBM
can still be used for BSSM, as function RE can get approxi-
mate orders by computing a feedback vertex set of G [Karp,
1972]. Although the theoretical guarantees cannot hold in
this case, GBM and POBM can also achieve high-quality so-
lutions, which is demonstrated in the experimental study.

6 Experimental Study
In this section, we study the experimental performance of our
algorithms using both synthetic and real-world datasets. We
denote POBM with the optimizations of speeding up comput-
ing E(RE(p)) and the quick dominance check as POBMOpt.
We use two state-of-the-art algorithm for SSMCC (i.e.,
OMEGA [Tschiatschek et al., 2017] and POSEQSEL [Qian
et al., 2018]) as baseline methods. We implement all the al-
gorithms in C++ on Windows 10, and run on a desktop with
an Intel(R) i7-10700 2.9 GHz CPU and 32 GB memory.

6.1 Synthetic Datasets
Datasets and Parameter Settings
We generate the synthetic datasets following the previous
work [Tschiatschek et al., 2017; Qian et al., 2018] for the
problem of sequence selection. We first construct the graph
G = (V,E) as follows: for each item vi ∈ V , select
a subset of size min{d, n − i} uniformly at random from
{vi+1, · · · , vn}, where d is the maximum out-going degree

of the graph, and then build an edge from vi to each item
in the selected subset and to itself (self-cycles). To assign
a utility wi,j to each edge (vi, vj), we consider two sets of
functions h : 2E → R+, one is modular with h(E(s)) =∑

(vi,vj)∈E(s) wi,j , and the other one is submodular with
h(E(s)) =

∑
vj∈V (E(s))[1 −

∏
(vi,vj)∈E(s)(1 − wi,j)]. For

the modular h, we get each utility wi,j by sampling from [0, 1]
randomly. For the submodular h, we get each utility wi,j

with i < j by sampling from [0, 1] randomly, and each util-
ity wi,i by sampling from [0, 0.1] randomly. We obtain the
cost cvi

for each item vi ∈ V by sampling the values from
{1, 2, 3, 4, 5} randomly. To compute the approximation ra-
tios of algorithms, we use an exhaustive enumeration to find
the optimal solutions and set n = 50, B = 10 by default. For
each experiment, we generate 50 problem instances randomly
and report the average results.
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Figure 2: Comparison of algorithms for modular and submodular
utility functions over the edges with varying maximum outdegree d.
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Figure 3: The effect of T on the solution quality for POBM and
POSEQSEL over modular and submodular utility functions.

Performance of Our Methods
We first compare GBM and POBM with OMEGA in terms of
the solution quality by varying maximum outdegree d from
1 to 10, as the proposed optimizations do not affect the so-
lution quality. We set the number T of iterations of POBM
as 2∆⌊ ∆

2cmin
⌋en2, that is suggested by Theorem 3. The ap-

proximation ratios of the three algorithms are shown in Fig. 2.
It illustrates that GBM and POBM can achieve high-quality
solutions, while the solution quality of OMEGA is poor, as
OMEGA is designed for the uniform cost setting. POBM
outperforms other algorithms and almost finds the optimum.

Next, we investigate the effect of T on the solution quality
for POBM and POSEQSEL in both modular and submodular
utility functions with d = 5. Fig. 3 shows the curve of the
approximation ratio over time for POBM and POSEQSEL
by using GBM as the baseline. It demonstrates that POBM
and POSEQSEL can quickly find a better solution whose ap-
proximation ratio is more than 95%, and POBM converges
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faster than POSEQSEL, which is consistent with the theoret-
ical analysis. Note that the results of GBM keep unchanged,
as they are not affected by T . According to this result, we
set T = 10n2 for POBM by default. Note that the result of
examining the acceleration of our optimizations on POBM is
reported in the extended version of this paper.

6.2 Two Real-world Datasets
Datasets and Parameter Settings
We use two real-world datasets, one is the Movielens 1M
(MOV) dataset [Harper and Konstan, 2015] and the other one
is the XuetangX (XTX) dataset [Feng et al., 2019]. MOV
contains 1, 000, 209 time-stamped ratings made by 6, 040
users for 3, 706 different movies in MovieLens platform, and
XTX has the tracking log files that records the 772, 887 users’
learning behavior over 1, 629 courses in XuetangX platform
from August 2015 to August 2017. They will be used to
do a movie recommendation and a course sequence design
task, respectively. In order for our data to be representa-
tive of the general population, referring to the work [Mitro-
vic et al., 2018], we preprocess those datasets and then ob-
tain 412, 222 ratings made by 2, 549 users for 882 different
movies in MOV, and the tracking log files made by 238, 834
users’ over 956 courses in XTX.

Following the work [Tschiatschek et al., 2017], we
use the utility function h(E(s)) =

∑
vj∈V (E(s))[1 −∏

(vi,vj)∈E(s)(1 − pj|i)], where pj|i associated on the edge
(vi, vj) is the conditional probability that a user rates movie
(or enrolls course) vj given that she has rated movie (or en-
rolled course) vi before, and pi|i associated on self-cycles is
the item frequency pi. We next construct the graph G =
(V,E) to compute pj|i referring to the work [Tschiatschek
et al., 2017]. We also obtain the cost cvi

for each movie by
crawling the purchase price from Amazon’s website, and ex-
tract the costs of courses from the XTX dataset directly.
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Figure 4: Comparison of algorithms’ solution quality by varying ∆
on MOV and XTX datasets.

Performance of Our Methods
We first compare GBM and POBM with OMEGA in terms
of the solution quality on both MOV and XTX datasets by
varying the budget constraint. To compute the approximation
ratios of algorithms, we use an exhaustive enumeration to find
the optimal solutions and sample 50 movies (or courses) ran-
domly for each instance (i.e., n = 50). And we generate 50
problem instances randomly and report the average results.
As shown in Fig. 4, although the worst-case error bound of
GBM is poor, GBM can obtain high-quality solutions, and
POBM nearly achieves the optimal solutions.

To further compare the performance of these algorithms,
we run them on the entire MOV and XTX datasets with
larger ∆ to solve the problem. The run time of GBM and
OMEGA on both datasets is shown in Fig. 5. As POBM,
POBMOpt and POSEQSEL require a large number of itera-
tions when the number of items n is large, we set a time limit
TimLim = 30s for them to compare their solution quality
with that of GBM and OMEGA. As shown in Fig. 6, in terms
of the solution quality, POBMOpt > POBM > POSEQSEL,
it demonstrates that, our optimization can speed up POBM
well, and POBM has a faster rate of convergence than POSE-
QSEL. Note that GBM can achieve high-quality solutions
within 2s when ∆ is large, and the solution quality of POB-
MOpt is always the best on both datasets.
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Figure 5: Comparison of the run time for GBM and OMEGA on
MOV and XTX datasets.
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Figure 6: Comparison of algorithms’ utility scores on MOV and
XTX datasets.

7 Conclusion
We propose the BSSM problem which aims to find the op-
timal sequence such that it maximizes the utility of the se-
quence computed by a sequence submodular function under
a given budget constraint. The problem is proved to be NP-
hard. To solve the BSSM problem, we propose a greedy
algorithm GBM and an anytime algorithm POBM based on
Pareto optimization. We also analyze the approximation ra-
tios of GBM and POBM, and present some optimizations to
speed up POBM. The results of empirical studies on both syn-
thetic and real-world datasets verify the theoretical analysis
and show that our proposed algorithm can perform well in
practice. In future work, would like to focus on the theoreti-
cal development of a parallel POBM.
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