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Abstract 
 

INTRODUCTION: International consensus recognises four molecular subgroups of medulloblastoma, 

each with distinct molecular features and clinical outcomes. Assigning molecular subgroup is typically 
achieved via the Illumina DNA methylation microarray. Given the rapidly-expanding WGS capacity in 

healthcare institutions, there is an unmet need to develop platform-independent, sequence-based 
subgrouping assays. 

 
Whole genome bisulfite sequencing (WGBS) enables the assessment of genome-wide methylation 

status at single-base resolution. To date, its routine application for subgroup assignment has been 

limited, due to high economic cost and sample input requirements and currently no optimised pipeline 
exists that is tailored for handling samples sequenced at low-pass (i.e., 1-10x depth).  

 

METHODOLOGY: Two datasets were utilised; 36 newly-sequenced low-depth (10x) and 42 publicly 

available high-depth (30x) WGBS medulloblastoma and cerebellar samples, all with matched DNA 
methylation microarray data. We applied imputation to low-pass WGBS data, assessed inter-platform 

correlation and identified molecular subgroups by directly integrating WGBS sample data with pre-
existing array-trained models. We developed machine learning WGBS-based classifiers and 

compared performance against microarray. We optimised reference-free aneuploidy detection with 
low-pass WGBS and assessed concordance with microarray-derived aneuploidy calls.  

 

RESULTS: We optimised a pipeline for processing and analysis of low-pass WGBS data, suitable for 

routine molecular subgrouping and aneuploidy assessment. Using down-sampling, we showed that 
subgroup assignment remains robust at low depths and identified additional regions of differential 

methylation that are not assessed by methylation microarray. WGBS data can be integrated into 

existing array-trained models with high assignment probabilities, and WGBS-derived classifier 
performance measures exceeded microarray-derived classifiers. 

 

CONCLUSION: We describe a platform-independent WGBS assay for molecular subgrouping of 

medulloblastoma. It performs equivalently to array-based methods at increasingly comparable cost 
(currently ~$396 vs ~$584) and provides proof-of-concept for routine clinical adoption using standard 

WGS technology. Finally, the full methylome enabled elucidation of additional biological heterogeneity 
that has hitherto been inaccessible. 

 

Word Count: 300 
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1.1 – Cancer: Overview 
 
Cancer is a term used to describe a collection of diseases that are typified by unregulated proliferation 
of cells and their spread from the site of origin to surrounding tissue or other sites of the body. There 

are over 200 different types and subtypes of cancer classified to date, where the tissue of origin 

dictates the cellular characteristics of the disease (National Health Service, 2020). Whilst the presence 
of a tumour (or tumours) is a key property of cancer, not all tumours are cancerous. Tumours can be 

benign, defined by an inability to spread to other locations (metastasise) from the site of origin and are 
generally not life-threatening, depending on their location. Cancerous tumours are classified as 

malignant, which show the capacity to spread into other tissues. 
 

There are numerous different events that can trigger the beginning of cancerous growth in a cell. Cells 

can regulate their own rate of proliferation, and any cell which may become damaged or dysfunctional 
will apoptose under normal conditions. These processes are dictated by the normal expression of 

genes. Disruptions to the normal expression of these genes can result in the dysregulation of normal 
cell proliferation, causing it to become uncontrolled which subsequently results in tumour generation. 

Disruptions to gene expression is caused by mutation in the primary DNA sequence, leading to the 
classification of Cancer as primarily a genetic disease. The causes of these mutations can be both 

environmental and biological; typically, multiple mutations are acquired in tumours that can collectively 
contribute to tumorigenesis. 

 

 

1.2 – Cancer: Epidemiology 
 
Second only to heart disease, cancer is one of the world’s leading causes of death globally. In 2020 it 

was estimated to be responsible for ~10 million deaths, of which 70% occur in middle-low-income 
countries (WHO, 2022). The most common cancers are of the lung and breast tissues, causing ~2.26 

and 2.21 million cases in 2020 respectively. The deadliest cancer is also lung cancer, causing 1.8 
million deaths globally (WHO, 2022). The economic burden of cancer is enormous, estimated to cost 

the US $1.16 trillion in 2010, (Stewart & Wild, 2014), where both the prevalence of disease and cost of 
treatment has continued to increase as people age and are now less likely to die of other diseases. 

 

In the UK between 1993 and 2018, the combined incidence rate of all cancers has increased across 
all age groups – 19% in 0-24, 22% in 25-49, 13% in 50-74 and 9% in 75+ age groups respectively 

(Cancer Research UK, 2022). There is no simple answer as to why this is occurring, but increased case 
numbers are largely due to the increasing size of the ageing population. Cancer incidence is strongly 

associated with age, with rates increasing significantly from ~55-59 years (Figure 1.1) (Cancer 
Research UK, 2022). Cancer is characterised by the accumulation of genetic mutations, which are 

more likely to occur over time, explaining the increased prevalence in these age groups. Whilst the 
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incidence of cancer is increasing, so too are survival rates. In the UK, cancer survival has doubled over 

the last 40 years, and half of all patients diagnosed will survive their disease for at least ten years 
(Cancer Research UK, 2021). 

 

Figure 1.1 – All cancers combined incidence rates in the UK for each gender (Male = blue, Female = 
Pink) by age group (Cancer Research UK, 2022). 
 
 

1.3 – Drivers of tumorigenesis 
 
Whilst cancer is a collection of similar diseases with significant amounts of individual genetic 
complexity, they can be grouped together based on several shared properties that arise as a direct 

consequence of mutations, resulting in tumorigenesis. The journey from a healthy cell to a cancerous 

one can be described histologically in four stages – hyperplasia, dysplasia, in situ cancer, invasive 
cancer (Figure 1.2). A mutated cell begins to excessively proliferate around the site of origin and is 

described as a region of hyperplasia. At some stage, the descendants of these cells will accumulate a 

further mutation that increases their proliferative capability even further. The collection of cells begins 
to look abnormal and less differentiated, being described as a region of dysplasia (pre-cancerous). 

Further mutations to these cells may result in even more dysplasia and loss of differentiation, at which 
stage it is described as cancerous in situ. If these cells begin to demonstrate a loss of adhesion and 

begin to spread, it is then described as a malignant tumour (invasive cancer).  

 
In 2000, Hanahan & Weinberg published “The Hallmarks of Cancer”, which describes inherent cellular 

properties that all cancerous tumours share (Hanahan & Weinberg, 2000). As the mechanisms behind 
cancer have become better understood, the paper has been revisited in 2011 and 2022 to account for 
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advances in the field (Figure 1.3). These major properties are discussed in further detail in the following 

sections (Hanahan & Weinberg, 2011; Hanahan, 2022). 
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Figure 1.2 – The stages of tumour progression (Li et al., 2020)
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Figure 1.3 – The hallmarks of cancer (Hanahan & Weinberg, 2022). Whilst the complexity underlying cancer is highly complex, the Hallmarks of Cancer 
provides a means to rationalise and organise both key characteristics and enabling traits of the disease. The traits are regularly updated, with the previous 
iteration (left) recently updated in 2022 (Hanahan & Weinberg) to account for four additional emerging hallmarks (right). 
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1.3.1 – Resisting apoptosis 
 
One of the major phenotypic traits tumour cells must acquire is the ability to evade the innate protective 
mechanism of apoptosis. Apoptosis is an intrinsic property of multicellular organisms that initiate 

programmed cell death in cells that begin to show signs of aberrant proliferation (Evan & Littlewood, 

1998). The process acts to protect the whole organism over the survival of the individual cell by the 
introduction of various suppressive mechanisms in the cell replication process. Apoptosis is therefore 

a vital process that protects the cell from tumorigenesis. One example of apoptosis is the peeling of 
skin following sunburn to protect from the damaging effects of UV exposure. Apoptosis can be 

triggered from both the intrinsic and extrinsic environments of the cell, with both pathways converging 
at the activation of a caspase cascade that results in proteolytic cleavage of the cell (Figure 1.4). The 

cell effectively “digests” itself, and the residual material is then consumed by neighbouring cells and 

macrophages via phagocytosis (Hanahan & Weinberg, 2011).  
 

For a cancer cell to gain the ability evade apoptosis, the acquisition of a mutation of key genes involved 
in mediating the pathway is necessary. Mutations to the intrinsic pathway, responsible for regulating 

internal proliferative signalling, is most widely implicated in enabling cancer tumorigenesis. A well-
known component of apoptosis is the p53 protein, which induces apoptosis in response to DNA 

damage. Mutations to the p53 gene, TP53 is one of the most common mutations observed in tumour 

cells that enables apoptosis evasion (Hanahan & Weinberg, 2011). Loss of p53 enables the cell to 

accumulate further unchecked DNA damage, enabling cells to become further mutated, likely to 
develop further tumorigenic properties, and more likely to become cancerous. 
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Figure 1.4 – The extrinsic and intrinsic pathways of apoptosis (Derakhshan et al., 2017). 
Extrinsic activation of death receptors such as TNFR1 by its associated ligand TNFα causes 
trimerisation of adaptor proteins and ultimately activation of caspase 8, ultimately resulting in 
apoptosis. Intrinsic pathways of apoptosis are initiated via cytogenetic insults like radiation or 
chemotherapy, causing the release of cytochrome c and SMAC into cytosol – resulting in the binding 
and degradation of inhibitors of apoptosis (IAPs) such as XIAP, causing apoptosis. 



Faculty of Health & Life Sciences    Northumbria University 
 

27 
 

1.3.2  - Invasion & metastasis 
 
Tumour cells that reach a higher state of malignancy will often gain the capability to disassociate from 
the original site of growth and invade nearby tissues or infiltrate the circulatory system and spread to 

distant sites around the body. This process of cell invasion is most often known as metastasis. Cancers 

that metastasise are more likely to cause death than non-metastatic tumours (Chaffer & Weinberg, 
2011). Acquiring this trait is what separates benign and malignant tumour growths. The spread of 

cancer cells throughout the body presents a significant barrier to survival, by interfering with the 
healthy function of multiple organs separate from the primary tumour site. Whilst the precise genetic 

intricacies of metastasis are not fully defined, the process can be summarised in a sequence of steps 
termed the invasion-metastasis cascade (Valastyan & Weinberg, 2011) (Figure 1.5). 

 

After primary tumour formation, a single cell may gain the capacity to invade the local surrounding 
extracellular matrix. Cells may then invade into the blood vessel lumen in a process termed 

intravasation followed by transportation into the circulatory system. If the cells have adapted 
significantly to survive in the circulation, they may then settle at a distant tissue site, where they can 

extravasate into a new tissue microenvironment and begin to form a new metastatic growth 
(colonisation). The number of genetic changes a tumour cell must undergo to achieve successful 

metastasis is significant. To migrate successfully, cells must be able to slow down their own 
proliferation, avoid apoptosis and simultaneously down-regulate cell attachment and up-regulate cell 

adhesion processes to aid movement, to name but a few. 
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Figure 1.5 – The invasion metastasis cascade (Valastyan & Weinberg, 2011). 
Individual tumour cells leave primary sites of growth, translocating systemically. If such cells gain the 
capability to survive in circulation and arrest at new organ sites, additional growths may arise in 
tissues distant from the primary tumour site (metastasis). 
 
 
 

1.3.3  - Angiogenesis 
 
Like healthy cells, cancer cells require nutrition to survive, as well as the capability to remove waste 

products. To facilitate this, the formation of new blood vessels in and around the tumour is required in 
a process called angiogenesis. Angiogenesis is common during embryogenesis but rarely occurs 

during adult life, where it is only activated transiently during wound healing and the female reproductive 

cycle (Hanahan & Weinberg, 2011).  
 

Angiogenesis is regulated by various inducers and inhibitors, and the process is ‘switched on’ 
depending on the balance of these molecules in the cellular microenvironment. Angiogenic induction 

is largely governed by growth factors such as the vascular endothelial growth factor family of proteins 
(VEGF). Inhibition of angiogenesis typically prevents vascular generation indirectly by inhibiting cell 

migration and proliferation. For this reason, p53 is also an indirect inhibitor of angiogenesis, as well as 

apoptosis (Teodoro, Evans & Green, 2007).  

 
Whilst angiogenesis has long been appreciated as a hallmark of cancer development, recent evidence 

suggests that it is not always required for a tumour to thrive and spread. An increasing number of 
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cases have been reported where tumour tissues simply exploit existing vascular networks and grow 

alongside these networks in a process termed ‘vascular hijacking’ (Winkler, 2017). Nevertheless, there 
are numerous angiogenesis inhibitors available for treatment which show efficacy in treating some 

cancers (El-Kenawi & El-Remessy, 2013). For example, Axitinib (A VEGH receptor tyrosine kinase 

inhibitor) when used in combination with pembrolizumab resulted in significantly increased overall 
survival in patients with renal cell carcinoma (Rini et al., 2019). 

 

 

1.3.4  - Genome instability & mutation 
 
Acquiring the numerous phenotypic traits required to sustain cancerous growth requires several 

mutations. Individually, the rates of spontaneous mutations of specific genes are low and gaining all 
the mutations required to acquire all tumorigenic phenotypes even lower still. Yet, the fact that all 

cancers share these traits suggest that cancer cells can and do acquire tumorigenic phenotypes, 
despite these low probabilities.  

 
One of the main causes of early genomic instability is ‘Replication Stress’ (Zeman & Cimprich, 2014). 

DNA replication stress is caused by the loss of key pathways involved in maintaining normal DNA 

replication. DNA replication is initiated at thousands of origin sites in the genome, which form bi-
directional replication “forks”. DNA replication from these sites is regulated by the cell, splitting the 

origin sites into ‘early-replicating’ and ‘late-replicating’ sites. There are numerous ‘back-up’ replication 
sites to ensure smooth DNA replication if other sites stall or become damaged (Zeman & Cimprich, 

2014). Stalled or damaged forks place pressure upon DNA replication machinery at the sites that 
remain, increasing the rate of mutation during the replication process.  

 
Cancerous cells display increased rates of mutation, causing significant genetic damage to cell 

machinery involved in maintaining genetic integrity. Ultimately this results in significant genetic 

instability, which is now considered as an enabling hallmark characteristic of cancer (Negrini, Gorgoulis 
& Halazonetis, 2010; Hanahan & Weinberg, 2011). 
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1.3.5  - Deregulation of metabolism 
 
Alongside uncontrolled proliferation, another common trait of the cancer cell is an altered metabolism. 
Cell proliferation is an energy intensive process and as a result, tumour sites are typically nutrient-poor 

and there are often areas that are hypoxic. Cancer cells attempt to adapt to these environments by 

acquiring mutations that enable unconventional methods of metabolism (Pavlova & Thompson, 2016) 
(Figure 1.6).  A long-observed metabolic alteration in cancer cell metabolism is that of glucose 

production. To meet the increased demands for glucose, cellular glucose transporters such as GLUT1 

are often mutated, causing increased uptake and subsequent utilisation (Hsu & Sabatini, 2008). Cancer 
cells have also been known to utilise glycolysis under aerobic conditions, in a process known as the 

Warburg effect (Warburg, Wind & Negelein, 1927). Switching to an anaerobic mechanism of 
respiration, even when in aerobic conditions seems contradictory. This alteration may be explained by 

its association with oncogenic activation and tumour suppressor de-activation (Jones & Thompson, 
2009).  

 

Analysis of some tumours discovered the presence of two subpopulations, varying in their metabolism. 
The aforementioned “Warburg-effect” population that rely on glycolysis is supplemented by an 

additional population that utilise the large numbers of lactate molecules produced as an energy source 
by utilising the citric acid cycle (Kennedy & Dewhirst, 2010). Whilst this phenomenon has not been 

generalised, it serves as an important example of how genomic mutations cause tumour cell 
populations to adjust their metabolic capabilities to thrive under highly variable environmental 

conditions. 
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Figure 1.6 – Characteristics of cancer metabolism (Pavlova & Thompson, 2016). Cancer cells can 
undergo a multitude of metabolic changes that enable them to gain access to both unconventional 
sources of nutrients as well as increasing uptake of nutrients from conventional sources to help 
sustain the energy requirements for persistent cellular replication.
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1.3.6  - Immune system evasion 
 
Like apoptosis, the immune system acts as a protective mechanism for the body against tumorigenesis 
by surveying the body for abnormal cells and eliminating them. Whilst an effective method of 

preventing tumorigenesis, mutations gained by cancer cells can result in the successful evasion of 

immune surveillance. There are numerous known mechanisms by which cancer cells can escape the 
immune system. Cancer cells can cease the expression of tumour antigens and/or down-regulate the 

expression of antigen presenting molecules, rendering the T-cell response effectively useless 
(Monjazeb et al., 2013). Other methods include the presentation of ‘healthy’ antigens, effectively 

tricking the immune system into thinking the tumour isn’t a threat. A prominent example of immune 

suppression by cancer cells is through the expression of PD-L1, a ligand of PD-1 which is expressed 
on the T-cell surface. Binding of these molecules to one another results in the suppression of T-cell 

growth, which has a knock-on effect of slowing T-cell activation (Sun, Mezzadra & Schumacher, 2018).  
 

Once a tumour cell gains the ability to evade the immune system, this sub-population is effectively 

favoured via natural selection. The immune system is capable of destroying normal tumour cells, but 
the resistant sub-population survives, resulting in subsequent tumour growths conferring this 

resistance. The heterogeneity of cancers only increases the likelihood of such sub-populations arising 
and makes it inherently difficult to develop therapeutic measures to counteract this (Vinay et al. 2015). 

 
 
1.3.7  - Inflammation 
 
Aside from successful evasion of the immune system, some tumours are successfully infiltrated by 

immune cells, beginning the immune response against cancer cells within. Basic understanding of the 
immune response suggests that the body making efforts to eradicate the tumour through intrinsic 

means is positive. It has been shown that an innate immune cell presence of at least some degree is 
detectable in most tumours, bringing an associated inflammatory response along with it (Pagès et al., 

2010). Chronic inflammation can also play a role in initiating tumour development in tumorigenesis. 

Inflammation of the oesophagus caused by acid reflux (GERD) can lead to Barrett’s oesophagus and 
ultimately oesophageal adenocarcinoma in some patients (Bhat et al., 2011).  

 

The inflammatory environment has been shown over the past decades to enable the development of 
many tumorigenic traits that promote tumour growth and progression. The sustained production of 

growth factors and reactive oxygen species can signal tumour cells to proliferate further as well as 
induce further DNA mutations (Todoric, Antonucci & Karin, 2016). It has also been shown to stimulate 

angiogenesis and metastatic progression (Grivennikov, Greten & Karin, 2010). Consequentially, a 
sustained inflammatory response can induce an evolutionary effect on tumour development, 

promoting the proliferation of mutated cancer cells that are able to thrive in the microenvironments 

that are intended to destroy them. 



Faculty of Health & Life Sciences    Northumbria University 
 

33 
 

1.3.8  - Sustained proliferation 
 
The most infamous characteristic of a tumour is the capability of the cells therein to sustain 
proliferation. Under normal conditions, proliferation is a tightly controlled process. The cell cycle is 

regulated by an array of growth promoters and inhibitors at each stage. This controls the number of 

cells that undergo proliferation at any one time, ensuring that healthy tissue function and structure is 
maintained. Cancer cells overcome these mechanisms of control through the altered expression of 

these molecules. Methods include the over-expression of cyclin dependent kinases (CDKs), molecules 
directly involved in cell cycle progression. Alternatively, cancer cells may instead signal surrounding 

healthy cells to secrete additional growth factors which are detected by cell surface receptors to 
initiate the cell cycle (Hanahan & Weinberg, 2011).  

 

Increasing a cell’s susceptibility to promotion of proliferation must also be supplemented by mutation 
or inactivation of genes that encode for molecules that negatively regulate the process. Tumour 

suppressor genes (TSGs) act as gatekeepers at various stages of the cell cycle. Prominent examples 
include TP53, and retinoblastoma associated (Rb) proteins (Section 1.5.1) (Hanahan & Weinberg, 

2011). 

 
 

1.3.9  - Cell immortality 
 
Avoiding apoptosis and maintaining proliferation are a potent tumorigenic combination but are limited 
by cellular senescence.  Senescence describes the cellular ageing process. Healthy cells are limited 

by the number of times that they can successfully divide. Eventually, normal cells enter a state where 
they are unable to proliferate yet remain viable (senescent). Cells that continue to divide after becoming 

senescent enter crisis, a stage of mass cell death. Both crisis and senescence act as important barriers 
to cancerous growth in cells, at the price of inevitable death due to ageing (Hanahan & Weinberg, 

2011).  

 
In rare cases, cells evade crisis and emerge immortalised, enabling them to replicate indefinitely. These 

cells achieve this by maintaining the length of their telomeres, a repetitive nucleotide sequence located 
at the ends of each chromosome. Under normal cellular conditions, telomeres progressively degrade 

over successive cell divisions, initiating senescence once fully eroded. Cancer cells can activate a 
normally silent gene, hTERT, that encodes for the catalytic component of the telomerase complex. 

Telomerase is capable of lengthening telomeres, essentially bypassing senescence, and its expression 

is detected in ~90% of cancers (Jafri et al., 2016). Without becoming immortalised, it is difficult for 

tumours to maintain sustained growth, making this trait an important barrier that must be overcome 
by cancer cells to fully harness their replicative potential (Hanahan & Weinberg, 2011). 
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1.3.10 – Cancer stem cells 
 
Stem cells are capable of continued self-renewal as well as differentiation into specialised cell types. 
Evidence of a sub-population of cancerous stem cells in tumours was first reported in the 1990s in 

acute myeloid leukaemia (Lapidot et al., 1994). Since then, stem-cell sub-populations have been 

identified in numerous solid tumours, including glioblastoma and breast cancers (Singh et al., 2003, 

Al-Hajj et al., 2003). It is hypothesised that for some tumours, cancer stem cells (CSC’s) are the cell of 

origin and are responsible for resistance to chemotherapeutic agents and metastases distant from the 
primary site (Dawood, Austin & Cristofanilli, 2014) (Figure 1.7). CSCs diversify the cell-type population 

through asymmetric cell division. This ultimately results in increased tumour heterogeneity and can 
result in tumours becoming resistant to treatment and present higher risk of metastasis and/or relapse. 

 

Figure 1.7 – Models of sustained tumour growth (Adams & Strasser, 2008) 
A)- CSCs (gold) are often relied upon for tumour growth. In this model, tumour growth and 
differentiation is linked directly to that of changes within the CSC.  
B) – Clonal evolution models assume that most tumour cells contribute to tumour self-renewal, 
Differentiation within sub-populations of cells contribute to significant tumour heterogeneity, where 
different epigenetic, cytogenetic and mutation patterns may be observed throughout the tumour.  
C) - A mixture of both A & B, a tumour is initially driven by cells with stem like properties. Mutations 
in one cell produces a dominant phenotype, resulting in enhanced self-renewal and differentiation 
throughout the tumour
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1.3.11 – Enabling Characteristics 
 
In 2022, Hanahan & Weinberg presented several ‘enabling characteristics’ that represent our 
continued progress in understanding cellular traits that contribute to tumorigenesis – phenotypic 

plasticity, epigenetic reprogramming, polymorphic microbiomes and senescent cells (Figure 1.3). 

 
Phenotypic plasticity refers to the capacity of cancerous cells to be able to reverse or evade the 

process of differentiation, which typically results in cells that no longer proliferate Evading this process 
is now thought to a key trait of tumorigenesis, where cancerous cells may fully de-differentiate back 

to a stem-like state or transdifferentiate from one differentiation pathway to another, resulting in tumour 
cells acquiring wholly new traits (Yuan et al., 2019). Phenotypic plasticity is most easily demonstrated 

in colon cancers, where it is necessary that cancer cells escape the process of cell exfoliation and 

permanent renewal. Transcription factors such as HOXA5 are expressed during differentiation of 

epithelial cells in the colon, and are often lost in colonic cancer cells, resulting in cells reverting to a 
more dedifferentiated state (Ordonez-Moran et al., 2015).  

 

Non-mutational epigenetic reprogramming recognises that epigenetic modifications (changes to gene 
expression independent of changes to the underlying genetic sequence) plays a significant role in 

contributing to tumorigenesis, independent of mutation or genomic instability. Epigenetic regulation of 
gene expression is a long-recognised mechanism underlying cell differentiation and development; and 

induced changes to the epigenetic landscape throughout the genome can contribute to aberrant 

expression and ultimately the acquisition of other hallmark traits of cancer (Hanahan & Weinberg, 
2022). Epigenetic reprogramming may occur in numerous ways. Microenvironmental changes such as 

increased hypoxia can cause substantive hypermethylation, resulting in expression loss of key tumour 
suppressor genes (Thienpont et al., 2016). Epigenetic reprogramming can be heterogenous, altering 

expression profiles of cells differently, causing increased phenotypic diversity throughout a tumour 

and increasing the chance of cancer cells populations acquiring other hallmark traits (Lu et al., 2020).  

 
The microbiota – a term used to describe the microorganisms that reside within bodily tissues, is 

increasingly being recognised to have a significant effect on human health (Thomas et al., 2017). The 

microbiota varies substantially between individuals, and its characteristics can subsequently impact 
phenotypic traits of cancer (Dsutzev et al., 2017). A prominent example is that of the gut microbiome, 

where E. coli cells that carry a PKS locus have been shown to have mutagenic effects on the human 

DNA and is linked to causing “hallmark-enabling mutations” (Pleguezuelos-Manzano et al., 2020). 

Faecal transplants – intended to revert the microbiome back to a state associated with healthy 
individuals – have been shown to restore patient response to immunotherapy in melanoma (Baruch et 

al., 2021). There is a growing appreciation of the role that the microbiome plays in enabling and 

inhibiting tumorigenesis and although its exact mechanisms are only just beginning to be understood, 

it offers significant potential to increase patient survival.
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1.4 – Oncogenes & tumour suppressor genes 
 
Any gene that has the potential to cause tumorigenic traits if mutated is termed as an oncogene. 
Expression of oncogenes are essential for the initiation and maintenance of tumorigenesis. Wild-type 

genes that become oncogenic once mutated are termed proto-oncogenes and typically consist of 

genes directly involved in cell proliferation. Oncogenes contribute to tumorigenesis in cancer and can 
be activated by several different mechanisms. Oncogenes can be structurally altered via chromosomal 

rearrangements, amplifications or gene fusions or can undergo epigenetic modification that results in 
aberrant expression (Botezatu et al., 2016).  

 

Conversely, any gene that prevents tumorigenesis in the cell is named a tumour suppressor gene 
(TSG). Whereas oncogenes need to be activated or over-expressed, TSGs must be inactivated or 

under-expressed in the cancer cell to encourage tumorigenesis. TSGs are recessive in nature and 
require mutations to both genes on the chromosome to be inactivated. This ‘two-hit hypothesis was 

first described back in the 1970’s with the identification of one of the first TSG, Rb1 in retinoblastoma 

(Knudson Jr., 1971). 
 

 

1.5 – Epigenetics 
 
The word epigenetics means ‘upon’ or ‘above’ genetics and is scientifically defined as any heritable 

alteration to gene expression that is not caused by direct changes to the primary DNA sequence. 

Epigenetic mechanisms cause changes to the structure and conformation of chromatin, therefore 
having a regulatory effect on gene transcription. Stable epigenetic modifications in cells are crucial to 

development and maintaining the desired patterns of gene expression. For example, muscle cells 
remain as such due to epigenetic silencing of genes that do not promote a ‘muscle cell-like’ 

phenotype. Dysregulated epigenetic mechanisms can result in aberrant gene expression and 
subsequently lead to or aid in the development of cancer tumorigenesis (Sharma, Kelly & Jones, 2010). 

The types of epigenetic mechanisms can be grouped into four classes – DNA modification, histone 
modification, chromatin remodelling, and non-coding RNA mechanisms – and are discussed in detail 

below (Figure 1.8).  
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Figure 1.8 – Epigenetic mechanisms of expression control (National Institute of Health, 2021). 
Epigenetic control of expression involves multiple different chemical compounds that bind to DNA or 
proteins that increase or decrease the accessibility of that region of DNA to enzymes involved in 
DNA transcription and ultimately expression. Epigenetics play a crucial role in cellular development, 
where epigenetic signatures help guide stem cell differentiation. 
 
 

1.5.1  - DNA methylation 
 
The most widely studied epigenetic modification is that of DNA methylation. It is a reversible reaction 
involving the covalent addition of a methyl group (CH3) to a cytosine nucleotide at the C-5 position in 

a DNA sequence by DNA methyltransferases (DNMTs). The newly modified base, 5-methylcytosine 
(5mC), is associated with silencing the transcriptional activity of genes on and around the area of 

methylation (Li & Zhang, 2014) (see Figure 1.9). The change is heritable, with DNMT1 responsible for 

conferring DNA methylation onto the newly synthesised DNA strand during the replication process. 
Over 98% of DNA methylation occurs at a cytosine residue that is immediately followed by a guanine 

residue, termed CpG sites. They are unevenly distributed across the genome, with areas of 
unmethylated CpGs associated with increased rates of transcription. DNA methylation therefore plays 

a critical role in ensuring the correct transcription of genes during development and differentiation 

(Smith & Meissner, 2013).  
 

Methylated DNA is present among most transposable and viral elements that comprise ~45% of the 
mammalian genome. This demonstrates that DNA plays a protective role in these intergenic regions, 
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preventing the expression of genetic elements that may be detrimental to the organism (Walsh, Chaillet 

& Bestor, 1998). The areas of DNA that contain CpGs that are unmethylated most often occurring in 
densely populated regions are termed CpG islands. Many are found at promoter sites or at genes 

involved in developmental regulation, enabling their transcription. It is hypothesised that the 
unmethylated state of CpG sites is maintained through the concentrations of transcription factors 

present that bind to these areas of sequence, exhibiting an inhibitory effect (Smith & Meissner, 2013). 
The locations of these sites are conserved among mammals, emphasising the functional importance 

of these sites (Illingworth et al., 2010).  

 
There is significant crosstalk between DNA methylation and other epigenetic mechanisms. DNMT 

enzymes are known to interact with methylation and acetylation enzymes involved in histone 

modification (Section 1.6.2) with evidence suggesting that they co-operate with each other to 
transcriptionally regulate a region of DNA (Fuks et al., 2000, Fuks et al., 2003). 
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Figure 1.9 – Diagram depicting the conversion of cytosine to 5-methylcytosine via the addition of a methyl group, facilitated by DNA methyltransferase. 
Methylation status is typically maintained throughout life by the enzyme DNMT1 but can be reversed via ten-eleven-translocation methylcytosine 
dioxygenases (TET). 
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1.5.2  - Histone modifications 
 
To facilitate the condensing of DNA into chromosomes, DNA is first packed into nucleosomes, regions 
of DNA approximately 150bp in length encircling a histone octamer (Luger, Dechassa & Tremethick, 

2012). In regions of DNA that are densely populated with nucleosomes, the positive charge of the 

nucleosome interferes with the negative charge of DNA, preventing the binding of transcription factors 
or polymerases. Analogous to DNA methylation, histones are also modified. This modification can 

occur in a variety of ways and serve as an important epigenetic modification that regulates gene 
expression (Bannister & Kouzarides, 2011). 

 
Each histone molecule contains N-terminal ‘tails’ that protrude from an organised central structure. 

Multiple chemical modifications can occur at amino acid residues located on these tails: for example, 

methylation, acetylation, ubiquitination, and phosphorylation (Kouzarides, 2007). Histone methylation 
occurs at lysine residues and can occur at three levels depending on the number of added methyl 

groups: monomethylation, dimethylation and trimethylation. The number of added methyl groups to 
lysine 4 of histone molecule H3 (H3K4) within the nucleosome has been shown to be correlated to 

gene expression levels, with high levels of trimethylated H3K4 associated with 5’ regions of nearly all 

active genes (Ruthenburg, Allis & Wysocka, 2007). Conversely, unmethylated H3KM4 is a marker for 

transcriptionally silent chromatin. Acetylation of histone residues has been identified as a residue that 
can decondense chromatin. The acetyl residue neutralises the basic charge of the lysine, resulting in 

nucleosomes becoming unpacked and increasing the rate of transcription at these sites (Lawrence, 

Daujat & Schneider, 2016).  
 

Histone modification serves two functional purposes by enabling the structural remodelling of 
chromatin. It acts as a storage mechanism for DNA, by establishing densely packed chromatin, 

encouraging nucleosomes to be transcriptionally inaccessible (heterochromatin), or to enable 
nucleosomes to open the structure of DNA and be transcriptionally accessible (euchromatin). Histone 

modifications serve as an important epigenetic regulator through this function, by controlling which 
sections of the genome can be expressed and by maintaining the structural integrity of chromatin, 

ensuring that the genome is able to be efficiently stored inside the confines of the cell nucleus. 

 
 

1.5.3  - Chromatin remodelling 
 
The structural remodelling of chromatin enabled by the modification of histones significantly effects 
transcriptional profiles of the associated cell (section 1.5.2). In addition to histone modification enabled 

remodelling, various large protein complexes, termed ATP-dependent chromatin remodelling 
enzymes, provide the means to alter chromatin structure, utilising ATP hydrolysis to both ‘open’ and/or 

condense chromatin structure by displacing or translocating histone octamers from the underlying 



Faculty of Health & Life Sciences    Northumbria University 
 

41 
 

DNA sequence. Chromatin remodelling enzymes can be categorised into four major families based 

upon their ATPase and associated flanking domains – SWI/SNF, imitation SWI (ISWI), chromo-domain, 
helicase, DNA-binding (CHD), and inositol requiring 80 (INO80).  

 

The most understood family of chromatin remodelling complexes are that of SWI/SNF – which are 

implicated in differentiation and DNA repair and mutations to SWI/SNF complexes are associated with 

cancer. For example, SMARCA4 and SMARCB1 are associated with medulloblastoma and atypical 
teratoid/rhabdoid tumours respectively (Doussouki, Gajjar & Chamdine, 2019; Holdhof et al., 2021). 

Cells express a range of remodelling complexes that act upon chromatin in unison. It is theorised that 

the composition/distribution of chromatin remodelling complexes that exist within the cell are what 
establishes chromatin architecture globally, and the degree to which each complex is present helps 

to define cell identity (Langst & Manelyte, 2015).  

 
 

1.5.4  - Methylation & cancer 
 
The critical role of epigenetic mechanisms in tumorigenesis has long been recognised. DNA 
methylation is thought to play the most significant role, by facilitating the transition from normal gene 

expression to a pro-tumorigenic state at specific loci. Epigenetic alterations have been detected in 
several cancers and are now recognised as a hallmark property of tumorigenesis (Shen & Laird, 2013). 

In the paediatric brain tumour medulloblastoma, several regions of hypomethylation (abnormally low 
levels of methylation) associated with increased gene expression were detected including several 

partially methylated domains affecting nearly a third of the whole genome (Hovestadt et al., 2014).  

 
Epigenetic silencing events have been associated with causing several recurrent ‘driver mutations’ of 

TSGs and oncogenes in different tumour types (Choi & Lee, 2013). Many of these genes are associated 

with many other cancer hallmarks, such as angiogenesis and cell cycle regulation (Figure 1.10). Whilst 
these regions of hypermethylation have been identified, cancer cells are broadly associated with lower 

levels of global methylation. Hypomethylation of intergenic Alu and LINE-1 elements has been strongly 

linked to tumorigenesis, as their expression results in subsequent genomic rearrangements and 
general instability (Virani et al., 2012).   

 

Analysis of the entire DNA methylation landscape of a tumour is referred to as the cancer methylome 
and has evolved into a significant field of study over recent decades. The number of DNA methylation 

studies involving cancer is large and has led to the identification prognostically relevant biomarkers in 
numerous cancers such as lung and colorectal cancer (Paska & Hudler, 2015). There are several 

methylation biomarkers of cancer for which tests are now commercially available. A prominent 
example is the Cologuard test kit, which is a test for the methylation status of the VIM gene (Li et al., 

2014). 
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Figure 1.10 – Examples of epigenetic influence on tumorigenesis (Flavahan, Gaskell & Bernstein, 
2017) 
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1.6 – Tumours of the central nervous system 
 
After leukaemia’s, CNS tumours are the second most frequent type of tumour in children (26% of 
tumours in children aged 0-14) and are the most common solid tumour overall (Cancer Research UK, 

2021). The central nervous system comprises the brain and spinal cord, and both are responsible for 

controlling bodily functions that are essential to survival. The spinal cord is responsible for relaying 
signals from the brains, as well as enabling sensory nervous signalling (sensation) and muscular 

movement. This fundamental role in ensuring survival and maintaining quality of life results in tumours 
of the CNS being a serious obstacle to survival, as any treatment (surgery, therapy) must take into 

consideration the surrounding healthy tissue that may also be damaged/affected by treatment.  
 

Epidemiologically, patients with CNS tumours in the UK have poor outcomes and new treatments are 

urgently needed. In the years 2016-2018, over 12,288 new patients were diagnosed with a tumour of 
the CNS (brain, spinal cord, intracranial & other CNS tissue), with an age standardised incidence rate 

of 18.6 per 100,000 in the population (Cancer Research UK, 2021). Collectively, 12% of patients 
survive their tumour for 5 years, and the number of deaths from CNS tumours in the years 2016-2018 

was 5,380 on average (Cancer Research UK, 2021). The overall change in incidence of CNS tumours 
is also increasing, with a recorded increase of 34% since the 1990s (Cancer Research UK, 2021). 

These concerning statistics are compounded by our relative lack of knowledge about CNS tumours 
compared to that of other cancers. This is due to their rarity and large number of histological types. 

The World Health Organisation (WHO) currently identify more than 120 types of CNS tumour and have 

attempted to standardise the collection and classification of data using molecular information (Louis 
et al., 2021). 

 

1.6.1  - Types of brain tumour 
 
Most tumours of the CNS affect the brain. In 2021, the WHO updated their previous 2021 classification 

of ‘Tumour Types of the Central Nervous System’ to present a more accurate method of grouping 

different brain tumours (Louis et al., 2021). This was to incorporate molecular information into the 
previous histological classification, due to advances in the research field enabled by genomics 

research. Across all age groups in the UK, the most common brain tumour was categorised as 

astrocytoma (34%), a type of brain cancer that originates in the astrocytes of the cerebrum. This is 
followed by meningiomas, that occur in the meninges (brain membrane tissue) that comprise 21% of 

cases, followed by tumours of unknown type (14%) and numerous others that occur in less than 10% 
of cases (Table 1.1).  
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Table 1.1 – Most common types of brain tumour across all age groups (Cancer Research UK, 2019). 
Medulloblastoma, an embryonal tumour, occupies a small percentage of brain tumour incidence 
when considering both children and adults.  
 
 
 
1.6.2  - Paediatric brain tumours 
 
For children, brain tumours are the second most common type of tumour (Cancer Research UK, 2021). 

The reason for this increase in prevalence is largely due to a significant decrease in prevalence of other 
cancers that are more significantly influenced by environmental factors. Younger patients are at a 

lower risk of being influenced by environmental factors due to their age, as environmental factors 
become more influential the longer they are present. The distribution of brain tumours varies 

significantly when considering the age group of the patient. For paediatric patients, the distribution of 
brain tumour types is more evenly spread, with embryonal tumours appearing in over 15% of patients 

alongside pilocytic astrocytoma and glioma with 17% each respectively (Figure 1.11). This significant 

increase in the prevalence of embryonal tumours in children is due to the nature of the cells from which 
they develop. Embryonal tumours arise from cells that remain from foetal development in the womb, 

and are broadly classified into 7 types; Medulloblastoma, CNS neuroblastoma, FOXR2-activated, CNS 

tumour with BCOR internal tandem duplication, CNS embryonal tumour, Embryonal tumour with multi-
layered rosettes, Cribriform neuroepithelial tumour and Atypical teratoid/rhabdoid tumour (Louis et al., 

2021). 

 
 

 

 
 

 
 

 
 

 

 



Faculty of Health & Life Sciences    Northumbria University 
 

45 
 

 

 
 
Figure 1.11 – Distribution of CNS tumours in children by histological type (McNeill, 2016). When 
focusing on children, the distribution of brain tumours differs significantly, with embryonal tumours 
occupying a significantly increased proportion of all tumours that occur in this age group. 
 
 
1.7 – Medulloblastoma 
 
Medulloblastoma (MB) comprises a subset of embryonal, high grade, malignant brain tumours of the 

posterior fossa or cerebellum, located at the lower rear section of the brain.  It predominantly occurs 
in children and males but is not restricted to any demographic. Of all paediatric brain tumours, it is the 

most common, representing around a fifth of diagnosed brain tumours in children (Khanna et al., 2017). 

The malignant nature of medulloblastoma is recognised by its classification as a grade IV tumour by 
the WHO (Louis et al., 2016).  It is predisposed to metastasis in the neuroaxis, accommodated by its 

proximity to the fourth ventricle of the cerebrospinal fluid (CSF) system and embryonal origin (Valtz et 

al., 1991). The majority of medulloblastomas originate in the vermis, a section of tissue that bridges 

across both sides of the cerebellum. In adults, disease is more likely to arise around the hemisphere 
of the cerebellum.  

 
Since its naming and distinction from glial tumours in the 1920s (Cushing & Bailey, 1925), medical 

descriptions of medulloblastoma now recognise a wide range of histological and molecular subgroups 

(Section 1.7.4). This culminated in the 2016 WHO reclassification of the disease by integrating genetic 
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profile and histology to enable a refined diagnosis associated with more accurate prognostic outcome 

(Louis et al., 2016). Most medulloblastomas are sporadic (~95%) and no root cause has been 
determined. Environmental factors are not deemed a determining factor of tumour development due 

to its frequent presentation in children, where environmental influences do not have time to become a 

risk (de Bont et al., 2008). Multiple familial conditions are associated with increased risk of developing 
medulloblastoma, with Gorlin, Turcot and Li-Fraumeni syndromes associated with increased risk of 

tumour development. The disease is discussed further in detail in the following sections. 

 
 
1.7.1  - Epidemiology 
 
Medulloblastoma is the most commonly diagnosed brain tumour of the primary CNS in the paediatric 

population (Ward et al., 2014). The most recent epidemiological data is sourced from the Central Brain 

Tumour Registry of the United States (CBTRUS), which reports that approximately 20% of all 
paediatric tumours are MB, with an annual average of 297 cases (0.49 per 100,000) diagnosed per 

year (Ostrom et al., 2021). Out of all embryonal tumours diagnosed in children, MB consists of 68.9% 

of cases in 0–19-year-olds (Figure 1.11). Incidences have been recorded in older age groups, but the 
prevalence of the disease decreases with age in agreement with its embryonal origin. Further 

subdivision of this demographic reveals a bimodal peak in incidence of MB among ages 3-4 and 8-

10, at a rate of 0.53 and 0.58 per 100,000 respectively. MB is also disproportionately represented by 
more males than females, occurring at a ratio of 1.7:1 in the US (Ostrom et al., 2021). No ethnic 

predisposition is currently apparent, but data collection remains in its infancy in this regard, and it will 

take some years before any trends relating to this aspect will be revealed (Smoll & Drummond, 2012). 
Medulloblastoma presentation associated with familial cancer predisposition syndromes (e.g., familial 

adenomatous polyposis, nevoid basal cell carcinoma syndrome) accounts for ~5% of diagnosed 
cases (Smoll & Drummond, 2012, Waszak et al., 2018). 

 

Survival has seen a radical improvement over the past 70 years, rising from a 5-year survival rate of 
22% in the 1950s to 49% in the 1970s thanks to the addition of chemotherapy to standard treatment 

protocols (Farwell, Dohrmann & Flannery, 1984, Packer et al., 1991).  Further improvements in other 

areas such as surgical technique, appropriate therapy escalation, and improved palliative care for 
patients has pushed MB survival rates even higher, reaching up to 89% in the present day in favourable 

risk-group patients (Ramaswamy et al., 2016).  Survival data for patients in the US is relatively high 

compared to other embryonal brain tumours at 1, 2, 5 and 10 years, with a survival percentage of 
89.3%, 83%, 73.2% and 64.9% respectively across all age groups (Ostrom et al., 2021). Survival rates 

are highest in adolescents and young adults, whereas rates in adults over 40 years are lowest (Ostrom 

et al., 2021). This is likely due to the increased amount of research targeted at childhood MB, for which 

targeted therapies and clinical trials have been focused, whereas adult MB has not received such 
attention, likely due to low prevalence causing difficulties in funding (Lassaletta & Ramaswamy, 2016). 
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Lowest survival rates are observed in patients that suffer relapse. MB relapse is usually metastatic 

(~85% of patients) and is associated with a 3-year survival rate of 18%, far lower than any other patient 
group (Koschmann et al., 2016). 

 

1.7.2  - Clinical presentation/symptoms 
 
Most symptoms associated with medulloblastoma are because of its location in the brain. The 

cerebellum is crucial for healthy motor control and sensory regulation. It receives sensory information 

from the spinal cord and regulates the resulting motor response. It is responsible for voluntary actions 
such as balance and coordination, and controls muscular activity associated with movement.  

 
The presence of a growing cellular malignancy in the cerebellum can present several symptoms 

associated with aberrant cerebellar function. Common symptoms that have been recorded include 
headaches, nausea, tiredness, poor balance, and coordination. Headaches are the most commonly 

presented symptom, present in 65% of patients (Coleman et al., 2012), and are typically most intense 

in the morning before improving throughout the day as the patient is in an upright position.  
 

These symptoms typically arise due to increased intercranial pressure caused by a growing cell mass 

in the brain. Medulloblastomas frequently infiltrate the fourth ventricle of the brain, preventing 
adequate circulation of cerebrospinal fluid (hydrocephalus). This can amplify symptoms, as well as 

cause other conditions such as optic nerve swelling (papilledema), and ataxia in 76% and 62% of 
patients respectively (Coleman et al., 2012).  

 

The presentation of medulloblastoma varies from patient to patient. This is dependent on several 
factors but is largely dependent on the precise location of the tumour in the cerebellum and degree of 

metastasis. Symptoms, when presented individually, are not unique to medulloblastoma. This non-
specificity can cause problems for patients and clinicians, often leading to misdiagnosis in the early 

onset stages until symptoms are more acute (Brasme et al., 2012). 
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1.7.3  - Histology 
 
Medulloblastoma is a small round cell tumour, characterised by its high cellularity, pleomorphism and 
excessive nuclei: cytoplasm ratio (Borowska & Jóźwiak, 2016). Homer-Wright rosettes (Rosettes with 

neuropil at centre) are also typically present in samples. Within the general histology of 

medulloblastoma, there are four unique histological variants; Classic, Desmoplastic/Nodular (DN), 
Medulloblastoma with Extensive Nodularity (MBEN) and Large Cell/Anaplastic (LCA) (Figure 1.12). 

Regardless of variant, all histological subgroups are classified as grade IV, owing to the primitive, 
embryonic nature of its small cell tumour classification (Louis et al., 2016). Histology of 

medulloblastoma tumours is currently optimally determined in two stages. Local histological diagnosis 

is carried out by a neuropathologist after surgical excision, followed by referral to a specialist 
diagnostic institution for central pathological review (CPR) (Teot et al., 2007). Discrepancies between 

local and central review are frequent, due to its rarity and similarity to other small cell tumours of the 

brain and, consequently, patients can be faced with misdiagnosis of their disease and/or its histology. 
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Figure 1.12 – Histological subtypes of medulloblastoma (Gajjar & Robinson, 2014). 
A) Classic medulloblastoma histology, characterised by the appearance of large numbers of small 
cells with high nuclear-to cytoplasmic ratio. B) Desmoplastic nodular medulloblastoma. This group is 
characterised by the appearance of nodules (N) and internodular (IN) regions. C) Medulloblastoma with 
extensive nodularity (MBEN) is similar to D/N, but is distinguished by nodular regions occurring more 
abundantly. D) Anaplastic histology is identified by the appearance of numerous apoptotic bodies and 
nuclear pleomorphism E) aptly named, large cell histology displays prominent nuclei and often occurs 
in tandem with anaplasia. Both D and E histology’s are often grouped together into a large 
cell/anaplastic category (LCA).
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1.7.3.1 – Classic histology 
 
The classic histology variant of medulloblastoma (CMB) is characterised in much the same way as the 
disease is described; highly cellular, pleiomorphic, small, round cells with Homer-Wright rosettes 

present in some cases (Figure 1.12a). It is the most common histological variant, found in 

approximately 70% of cases (Ellison, 2010). CMB has been found in all four molecular subgroups of 
medulloblastoma (Taylor et al., 2012) and consist of over >90% WNT subgroup cases (Ellison et al., 

2011). Prognosis in CMB’s is good, but poorer than desmoplastic variants in SHH tumours (Northcott 

et al., 2011). 

 
 

1.7.3.2 – Desmoplastic/nodular 
 
Desmoplastic Medulloblastoma (DN MB) is differentiated from CMB by the presence of nodules 
between regions of desmoplasia (growth of fibrous tissue) (Figure 1.12b). Nodules comprise of 

differentiated neural cells whereas cells of the internodular spaces are undifferentiated. Regions of 
nodularity are sparse in DN MB (Ellison, 2010). DN MB are subdivided into two histology’s; 

conventional and paucinodular, found in ~67% and 33% of DN MB cases respectively (Schroeder et 

al., 2014). DN MB is typically found in young children, representing over half of cases found in infants. 

DN MB cases are found in ~5% of all MB cases and desmoplastic variants (including MBEN) comprise 
the majority of SHH molecular subtype tumours (Taylor et al., 2012). Prognostic outcome is better than 

both classic and large cell histology’s and is therefore currently classified as ‘low-risk’ (Borowska & 

Jóźwiak, 2016). 
 

 

1.7.3.3 – Medulloblastoma with extensive nodularity 
(MBEN) 

 
DN MB’s presenting with increased nodularity of irregular shapes are described as a separate MBEN 
histological variant (Figure 1.12c). They comprise of ~20% of desmoplastic MB cases and is the rarest 

histological variant overall, comprising of just 1% of cases (Korshunov et al., 2018). MBEN histology 

tumours are present only in infants and young children and are prognostically the most favourable 
histological variant (Giangaspero et al., 1999). All MBEN histology tumours belong to the SHH 

subgroup and has been hypothesised as an “end-point” of DN differentiation (Taylor et al., 2012, 

Borowska & Jóźwiak, 2016).  
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1.7.3.4 – Large cell/anaplastic 
 
Large cell and anaplastic (LCA) histological variants account for ~20% of all MB tumours (Schroeder 
et al., 2014) (Figures 1.12d & 1.12e). Whilst the two histology’s are separate, they are typically found 

co-existing in samples. Large cell MB is characterised by the presence of significantly larger cells, with 

large nuclei containing open chromatin. Anaplastic histology’s are poorly differentiated and contain 
significant pleomorphic nuclei (Borowska & Jóźwiak, 2016). LCA tumours are aggressive, frequently 

metastatic, and consequently are associated with a poor prognostic outcome. LCA variant tumours 

have been reported in all molecular subgroups of medulloblastoma, but are most prominent in the 
group 3 subtype, which is also associated with poor outcome (Northcott et al., 2012). 

 

 

1.7.4  - Medulloblastoma is comprised of distinct molecular 
entities 

 
Molecular analysis of medulloblastoma revealed underlying heterogeneity within the disease. 

Transcriptional and methylation profiling research in the late 2000s-early 2010s identified four distinct 

molecular subgroups of medulloblastoma; Wnt/wingless (WNT), Sonic Hedgehog (SHH), Group 3 & 
Group 4 (Thompson et al., 2006; Kool et al., 2008; Cho et al., 2011; Northcott et al., 2011; Schwalbe 

et al., 2013). Critically, each molecular subgroup is also associated with clinical features such as 

patient demographic and prognostic outcome (Cho et al., 2011; Northcott et al., 2011; Taylor et al., 

2012). The clinical utility of molecular subgrouping of tumours is such that they predict disease 
outcome and behaviour more accurately than histological diagnosis (Taylor et al., 2012). Molecular 

subgroups are independent of histological subtype, but there are areas of overlap between the two 

(Section 1.7.3).  
 

The molecular subgrouping consensus reached in 2012 has since been integrated into diagnostic 
protocols by the WHO (Louis et al., 2016; Louis et al., 2021). This has placed medulloblastoma at the 

forefront of precision oncology, providing a platform for targeted therapeutics and subgroup directed 

clinical management to enter clinical trials. Subgroup directed clinical trials of medulloblastoma have 
just recently begun being implemented into clinical trials design. WNT subgroup patients are currently 

being trialled for therapy de-escalation (CTI: NCT02212574), whereas new SHH subgroup directed 

therapeutics are being trialled in relapsed MB patients (CTI: NCT01708174).  Current treatments for 
MB are unsatisfactory in terms of the damaging effects it has on the developing brains of children who 

survive, as well as the poor survival chances of adults and patients that suffer relapse (Section 1.7.8). 
Taking molecular subgroup into account when designing new clinical trials ensures that robust, 

personalised treatment strategies can be adopted for future patients. 
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Since then, the molecular subgroups of medulloblastoma have been further defined, with various 

molecular subtypes identified within SHH, Group 3 and Group 4 (Cavalli et al., 2017; Schwalbe et al., 
2017; Sharma et al., 2019; Northcott et al., 2019), which are discussed further in the following sections 

(Figure 1.13).  

 

 
Figure 1.13 – The molecular characteristics of the four-consensus primary molecular subgroups of 
medulloblastoma were first established in 2012 (Taylor et al., 2012), and are each defined by a 
distinct set of demographic, clinical and genetic features. 
 
 

1.7.4.1 – WNT medulloblastoma 
 
Accounting for 10% of all medulloblastoma diagnoses, WNT medulloblastoma is the rarest subgroup. 
5 year-survival rates for WNT patients are very high (~90%), with the primary cause of death due to 

treatment complications and not the tumour itself (Ellison et al., 2011). The WNT subgroup is named 

so by tumours having characteristic somatic mutations of genes involved in the WNT/beta-catenin 
signalling pathway (Section 1.7.4). Individuals with Turcot syndrome are predisposed to WNT 

medulloblastoma because of germline mutation of the APC gene, a WNT pathway inhibitor.  

 
The large majority of WNT medulloblastomas have a classic histology, with a small proportion of LCA 

phenotypes being reported (Louis et al., 2007). Regardless of histology, the prognosis in WNT patients 
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does not appear to be affected by histology or TP53 mutation (Ellison et al., 2011). Whilst 

medulloblastoma is more common in males overall, the gender ratio of patients with WNT tumours is 
approximately 1:1 (Northcott et al., 2019). WNT tumours can occur at any age, but they are most 

common in children >3 years and adults. Chromosomal alterations are limited in WNT tumours, but 

90% of WNT patient tumours have monosomy of chromosome 6 (Clifford et al., 2006).  

 
It is theorised that the excelled prognosis associated with WNT medulloblastomas exhibiting ‘leaky’ 

vasculature caused by the high expression of antagonists of WNT signalling. WNT tumours are often 
haemorrhagic during resection, which is suggested to render them more susceptible to 

chemotherapies than medulloblastomas of other subgroups (Northcott et al., 2019). The favourable 

prognosis of patients with WNT tumours has led to the suggestion that they are being ‘over-treated’. 
Given that medulloblastoma treatment is associated with significant morbidity in the long term, it has 

recently been proposed that clinical trials explore de-escalation of therapy whilst maintaining survival 

rates in the WNT population. Preliminary research comparing the intellectual abilities of children 
treated with varying levels of therapy appear to support this proposal in WNT patients (Moxon-Emre 

et al., 2016). Indeed, exploratory trials of this nature have now begun to take place, with a phase 2 

study having started in 2017 (CTI: NCT02724579) and the PNET5 trial, which aims to introduce a ‘low-
risk’ treatment arm for WNT patients (CTI: NCT02066220). 

 
 

1.7.4.2 – WNT signalling & implicated genes 
 
The WNT signalling pathway is highly conserved in the animal kingdom. It is comprised of 
approximately 19 secreted glycoproteins, and is a fundamental component of cell proliferation, tissue 

homeostasis and control of embryonic development (MacDonald, Tamai & He, 2009). Mutations in this 
pathway are associated with numerous birth defects and contribute to cancer pathogenesis (Clevers, 

2006). The most critical pathway of WNT is ‘canonical WNT signalling’. Canonical WNT signalling 

functions by regulating the concentration of beta-catenin, a co-activator of the TCF/TLE transcription 
factor (Valenta, Hausmann & Basler, 2012). Aside from monosomy 6, a key characteristic of WNT MB 

tumours is the nuclear accumulation of �-catenin. Such accumulation is acquired due to mutations of 

genes involved in WNT signalling, leading to oncogenic activity and transcriptional upregulation.  
 

The most prevalent somatic mutation in WNT tumours, found in nearly all WNT tumours is that of 
CTNNB1, encoding for beta-catenin, occurring in approximately 90% of patients (Taylor et al., 2012). 

The majority of CTNNB1 mutations are stabilising (~70%), preventing its usual breakdown and 

increasing its ability as an effector (Robinson et al., 2012). Missense mutations of DEAD-Box RNA 

Helicase (DDX3X) are also enriched in WNT subtype Medulloblastoma, occurring in 36% of patients 

(Oh et al., 2016).  DDX3X is implicated in chromosomal segregation (Pek & Kai, 2011), as well as 

regulation of gene expression (Schröder, 2006). DDX3X is located on the X chromosome, and 
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subsequently displays a strong bias for mutation in males (Dunford et al., 2017).  Familial mutation of 

the APC gene (Turcot syndrome) predisposes an individual to WNT medulloblastoma, as well as 

colorectal adenomas (Hamilton et al., 1995). Less commonly mutated genes include AXIN1 & AXIN2, 

which are also components of canonical WNT signalling, as well as TP53 (Taylor et al., 2012). However, 
whilst the presence of TP53 is indicative of poor prognosis in SHH MB, it does not appear to impact 

survival in WNT tumours (Zhukova et al., 2013).  

 
Targeting of the WNT pathway using therapeutics is complicated, due to its role in several critical 
somatic processes independent of its potential to cause tumorigenesis. WNT signalling has important 

roles, such as skin regeneration, liver repair, and neurogenesis (Kahn, 2014), and any targeted 
therapies must be carefully considered as to not interfere with signalling in healthy tissue. 

 
 

 
 Figure 1.14 – How WNT canonical signalling is affected in medulloblastoma (Northcott et al., 2019). 
The exposure of extracellular WNT signalling results in the sustained activation and accumulation of 
the transcription factor beta-catenin, resulting in the aberrant expression of target genes. Percentage 
figures next to genes denote the frequency at which mutations are present within the WNT-subgroup 
population. 
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1.7.4.3 – SHH medulloblastoma 
 
Like the WNT subgroup, the SHH subgroup is named so due to the Sonic Hedgehog signalling 
pathway that is prominently affected in tumours of this type (Section 1.7.4.4). SHH tumours share 

some commonality in terms of chromosomal alteration compared to that of other molecular subtype 

tumours, but loss of chromosome 9q is limited to the SHH subgroup (Cho et al., 2011). The familial 
condition Gorlin syndrome (PTCH1 mutation) and Li-Fraumeni syndrome (TP53 mutation) are known 

to leave affected individuals predisposed to developing SHH subgroup MB.  

 
 ~30% of MB tumours belong to the SHH subgroup, and incidence rates are binomially distributed, 

occurring frequently in infants <3 years and adults >16years old, but less frequently in-between 

(Northcott et al., 2011). The two are typically found in different areas of the cerebellum, with infant SHH 
MBs found in the midline and adult SHH found in the hemispheric areas. There is no gender imbalance 

for SHH subgroup tumours, with most cohort studies observing a gender ratio of 1:1, like the WNT 

subgroup. Interestingly, all MBEN histology group tumours belong to the SHH subtype and many 
tumours with DN histology are also SHH (Kijima & Kanemura, 2016). However, not all SHH tumours 

belong to these histological groups, with classic and LCA histology’s also being recorded in cohort 
studies (Taylor et al., 2012). Prognosis in SHH patients is intermediate (~75% 5-year-survival), falling 

in-between WNT and Group 3 MB, which have good and poor prognoses respectively. However, there 

is significant prognostic variability present in the SHH tumour subgroup. SHH tumours with TP53 

mutation have very poor outcomes, with an overall 5-year survival of ~40% compared to that of ~80% 
in TP53-Wildtype SHH MB (Zhukova et al., 2013). This has led to the sub-classification of SHH MB 

into ‘TP53-mutant’ and ‘TP53-Wildtype’ by the WHO (Taylor et al., 2012). 

 
More recent transcriptional and methylation profiling studies involving larger cohorts of SHH subgroup 

tumours revealed that SHH can be characterised into subtypes – alpha, beta, gamma, and delta, based 

upon distinct cytogenetic profiles and patient demographics (Cavalli et al., 2018). Other splits of SHH 
medulloblastoma have shown that infant medulloblastoma (iSHH – largely corresponding to the beta 

and gamma subtypes identified by Cavalli et al.) can be further split into two groups – iSHH-I, enriched 

for SUFU and gain of chromosome 2, and iSHH-II, enriched for KMT2D and BCOR mutations 

respectively. 
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1.7.4.4– SHH signalling & implicated genes 
 
The Sonic Hedgehog (SHH) signalling pathway is crucial to regulation and maintenance of 
developmental processes of the cell. It is involved in embryonic patterning and cellular differentiation, 

important processes that lead to the formation of organ tissues in multicellular organisms (Simpson, 

Kerr & Wicking, 2009). Aberrant mutations in this pathway have been linked to tumorigenesis and birth 
defects (Choudhry et al., 2014). ‘SHH protein’, a hedgehog signalling ligand has been shown affect 

cell differentiation differently depending on its concentration. For example, in SHH naïve neural cells, 

different SHH concentrations caused cells to differentiate into different cells (Ericson et al., 1997).  
Individuals with Gorlin syndrome have a germline mutation of PTCH1, the ptc receptor involved in Shh 

signalling (Lo Muzio, 2008). Other common mutations found in sporadic SHH MB also include PTCH1 

as well as SUFU (Brugieres et al., 2010), SMO, GLI1 and GLI2 amplification (Northcott et al., 2011). 

GLI1, a transcription factor, has been shown to interact with E-CAD, a component of the canonical 

WNT pathway, suggesting that there is some crossover between both the WNT and SHH pathways 
(Li et al., 2007). This suggests there may be shared therapeutic targets among the two tumour 

subgroups. 

 
As mentioned in 1.7.4.3, SHH subgroup tumours appear to have distinct transcriptomic profiles 

separated by age. Infant subtype SHH frequently present with PTCH1 and SUFU germline mutation, 

whereas adult SHH is characterised by PTCH1 and SMO mutations. Childhood SHH is more 

heterogenous, with the presence of Gli2 and/or MYCN amplification characteristic of this subgroup as 
well as mutations of TP53 (Archer, Mahoney & Pomeroy, 2017). Chromosomal changes in SHH 

tumours are also characterised by age. Infant and adult SHH frequently present with loss of 

chromosome 9q, the location of PTCH and SMO genes in the SHH pathway. Childhood SHH MB is 

infrequently associated with a wide range of chromosomal copy number alterations and changes due 
to mass chromosomal rearrangement (chromothripsis) (Rausch et al., 2012).  

 

Clinical treatments for SHH MB vary depending on subgroup. TP53-Mutant SHH tumours are classed 

as ‘high-risk’ and treatment is escalated appropriately. TP53-Wildtype tumours associated with a good 
prognosis and are associated with deescalated treatment strategies. Clinical trials for treatment of 

SHH tumours are currently ongoing using therapeutics targeting the SHH pathway. SmO inhibitors 

such as vismodegib have shown promising results in adult patients (Robinson et al., 2015), where 

>80% of adult patients present with mutations in SMO or PTCH1 (Kool et al., 2014). Such a therapy is 

not suitable for children however, due to the important role SHH signalling plays in development 
(Frappaz et al., 2021). It is therefore likely that this subgroup will be the first of the four to benefit from 

subgroup-directed therapeutics. 
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Figure 1.15 – How canonical SHH signalling is affected in medulloblastoma (Northcott et al., 2019). 
The SHH pathway is primarily regulated by the uptake of SHH via the binding to smoothened-Ptc 
complex, encoded by SMO and PTCH1 respectively. Percentage values correspond to the 
proportion of SHH MB patients that exhibit mutations in the associated gene. 
 
 
1.7.4.5 – Group 3 and Group 4 medulloblastoma 
 
In contrast to WNT and SHH medulloblastoma, Group 3 (and Group 4) tumours are not characterised 
by aberrations of one specific signalling pathway.  The two groups share many molecular similarities, 

and patient demographics exhibit significant overlap. However, the two groups differ when concerning 
prognosis. Group 3 medulloblastoma comprises ~25-30% of cases, occurring very rarely in adults, 

displaying a peak in incidence at 3-5 years of age (Northcott et al., 2017). Group 3 medulloblastoma 

occurs nearly twice as often in males then females and is associated with the poorest survival out of 
all subgroups – with a 58% five-year overall survival reported in children and a 45% overall survival 

reported in infants (Northcott et al., 2017). Many high-risk features are present in group 3 

medulloblastoma, such as large/cell anaplasia, increased rates of metastases at presentation and high 
level MYC amplification, occurring in ~17% of patients in this group (Northcott et al., 2012). Group 3 

medulloblastoma often displays complex cytogenetic profiles, with isochromosome 17q, 8 loss, gain 

of 1q and 7 identified as prominent features in this group. Genetic markers of disease are not common, 
where SMARCA4, KMT2D, and CTDNEP1 the only genes enriched in patients (Northcott et al., 2019). 

The SMARCA4 and KMT2D genes are known to have a functional role in chromatin remodelling (Kijima 

& Kanemura, 2016). This suggests that these mutations may in part explain for the large variation in 

chromosomal aberrancies that have been detected in Group 3 tumours. Group 3 medulloblastoma 
often displays complex cytogenetic profiles, with isochromosome 17q, 8 loss, gain of 1q and 7 

identified as prominent features in this group.  
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Amplifications of the MYC oncogene are most attributable to group 3 tumours.  Whilst MYC mutations 

are present in all other subgroups, amplifications of MYC occur most frequently within this subgroup 

(~17%) and crucially, are linked with poorer prognostic outcome in group 3 patients than those that 
do not harbour the amplification. As well as amplification of MYC, increased expression can be driven 

by translocation with that of PVT1 (Northcott et al., 2012). MYC drives the expression of many 

metabolic processes linked to tumorigenesis in many different cancers, including medulloblastoma 

and is therefore a natural target for therapeutic development (Miller et al., 2012). However, there are 
significant obstacles standing in the way. As a transcription factor, it has no distinct active site for 

inhibition and its location in the nucleus renders the use of antibodies to be impractical (Chen, Liu & 

Qing, 2018). This has resulted in more innovative, indirect approaches to inhibition being tested in 
clinical trials - an example of which would be the targeting of the cyclin-dependent kinase 4 and 6; 

their inhibition attenuates the transcription of MYC (Chipumuro et al., 2014). An ongoing phase 1 trial 

looking into the effects of Palbociclib (CDK4/6 inhibitor) is currently underway in paediatric patients 
with medulloblastoma and other tumours of the central nervous system (CTI: NCT02255461).  

Group 4 is the final clinically recognised molecular subgroup of medulloblastoma. Like group 3 it is 

not as well characterised compared to WNT and SHH subgroups, where a detailed description of 

underlying pathogenesis driving the subgroup is lacking. Group 4 is the most common subgroup of 
medulloblastoma, comprising ~35% of cases (Kijima & Kanemura, 2016). They are the most common 

subgroup of medulloblastoma, comprising ~35% of cases (Kijima & Kanemura, 2016), and the most 
prominent cytogenetic change is isochromosome 17q. Notably in females, it is common to observe a 

loss of X chromosome, occurring in 80% of female tumours (Taylor et al., 2012). Metastasis is common 

in this subgroup (~35%) but is not as high as that of Group 3 tumours (Kool et al., 2012). Group 4 

tumours have an intermediate prognosis, like that of SHH patients, with a 5-year survival rate of 75% 
(Khatua, 2016). They are histologically like WNT tumours, being predominantly classic and rarely 

presenting with the large cell/anaplastic variant. Group 4 tumours are most common in children over 
3 years of age and are rare in both infants and adults. It has previously been described as “the 

prototypical medulloblastoma: a 7-year-old boy with a classic histology medulloblastoma that has an 
isochrome 17q” (Taylor et al., 2012).  The most prevalent driver event is over-expression of PRDM6, 

which is tightly linked to tandem duplication of SNCAIP, occurring in 17% of patients (ref). Like group 

3, mutations are rare in group 4, with no single gene occurring in over 10% of patients. Common 

mutations include ZMYM3, KMT2C, KBTBD4 and MYCN amplification, all occurring in 6% of patients. 

Unfortunately, it remains as the only molecular subgroup of medulloblastoma without a murine model, 
rendering detailed genetic study in-vivo difficult. This lack of genetic characterisation has also hindered 

any development into Group 4-directed therapeutics. With group 4 being the most common molecular 

subgroup of medulloblastoma, it is imperative that the underlying biology behind these malignancies 
is understood to advance therapeutic development as quickly as possible.
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1.7.4.6 - Identification of subtypes within Group 3 and 
Group 4 medulloblastoma 

 

A lack of molecular markers distinct to each subgroup originally meant that identifying tumours of 

Group 3 and Group 4 difficult in a diagnostic setting. Whilst immunohistochemistry (IHC) is 

recommended for the WNT subgroup (where CTNNB1 is a clear marker), no such markers exist for 

these two groups. Identification is instead based upon methylation profiling, where tumours of each 
subgroup cluster amongst its counterparts, allowing for tumours to be grouped effectively (Sharma et 

al., 2019). As methylation datasets have increased, methylation profiling has demonstrated success in 

identifying further subtypes present within groups 3 and 4, helping to unpick the underlying 

heterogeneity present among both groups (Northcott et al., 2017). Multiple subtype models have been 
proposed – including the Schwalbe et al., classification, which split group 3 and group 4 into low and 

high-risk groups (Schwalbe et al., 2017) and the Cavalli et al., classification which identified alpha, 

beta, and gamma subsets within each molecular subgroup respectively (Cavalli et al., 2017).  

In 2019, these different definitions were reconciled via a combined analysis of over 1500 

medulloblastoma samples via DNA methylation array in conjunction with a large portion of matched 
sample transcription data profiles (Sharma et al., 2019). Over eight subtypes (I-VIII) were identified 

within these groups, each enriched with distinct molecular and clinic-pathological profiles (Figure 

1.16). The eight consensus subtypes include both mixed groups and groups that comprise patients 
that solely belong to either subgroup – methylation profiling has been shown to discern between the 

groups effectively. These subtypes have since been recognised in the latest WHO classification of 

central nervous system tumours (Louis et al., 2021) due to their associated clinical utility, and their 
discovery has subsequently enabled researchers to assess the heterogeneity within Group 3 and 

Group 4 in a more informed manner and will aid efforts to define the groups biologically in the years 

to come. 
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Figure 1.16 – Clinico-pathological features of the molecular subtypes of Groups 3 and 4 in medulloblastoma (Sharma et al., 2019). Like previous studies that 
identified the four classic molecular subgroups, further heterogeneity has been identified within subgroups, with 8 subtypes currently recognised within 
group 3 and 4.
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1.7.5 – Diagnosis of medulloblastoma 
Patients presenting with symptoms (Section 1.7.2) that are consistent with a brain tumour, particularly 

symptoms that are progressive, are referred for a complete physical examination, neurological 

examination, and comprehensive review of their medical history. Physical examination of a patient with 
medulloblastoma will confirm the presence of commonly associated symptoms such as ataxia, 

papilledema and nerve palsies that may be caused by increased intercranial pressure. In infants, an 

increase in the size of the head or protrusions of the anterior fontanelle (membranous gaps between 
bones of skull during early development) may be observed (Quinlan & Rizzolo, 2017).  

Whilst a significant number of symptoms of medulloblastoma are quite general, medulloblastoma 

patients will likely lack of any other apparent illnesses that may explain the symptoms at the time of 
physical examination. Concerning findings of the physical exam are compounded if the patient also 

presents with unusual results after neurological testing. Brain imaging scans are the first port of call, 
with CT and MRI showing excellent utility in confirming the presence of a cerebellar mass (Reulecke 

et al., 2008). CT scans of medulloblastoma will show a mass at the vermis that extends into the fourth 

ventricle, causing it to look thinner than normal. Not all medulloblastomas will appear in the vermis. 
Less common areas such as the cerebellar hemisphere are typical of SHH subgroup tumours (Section 

1.7.4.3). The area of mass is often hyperdense, and a contrast CT scan will show an area of high 
enhancement (contrast) between the suspected tumour and surrounding brain tissue (Figure 1.17). 

MRI scans, depending on the form ordered, will detect medulloblastomas efficiently, owing to its 

capability to show the area of interaction between the tumour and healthy brain in detail. MRI Type-1 
scans, with and without gadolinium are most often used, and can accurately detect medulloblastoma 

in the brain (Millard & De Braganaca, 2016). If not performed before diagnosis. MR spectroscopy will 
often detect increased levels of choline, taurine peak as well as decreased levels of N-acetyl-acetate 

(Koeller & Rushing, 2003). MRI is often requested on the entire neuroaxis to evaluate metastatic 
behaviour before operating on the patient. Lumbar punctures, whilst effective to detect the presence 

of leptomeningeal spread, are not performed due to the already increased intracranial pressure in 
patients (Quinlan & Rizzolo, 2017). The identified location of a medulloblastoma via MRI has been 

shown to have a statistically significant relationship with molecular subgroup (Perreault et al., 2014). 

Whilst the above diagnostic tests are effective in diagnosing medulloblastoma, differential diagnoses 

to that of other masses in the posterior fossa can occur, such as atypical teratoid/rhabdoid tumour 
(ATRT) and ependymoma. ATRT is incredibly difficult to differentiate from medulloblastoma as both 

originate in similar areas and present with similar signs diagnostically (Koral et al., 2008). This 

discerning between the two may only be achieved post-operation, when immunohistochemical tests 
can be performed on tumour tissue directly. 

Due to the nature of the general symptoms of the early development of any brain tumour, the diagnosis 

of medulloblastoma can be delayed significantly. The median interval between the reporting of 
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symptoms to diagnosis of medulloblastoma has been reported as 65 days (Brasme et al., 2012). A 

study into the relationship between the time taken to diagnose medulloblastoma and the subsequent 
effects on survival found complex results, with most of the variation concluded to be due to other 

factors such as the nature of the tumour (histology, subgroup) rather than the time of diagnosis 

(Brasme et al., 2012). However, a median time of 2 months is a significantly long duration, and 
regardless of its effect on survival, it is important that this time is shortened so that suffering isn’t 

prolonged unnecessarily. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.17 – T1 weighted MRI of medulloblastoma (Carvalho Neto et al., 2003). 
Medulloblastoma can be identified by the presence of high signal intensity (appearing white) in the 
cerebellum relative to healthy tissue. 
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1.7.6  - Determination of molecular subgroup 
 
Given the clinical and prognostic significance of subgroups, it was necessary that assays were 
developed that could identify the molecular subgroup that a medulloblastoma tumour belongs to. 

Identifying subgroup (and their associated clinical features) subsequently informs clinical management 

for many patients and is of value to researchers for future studies wishing to further characterise the 
disease. There are several assays now developed, comprising immunohistochemistry, transcription, 

methylation, and sequencing methodologies, each with distinct advantages and disadvantages. 
 

Immunohistochemistry assays are capable of discerning between the current WHO defined clinical 
groups of medulloblastoma – WNT, SHH and Non-WNT/non-SHH (Louis et al., 2016). The assay is 

based upon expression patterns of 3 genes – CTNNB1, GAB1, and YAP1. This three gene assay is 

highly effective, where CTNNB1 in both the cytoplasm and nucleus discerns WNT tumours from other 

types, and immunoreactivity for GAB1 and YAP1 and a lack of CTNNB1 in the cytoplasm effectively 

identifying SHH type tumours (Figure 1.18). No reactivity is seen for non-WNT/non-SHH (i.e., Group 3 
and Group 4) in any gene other than CTNNB1 which is present only in the nucleus. IHC assays are 

often preferred in a clinical and research setting, owed to their low cost, compatibility with FFPE tissue 

and easy implementation (Ellison et al., 2011). However, the lack of capability in discerning between 

Groups 3 and 4 is a significant limitation given the prognostic differences between the two subgroups 
and resulting subtypes and is generally not fit for purpose within a research setting. 

Figure 1.18 – ICH staining assay used to discern between WNT, SHH, Non-WNT/non-SHH 
medulloblastoma (Orr, 2020). WNT tumours display high immunoreactivity to YAP1 and beta-catenin 
(B-CAT) and a lack of reactivity for GAB1. SHH tumours show high immunoreactivity to YAP1 and 
GAB1 and reactivity of beta-catenin is limited to the nucleus. Non-WNT/non-SHH show no reactivity 
in YAP1 or GAB1 and is the presence of beta-catenin is also limited to the nucleus.  
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The initial identification of molecular subgroups was based upon transcription profiling studies that 

utilised expression arrays (Cho et al., 2011; Kool et al., 2008; Northcott et al., 2011). Northcott et al., 
presented a NanoString assay, that measured the transcription levels of 22 genes to determine 

molecular subgroup – and presented very high classification rates and showed compatibility with FFPE 

derived DNA. However, as transcription-based assays are based upon the detection of RNA, which is 
inherently unstable, and the technology is not available readily in most clinical laboratories.  

 
An effective alternative to transcription assays is the use of methylation arrays. The molecular 

subgroups of medulloblastoma were shown to display distinct methylation signatures, where tumours 
of each subgroup that share similar patterns of methylation cluster together and can be separated into 

class with high accuracy using supervised classifier models (Capper et al., 2018). Methylation based 

classification can differentiate between all four molecular subgroups of medulloblastoma, and 
classifier models have been developed that can also identify subsequent molecular subtypes (Sharma 

et al., 2019). Methylation assays have an added benefit in that they can also be used to detect 

chromosomal copy number aberrations, including focal gene amplifications such as MYC and MYCN. 

Methylation profiling is built upon the Illumina methylation array platform, and the accumulation of 
large datasets over the years due its cost compared to methylation sequencing assays has led to the 

accumulation of large reference cohorts across a range of paediatric tumour types. This has since 
culminated in the development of the DFKZ paediatric brain tumour classifier, which is used to 

diagnose the molecular subgroup of over 80 different paediatric brain tumour types.  This capability 

has cemented methylation profiling via the array as the current gold standard within medulloblastoma 
diagnostics, but the platform is without limitations. Chromosomal copy number data is limited by the 

design of the array, and gene amplifications cannot be detected as reliably as karyotyping methods 
such as FISH across all genes due to uneven probe coverage. In rare tumour types like 

medulloblastoma it is also prone to long turnaround times, particularly in nations without centralised 
diagnostic infrastructures where samples cannot be pooled together into batches for analysis. 

 
 

1.7.7  - Treatment: General protocols 
 
Over the decades, the general treatment strategy for medulloblastoma has become a trifecta 
approach, comprising maximal surgical resection followed post-operatively by a combination of 

radiotherapy and chemotherapy (unless otherwise specified in 1.7.7.1). Once the diagnosis of a 
cerebellar tumour is made clear, surgical resection serves as the initial therapy for patients. The goal 

of surgery is to safely remove as much of the tumour as possible, to relieve symptoms in the patient. 
Resection of the tumour also enables further diagnostic testing to be done on tumour biopsies. 

Patients who have the entirety of their tumours removed (gross total resection), are associated with 
improved overall survival compared to that of patients who do not (sub-total resection) (del Charco et 

al., 1998).  
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After a patient has recovered from surgery, the patient is placed on a treatment regimen involving 

combination chemoradiotherapy followed by an extensive chemotherapy maintenance regimen. 
Typically, radiotherapy is administered for 7 weeks in conjunction with vincristine chemotherapy, to 

control micro-metastasis and locally control any residual tumorigenesis. Standard dosage of consists 
of craniospinal irradiation (CSI) to the entire neuroaxis at a dose of 23.4Gy, with a boost of 54Gy to 

the tumour bed in the cerebellum (Martin et al., 2015). Adults often receive increased doses of CSI, 

receiving 36Gy, as the associated morbidity of CSI is not as high as that of children (Friedrich et al., 

2013). The administration of chemotherapy alongside radiotherapy in medulloblastoma patients has 
long since been shown to improve prognostic outcome in medulloblastoma patients (Tait et al., 1990). 

The objective of chemotherapy is like that of radiotherapy, to control tumour growth and inhibit 

metastatic disease by controlling rapid cell division. A month after the initial 7-week 
chemoradiotherapy period, the typical standalone chemotherapy regiment for a standard risk MB 

consists of Cisplatin (75mg/m2), Lomustine (75mg/m2), Vincristine (1.5mg/m2) and 
Cyclophosphamide (1000mg/m2) doses over 44 weeks at varying combinations and doses. 

 
 

1.7.7.1 – Assignment of risk 
 
Historically, depending on demographic and prognostic factors, a patient with medulloblastoma is 
stratified into either “average” or “high” risk categories. All infants under the age of three are classed 

as “high-risk” patients, but due to the associated morbidity of radiotherapy are treated without it to 

minimise the risk of neurological defects. Patients over the age of three who have undergone a gross 
total resection or undergo sub-total resection with less than 1.5cm² remaining, as well as presenting 

with no signs of metastatic disease in the entire neuroaxis, are categorised as “average-risk” (Millard 
& De Braganaca, 2016). Patients who have undergone sub-total resection of the tumour with more 

than 1.5cm² remaining and/or are showing signs of disease dissemination are subsequently 
characterised as “high-risk”. These risk stratifications are based on prognostic evidence and dictate 

the resulting treatment that a patient will likely undertake. “Average-risk” patients are treated with the 
standard treatment protocols, whereas “high-risk” are considered for treatment escalation. 

 

There have been calls for risk-stratification of patients to be refined in recent years, backed up by a 
wealth of new molecular evidence (Ramaswamy et al., 2017). For example, the extent of resection is 

argued to not hold much, if any, prognostic significance, and that the molecular subgroup of a tumour 

is more informative of a patient’s chances of survival (Thompson et al., 2016). In fact, the argument 
that surgical resection was a prognostic indicator was established back in 1999 and is at the very least 

severely outdated (Zeltzer et al., 1999). Whilst the treatment strategies have yet to change, the clinical 

picture of risk stratification of medulloblastoma is now evolving to include molecular information 
(biomarkers, molecular subgroup). Such high-risk markers include the amplification of MYC or MYCN 

within a tumour, LCA histology subtype and TP-53 mutation in SHH molecular subgroup tumours 
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(Crosier et al., 2021). This information was compiled alongside histological data by the WHO in 2016 

and 2021, producing a pioneering integrated method of diagnosis associated with new risk-
stratifications (Louis et al., 2016; Louis et al., 2021). This has led to the classification of certain tumours 

as “Low-risk”, and patients that fall into these groups are now potential candidates for therapy de-

escalation in clinical trials research. Whilst these new risk stratifications have not translated into altered 
treatment strategies just yet, it provides a unique window into the future, more personalised treatment 

landscape of medulloblastoma (Ramaswamy et al., 2017). 

 
 

1.7.7.2 - Complications of treatment 
 
The trifecta approach of surgery, chemo, and radio therapies to treat medulloblastoma has resulted in 
a relatively high survival rate for patients compared to that of other embryonal brain tumours (Packer, 

2008).  However, sequelae in survivors associated with the current treatments are significant, with 

patients suffering many short and long-term side effects. This problem is intensified in paediatric 
patients, for whom side-effects become a major obstacle to healthy brain development and long-term 

quality of life.   
 

The invasive nature of surgical resection can damage tissue in the cerebellum, causing Posterior fossa 
syndrome. Posterior fossa syndrome affects ~25% of patients and impairs healthy brain function 

associated with the cerebellum. Symptoms present in the immediate days after surgery and include 

difficulties in speech, mutism, emotional instability, and ataxia (Doxey et al., 1999). Patients appear to 
be more likely to develop this condition if the surgical resection is more aggressive, or if the tumour 

has begun to infiltrate or spread to the brainstem (Doxey et al., 1999). A significant percentage of 

patients do not recover fully, with persistent speech impairment a significant problem (Robertson et 

al., 2006).  

 
As well as surgery, both chemotherapy and radiotherapy are associated with damaging side effects, 

causing significant impairment for patients. Patients can experience significant cognitive defects 
associated with radiation exposure to the brain and spine, of which is intensified if the dose is 

increased or if a patient is younger in age (Packer et al., 2003). Radiation of the neuroaxis leaves 

patients at increased risk of numerous other conditions later in life, such as stroke, migraine, and other 
cerebrovascular diseases (Campen et al., 2012). The effects of radiotherapy are intensified in younger 

patients, to the point where radiotherapy is avoided altogether in infants due to the associated damage 

to long term quality-of-life (Lafay-Cousin et al., 2009). Neurotoxicity caused by chemotherapeutics are 

also an issue for medulloblastoma patients. Vincristine utilised significantly in standard 
medulloblastoma treatment protocols is associated with causing temporary neuropathy (nerve 

damage) in some patients (Starobova & Vetter, 2017). Cisplatin is also associated with causing side 
effects, particularly after breaching a cumulative dose of 300mg/m². Like vincristine, neuropathies are 
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the main side effect for patients, but the recovery duration is longer than that of vincristine and is 

sometimes incomplete. Hearing loss is a major side effect associated with cisplatin, and its risk is 
highest in children and infants (Gurney et al., 2014). General susceptibility to the side effects of 

chemotherapy, as well as recovery appears to be less in children compared to that of adults (Tabori 

et al., 2005). 
 

 

1.8 – Next generation sequencing & cancer research 
 
The previous decades have seen significant advances in the field of DNA sequencing. The previous 

gold standard methods of chain-termination (Sanger) and shotgun sequencing used in the Human 

Genome Project in the early 2000’s (International Human Genome Sequencing Consortium et al., 2001, 
Venter et al., 2001) have since been replaced by similar, but higher throughput methods, collectively 

termed ‘Next Generation Sequencing’ (NGS). These new methods are characterised by the capability 

to sequence large numbers of fragments in parallel, enabling the cost of sequencing a genome to be 
reduced from the billions spent on the Human Genome Project to prices as low as $1000 per genome 

with the latest Illumina HiSeqX Ten platform.  

 
There are multiple companies vying for market share in the NGS market (e.g., Illumina, Oxford 

Nanopore), and the technologies that they collectively offer can be divided into two iterations, short-
read, and long-read sequencing. Short-read sequencing, or ‘Sequencing by synthesis’ involves the 

use of reversible fluorescent terminator dNTPs and PCR amplification of small DNA fragments ligated 
onto a sequencing chip into clusters (<300bp). Fluorescent imaging during each application cycle 

enables each fragment to be read at single base resolution, allowing for highly accurate alignments to 

be created (<0.1Kb error rate) (Kamps et al., 2017). Short-read sequencing is the most frequently used 
sequencing technology today, offering a low cost per Gb. Illumina, the current market leader, claimed 

to have produced 90% of all sequencing data in 2015 and it is their platforms (NovaSeq) that are 

offering the most value for money in terms of cost per GB. In contrast, long-read sequencing enables 
reads of >2.5kb to be sequenced. There are several advantages to sequencing longer reads. Long 

reads are more easily aligned, enabling downstream analyses such as the detection of chromosomal 
rearrangement, DNA structural variation and epigenetic characterisation at lower levels of coverage 

than its short-read counterpart (Kamps et al., 2017). PacBio offers this technology, termed ‘single 

molecular real-time’, or SMRT sequencing. However, it is currently associated with a higher error rate 
(>1Kb) and high cost per Gb, hindering its mainstream adoption in research. Oxford Nanopore 

technology takes long-read sequencing a step further enabling sequencing of reads >10Kb at a 
significantly lower cost but is associated with even higher error rates. 

 
The utility of NGS has rendered it useful across many areas of research (e.g., phylogenetics, bio-

synthetic gene cluster identification). This has since extended into the clinic where NGS of biopsies 
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(both tumour and liquid) have been used to screen for germline and/or somatic mutations in many 

diseases, including cancer. Gene panels generated by NGS analysis have shown utility in drug target 
identification (Sahm et al., 2016) and chromosomal copy number variation can be detected with high 

resolution throughout the genome, even at low pass (Talevich et al., 2016; Raman et al., 2019). Its use 

in a research setting is now well established and it is expected to be used prominently in clinical 
diagnostics in the coming years. In the UK, this is already becoming a reality – Genomics England and 

Illumina have established a partnership to develop seven genomics laboratories within the National 

Health Service (NHS), with the aim of generating up to 500,000 whole genome sequences, ultimately 
with the goal of introducing whole-genome sequencing into routine diagnostics (Genomics England, 

2020). 

 
 
1.9 – Assessing DNA methylation 
 
As mentioned in 1.7.6, the assessment of DNA methylation has formed a vital diagnostic component 

of subgroup detection in medulloblastoma and it can also be used to identify many more paediatric 
brain tumour entities (Capper et al., 2018). The assessment of methylation – the addition of a methyl 

group (CH3) to the 5th carbon position of the cytosine base within DNA – is typically achieved via 

bisulfite treatment of DNA. Bisulfite treatment of DNA takes advantage of the different products that 
are obtained via de-amination of cytosine and 5-methylcytosine, of which cytosine is converted into 

uracil and 5-methylcytosine retains its integrity (Frommer et al., 1992).  This difference enables 

methylated residues to be distinguished from unmethylated positions, as the only remaining cytosines 
in a fragment of DNA are methylated. Since the 1990’s several methodologies have been developed 

that assess DNA methylation. They can broadly be split into two types based upon the resolution at 
which methylation is interrogated – single-base resolution and region-based (Sun et al., 2015) 

 

Region-based methods comprise both MeDIP (methyl-DNA-immunoprecipitation) and MBD-seq 
(methyl-CpG-binding domain MBD2 protein) technologies (Yong, Hsu & Chen, 2016). Bound regions 

are then sequenced, producing enrichment peaks throughout the genome, where the intensity of a 

peak corresponds to the level of methylation. MeDIP and MBD-seq utilise antibodies and methylate-
CpG-binding protein to. Region based methods show good correlation to array-based methodologies 

and offer increased coverage throughout the genome. However, the method is not as high-throughput 

or can capture methylation information at as high a resolution as single-base resolution method.  
 

Single base resolution methods can be split into 2 types – array and NGS based. Microarray platforms 
like the Illumina Infinium series interrogate methylation status of CpG sites at many pre-determined 

probe sites, allowing methylation status to be determined throughout the genome. The sites that probe 
interrogate are selected carefully and are designed to encompass key regulatory and genic loci that 

are often implicated in methylation, including CpG islands, enhancer, and promoter regions (Bibkova 



Faculty of Health & Life Sciences    Northumbria University 
 

69 
 

et al., 2011). The latest iteration, the illumine Methylation EPIC chip, is designed to interrogate over 

850,000 positions throughout the genome. The DNA methylation microarray is the platform of choice 
in methylation diagnostics currently due to its low cost and sample input requirements compared to 

sequencing-based approaches. All microarrays apply similar bead-based technologies to assess 

methylation. Split into two iterations – Type I and Type II. Each 50-mer probe (ligated to the array chip 
surface) sequence is designed to bind to bisulfite-treated DNA regions throughout the genome. At the 

3’ end of each probe is a CpG site. Following DNA hybridisation, single base extension with 
fluorescently labelled bases enable methylation to be quantified by measuring of fluorescence 

intensity. Two fluorescent labels are used to discern between methylated an unmethylated base 
positions – biotin for ddCTP/ddGTP nucleotides and 2,4dinitrophenol (DNP) for ddATP/ddUTP 

respectively. Probe types differ based on the number of probes used to assess methylation at each 

CpG locus (Figure 1.19). 

 
Figure 1.19 – Difference between type I and type II probes on DNA methylation array chips (Bibkova 
et al., 2011). Type I probes have two independent probe sequences, designed to assess 
unmethylated and methylated CpG status separately at a particular locus. Type II probes have just 
one probe for a CpG site and utilises a two-coloured bead approach to assess methylation status at 
the same locus. Both probes are useful – type I for interrogation of CpG-rich regions, where a more 
robust signal is required, and type II probes save space on array chips, assessing CpGs located 
outside of dense regions. 
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NGS based approaches supersede array technologies by surveying all CpGs of the methylome rather 

than a pre-determined amount. Methylation can be analysed at all CpG sites, including low-density 
regions, and distal regulatory elements. Various CpG contexts can also be interrogated – CpG, CHG 

and CHH context methylation. The gold standard NGS method of assessing methylation is whole 
genome bisulfite sequencing (WGBS), although its adoption until recently has been limited due to high 

costs associated with library preparation and sequencing. Various other methodologies have been 
proposed to circumvent many of the issues associated with NGS methylation sequencing – namely 

high economic costs and high input DNA requirements. Reduced-representation bisulfite sequencing 

(RRBS) utilises Msp1 restriction enzyme digestion to shear DNA into fragments, followed by bisulfite 
treatment and sequencing to survey for methylation. Msp1 recognises 5’-CCGG-3’ sites, producing at 

the very least two cytosines per fragment. The development of RRBS was primarily initiated to 

maximise sequencing coverage in CpG dense regions and minimise costs by. Not sequencing the 
entire genome – representing a halfway point between array and whole genome-based approaches 

(Doherty et al., 2014). In recent years, whole-genome bisulfite sequencing has also seen development 

that has made the platform more attractive for use. The issue associated with methylation sequencing 
is that large amounts of high-quality DNA is required for sequencing due to damage caused during 

bisulfite treatment. Post-bisulfite adaptor tagging (PBAT) places the bisulfite treatment step at the 

beginning of library preparation, avoiding the risk of bisulfite degradation of adaptor-tagged fragments 
(Figure 1.20). This has resulted in significantly reduced sample DNA requirements, reaching as low as 

100ng (Miura et al., 2012). New methodologies are also being that circumvent the need for bisulfite 

treatment. Enzymatic methyl-seq (EM-seq) utilise TET2 and APOBEC2 enzymes to first oxidise 
methylated CpGs followed by the conversion of unmethylated cytosines into uracil, removing the 

bisulfite treatment step entirely (Feng et al., 2020). EM-seq has been shown to be a superior alternative 

to conventional WGBS – offering more amenable library preparation conditions, lowering DNA input 
and PCR amplification requirements. Crucially, the costs of bisulfite sequencing approaches are now 

also beginning to fall thanks to the optimisation of library preparation methods. The cost of low-pass 

sequencing (0.1 – 10x) is reaching comparable levels to microarray approaches - the current diagnostic 
gold standard (WGBS: ~£430 / Array: £300) and has since led to its increasing usage in research, 

including paediatric oncology in recent years (van Paemel et al., 2020; Kuschel et al., 2021). 
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Figure 1.20 – Comparison between conventional WGBS and post-bisulfite adaptor tagging DNA 
library preparation approaches (Miura et al., 2012). A) Conventional WGBS library preparation 
involves the bisulfite treatment of adaptor tagged fragments of DNA. This can result in the splitting of 
fragments due to bisulfite induced DNA damage, reducing the amount of viable DNA for sequencing. 
B) Post-bisulfite adaptor tagging treats bisulfite DNA with bisulfite in place of a sonication step prior 
to adaptor tagging. This significantly limits the further breakdown of DNA, producing much greater 
amounts of viable DNA for sequencing. 
 
 
 

1.10 – Limitations of DNA methylation microarrays / 
advantages of methylation sequencing 
 
Despite the advantages of microarray technology and its significant contributions to advancing the 

field of epigenetics in cancer research, the technique is not without its limitations.  Microarray 
applications are limited in the regions of DNA that they interrogate by the number of probes used. The 

Methylation EPIC chip by Illumina has over 850,000 probes, deliberately designed to interrogate >95% 

of CpG islands and >90% of CpG shore regions, supplemented with a further ~300,000 sites designed 
to interrogate FANTOM5 enhancer regions (de Hoon et al., 2015). Whilst comprehensive, the overall 

coverage throughout the genome is tiny. The 450k and EPIC arrays cover just ~3-6% of all ~28 million 

CpGs, ignoring a substantial amount of methylation data that may hold biological significance. Array 
platforms can be leveraged to derive copy number estimates via popular software packages like 

conumee (Hovestadt & Zapatka, 2017), but is inherently held back by the low number of probes, 
resulting in low resolution calling that impacts the ability of the platform to detect focal regions of 

amplification/deletion. Currently, the array remains the gold standard for methylation diagnostic, and 
is now the staple platform for subgroup determination in medulloblastoma. However, turnaround times 
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can be variable when not submitting samples in batches, which can often occur when working with 

rare tumour types (Perez & Capper, 2020).  
 

Critically, the platform is proprietary, running the risk of being discontinued. As mentioned above, the 
Illumina methylation array platform has been iterated upon twice throughout its lifetime, with each new 

iteration not covering its predecessors design completely, affecting comparability. Illumina appears to 
anticipate a move into the methylation sequencing space, and now offer a methyl capture sequencing 

kit based upon RRBS that offers a superior alternative to the EPIC chip (Illumina, 2022). Methylation 

sequencing presents many superior solutions to all the disadvantages associated with the methylation 
array platform. The gold standard method, WGBS, offers whole genome coverage, interrogating nearly 

all ~28.3 million CpGs on a per-sample basis. Data is produced in the form of beta values like the 
array, meaning that in theory most analyses used on array data would be analogous to methylation 

sequencing data. Popular array analyses such as differential methylation and copy number calling 
could be performed at significantly greater resolution, offering the capability to detect additional 

regions of differential methylation and leverage sequencing reads to derive copy number estimates 
throughout the genome and not just probe sites. 

 

Despite being the gold standard method of assessing methylation, its application in research has been 
limited due to high cost and sample input DNA requirements. However, recent advances like that of 

PBAT have reduced these barriers to entry significantly in recent years, and the price of low-pass 
WGBS is now reaching a level that is accessible to researchers. The platform presents significant 

untapped potential in methylation research, particularly within paediatric oncology where methylation 
is at the forefront of tumour analysis and diagnostics.  RRBS of cell-free DNA has been used to classify 

a range of paediatric brain tumour types with high accuracy with minute amounts of DNA (< 10ng) (van 

Paemel et al., 2020). Methylation profiling of paediatric brain tumours, including medulloblastoma 
samples via nanopore sequencing was used in conjunction with array data for classifier development 

– demonstrating a proof-of-concept that methylation sequencing would be amenable to current array-

based diagnostic methods (Kuschel et al., 2021).  
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1.11 – Summary & aims 
 
Recent advances in bisulfite sequencing methods have subsequently removed many of the barriers 

that have limited its use in a diagnostic and research settings. Alternative library preparation methods 
such as post-bisulfite adaptative tagging have driven down costs of the sequencing significantly. 

Generating data at high coverage remains costly, but the costs of low-pass sequencing are now 
becoming comparable to per-sample costs of DNA methylation microarrays (10x WGBS = ~£430 / 

Array = £300). The DNA methylation microarray forms crucial component of subgroup diagnostics 

within medulloblastoma and indeed many other paediatric brain tumour types but is inherently limited 
by design and is continually subject to the risk of discontinuation as it is a privately owned platform. 

Low-pass WGBS offers a platform-free alternative of interrogating methylation throughout the 
methylome, and could, in theory, be used as a replacement for the array in a research and diagnostic 

setting. However, no consensus methodology currently exists for handling clinical samples sequenced 
using WGBS at low-pass, and the capability of the platform in being used to detect molecular 

subgroups of medulloblastoma and generate other clinically meaningful readouts such as copy 

number, mutation and differential methylation data has not been comprehensively assessed. Should 
such an assay for data handling and clinical analysis of WGBS in medulloblastoma be developed, it 

would offer a powerful alternative to the DNA methylation microarray, where WGBS samples could be 
used to predict subgroup and generate clinical readouts with whole-genome coverage at single-base 

resolution. Surveying the entire methylome also alludes to the possibility that additional biological 
heterogeneity could be identified, which may present opportunities to refine or optimise the current 

methylation profiles of subgroups/subtypes present within the disease. 
 

This project aimed to investigate the capability of low-pass WGBS in being used to identify the 

subgroups of medulloblastoma and to generate clinically meaningful readouts that are associated with 
subgroup diagnostics compared to the current gold standard DNA methylation microarray platform, 

with the following specific aims: 
 

1. Develop an optimised low-pass bioinformatic processing pipeline capable of producing both 
high quality sequencing read data that can be used for NGS-based analyses downstream, and 

non-missing methylation data through the introduction of a viable imputation strategy that 

demonstrates high correlation with array data in a matched medulloblastoma cohort (Chapter 
3). 

 
2. Investigate the degree of variability present throughout the medulloblastoma methylome and 

investigate the degree to which the current subgroups of medulloblastoma can be identified 
using low-pass WGBS both within and independent of medulloblastoma array cohorts. 

(Chapter 4) 
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3. Demonstrate that the molecular subgroups of medulloblastoma can be predicted with high 

accuracy by applying WGBS sample data to pre-existing array classifier models and show 
that WGBS trained models perform equivalently to like-for-like models trained using matched 

array samples. (Chapter 4) 
 

4. Develop and optimise a strategy for estimating chromosomal copy number throughout the 
genome that performs equivalently to array-based methods in identifying large-scale events 

and demonstrates increased sensitivity calling smaller focal/single-gene changes (Chapter 5).  

 
5.  Test the ability for low-pass WGBS to be used to call variants using specialised BS-seq 

software and determine its utility in a diagnostic setting (Chapter 5). 
 

6. Survey the landscape of differential methylation throughout the medulloblastoma methylome 
and provide an overview of the degree to which additional differential methylation can be 

detected using sequencing platforms compared to the array (Chapter 5). 
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Chapter 2 – Materials & Methods 
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2.1 – Study Cohorts 
 
Two cohorts – NMB and ICGC - comprising 70 (90%) primary medulloblastoma and 8 (10%) control 
cerebellum samples were used for the investigations reported within this study. As well as WGBS 

sample data, matched DNA methylation Microarray data was available for all samples. 

 
Our NMB cohort comprised of 36 primary medulloblastoma samples, of which key characteristics are 

described below (Table 2.1). Samples were selected deliberately to ensure that subgroup composition 
reflected that of the wider literature, with all samples associated with high classification probability 

(>0.9) for either subgroup or subtype as per the MNP classifier. When possible, samples were chosen 
that harboured molecular features key to each subgroup (e.g., monosomy 6 in WNT, TP53/MYCN 

amplification in SHH).  27 (75%) males and 9 (25%) females were included, consisting of 18 (50%) 

classic, 3 biphasic classic (8%), 3 DN (8%), 7 LCA (19%), 1 MBEN (3%) and 3 with unknown histology 
(8%) respectively. Age at diagnosis was not a factor during cohort selection, where 15 (42%) were 

classed as infants (< 3 at diagnosis), 19 (53%) children (aged >3-15), 1 (3%) adult (> 15 years) and 1 
(3%) with age unknown. M-stage according to Chang’s staging system (Chang et al., 1969) was 

available. M-stage was categorised into 2 categories: M-, encompassing M0/1 / M0 and M1 and M+ 

- encompassing M2 and M3 respectively. 26 cased (72%) were classed as M- and 10 (28%) classed 
as M+. Survival data was present for 35 (97%) samples, where a mean survival time of 3.325 years 

was reported. Relapse data was available, where 10 (28%) out of 36 samples relapsed later following 
disease progression. Molecular subgroup was determined via application of raw array sample data to 

the DFKZ paediatric brain tumour classifier (Capper et al., 2018), where 5 (14%) WNT, 5 (14%) SHH, 

12 (33%) Group 3 and 14 (31%) Group 4 subgroup classifications were assigned.  
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NMB_17 Primary 
Medulloblastoma Male 4.697 Alive N/A 19.7 

years Classic Group 
3  IV 10x M0/1 No N/A N/A Balanced Balanced 

NMB_77 Primary 
Medulloblastoma Female 8.53 Alive N/A 10.613 

years Classic Group 
4 VII 10x M3 No N/A N/A Balanced Amplified 

NMB_79 Primary 
Medulloblastoma Female 3.438 Alive N/A 8.844 

years 
Desmoplastic 

Nodular SHH SHH_ 
Inf-I 10x M3 No N/A N/A Balanced Balanced 

NMB_169 Primary 
Medulloblastoma Male 8.91 Deceased Relapse 0.272 

years LCA Group 
3  II 10x M0 Yes Distant 

Recurrence 6 Amplified Balanced 

NMB_178 Primary 
Medulloblastoma Male 4.95 Alive N/A 6.475 

years Classic Group 
4 VII 10x M3 No N/A N/A Balanced Balanced 

NMB_181 Primary 
Medulloblastoma Male 8.41 Deceased Relapse 0.144 

years LCA SHH SHH_Child 10x M0 Yes Local 
Recurrence 196 Balanced Amplified 



Faculty of Health & Life Sciences    Northumbria University 
 

78 
 

NMB_185 Primary 
Medulloblastoma Male 9.65 Alive N/A 9.92 

years Classic Group 
4 VII 10x M0 No N/A N/A Balanced Balanced 

NMB_187 Primary 
Medulloblastoma Male 3.7 Alive N/A 9.18 

years Classic Group 
4 VIII 10x M0 No N/A N/A Balanced Balanced 

NMB_203 Primary 
Medulloblastoma Male 6.24 Alive N/A 6.7 years Biphasic 

Classic 
Group 

4 I 10x M0 No N/A N/A Balanced Balanced 

NMB_250 Primary 
Medulloblastoma Male 4.8 Alive N/A 7.15 

years Classic Group 
4 VII 10x M0 No N/A N/A Balanced Balanced 

NMB_273 Primary 
Medulloblastoma Male 5.71 Deceased N/A 5.71 

years Unknown Group 
3  V 10x M3 No N/A N/A Amplified Balanced 

NMB_318 Primary 
Medulloblastoma Male 5.91 Deceased Relapse 0.897 

years LCA Group 
3  II 10x M3 Yes Distant 

Recurrence 19 Elevated 
(MLPA) Balanced 

NMB_362 Primary 
Medulloblastoma Male 7 Deceased Relapse 1.753 

years 
Desmoplastic 

Nodular 
Group 

4 VI 10x M0 Yes Distant 
Recurrence 180 Balanced Balanced 

NMB_363 Primary 
Medulloblastoma Male 0.6 Alive N/A 4.938 

years MBEN SHH SHH_ 
Inf-II 10x M0 No N/A N/A Balanced Elevated 

(MLPA) 
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NMB_378 Primary 
Medulloblastoma Male 16.827 Alive N/A 6.241 

years Classic Group 
3  IV 10x M0 No N/A N/A Balanced Balanced 

NMB_390_FFPE Primary 
Medulloblastoma Male 16.827 Alive N/A 2.636 

years Unknown WNT WNT 10x M0 No N/A N/A Balanced Balanced 

NMB_390 Primary 
Medulloblastoma Male 16.827 Alive N/A 2.636 

years Unknown WNT WNT 10x M0  No N/A N/A Balanced Balanced 

NMB_416 Primary 
Medulloblastoma Female 4.64 Alive N/A 6.914 

years Classic Group 
4 VII 10x M0 No N/A N/A Balanced Balanced 

NMB_433 Primary 
Medulloblastoma Male 1.894 Alive N/A 8.719 

years 
Biphasic 
Classic 

Group 
3  IV 10x M0 No N/A N/A Balanced Balanced 

NMB_436 Primary 
Medulloblastoma Male 4.97 Alive Relapse 3.917 

years Classic WNT WNT 10x M0 Yes Local 
Recurrence N/A Balanced Balanced 

NMB_529 Primary 
Medulloblastoma Female 8.11 Alive N/A 6.675 

years LCA Group 
4 VII 10x M0 No N/A N/A Balanced Balanced 

NMB_549 Primary 
Medulloblastoma Female 5.68 Deceased Relapse 2.202 

years LCA SHH SHH_ 
Child 10x M0 Yes Distant 

Recurrence 201 Balanced Amplified 
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NMB_610 Primary 
Medulloblastoma Male 8.875 Alive N/A 3.538 

years Classic Group 
3  II 10x M0 No N/A N/A Balanced Balanced 

NMB_725 Primary 
Medulloblastoma Male 5.75 Deceased Relapse 1.233 

years Classic Group 
4 V 10x M3 Yes Distant 

Recurrence N/A Balanced Balanced 

NMB_729 Primary 
Medulloblastoma Male 6.91 Deceased Relapse 1.13 

years Classic Group 
3  I 10x M0 Yes Distant 

Recurrence 58 Balanced Balanced 

NMB_733 Primary 
Medulloblastoma Female 6.67 Alive N/A 5.717 

years Classic Group 
4 VII 10x M2 No N/A N/A Balanced Balanced 

NMB_758 Primary 
Medulloblastoma Male 5.213 Deceased N/A 0.756 

years LCA Group 
3  III 10x M1 Yes Distant 

Recurrence 34 Amplified Balanced 

NMB_769 Primary 
Medulloblastoma Male 4.01 Deceased Relapse N/A LCA Group 

3  III 10x M3 Yes Local + 
Distant 44 Amplified Balanced 

NMB_772 Primary 
Medulloblastoma Male 7.93 Deceased Relapse 1.825 

years Classic Group 
3  V 10x M3 Yes Unknown 323 Balanced Balanced 

NMB_774 Primary 
Medulloblastoma Male 5.89 Alive N/A 4.961 

years Classic Group 
3  III 10x M0 No N/A N/A Elevated 

(MLPA) 
Elevated 
(MLPA) 
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NMB_787 Primary 
Medulloblastoma Female 13.54 Alive N/A 

4.822 
years 

(ongoing) 

Biphasic 
Classic 

Group 
4 VIII 10x M0 No N/A N/A Elevated 

(MLPA) 
Elevated 
(MLPA) 

NMB_803 Primary 
Medulloblastoma Male 2 Alive N/A 1.688 

years 
Desmoplastic 

Nodular SHH SHH_Inf-I 10x M2 No N/A N/A Balanced Balanced 

NMB_858 Primary 
Medulloblastoma Female 6.428 Alive N/A 1.030 

years Classic WNT WNT 10x M0 No N/A N/A Elevated 
(MLPA) Balanced 

NMB_867 Primary 
Medulloblastoma Male 6.556 Deceased N/A 2.636 

years Classic Group 
4 VII 10x M1 No N/A N/A Balanced Elevated 

(MLPA) 

NMB_870 Primary 
Medulloblastoma Female 11.144 Alive N/A 0.35 

years Classic WNT WNT 10x M0 No N/A N/A Elevated 
(MLPA) 

Elevated 
(MLPA) 

NMB_890 Primary 
Medulloblastoma Male 7.833 Alive N/A 3.325 Classic Group 

4 V 10x M0 No N/A N/A Balanced Balanced 

Table 2.1 - Clincal Demographics of NMB Cohort (n=36). Sample type, gender, age at diagnosis (in years), last known survival status, survival time (years) is 
shown. Histological subtype is provided in addition to molecular subgroup (WNT/SHH/Group 3/Group 4) and subtype (WNT / SHH child / SHH Infant 
subtype I and subtype II / Subtypes I – VIII of Group 3 and 4). Sequencing depth is provided in addition to relapse status, relapse interval (days) and MYC / 
MYCN amplification status. Missing data is denoted with N/A 
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A publicly available external cohort (n=42) comprised of 34 (81%) primary medulloblastoma and 8 

(19%) control cerebellum samples was also used in this study (Hovestadt et al., 2014). Data was 
acquired via the ICGC data portal (Zhang et al., 2019) using the PBCA-DE project code. Gender 

information was available for all 42 samples – 24 (57%) males and 18 (43%) females were included.  

For our control samples, 4 were adult cerebellar samples from 26-, 41-, 33- and 87-year-old individuals 
and 4 were foetal cerebellar tissue samples (age < 0). 

 

For the 34 primary medulloblastoma samples in this cohort limited additional clinical information was 
available, whose key characteristics are described below (Table 2.2). Histological subtype information 

was available for all 34 samples, consisting of 5 (15%) desmoplastic, 9 (26%) LCA and 20 (59%) classic 
tumours respectively.  Age at diagnosis – split into infant, child and adult as above comprised 8 (24%) 

infants, 25 (74%) children and 1 (3%) adult case present. Chang’s M-stage data was available, where 
22 (65%) tumours were M-, 10 (29%) were M+ and 2 (6%) tumours had unknown M-status. Survival 

time at the time of data publish was available for 31 samples, where a mean survival time of 3.841 

years was reported. Relapse data was also available, with 6 (18%) patients reported as relapsing. 
Molecular subgroup was determined was originally determined as previously described (Hovestadt et 

al., 2013), but has since been updated with classifier calls via the DFKZ paediatric brain tumour 

classifier (Capper et al., 2018), where 5 (15%) WNT, 6 (18%) SHH, 11 (32%) Group 3 and 12 (35%) 

Group 4 subgroup classifications were assigned. 
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Sam
ple ID

 

Sam
ple 

D
escription 

G
ender 

A
ge 

Survival 
Status  

Last K
now

n 
D

isease 
Status  

Survival 
T

im
e (D

ays)  

H
istological 
Subgroup  

M
olecular 

Subgroup  

M
olecular 

Subtype 

Sequencing 
C

overage  

T
um

our 
Stage (pM

) 

R
elapse 

(Y
es/N

o)  

R
elapse T

ype  

R
elapse 

Interval 
(D

ays)  

M
Y

C
 Status  

M
Y

C
N

 Status  

ICGC_A1 
Normal 

Cerebellum - 
Adult 

Male 33 N/A N/A N/A N/A N/A NA 30x N/A N/A N/A N/
A NA   

ICGC_A2 
Normal 

Cerebellum - 
Adult 

Female 87 N/A N/A N/A N/A N/A NA 30x N/A N/A N/A N/
A NA   

ICGC_A3 
Normal 

Cerebellum - 
Adult 

Male 26 N/A N/A N/A N/A N/A NA 30x N/A N/A N/A N/
A NA   

ICGC_A4 
Normal 

Cerebellum - 
Adult 

Male 41 N/A N/A N/A N/A N/A NA 30x N/A N/A N/A N/
A NA   

ICGC_F1 
Normal 

Cerebellum - 
Foetal 

Male < 
0 N/A N/A N/A N/A N/A NA 30x N/A N/A N/A N/

A NA   

ICGC_F2 
Normal 

Cerebellum - 
Foetal 

Female < 
0  N/A N/A N/A N/A N/A NA 30x N/A N/A N/A N/

A NA   

ICGC_F3 
Normal 

Cerebellum - 
Foetal 

Female < 
0 N/A N/A N/A N/A N/A NA 30x N/A N/A N/A N/

A NA   
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ICGC_F4 
Normal 

Cerebellum - 
Foetal 

Female < 
0 N/A N/A N/A N/A N/A NA 30x N/A N/A N/A N/

A NA   

ICGC_MB1 
Primary 

Medulloblasto
ma 

Female 6 Alive Stable 5.255 Desmoplas
tic SHH SHH_Chil

d 30x M0 No     Balanc
ed Balanced 

ICGC_MB2 
Primary 

Medulloblasto
ma 

Male 7 Alive Stable 8.841 Classic Group 
4 VII 30x M0 No     Balanc

ed Balanced 

ICGC_MB5 
Primary 

Medulloblasto
ma 

Female 6 Alive 
Complete 
Remissio

n 
6.255 Classic Group 

3 MBNOS 30x M0 No     Balanc
ed Balanced 

ICGC_MB6 
Primary 

Medulloblasto
ma 

Female 14 Alive 
Complete 
Remissio

n 
6.504 Classic Group 

4 VI 30x M3 No     Balanc
ed Amplified 

ICGC_MB7 
Primary 

Medulloblasto
ma 

Male 9 Alive Stable 5.255 Classic Group 
4 VIII 30x M3 No     Balanc

ed Balanced 

ICGC_MB9 
Primary 

Medulloblasto
ma 

Male 6 Alive 
Complete 
Remissio

n 
6.255 LCA Group 

3 II 30x M3 No     Balanc
ed Balanced 

ICGC_MB14 
Primary 

Medulloblasto
ma 

Female 14 Alive Stable 3.419 LCA WNT WNT 30x M0 No     Balanc
ed Balanced 
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ICGC_MB15 
Primary 

Medulloblasto
ma 

Male 17 Alive Stable 1.918 Classic Group 
4 VIII 30x M0 No     Balanc

ed Balanced 

ICGC_MB16 
Primary 

Medulloblasto
ma 

Male 3 Deceased Relapse 1.167 Classic Group 
3 III 30x M2 Yes Local 

Recurrence 
36
5 

Balanc
ed Balanced 

ICGC_MB17 
Primary 

Medulloblasto
ma 

Female 15 Alive 
Complete 
Remissio

n 
3.170 Classic PIN T,  

PB B NA 30x M3 No     NA NA 

ICGC_MB18 
Primary 

Medulloblasto
ma 

Female 13 Alive Stable 3.501 LCA Group 
3 I 30x M0 No     Balanc

ed Balanced 

ICGC_MB19 
Primary 

Medulloblasto
ma 

Female 13 Alive 
Complete 
Remissio

n 
3.501 LCA Group 

4 VII 30x M0 No     Balanc
ed Balanced 

ICGC_MB24 
Primary 

Medulloblasto
ma 

Male 7 Alive Relapse 3.085 Classic Group 
4 VIII 30x M0 Yes Local 

Recurrence 
48
7 

Balanc
ed Balanced 

ICGC_MB26 
Primary 

Medulloblasto
ma 

Male 8 Alive 
Complete 
Remissio

n 
5.255 Classic Group 

4 VII 30x M1 No     Balanc
ed Balanced 

ICGC_MB28 
Primary 

Medulloblasto
ma 

Male 1 Alive 
Complete 
Remissio

n 
7.255 Desmoplas

tic SHH SHH_Inf-
II 30x M0 No     Balanc

ed Balanced 
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ICGC_MB32 
Primary 

Medulloblasto
ma 

Female 8 Alive 
Complete 
Remissio

n 
7.923 Classic Group 

4 VII 30x M3 No     Balanc
ed Balanced 

ICGC_MB34 
Primary 

Medulloblasto
ma 

Female 13 Alive Relapse 3.003 LCA SHH SHH_Chil
d 30x M0 Yes Local 

Recurrence 
76
1 

Balanc
ed Balanced 

ICGC_MB35 
Primary 

Medulloblasto
ma 

Female 4 Alive 
Complete 
Remissio

n 
2.501 LCA SHH SHH_Inf-

NOS 30x M1 No     Balanc
ed Balanced 

ICGC_MB36 
Primary 

Medulloblasto
ma 

Male 4 Alive 
Complete 
Remissio

n 
3.003 LCA Group 

3 II 30x M3 No     Balanc
ed Amplified 

ICGC_MB37 
Primary 

Medulloblasto
ma 

Female 1 Alive Stable 2.668 Desmoplas
tic SHH SHH_Inf-

II 30x M0 No     Balanc
ed Balanced 

ICGC_MB38 
Primary 

Medulloblasto
ma 

Male 6 Alive 
Complete 
Remissio

n 
2.252 Desmoplas

tic 
Group 

4 VI 30x M0 No     Balanc
ed Balanced 

ICGC_MB39 
Primary 

Medulloblasto
ma 

Male 4 Alive 
Complete 
Remissio

n 
2.334 Classic Group 

3 II 30x M0 No     Balanc
ed Balanced 

ICGC_MB40 
Primary 

Medulloblasto
ma 

Male 3 Alive Stable 2.753 Classic Group 
4 VII 30x M0 No     Balanc

ed Balanced 
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ICGC_MB45 
Primary 

Medulloblasto
ma 

Male 3 Alive Stable 2.668 Classic Group 
3 VI 30x M0 No     Balanc

ed Balanced 

ICGC_MB46 
Primary 

Medulloblasto
ma 

Female 6 Alive Stable 5.337 Classic WNT WNT 30x M2 No     Balanc
ed Balanced 

ICGC_MB49 
Primary 

Medulloblasto
ma 

Male 10 Alive Relapse 5.586 Classic Group 
4 VIII 30x M0 Yes Local 

Recurrence 
12
48 

Balanc
ed Balanced 

ICGC_MB50 
Primary 

Medulloblasto
ma 

Female 10 Deceased Relapse 1.000 Classic Group 
3 MBNOS 30x M3 Yes Local 

Recurrence 
21
3 

Amplifi
ed Balanced 

ICGC_MB51 
Primary 

Medulloblasto
ma 

Male 7 Alive Stable 1.501 Classic MB, 
G4 VI 30x M0 No     Balanc

ed Balanced 

ICGC_MB88 
Primary 

Medulloblasto
ma 

Male 2 Alive Relapse 2.252 Desmoplas
tic SHH SHH_Inf-I 30x M0 Yes Local 

Recurrence 
24
4 

Balanc
ed Balanced 

ICGC_MB90 
Primary 

Medulloblasto
ma 

Male 1.
6 Alive Stable 1.836 LCA Group 

3 VI 30x M0 No     Balanc
ed Balanced 

ICGC_MB95 
Primary 

Medulloblasto
ma 

Male 3 Alive 
Complete 
Remissio

n 
1.836 Classic Group 

3 II 30x M0 No     Balanc
ed Balanced 



Faculty of Health & Life Sciences    Northumbria University 
 

88 
 

ICGC_MB107 
Primary 

Medulloblasto
ma 

Male 15 Deceased N/A N/A Classic WNT WNT 30x M3 No     Balanc
ed Balanced 

ICGC_MB112 
Primary 

Medulloblasto
ma 

Male 7 Alive N/A N/A Classic WNT WNT 30x Unknown No     Balanc
ed Balanced 

ICGC_MB113 
Primary 

Medulloblasto
ma 

Female 14 Alive N/A N/A LCA WNT WNT 30x Unknown No     Balanc
ed Balanced 

 
Table 2.2 - Clinical Demographics of ICGC Cohort (n=42). Sample type, gender, age at diagnosis (in years), last known survival status, survival time (years) 
is shown. Histological subtype is provided in addition to molecular subgroup (WNT/SHH/Group 3/Group 4) and subtype (WNT / SHH child / SHH Infant 
subtype I and subtype II / Subtypes I – VIII of Group 3 and 4). Sequencing depth is provided in addition to relapse status, relapse interval (days) and MYC / 
MYCN amplification status. Missing data is denoted with N/A.
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2.2 – Sample preparation 
 
Our NMB cohort was sequenced via low-pass WGBS sequencing (Section 2.1). 35 samples were from 

DNA extracted from fresh-frozen tissue and 1 was matched sample DNA extracted from formalin-
fixed, paraffin-embedded tissue. An additional 3 FFPE samples were selected for sequencing but had 

failed library preparation due to a laboratory error by the sequencing company. A further 35 previously 

analysed matched methylation microarray samples were selected to ensure comparability at each 
stage of methylation data processing when applicable. Ethical approval was obtained for the 

collection, storage, and study of all material prior to this study by the Newcastle & North Tyneside 
Research Ethics Committee (REC: 07/Q0905/71). Wet lab work was conducted by Jemma Castle 

(laboratory technician) at Newcastle University. 
 

To extract Genomic DNA from fresh-frozen tissue, the Qiagen DNeasy® blood and tissue extraction 
kit (Qiagen) was applied using the standard protocol provided by the manufacturer. DNA obtained 

from FFPE tissue blocks was extracted with the Qiagen QIAmp® DNA FFPE tissue extraction kit 

(Qiagen) using the manufacturer-supplied protocol. All extracted DNA was eluted in DNase/RNase free 
water. DNA prepared for sequencing was quantified using the NanoDrop 1000 Spectrophotometer to 

evaluate quality at the ratio 260nm/280nm. For previously analysed methylation microarray samples, 
double-stranded DNA was quantified using the Qubit® PicoGreen dsDNA broad range assay kit 

(ThermoFisher).  
 

Following sample preparation, DNA was packaged and cold-shipped for whole genome bisulfite 

sequencing (Novogene). Prior to library preparation, agarose gel electrophoresis was applied by the 
genome sequencing company to assess sample integrity and purity. DNA quantity was checked a 

second time using a Qubit® fluorometer.  
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2.2.1 – Library preparation & sequencing 
 
Library preparation and sequencing was conducted externally by Novogene. After DNA preparation, 
DNA was spiked with unmethylated lambda DNA to control for unbalanced base composition and 

fragmented into 200-400bp lengths using the Covaris® S220 Focused-ultrasonicator (Covaris). 

Sheared DNA fragments were then end-repaired, and bisulfite treated using the EZ DNA Methylation 
Gold Kit (Zymo Research). After bisulfite treatment, a bisulfite DNA library (selected fragment size = 

150bp) was prepared using the Accel-NGS® Methyl-Seq DNA Library Kit (Swift Biosciences). Briefly, 
the library kit attaches a low complexity polynucleotide tail to both strands 1 and 2 in a 3-step reaction 

(Adapter ligation, size selection, PCR amplification). Following adapter tagging, an indexing PCR step 
is performed to increase DNA yield and incorporate full length adapters on both strands. 

 

Following library preparation, DNA library concentration was first quantified using a Qubit® 2.0 
fluorometer before being diluted to a concentration of 1ng/ul. Insert size was then checked using an 

Agilent® 2100 bioanalyzer (Agilent) and quantified a second time using Q-PCR. Sample libraries were 
then pooled and sequenced using the Illumina NovaSeq 6000 platform via a paired-end 150bp (PE150) 

strategy (Illumina).  
 

 

2.2.2 – Sequencing data quality control (external) 
 
Prior to data return, raw sequenced reads underwent basic quality control analysis and filtering by the 

sequencing company. Briefly, sequencing base quality value distribution (Phred score), error rates, GC 
content and Bisulfite conversion rates were calculated and tabulated for each sample. Reads with > 

50% low quality nucleotides (Phred < 5) and/or > 10% N-content were discarded. 

 
 
 
2.3 – Bioinformatic techniques 
 
Throughout chapters 3, 4 and 5, I provide the relevant materials and methodologies associated with 

the bioinformatic analyses conducted within each chapter. A range of techniques are applied when 
concerned with data handling and clinical analysis of samples analysed by WGBS and DNA 

methylation microarray. Where necessary, the following section describes techniques in more detail, 
providing a background and understanding that underly their functional role in this study prior to their 

description in the relevant results chapter. 
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2.3.1 – Array data processing: normalisation 
 
Methylation microarray methylation data (beta values) are calculated by estimating the ratio between 
both methylated (M) and unmethylated (U) signal intensities derived from each respective probe/beat 

type respectively: 

 
M/(M+U) 

 
Often a constant offset is applied to the denominator to avoid negative values following background 

adjustment. In ideal cases, a beta value of 1 (or 100%) would represent complete methylation, whereas 
a value of 0 (or 0%) represents a completely unmethylated probe site. However, various technical 

issues associated with the array prevent this from occurring. Variations in background fluorescence 

often occur, causing an additive error to occur across affected probes, which effectively reduces the 
range which beta values reach. This background signal is termed as the ‘foreground’ signal and 

attempts to correct beta value measurements for it are collectively termed ‘background correction’ 
methods and forms a crucial component of sample processing of array sample data.  

 
In this study, we apply normal-exponential out-of-band (noob) normalisation (Fortin, Triche Jr., & 

Hansen, 2017). This technique was deemed most suitable for this project as it allows for datasets to 
be processed separately, which was a necessity in this study given our use of an external pre-

processed cohort. Noob normalisation corrects foreground signal by estimating mean background 

out-of-bound intensity using control probes via normal-exponential convolution model (Triche Jr. et 
al., 2013). Out-of-bound intensity denotes the signal of fluorescence that is obtained from the opposite 

fluorophore at the binding of each probe site. Type I probes, which calculate methylated and 

unmethylated signal intensity separately, are used to measure this, which fluoresce at the same 
wavelength. To prevent any influence from test probes (which measure signal at biological loci), this 

correction is calculated from control probe sites, which denote probes that contain no CpGs that are 

deliberately included on the array chip for normalisation purposes (186 are included within the 450k 
array chip). Based on the mean intensity calculated from out-of-band probes, all probe channels can 

then be corrected accordingly.  
 

Normalisation methods aim to correct experimental variability, but they also impact the variability in 
methylation seen as a result. Rather than reaching beta values that denote fully methylated or 

unmethylated sites (0-1), array derived beta values typically are limited to a range of 0.1-0.9, 

constituting an inherent limitation when using the platform. 
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2.3.2 – Alignment of bisulfite treated DNA 
 
Bisulfite treatment converts non-methylated cytosines into uracil, which is subsequently converted 
into thymine upon PCR amplification during library preparation. Methylated cytosines remain 

unaffected, resulting in the production of four DNA strands for each locus throughout the genome 

(Figure 2.1). 

 

Figure 2.1 - Bisulfite treatment of DNA produces up two different PCR products, resulting in the 
production of four different strands of DNA for each locus after amplification (Krueger & Andrews, 
2011). Illumina sequencing protocols the original top (OT) and original bottom (OB) strands for 
sequencing. 
 
 
Aligning bisulfite converted sequencing data is significantly more challenging due to the DNA code 

being reduced from four to 3 bases. The risk of incorrect bisulfite conversion presents the possibility 
that reads for each locus can exist in both methylation states, presenting an additional challenge. As 

shown in figure 1, reads taken forward for sequencing will correspond to converted versions of the 

original forward and reverse strands. Whether a strand is forward, or reverse is unknown, and 
alignment tools like Bismark typically establish this by performing four alignment processes in unison 

(Krueger & Andrews, 2011).  Briefly, bisulfite reads are converted twice, producing C->T and G->A 
versions for each read (Figure 2.2). Each read is aligned to the reference genome (the human genome 

reference version hg19 was used in this project), which is also converted as above. All four alignments 
are outputted simultaneously, and unique alignments are subsequently outputted. By converting reads 

in silico and by performing four separate alignments, the best unique alignments can be derived 

irrespective of whether a read position is methylated or not, allowing for methylation values to easily 
be calculated accurately and extracted efficiently.  

 
 
 
 
 
 
 

5’…CCGGCATGTTTAAACGCT…3’
3’…GGCCGTACAAATTTGCGA…5’

TTGGTATGTTTAAATGTT
AACCATACAAATTTACAA

CCAACATATTTAAACACT
GGTTGTATAAATTTGTGA

region of interest

bisulfite conversion
PCR amplification

forward strand C -> T conversion reverse strand C -> T conversion
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Figure 2.2 - Bismark alignment process (Krueger & Andrews, 2011).  
A) C->T and G->A converted reads(n=4) are aligned to C->T and G->A converted versions of the 
reference genome. Unique alignments for between all four strands (1+3 / 2+4) are used to identify 
unique alignments. B) Methylation state is identified by comparing aligned ‘bisulfite reads’ to the 
‘genomic sequence’ Methylated and unmethylated cytosines can then be successfully extracted for 
all positions and are subsequently used for beta value calculation during methylation extraction. 
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2.3.3 - Imputation 
 
Whilst methylation assays intend to provide measurements for all intended loci of interest (all probe 

sites for the array and all CpGs during WGBS), many measurements can be deemed as unreliable and 
are therefore removed from a sample of interest. For methylation microarrays, missing data is largely 

created following filtering of measurements deemed to be unreliable. Unreliable probe measurements 

are determined based on the calculation of detection p-values, which distinguish probe measurements 
from background signals (determined during background correction). As a result of the removal of 

unreliable measurements, methylation array data often contains missing values. Missing data can 
significantly affect analysis downstream, many of which do not tolerate missing data.  

 
To deal with missing data, values are imputed. Imputation denotes the process of assigning 

replacement values for missing ones and various methodologies exist for imputing methylation values. 
The two methods used in this study are discussed further below. 

 

 

2.3.3.1 – Imputation of array beta values via k-nearest 
neighbours 

 
A popular approach for imputing missing data for methylation microarray cohorts is the k-nearest 

neighbour (kNN) algorithm. For methylation data matrices, where rows correspond to individual probes 

and columns correspond to samples, it is likely that there will be one or more missing values per row. 
As its name suggests, kNN considers neighbouring data points when inferring the value of any given 

missing value. In methylation datasets, neighbouring values correspond to neighbouring CpGs. An 
average value is calculated from them, and the subsequent output is used for imputation. In this study 

we use 10 neighbouring CpG values (5 either side). kNN is comparatively simple compared to other 
imputation algorithms but is quite effective when dealing with methylation data as neighbouring CpGs 

typically exhibit correlated methylation (Illumina, 2021). However, the algorithm is subject to limitations. 

Values cannot be imputed if neighbouring values are missing, and such an approach disregards any 
potential biological variability at a sample of interest. 
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2.3.3.2 – Imputation of WGBS beta values via BoostMe 
 
Dealing with WGBS datasets sequenced at low pass produces sample sets with large numbers of 
missing values following processing. Due to matrix size dimensions exceeding 20 million rows, many 

well established imputation algorithms optimised for smaller matrices become unusable due to high 

processing requirements, even for HPC infrastructures. As an alternative, machine learning methods 
can be applied to resolve this issue, with Random Forest and XGBoost algorithms having been 

developed to handle missing methylation values from WGBS (Stekhoven et al., 2011; Zou et al., 2018).  

 
XGBoost – or “Extreme Gradient Boosting’ is used for supervised learning problems, where 

information is provided to ‘train’ the model to predict a target variable.  The algorithm can be used for 
classification and regression-based predictions, the latter of which is used for the prediction of 

continuous methylation values ranging from 0-1. In this study we applied BoostMe (Zou et al., 2018), 

which utilises XGBoost to impute missing values in WGBS datasets. BoostMe prepares a training data 
set consisting of several variables that are associated with each selected CpG from the original WGBS 

dataset to ensure highly accurate prediction of missing data. Prediction features are as follows: 
 

 

- The nearest non-missing methylation values both up and downstream of the missing CpG of 
interest. 

 
- The respective distance (in bp) to each neighbouring CpG. 

 
- The average methylation value of the missing CpG calculated from all other samples where it is 

present. 
 

 

For training, a regression model is fitted for each CpG and its associated predictors. This model is 
then applied to the same predictors where CpG values are missing. Regression based imputation has 

been shown to highly effective when concerned with methylation data, which typically exhibit short 
and long-range correlations – both of which can be characterised by regression (Lovkist et al., 2016; 

Zhang et al., 2019). For model training, BoostMe uses 1 million randomly selected CpGs above a pre-

defined sequencing depth. This has been shown to be highly effective in predicting missing 

methylation data in WGBS cohorts, with excellent validation performance observed by the author in 
independent datasets (Zou et al., 2018). However, like kNN, this model ignores any inherent variability 

that may be present. This concern is magnified in heterogenous datasets like that used in this study, 

where it in in our interest to capture as much variability as possible.  
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2.3.4 – Dimensionality reduction / visualisation techniques 
 
Array and WGBS methylation datasets consist of many hundreds of thousands, to tens of millions of 
data points (beta values) per sample for each platform respectively. Working with datasets of this size 

presents significant challenges to downstream analysis. The scale of data points present often requires 

significant processing power to analyse and inferring any meaningful relationship based upon 
excessive amounts of data becomes more difficult. This problem is known as the ‘curse of 

dimensionality’, and methods to circumvent this are termed as “dimensionality reduction techniques”. 

Dimensionality reduction techniques all work to reduce the size (dimension) of a dataset without 

sacrificing any variability within it. The use of these techniques is highly applicable to methylation 

datasets, where the vast majority of CpGs are concurrently methylated and do not contribute to any 
variability. Dimensionality reduction techniques are incredibly useful for ‘noise’ reduction, 

classification, and visualisation, reducing a dataset to only its most variable data points. For 
visualisation, dimensionality reduction aims to capture the variation found within a dataset and present 

it in 2 or 3 dimensions. By doing this, we can visualise our data on 2D or 3D scatter plots – providing 

insights into underlying data structures that are difficult to isolate at higher dimensions. The usage of 
these visualisation techniques is highly amenable to medulloblastoma, where subgroup clusters can 

be visualised effectively through the application of these techniques – which are described in more 
detail below. 

 
2.3.4.1 – Principal component analysis 
 
Principal component analysis (PCA) is one of the most common approaches used for dimensionality 
reduction and visualisation. The technique reduces dimensionality by transforming the original set of 

variables to a smaller set of ‘components’ that retains the greatest amount of variability from the 
original dataset as possible (Pearson, 1901; Hotelling, 1933). Each component is ranked in order of 

how much variance it captures – where the first component captures the greatest variance, with each 
subsequent component capturing decreasing amounts of variance. PCA is an effective algorithm to 

use when wanting to summarise variance present within a dataset and can capture phenotypic 
differences quite effectively. However, care must be taken when interpreting its output. Biological 

datasets are often complex and much of the underlying structure present between samples cannot be 

captured in a linear fashion. If the underlying structure of input data is not linear, clusters may not 
easily be identified. Although standardisation measures can be used to attempt to mitigate this, the 

goal of the PCA algorithm is to maximise variance, rather than identify clusters (Lever, Krzywinski & 
Altman, 2017), and may not be the most suited algorithm for visualisation if cluster identification is the 

intended goal.
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2.3.4.2 – t-distributed stochastic neighbour embedding 
 
Where PCA comprises a linear approach to dimensionality reduction, there are numerous non-linear 
algorithms, collectively termed as ‘manifold learning’ techniques. Manifold learning techniques are 

inherently suitable for biological datasets, allowing for local structure present to be preserved between 

samples whilst maximising the distance between dissimilar groups. t-distributed stochastic neighbour 
embedding (t-SNE) is one such method and works by modelling the probability distribution of pairwise 

distances between high dimensional points (van der Maaten, 2008). The degree to which local 
structure is preserved can be changed (via the perplexity parameter), making it useful for optimising 

the degree of separation seen by the end-user. However, this also means that results must not be 
over-interpreted, as the separation observed may not accurately reflect the differences or similarities 

observed in the original dataset.  

 
 

2.3.4.3 – Uniform manifold approximation and projection 
 
Uniform manifold approximation and projection (UMAP) seeks to preserve local relationships within a 
dataset whilst retaining global structure to a greater degree than t-sne (McInnes, Healy & Melville, 

2018). UMAP estimates the topology (preserved structure) of high-dimensional data and uses it to 
present the data in lower dimensions, where similar data points generally cluster closer together. 

UMAP and t-sne are similar in the way that they can be used to identify the degree of similarity between 
neighbouring data points but differ when it comes to interpreting separation between clusters. The 

degree of distance between clusters identified by t-sne does not necessarily correspond to the degree 
of dissimilarity, but this is the case with UMAP where the degree of separation between points is 

generally indicative of dissimilarity. Both t-sne and UMAP are highly amenable to biological datasets 

particularly when one is interested in clustering and/or discovery, with the former used prominently as 
part of unsupervised clustering of the original DFKZ paediatric brain tumour classifier reference cohort 

(Capper et al., 2018) and the latter used to define cell types in mixed population single-cell RNA-seq 

experiments (Wang et al., 2018; Cao et al., 2019). 
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2.3.5 – DNA methylation-based classification 
 
The generation of large methylation datasets over numerous years of paediatric oncology research 
has led to various tumour entities and subgroups being identified, including the molecular subgroups 

of medulloblastoma. When coupled with machine learning techniques, these datasets can be 

leveraged diagnostically, where algorithms are trained to define the methylation profiles of reference 
samples based upon class labels (i.e., tumour type/subgroup). Trained algorithms can then be used 

to identify the class of a test sample (i.e., diagnostic tumour) into one of the defined labels. Machine 
learning algorithms are typically referred to as “classifiers”. Classifiers can be trained to serve different 

purposes. As seen in the DFKZ classifier, broad entity types and subgroups can be classified across 
a wide range of tumours (Capper et al., 2018), whereas specialised models can be used to identify 

more subtle differences present within subtypes. Application of both types is seen in medulloblastoma, 

where the DFKZ classifier is used to assign molecular subgroup, and further molecular subtypes of 
groups 3 and 4 are defined using a separate model (Sharma et al., 2019). 

 

The diagnostic classifiers mentioned above utilise multiclass classification, and crucially use 
algorithms that assign an associated probability measure of class assignment. An associated class 

probability measure is important in a diagnostic setting, enabling clinicians to take the likelihood of 

assignment into account and make more informed clinical decisions (Simon, 2014). There are several 
classification algorithms that have been shown to be effective with DNA methylation data, with the 

more prominent being the random forest algorithm, upon which the DFKZ classifier is built (Capper et 

al., 2018). Other algorithms include support vector machines (SVM), extreme gradient boosting 
(XGBoost), elastic net and logic regression, all of which are tested in this study.  

 

Classifier performance (how effective it is in assigning class to unknown samples) is assessed both 
during training via cross-validation and by the application of a test set of sample data that is not 

involved in the training process. Cross-validation is a technique often employed to avoid over-fitting, 
a term used to describe a classifier that whilst performing well on the training set, the same 

performance cannot be recaptured on test data. The risk of overfitting is high when concerned with 
high-dimensional datasets such as methylation data, where many thousands of probes are used for 

training to discern between tumour types. In this project we apply k-fold cross-validation. K-fold cross 
validation partitions the training set into k number of folds, before proceeding to train the classifier on 

k-1 folds which is deliberately held out. The fold left out is then used for testing as a ‘validation set’, 

allowing performance to be evaluated for that fold. After performance measures are collected, the 
model is trained again until each fold has been held out and used for performance validation. The 

mean performance across all validated models is then taken forward as the overall performance of the 
trained model.
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2.3.5.1 – Elastic net  
 
The elastic net algorithm incorporates multiple shrinkage regression methods (both lasso and ridge 
regression) – which works to limit sample variation and reduce the potential bias that a training set can 

introduce on a model (Friedman, Hastie & Tibshirani, 2010). The elastic net effectively applies a penalty 

term (alpha) to both regression methods to balance the degree to which the model limits variance 
(lasso regression) or mitigates bias (ridge regression) – with the aim of producing a highly generlisiable 

model that is least prone to overfitting. Elastic nets can be adjusted using two parameters, alpha and 
lambda, both of which were tuned in this analysis. The degree to which each regression method is 

applied is controlled by the variable alpha, where 0 corresponds to a complete ridge regression and 1 
corresponds to complete lasso regression. Lambda corresponds to the level of shrinkage that is 

applied by each regression type. Classification algorithms built upon elastic net have been used to 

great effect in biological datasets, where the amount of variables often heavily outweigh the number 
of classes (Engebretsen & Bohlin, 2019). 

 
 

2.3.5.2 – Random Forest 
 
Random forests construct multiple decision trees, each comprising a random subset of features, with 
the feature most correlated with each class being used to split the node and form another branch. As 

the features used are randomly selected for each tree, each individual tree is typically a weak predictive 
model. However, random forests produce many thousands of trees, which are all used to derive a 

majority class vote. This aggregation of weak learners collectively creates strong predictions, forming 
models that are highly diverse and generalisable, mitigating the risk of overfitting. Parameters turned 

in this study were mtry (the number of randomly selected features for each node), and ntrees, the 

overall number of trees grown by the model.  Random forest classifiers have been used with great 
success in epigenetics, where the current DFKZ paediatric brain tumour classifier is built upon the 

algorithm (Capper et al., 2018) 

 
 

2.3.5.3 – Extreme gradient boosting 
 

Extreme gradient boosting classifiers were trained using either boosted decision trees or linear 
function (Chen & Guestrin, 2016). Unlike random forests, which use an ensemble of separate weak 

models for aggregate prediction, gradient boosting fits weak learners sequentially, adding weight to 
the most predictive features within each model. The next model is then built upon these results, with 

the aim of continuously improving the model until a performance convergence is reached. Extreme 

gradient boosting can utilise decision trees, which are shallower (contain fewer branches/nodes) 
compared to the larger decision trees seen in random forest models, or via linear regression where an 
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elastic net-like approach is taken, where multiple separate linear regression models are build, with the 

aim of capturing the best correlation between each feature and specific class. Generally, linear 
boosted classifiers perform better in simple classification problems whereas trees perform better in 

more complex datasets. However, no such study comparing the two methods has been conducted in 
methylation datasets, and it is generally recommended to assess both algorithms to determine which 

is most suitable for each dataset. 
 

 

2.3.5.4 – Support vector machines 
 
Support vector machines (SVM) distinguish between class by projecting training variables into a higher 

dimensional space, and then identifying a decision boundary (hyperplane) that discerns between 

classes. Variables which are located closest to those most associated with other classes are termed 
‘support vectors’, which are used to guide the placement of the hyperplane and maximise separation 

between classes. SVMs are typically used for binary classification problems but do have application 
in multi-class problems, where models for every class combination pair are created and a classification 

is derived via majority vote. To project data into higher dimensional spaces, SVMs utilise kernels – a 
term to describe a collection of mathematical functions used for data transformation. In this study we 

tested classifiers that utilised linear and radial kernels. Linear kernels are the most basic kind and are 
often the best function to use when dealing with large numbers of features (Hearst, 1998). Radial 

kernels are often employed when the relationships present in the data are not always linear – both of 

which are amenable when concerned with methylation datasets. SVM classifier models can be tuned 
using cost and gamma parameters. Cost denotes the penalty value given to incorrect classifications – 

where higher cost values produce models that are highly biased to training sets. The gamma parameter 
controls the degree of influence for each specific decision boundary, where a low gamma value can 

separate variables that are located far apart. 
 

 

2.3.5.5 – Logic regression 
 
Logic regression is an algorithm based upon adaptive regression, which aims to capture linear and 

non-linear relationships and determine how they interact between classes (Lu et al., 2021). Regression 

algorithms by nature aim to reduce any relationship between predictors and class and are highly suited 
to binary classification problems or when dealing with data that is highly correlated to each specific 

class. Instead of drawing simplistic correlation, logic regression aims to find combinations of 

parameters that are highly correlated with a class of interest and assign Boolean statements to feature 
combinations (i.e., true/false), allowing for more nuanced relationships to be drawn between features 

and class rather than simplifying it. This collection of statements can then be applied to decision trees, 
allowing for large numbers of feature combinations to have an influence on the final class prediction. 
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This makes the algorithm inherently more suited to biological datasets, which often comprise binary 

predictors and the interaction between them is often complex and cannot be captured by simple 
regression easily. Beta values are binomially distributed, and those derived from the WGBS platform 

are majority 1s and 0s, rendering this data type highly suited to the logic regression algorithm. 
 

 
2.3.6 – NGS and methylation array-based copy number 
estimation 
 
Alluded to in 1.10, methylation array data can be leveraged to estimate variations in copy number. As 
probes are typically interrogated by two probes, rather than calculate a ratio of intensity, the two 

intensities can be added together, and a ratio formed against that of a healthy reference set of samples 
that have a stable diploid genome. To increase resolution, probes are combined to produce bins – 

50kb or higher to standardise coverage and reduce variability prior to segmentation. There are many 
tools available for copy number estimation with the DNA methylation microarray, of which ‘conumee’ 

has shown optimal calling performance in diagnostic tumour sample data compared to other 

algorithms (Kilaru et al., 2020). Copy number segments are identified using circular binary 
segmentation (CBS) (Olshen et al., 2004), a method which partitions a genome of binned ratio values 

by identifying statistically significant change points in mean copy number.  

 
Copy number calling from sequencing data is segmented using CBS in this study via CNVKit (Talevich 

et al., 2016). Where the methods differ is that rather than inferring a copy number ratio, they can directly 

infer copy number using the depth of coverage calculations from the many millions of sequenced reads 
generated. Segments can then be plotted graphically corresponding to genomic location, with higher 

ratios corresponding to areas of gain and low ratios corresponding areas of loss. Copy number 

estimation using the array provides a reasonable summary of large structure changes throughout the 
tumour genome. Where probes are concentrated, amplifications and deletions can be detected, 

although the resolution of these events is low, and this capability is lost in areas lacking probe 
coverage. NGS approaches to estimating copy number are generally more precise, with far greater 

numbers of data points throughout the genome from which to detect segment change-points. 
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Chapter 3 – Establishment of a robust 
processing methodology for the clinical 

analysis of WGBS samples sequenced at low-
pass 
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3.1 – Introduction 
 
DNA methylation is a robust epigenomic indicator of cell development and plays a key role in paediatric 
brain tumour classification, particularly for the designation of rare tumour types into known tumour 

classes for the identification of new tumour entities (Capper et al., 2018). Current classification models 

are built upon the DNA methylation microarray platform, a cost-effective assay that interrogates up to 
850,000 CpGs, including 99% of genes and 95% of CpG islands (Pidsley et al., 2018). However, the 

platform is proprietary and therefore at risk of being discontinued. It is also prone to variable 

turnaround times when used diagnostically due to the specialist laboratory infrastructure required and 
costs can increase significantly when not submitting samples in batches for multiplex analysis (Perez 

& Capper, 2020). This can be problematic when dealing with rare disease entities like 

medulloblastoma, where a medical institution lacking a national, co-ordinated infrastructure will 
typically only see a few cases in any given year. The methylation microarray platform can also be used 

to derive low-resolution chromosomal copy number, an important prognostic feature of the molecular 
subgroups of medulloblastoma. Utilising the methylation microarray in conjunction with a targeted 

sequencing panel for subgroup specific variants enables both clinicians and researchers to obtain a 
definitive medulloblastoma subgroup diagnosis, with a range of additional aneuploidy and mutation 

data available to aid clinical risk stratification. This combination has elevated the microarray platform 

to its status as the current ‘gold-standard’ method for subgroup diagnosis in medulloblastoma and 
tumour classification across the field of paediatric neuro-oncology (Figure 3.1). 

 
Whilst the diagnostic utility of the methylation microarray platform is clear, it is not a solution for the 

interrogation of genome-wide DNA methylation (the methylome). Whole genome bisulfite sequencing 
(WGBS) offers the potential to interrogate nearly all ~28.3 million CpGs present in the human genome 

at single-base resolution on a per-sample basis (Frommer et al., 1992). This far exceeds the Illumina 

Infinium MethylationEPIC (EPIC) platform which, whilst its assessed loci are carefully selected, is 
restricted to just ~3% of total CpGs. The platform can also be used to conduct “read-based” analyses 

that are used in conventional NGS studies such as high-resolution aneuploidy detection and variant 
calling. WGBS therefore unites both NGS and methylation technologies within a single platform, 

offering a robust, platform independent means of conducting all the analyses that are required to reach 

a definitive subgroup diagnosis in medulloblastoma, supplemented further with a wealth of extra data 
of potential biological significance within the human methylome that is not assessable using current 

methods. 
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Figure 3.1 - Standard medulloblastoma subgroup & patient risk stratification analytical pipeline. 
WGBS has the potential to be used for all 3 analytical steps involved in medulloblastoma risk 
stratification. Currently, methylation microarray and targeted gene sequencing panels are used in 
unison to achieve this. 
 
 
Despite being established in the 1990s, the adoption of WGBS in a research setting has been limited 
due to sample input requirements and high financial cost.  Only in recent years with the advent of 

alternative library preparation techniques such as post-bisulfite adaptor tagging (PBAT) (Olova et al., 

2018) has the need for prohibitively large amounts of input DNA been eliminated. This makes the 
technique a far more attractive proposition for use in clinical research, but the generation of high-

coverage data using WGBS remains costly. However, the price of generating low-pass data (0.1-<10x) 
is now reaching a comparable price with that of the DNA methylation microarray platform (In 2021: 

10x WGBS = ~£430 / Array = £300). Utilising low-pass sequencing is at odds with many of the current 

sequencing guidelines for WGBS and NGS in general. For example, the ENCODE project sequencing 
project guidelines (2017) recommend that samples sequenced using WGBS be at a minimum depth 

of 30x to ensure that any methylation measurements are reliable and well correlated with any 
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sequenced replicates. Although none would disagree, the economic and clinical need to reduce costs 

has encouraged researchers to work with low-pass data to attempt to generate assays that can 
provide robust data of clinical benefit.  The use of low-pass NGS has grown significantly in popularity 

over the past decade and has generated important results. In 2015, a landmark paper published by 
the 1000 Genomes Project Consortium demonstrated that whole genome sequencing (WGS) could be 

used to obtain accurate aneuploidy measurements at just 7x coverage (Auton et al., 2015). This has 

since driven magnitudes lower, with copy number variants being detected at depths as low as 0.25x 
(Dong et al., 2017). Low-pass WGBS has also been used to successfully call regions of differential 

methylation and copy number at 5x (Laufer et al., 2021). The evidence that low-pass NGS technologies 

can be used to generate clinically useful data combined with the potential of WGBS as a platform 

independent means of interrogating the methylome provided a rationale that low-pass WGBS could 
feasibly be used as a means of subgroup determination in medulloblastoma. 

 
Currently, no consensus methodology for processing low-pass WGBS in-silico currently exists in the 

literature, and many current clinical papers that utilise the technique do not address a major drawback 

of working with low-pass data – data missingness. When dealing with individual samples, CpGs 
missing at random are not much of a concern as sample-specific analyses like aneuploidy detection 

can still be performed without issue. However, the problem is compounded significantly as cohort 
sizes increase, causing a drastic decrease in the number of measured CpGs that are common across 

all samples. For example, a study involving low-pass WGBS of A.thalina showed that over 92% of 

CpGs were missing in at least one sample (Kawakatsu et al., 2016). Many of the analyses that typically 

comprise an epigenetic study, particularly those involved in subgrouping studies such as clustering, 
and classifier model training become impractical when working with datasets littered with large 

numbers of missing values. This is because most algorithms involved cannot tolerate missing data, 
meaning only CpGs measured in common can be analysed. As data missingness increases, the 

number of CpGs that can be analysed decreases, causing significant information loss and the potential 

for bias in any derived data. One means to circumvent this issue is to impute any missing data. 
imputation (explained further in 2.3.3) is defined as the process of replacing missing data with 

computed values. More complex imputation algorithms can impute data that effectively mimics the 
binomial distribution of methylation beta values (0 = non-methylated, 1 = methylated), by considering 

known data from other samples within the input dataset. Imputation is now a common part of handling 
missing data when working with methylation microarray data but is computationally expensive as 

algorithm complexity and input data size increases. This becomes prohibitive for researchers that lack 
high performance computing (HPC) infrastructure when wishing to apply the same methodologies to 

matrices that contain methylation data for every CpG in the methylome (~28,000,000 vs ~850,000).  In 

recent years, researchers have begun to develop algorithms that are more suited to the WGBS 
platform, enabling samples sequenced at lower levels of coverage to be feasibly used in research 

studies (Zou et al., 2018; Stekhoven et al., 2012; Taudt et al., 2018). However, the usage of imputation 
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in WGBS research is limited outside of the software creators’ publications and has not been 

comprehensively tested in clinical studies. 
 

In summary, WGBS offers a means of interrogating the entire methylome at single-base resolution, 
eclipsing the coverage offered by methylation microarray. Previous barriers to entry are now beginning 

to be removed, with low DNA input and economic costs now becoming feasible for clinical research 
at low pass. Studies involving low-pass NGS data have successfully collected data of clinical benefit, 

with many assays now published that are both a cheaper and faster alternative than current assays 

used in the clinic today. The development of a robust low-pass WGBS processing methodology for 
the clinical analysis of WGBS has yet to be established within paediatric oncology, and many of the 

associated concerns with low-pass methodologies such as missingness and defining the lowest 
acceptable level of coverage is have not been addressed. The DNA methylation microarray platform 

remains the gold-standard method of classifying the molecular subgroups and subtypes of 
medulloblastoma. Many of the drawbacks associated with the platform could be mitigated through 

the development of an assay based upon WGBS, which would offer a powerful platform-independent 
alternative. Data derived from the platform would be compatible with existing DNA methylation 

microarray-based classifiers and could be used to generate high-resolution copy number data as well 

as variant calling on a per sample basis. In addition, surveying the entire methylome may elucidate 
additional epigenetic heterogeneity present between subgroups, which may further aid the 

identification of difficult to classify samples or refine and/or identify further subtypes present within the 
disease. 
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3.2 – Aims 
 
The primary analytical goal of this chapter was to optimise a robust processing methodology for low-
pass WGBS, developed using a combined cohort of low-pass, internally sequenced (NMB) and high-

depth externally sequenced (ICGC) primary medulloblastoma and cerebellar tissue samples. As well 

as generating high quality sequencing data, we aimed to develop an effective methylation data 
processing pipeline that includes imputation, enabling downstream epigenomic investigations such as 

clustering and classification to be conducted without being hampered by the ever-present issue of 
missing data when working with low pass data. In this chapter, a detailed analysis of imputation 

performance in low-pass WGBS sample data is described and it is demonstrated that methylated CpG 
methylation values, calculate using low-pass WGBS, are highly correlated to corresponding probe 

CpGs located on the methylation microarray, using a matched cohort of samples. Finally, using 

randomised proportional downsampling, a comprehensive analysis of the effect of lowering coverage 
on both datasets down to 1x was undertaken, providing valuable insights into the quality of sample 

data returned as sequencing depth decreases. 
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3.3 – Materials & Methods 
 
3.3.1 – Analysis Overview 
 
 
 

 
Figure 3.2 – Graphical overview of all conducted analyses and associated software (including 
relevant download links) used within chapter 3. Further details (e.g., references, parameters used) 
are provided in subsequent sections. 
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3.3.2 – Raw data processing – WGBS 
 
3.3.2.1 – Computing resources/software 
 
Upon data return, raw sequencing data for all samples was transferred to the Newcastle University 
secure file store. All subsequent analyses, detailed in section 3.3.5, were conducted using the 

ROCKET High Performance Computing service (Newcastle University). The ROCKET hardware 
infrastructure consists of 123 compute nodes in total, with the largest compute nodes consisting of 

56 cores (27.4GB per core) and 8.7TB scratch space. A shared main data file store of 500TB is 

available to users. Unless stated otherwise, all software was installed and executed within the Linux 
CentOS 7 operating system. All scripts were written using VIM 8.2. 

 
 

3.3.2.2 – Quality control & read trimming 
 
Raw fastq files were first subjected to internal quality control using FastQC version 0.11.8 (Andrews, 

2010). Raw data statistics and plots from all modules (including true sequencing coverage 
determination) were generated using MultiQC and tabulated. Quality trimming was then conducted 

using TrimGalore! 0.6. and Cutadapt version 1.18 (Martin, 2011) using the following filters: 
 

• Quality Phred score cut-off (-q): 20 

• Adapter sequence (auto detected): ‘AGATCGGAAGAGC’ (Illumina TruSeq) 

• Maximum trimming error rate: 0.1 (default) 

• Minimum required overlap: 1bp 

• Minimum required sequence length for both reads after trimming: 20bp 

 

Both reads 1 and 2 were trimmed by 17bp (5’ = 10bp, 3’ = 7bp) after analysing the distribution of base 
sequence content of both reads in all samples and considering the trimming recommendation that 

10bp be cut from both reads at the 5’ end by the sequencing company (Figure 3.3). 
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Figure 3.3 - Effect of quality trimming on per-base sequence content distribution for NMB_318. 
FastQC per-base sequence content plot for raw reads 1 and 2 are shown on the left-hand side. Both plots highlight unstable base composition within the 
first 25bp of both reads, including a significant G bias in read 2. Both plots on the right show the resulting per-base sequence content of each respective 
read following trimming. Base content has stabilised across all base pairs at the 3’ of reads, and a slight bias introduced because of strict adapter trimming 
at the 5’ end.
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3.3.2.3 – Alignment and deduplication 
 
Following quality control, trimmed reads were then aligned using Bismark version 0.22.1 (Krueger & 
Andrews, 2011) (Section 2.3.2). Bismark was run in conjunction with Bowtie 2 (Langmead & Salzberg, 

2012) against a bisulfite converted hg19 reference genome. Alignment was run with zero permitted 
mismatches for all samples. After successful alignment, aligned reads were deduplicated using 

Bismark. 
 

 

3.3.2.4 – Methylation bias assessment & methylation data 
extraction 

 
To check for the presence of any remaining technical biases in the data, the methylation proportion 
across each possible read position was determined via methylation bias assessment using Bismark. 

A small bias was identified at the 3’ of read 2 which was subsequently ignored during methylation 

extraction (Figure 3.4). Methylation count data was then extracted into bedGraph, bismark.cov and 
CpG_report.txt formats for downstream analyses for all samples. 
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Figure 3.4 - Observed methylation bias identified in read 2 of all samples at the final 2 bases of the 3' end. This methylation bias corresponds to the base 
composition bias introduced at the 3’ of reads following adapter trimming in section 3.3.1.2.
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3.3.3 – External cohort data handling 
 
Prior to further processing, both external WGBS and array cohorts were downloaded via the ICGC 
Data Portal (Zhang et al., 2019). 42 samples sequenced using high-depth WGBS with matching 

methylation microarray data were available (Hovestadt et al., 2014) under the project code PBCA-DE 

and downloaded (Section 2.1). Externally downloaded methylation array data was available as a matrix 

of pre-processed beta values – the final format following methylation data processing. Both external 
WGBS sequencing data and Array data were processed as previously described (Hovestadt et al., 

2014).  

 
Externally acquired WGBS sample data (n=42) was downloaded in the ICGC Data Portal submission 

file format. The format is tab-separated and has 26 columns, the majority of which is project and 
sample information. Within the format is the key experimental information pertaining to processed 

WGBS data – Chromosome number, start position, end position, strand, methylated read count, 

unmethylated read count and methylation ratio (beta value). These columns were extracted from the 
format to mimic the Bismark.cov format created via the processing of internal samples, creating two 

cohorts that can be processed further in unison. Going forward, internally sequenced samples are 
termed as ‘NMB’ and externally acquired data termed as ‘ICGC’ 

 
 

3.3.4 – Methylation data processing 
 
3.3.4.1 - Computing resources / software 
 
Following raw sequencing data processing and data download, methylation data could be processed 
in unison. All subsequent analyses in section 3.3.7 were conducted with the R statistical computing 

environment version 4.0.3 – “Bunny-Wunnies Freak Out” within RStudio (R Core Team, 2021). All 
processing was conducted within the R/Bioconductor package RnBeads 2.0 (Müller et al., 2019), a 

comprehensive package for the analysis of both methylation microarray and bisulfite sequencing data.  

 
 

3.3.4.2 – QC & filtering of DNA methylation microarray data 
 
Bead Array IDAT files were obtained for all 35 matched samples were analysed using the Quality 
Control and pre-processing modules within RnBeads 2.0. Quality was assessed by checking the signal 

distribution of quality control probes across all samples. Probe detection p-values were checked in all 

samples using a filter of < 0.05. If 5% of probe detection p-values were >0.05, the sample would be 
removed. All samples passed quality control. Next, samples were filtered for known SNPs (mapping 

within 2 nucleotides) and normalised via the normal-exponential out-of-band (noob) method using 
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single sample normalisation (Fortin, Triche. Jr & Hansen, 2017). This is in keeping with the processing 

methods used for the ICGC array cohort. Following normalisation, probes located on the X and Y 
chromosomes were removed and beta value matrices generated for downstream analysis. Missing 

data was then imputed using the kNN algorithm (Altman, 1991). 
 

 

3.3.4.3 – QC & filtering of WGBS methylation data 
 
 Methylation read counts for both NMB and ICGC cohorts were analysed using the quality control and 

pre-processing modules within RnBeads 2.0. CpGs overlapping with known SNPs (within 3 
nucleotides), high coverage outlier sites and sex chromosome sites were removed. High coverage 

outlier CpGs were defined as any CpG where coverage exceeds 50 times the 0.95 quantile of coverage 

values in its sample. Sites with low coverage designated by a specified filter were removed. 
Anticipating high numbers of low coverage sites due to the nature of low-pass data, we tested multiple 

coverage filters for each dataset (Table 3.1). Following processing, beta value matrices were generated 
for downstream analysis. 
 

Coverage Coverage Threshold(s) 
Applied 

30x 5 
10x 5 3 
9x 5 3 
8x 5 3 
7x 5 3 
6x 5 3 
5x 3 1 
4x 3 1 
3x 1 
2x 1 
1x 1 

 
Table 3.1 – Coverage filters applied to each downsampled dataset. Lower filters were also used to 
attempt to mitigate the expectedly high degree of missing data. 
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3.3.5 – Data downsampling 
 
NMB samples were downsampled in whole number increments from 10x to 1x using SeqKit v2.1.0 
(Shen et al., 2016). Rather than proportionally downsampling all levels of coverage from the original 

10x data, we iteratively downsampled from each corresponding high coverage dataset to emulate the 

random missingness of reads expected at lower sequencing depths. Following downsampling, a total 
of ten datasets were generated at 10x-1x. All sample data was processed using the methodologies 

previously mentioned in 3.3.1. 

 
Due to ICGC sample data being acquired in a pre-processed, methylation read count format, it was 

necessary to use an alternative means of downsampling to generate matched datasets. Methylated 
read counts matrices were extracted for each sample and downsampled using the downsampleMatrix 

function within the DropletUtils package (version 1.10.3) in RStudio (Griffiths et al., 2018). For each 

sample, methylation read counts matrices were iteratively downsampled to depths corresponding to 
that of the NMB cohort (10x-1x). 

 

 
3.3.6 – Imputation via BoostMe 
 
To generate imputed data, processed methylated read counts for both NMB and ICGC WGBS cohorts 
(in bismark.cov format) were read and combined into a single RObject using bsseq v1.26.0 (Hansen 

et al., 2014). BSseq class objects enable methylated count matrices to be manipulated in a 

computationally efficient manner by creating separate objects for genomic co-ordinates, CpG 
coverage and Methylation values (both matrices). To test the effect of sequencing coverage on 

imputation, downsampled objects were created using the downsampled datasets defined in section 
3.3.8. 

 

Following data preparation, each combined dataset was then imputed using the BoostMe package 
(Zou et al., 2018). Only CpGs below a chosen depth are imputed – specified using the same coverage 

filters applied using processing (Table 3.1). BoostMe applies the XGBoost gradient boosting algorithm 

to impute low coverage CpGs by leveraging known methylation data in other samples within the 
cohort. Machine learning imputation is explained in detail in chapter 2; briefly for a missing CpG locus, 

BoostMe uses the average beta value at the same loci from neighbouring samples, the beta values of 
the nearest non-missing CpGs within the same sample and their respective distances as features for 

training, testing and validation. Imputation is then performed on a per sample basis. If there is not 
enough information to impute a specific CpG (e.g., if no CpG is above the specified coverage filter in 

at least two other samples), then imputation is skipped at that locus. For training, testing and validation 

of the model, the default option of 1 million randomly selected CpGs was used.  
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Model performance was assessed by the following measures:  

 

• Root mean square error (RMSE) – a standard deviation of all prediction errors. RMSE is an 

effective measure for regression classification, allowing us to measure how far the predicted 

data point (in this case our methylation values) differ from the line of best fit determined by the 

trained model. In our case of imputation, a lower RMSE indicates better model performance, 
with 0 being the perfect score.  

 

• Accuracy – A measure depicting the proportion of predicted values (rounded to 1, 0.5 and 0) 

compared to that of known values (rounded to 1, 0.5 and 0). 100% accuracy denotes a 
perfectly performing model, with 1 being a perfect score. 

 
• Area under the receiving operator characteristic curve (AUROC) – A measure of the ability 

of the model to correctly predict fully methylated (beta = 1) and fully unmethylated (beta = 0) 
values. To determine this, a curve is plotted denoting the true positive rate (how many true 1s 

and 0s are predicted compared to the number of actual 1s and 0s in the training set, against 

the false positive rate (the proportion of values that are not correctly predicted by the model). 
Better performing models display AUC values closer to 1, with 1 being a perfect score. 

 
• Area under the precision-recall curve (AUPRC) – Similar to AUROC, but a curve is drawn 

against the precision (a ratio of the number of accurately predicted values divided by the sum 
of all values) and recall (analogous to true positive rate) rather than true positive and false 

negative rates. Whilst similar, AUPRC provides a measure of model calibration as opposed to 
measuring its ability to discriminate, which AUROC achieves. A perfect model would yield 

AUPRC values of 1. 

 
RMSE, accuracy, AUROC and AUPRC statistics were compiled for all imputed datasets. Statistical 

differences in imputation performance between NMB and ICGC cohorts were calculated via t-test, 
whilst potential differences in performance due to coverage and applied filter within cohorts were 

calculated via paired t-test. Significant differences were determined using a threshold of p < 0.05. 
 

 

3.3.7 – Dataset summary 
 
In summary, imputed and non-imputed WGBS beta value matrices (where rows = CpG coordinates, 

columns = samples) were generated for use in downstream analyses. A single imputed beta value 

matrix was also generated for the matched array cohort, allowing for downstream methylation analyses 
to be conducted in parallel for both platforms. Downsampled WGBS datasets for coverages 10-1x 

were also created to examine the effect of lowering coverage on imputation model performance and 
cross-platform correlation (Figure 3.5).  
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Figure 3.5 – Overview of generated datasets 
 
 

3.3.8 – Liftover & interplatform correlation analysis 
 
To enable a direct correlation to be drawn between WGBS and methylation microarray, a ‘Liftover’ 

cohort was generated for each WGBS dataset. This was done by sub-setting the data to only CpGs 
whose genomic coordinates mapped to that of the methylation array 450k probe manifest version 1.2 

(Illumina). Any CpGs mapping to probes that were removed during pre-processing were removed. A 
global Pearson product moment correlation measure was applied to each sample for all corresponding 

CpGs/probes for each platform. This was also applied to all downsampled cohorts to investigate the 

effect of lowering coverage on methylation value correlation between the two platforms. Statistical 
differences in mean Pearson correlation values were calculated as specified in 3.3.6. 
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3.4 – Results & discussion 
 
3.4.1 – Establishment of a robust processing pipeline for 

clinical low-depth WGBS samples 
 
3.4.1.1 – Quality control analysis of sequencing data 
 
High quality data was obtained for all 36 samples selected for low-pass WGBS in this study. Whilst 

PBAT was the chosen library preparation method for all samples, four samples required a significantly 
larger amount of input DNA compared to the other 32 (Table 3.2). These four samples (NMB_169, 

NMB_181, NMB_436, NMB_787) were sequenced as part of a pilot study over 12 months earlier at 
which point the genome sequencing provider for this study required greater amounts of input DNA for 

sequencing. In addition to this, the remaining 32 samples initially failed library preparation with the 
sequencing provider, forcing the provider to attempt to use a low-input PBAT protocol that required 

150ng DNA as a contingency measure. Ultimately, the quality of sequencing data outputted was 

judged to be satisfactory and appeared to be no different to that of the four samples prepared using 
far greater amounts of input DNA. This also had the unintended benefit of demonstrating that low-

input WGBS could be applied effectively using clinical tissue samples, where DNA cannot often be 
supplied in such high amounts. An average paired-end sequencing yield of 217,290,129 reads were 

collected for all samples (Mean raw data size = 32.61GB). Sequencing statistics for the ICGC cohort 
are not comprehensive, but some are provided as part of the original study (Hovestadt et al., 2014) 

(see appendix – 8.1.1). In this study, an average of 621,007,162 reads were generated across all 42 

samples. The bisulfite conversion rates of all sequenced genomes in both studies were high, ranging 
between 99.32% to 99.62%. 

 

Quality control of sequencing reads via FastQC indicates that all sample reads were of high quality. 
Mean raw per-base quality scores for the first 50 million reads in all samples was 34.955, far beyond 

the passing threshold of 28 (Figure 3.6). The single FFPE sample successfully sequenced was also 
high quality, with an average per-base quality score of 35.835.  Following read trimming, a noticeable 

negative adenine bias is present in all reads at the 3’ end. This is due to the stringent adapter trimming 
measures employed, removing any trailing adenine bases present at the end of reads. Whilst not an 

issue during primary quality control, adapter trimming also resulted in a slight positive cytosine bias in 
the final two bases of read 2. This may introduce a slight methylation bias during the methylation 

extraction step of processing and would subsequently be ignored to ensure stable methylation levels 

across all positions of all reads. 
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Figure 3.6 – Mean per base quality score distribution for all NMB samples (n = 36). 
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The alignment rate for all remaining reads for each sample was high, averaging 78.75% across all 

samples. Similar alignment rates are also reported in other studies that utilise the same library 
preparation kits used by the genome sequencing company in this study (Raine et al., 2017; Raine et 

al., 2018). Of the reads that did not align uniquely, an average of 2,151,173 reads aligned ambiguously 

(aligned at more than one position in the genome), 20,831,656 did not align under any condition and 
20 reads had no known genomic sequence to align to. A further 15,494,807 duplicate reads were 

removed on average from all samples prior to methylation extraction. An average CpG methylation 

rate of 73.8% (SD = 5.61) was observed in all samples, a similar rate to that of the external high-depth 
cohort used in this study (Hovestadt et al., 2014). Average CHG and CHH methylation rates were 

0.73% and 0.74% respectively. Two samples, NMB_758 and NMB_769 displayed CpG methylation 

rates greater than two standard deviations below the mean. Both samples were of LCA histology and 
belonged to the group 3 and subtype III methylation subgroup and subtype respectively. Both samples 

displayed CHG and CHH methylation rates far greater than the remaining samples, but no indicators 
of poor sample quality were identified. Average CpG coverage following methylation data extraction 

of processed reads was expectedly lower than the 10x depth originally sequenced, reaching an 
average depth of 7.18x across all samples 
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NMB_17 
Post-Bisulfite 

Adaptor Tagging 150ng 202,970,008 101,485,004 30.4 99.3 77.30% 
3813 

6.6X 69.1 1.8 1.8 

NMB_77 
Post-Bisulfite 

Adaptor Tagging 150ng 220,802,174 110,401,087 33.1 99.4 78.00% 
3468.9 

7.2X 79.2 0.7 0.7 

NMB_79 
Post-Bisulfite 

Adaptor Tagging 150ng 218,406,932 109,203,466 32.8 99.5 78.60% 
3384.6 

7.2X 72.3 0.5 0.5 

NMB_169 
Post-Bisulfite 

Adaptor Tagging 2.5ug 203,740,078 101,870,039 30.5 99.6 83.40% 3202.2 7.0X 74.3 0.4 0.4 

NMB_178 
Post-Bisulfite 

Adaptor Tagging 150ng 241,605,908 120,802,954 36.2 99.3 76.60% 3645.7 7.8X 77.2 0.7 0.7 

NMB_181 
Post-Bisulfite 

Adaptor Tagging 2.5ug 216,391,298 108,195,649 31.5 99.6 82.40% 3178.9 7.2X 71.3 0.4 0.4 

NMB_185 
Post-Bisulfite 

Adaptor Tagging 150ng 218,195,722 109,097,861 32.7 99.5 77.70% 3312.1 7.2X 75.4 0.8 0.9 

NMB_187 
Post-Bisulfite 

Adaptor Tagging 150ng 221,720,334 110,860,167 33.3 99.5 77.70% 3429.3 7.3X 78.7 0.7 0.7 

NMB_203 
Post-Bisulfite 

Adaptor Tagging 150ng 223,581,462 111,790,731 33.5 99.5 78.30% 4217.3 7.3X 73.6 0.6 0.6 

NMB_250 
Post-Bisulfite 

Adaptor Tagging 150ng 238,414,028 119,207,014 35.8 99.4 82.60% 4798.3 8.3X 77.4 0.6 0.6 

NMB_273 
Post-Bisulfite 

Adaptor Tagging 150ng 211,908,532 105,954,266 31.8 99.3 77.10% 3847.7 6.9X 77.2 0.7 0.7 

NMB_318 
Post-Bisulfite 

Adaptor Tagging 150ng 207,983,602 103,991,801 31.2 99.4 77.50% 3881.1 6.8X 73.6 2.3 2.4 

NMB_362 
Post-Bisulfite 

Adaptor Tagging 150ng 214,006,122 107,003,061 32.1 99.4 78.10% 4039.4 7.0X 79.6 0.7 0.7 

NMB_363 
Post-Bisulfite 

Adaptor Tagging 150ng 205,008,404 102,504,202 30.8 99.5 77.60% 3854.4 6.7X 75.4 0.7 0.7 

NMB_378 
Post-Bisulfite 

Adaptor Tagging 150ng 206,123,666 103,061,833 30.9 99.4 77.50% 3228.9 6.8X 69.8 0.6 0.6 
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NMB_390_FF
PE 

Post-Bisulfite 
Adaptor Tagging 

(FFPE) 150ng 202,021,308 101,010,654 31.5 99.535 82.90% 2715.1 6.99X 77 0.8 0.9 

NMB_390  
Post-Bisulfite 

Adaptor Tagging 150ng 225,371,846 112,685,923 33.8 99.337 77.50% 3428.2 7.31X 77.5 0.7 0.7 

NMB_416 
Post-Bisulfite 

Adaptor Tagging 150ng 209,393,592 104,696,796 31.4 99.433 81.60% 4072 7.16X 79.7 0.6 0.6 

NMB_433 
Post-Bisulfite 

Adaptor Tagging 150ng 199,674,444 99,837,222 30 99.435 77.40% 3064.8 6.46X 76.1 0.7 0.7 

NMB_436 
Post-Bisulfite 

Adaptor Tagging 2.5ug 246,922,252 123,461,126 
37.0

4 99.61 81.50% 4360.9 8.40X 76.1 0.4 0.4 

NMB_529 
Post-Bisulfite 

Adaptor Tagging 150ng 259,848,460 129,924,230 39 99.43 81.70% 5171 8.94X 66.8 0.6 0.6 

NMB_549 
Post-Bisulfite 

Adaptor Tagging 150ng 229,704,050 114,852,025 34.5 99.4 78.40% 3544.7 7.57X 68.6 0.6 0.6 

NMB_610 
Post-Bisulfite 

Adaptor Tagging 150ng 205,686,756 102,843,378 30.9 99.51 77.00% 3827.7 6.67X 66.2 0.5 0.5 

NMB_725 
Post-Bisulfite 

Adaptor Tagging 150ng 200,189,558 100,094,779 30 99.415 76.80% 3101.9 6.51X 74.4 0.7 0.7 

NMB_729 
Post-Bisulfite 

Adaptor Tagging 150ng 243,202,318 121,601,159 36.5 99.575 78.10% 4587.1 8.04X 67.7 0.5 0.5 

NMB_733 
Post-Bisulfite 

Adaptor Tagging 150ng 213,862,174 106,931,087 32.1 99.465 81.00% 3277.7 7.29X 78.1 0.9 1 

NMB_758 
Post-Bisulfite 

Adaptor Tagging 150ng 207,052,574 103,526,287 31.1 99.543 77.20% 3840.6 6.73X 57.6 0.4 0.4 

NMB_769 
Post-Bisulfite 

Adaptor Tagging 150ng 201,004,734 100,502,367 30.2 99.57 77.20% 3768.2 6.53X 58 2 2 

NMB_772 
Post-Bisulfite 

Adaptor Tagging 150ng 213,820,964 106,910,482 32.1 99.41 77.00% 3998.3 6.97X 77.6 0.6 0.6 

NMB_774 
Post-Bisulfite 

Adaptor Tagging 150ng 207,929,412 103,964,706 31.2 99.487 76.30% 3846.1 6.69X 68.5 0.5 0.5 

NMB_787 
Post-Bisulfite 

Adaptor Tagging 2.5ug 209,844,192 104,922,096 
31.4

8 99.6 82.30% 3189.5 7.22X 81.7 0.5 0.5 

NMB_803 
Post-Bisulfite 

Adaptor Tagging 150ng 221,292,150 110,646,075 33.2 99.505 78.00% 3409.5 7.30X 77.3 0.5 0.5 

NMB_858 
Post-Bisulfite 

Adaptor Tagging 150ng 253,421,272 126,710,636 38 99.385 77.30% 4707.7 8.25X 74.5 0.7 0.7 
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NMB_867 
Post-Bisulfite 

Adaptor Tagging 150ng 210,136,200 105,068,100 31.5 99.463 81.50% 4153.6 7.20X 79.7 0.6 0.6 

NMB_870 
Post-Bisulfite 

Adaptor Tagging 150ng 208,355,470 104,177,735 31.3 99.38 77.40% 3942.1 6.81X 72.9 0.7 0.7 

NMB_890 
Post-Bisulfite 

Adaptor Tagging 150ng 202,852,640 101,426,320 30.4 99.443 76.60% 3748.9 6.55X 79.5 0.6 0.6 
 
Table 3.2 – Sequencing statistics of NMB cohort (10x). 
 
 



Faculty of Health & Life Sciences    Northumbria University 
 

124 
 

3.4.1.2 – Quality control analysis of methylation data – 
WGBS 

 
Following methylation extraction, methylation read counts for all captured CpGs were prepared for all 

NMB samples. ICGC samples were collected in the same format, enabling methylation data QC to be 
performed in unison (Table 3.3). A total 27,860,185 CpGs were read at least once across all samples 

in the NMB cohort out of a total ~28.3 million CpGs estimated to be in the human genome (Babenko, 

Chadaeva & Orlov, 2017). The total number of CpGs covered in the ICGC cohort was slightly lower, 
with 27,603,130 covered in total. The greater number of CpGs covered in the internal cohort is 

reflected in the greater number of SNP-enriched sites during filtering, with 358,319 and 362,531 sites 
removed on average per sample respectively. The same difference in the total number of CpGs located 

on the sex chromosomes was also observed, with 1,242,708 and 1,281,868 identified in both cohorts 
(Table 3.3). Greater numbers of high coverage outlier sites (defined as any CpG where coverage 

exceeds 50 times the 0.95 quantile of coverage values in its sample) were removed in the external 
cohort compared to internally sequenced samples, with 13,755 and 6,341 sites filtered respectively. 

This is due to the higher sequencing depth of samples in the external cohort, resulting in greater 

numbers of sites being sequenced at ultra-high depths. Average CpG coverage following CpG filtering 
for both cohorts was 29.48x and 6.80x respectively. 

 
The effect of higher sequencing depth naturally persists when analysing the total number of CpGs with 

coverage above specific thresholds. For ICGC samples, 96.07% of CpGs were sequenced at a depth 
greater than or equal to 5x prior to filtering (Table 3.3). Following filtering, no sites were identified below 

5x. For NMB samples, the number of sites identified as low coverage is magnitudes greater, with just 

63% of reads being sequenced at greater than or equal to 5x. When applying the recommended 5x 
coverage filter, a total of 11,523,459 CpGs are removed on average per sample. It is at this stage of 

filtering where data missingness presents itself as a significant barrier to downstream analysis, as all 
low coverage CpGs are randomly distributed in different areas of the methylome in each sample. This 

scale of data loss is emphasised when subsetting the dataset for only common CpGs, identifying just 
69,101 CpGs that are shared amongst all samples. This presents a significant analytical challenge 

when handling this dataset, as common downstream analyses used in for molecular subgrouping do 
not tolerate missing values. 

 

In attempt to mitigate the loss of over one third of total CpGs from samples, a second ‘low filter’ NMB 
cohort was processed where a lower depth of 3x was specified for the masking of low-depth CpGs. 

As expected, this resulted in a significant reduction in the total number of CpGs removed, with 
4,574,233 removed per sample on average, representing a recovery of 60.31%. This recovery is 

underlined when filtering for CpGs in common across all samples, where 1,967,445 CpGs are now 
shared. Regardless, this number remains low compared to the total number of CpGs present in the 

dataset and highlights the pressing need for an effective imputation strategy to be used when handling 
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low-coverage WGBS data. Applying a lower coverage filter clearly results in a substantial recovery of 

data, but it is recognised that including methylation data calculated using lower depth CpG counts 
may result in the inclusion of inaccurate data. However, such a decision may be necessary and studies 

utilising low coverage WGBS have applied filters below 5x for the differential methylation analysis of 
breast cancer samples previously (Hoppe et al., 2021), providing support for its application when 

optimising a processing pipeline for this study. Regardless, it was deemed necessary that both 

datasets continue be analysed to comprehensively assess the effect that applying a lower coverage 
threshold would have on both imputation and cross-platform correlation. 

 

  ICGC NMB (High Filter) NMB (Low Filter) 

No. of Sites Covered (Across all 
samples) 27,603,130 27,860,185 

Mean Cytosine Coverage 29.5X 6.8X 

No. CpGs with coverage ≥ 5 (Avg 
per sample) 26,518,524 17,648,537 

No. CpGs with coverage ≥ 10 
(Avg per sample) 25,366,501 5,484,378 

No. CpGs with coverage ≥ 30 
(Avg per sample) 11,692,040 26,102 

No. CpGs with coverage ≥ 60 
(Avg per sample) 706,239 11,154 

SNP-enriched sites removed 358,319 362,531 

High Coverage Outlier Sites 
Removed 13,755 6,341 

Low Coverage Sites Masked (Avg 
per sample) 0 11,524,459 4,574,233 

Sex Chromosome Sites Removed 1,242,708 1,281,868 

Total Samples Retained 42 36 

Table 3.3 – Methylation processing statistics for ICGC (filtered at 5x) and NMB cohort (High filter = 
5x / Low filter = 3x). 
 
 
3.4.1.3 – Differences between internal and external cohort 

downsampling approaches 
 
Coverage analysis of both downsampled NMB and ICGC cohorts highlighted discrepancies between 
the intended and actual CpG coverage of each dataset due to the issues caused by working with raw 

and pre-processed sequencing data. Randomised iterative downsampling of raw sequencing reads 
(as applied to internally sequenced samples) performed as expected, with the average number of 

paired-end reads per sample falling proportionately with each drop in coverage. This removal of reads 
prior to processing in turn causes a fall in the total number of CpGs covered in the methylome (Table 

3.4). 
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Table 3.4 – Downsampled NMB cohort sequencing statistics (10-1x) 

Sequenced 
Coverage 

No. of 
paired-end 
sequencing 

reads 
(mean) 

Alignment 
% (mean) 

Total No. of 
Cytosines 
(millions, 

mean) 

Average 
CpG 

Coverage 
(Actual) 

Average 
CpG 

Methylation 
Rate 

Average 
CHG 

Methylation 
Rate 

Average 
CHH 

Methylation 
Rate 

10x 217.3 78.75% 3751.6 7.19X 73.9 0.7 0.7 
9x 195.6 78.75% 3060.5 6.47X 73.9 0.7 0.7 
8x 173.9 78.75% 2776.4 5.75X 73.9 0.7 0.7 
7x 152.2 78.75% 2476.9 5.03X 73.9 0.7 0.7 
6x 130.4 78.75% 2165.2 4.31X 73.9 0.7 0.7 
5x 108.7 78.75% 1850.7 3.59X 73.9 0.7 0.7 
4x 86.9 78.75% 1502.6 2.88X 73.9 0.7 0.7 
3x 65.2 78.75% 1150.3 2.16X 73.9 0.7 0.7 
2x 43.5 78.75% 782.9 1.44X 73.9 0.7 0.7 
1x 21.7 78.75% 399.9 0.72X 73.9 0.7 0.7 
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As highlighted in 3.4.1.1, sequenced coverage does not translate into actual coverage after trimming, 

alignment and deduplication is applied to reads. This bears out in all downsampled datasets, where 
the observed ‘actual’ coverage is lower than the intended sequenced (Table 3.4). This drop in coverage 

is expected when working with sequencing platforms, where duplicate reads are a common symptom 
of WGBS library preparation methodologies (Zhou et al., 2019). This disparity in coverage was not 

observed when working with ICGC sample data, which was only available in a pre-processed format. 

As the data was already pre-processed prior to acquisition, any downsampling methodology would 
not remove reads, resulting in no loss of CpG sites covered like that observed in the NMB cohort 

(Table 3.5). The lack of downsampling at the sequence read level results in highly accurate CpG 
coverage for each downsampled dataset compared to the disparity observed in internally sequenced 

samples.  
 
Whilst pre-processed data was downsampled to the target level of coverage accurately, it does not 

truly reflect the CpG coverage that would be obtained during sequencing like that of the NMB cohort. 
It is therefore highly likely that these samples were in fact sequenced at a higher level of coverage than 

30x to achieve a CpG coverage at that depth. Regardless, recapitulating this disparity in coverage 
manually in the ICGC cohort is not feasible and sacrificing known CpGs in a non-randomised manner 

would introduce bias into any downstream analysis conducted. To control for the stable number of 
CpGs covered in ICGC samples, cohorts were combined at sites only present in NMB sample data at 

each designated level of coverage, ensuring that CpG information lost due to downsampling would 

also be missing from ICGC samples. Despite efforts to mitigate these issues, this disparity in coverage 
is a limitation of this study, caused by having to handle different datasets acquired at different stages 

of processing. 
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Table 3.5 – Methylation processing statistics for both ICGC and NMB cohorts. 
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3.4.1.4 – Quality control analysis of methylation data - 
Array 
 
Processing of matched methylation microarray samples yielded high quality data. To enable direct 

comparison, the pre-processing methodologies applied to NMB array samples was kept concordant 
with the methodologies used for ICGC sample data, which could only be acquired as a pre-processed 

beta value matrix (Hovestadt et al., 2014). Control probe quality control highlighted no issues with any 

samples in the dataset. A total of 63,550 probes were removed, including 29,669 cross-reactive, 
10,329 unreliable (detection p-value > 0.05) and 12,430 SNP-enriched probe sites. To ensure only 

common probe sites were analysed in both cohorts, ICGC samples were merged only at common 

probe sites, with any remaining probes removed. No additional probes were removed after combining 
cohorts, with a total of 422,027 probes taken forward for analysis (Table 3.6). 

 
  NMB 

No. of Sites Covered (Across all samples) 485,577 
SNP-enriched sites removed 12,430 

Cross-reactive Probes removed 29,669 
Greedycut probes removed 10,329 

Sex Chromosome Sites Removed 9,912 

Context-specific Probes Removed 
1,211 (CAG: 995, 
CAH: 145, CTG: 7, 

Other: 64) 

Total Probes Removed 63,550 
Total Samples Removed 0 

Total Probes Retained 422,027 
Total Samples Retained 36 

 
Table 3.6 – Methylation processing statistics for matched NMB methylation microarray cohort. 
 
 
 
3.4.1.5 – Methylation values calculated from WGBS sample 

data display increased bimodal distribution  
 
Observing the beta value distributions of samples analysed from WGBS and methylation microarray 

revealed differences in methylation values characteristic to each platform. Greater numbers of CpGs 
are methylated for WGBS samples than that of the array. This is because all CpGs are interrogated, of 

which 70-80% are methylated (Jang et al., 2017). Conversely, most probe sites interrogated by the 

methylation microarray are unmethylated, which is explained by deliberate targeting of gene promoters 
and CpG islands (Bibkova et al., 2011). Array probe beta values are bi-modally distributed, with the 

greatest number of probe beta values peaking at between 0.7-0.9 and 0.05-0.15 respectively (Figure 

3.7). WGBS derived beta values display increased polarisation, with the highest peaks being at both 0 
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and 1 respectively. This difference is due to the nature of how methylation values are calculated in 

each platform, where array values are calculated via normalised probe intensities from methylated an 
unmethylated readouts, and WGBS determined using a read count-based calculation. Differences 

between low and high coverage WGBS data are also prevalent due to the way they are calculated. 
Reads that have failed bisulfite conversion, and are incorrectly identified as unmethylated, result in a 

second peak of methylation values in the 0.9-0.99 range in high-depth WGBS data. Additional peaks 
are observed at other decimal intervals in low depth data, where an incorrect CpG has a larger effect 

on the calculated beta value (Figure 3.7). It is currently unknown what effect that the greater 

polarisation of methylation values may have on downstream analysis, if any, but it is likely that any 
CpG variance (or lack thereof) will be more pronounced in WGBS data, represented by a greater/lower 

standard deviation value calculated for any given row of CpG methylation values than would be for 
any given probe site analysed using the array. Given that CpG variance filtering is widely applied as a 

method of feature selection and dimensionality reduction in molecular subgrouping studies (Northcott 
et al., 2017; Capper et al., 2018; Sharma et al., 2019), an investigation into CpG variability between 

both platforms for matched cohorts would be beneficial to assess any differences that may be 

observed in analyses that leverage selected CpG-sets such as visualisation, classification, and 
clustering. 
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Figure 3.7 – Beta value density distribution plot for 
WGBS (ICGC = 30x / NMB = 10x) and Array 
methylation data. For each cohort – Density lines are 
drawn for both removed and retained beta values. 
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3.4.2 – Machine learning imputation predicts robust, 
accurate methylation values in low-pass WGBS 
samples 

 
3.4.2.1 – Model performance 
 

The increased coverage offered by WGBS gives the platform a definitive advantage over methylation 
microarray platforms, which cover just 3% of CpGs in the methylome. Although low-pass WGBS is 

becoming a feasible proposition for researchers, high-depth WGBS remains costly. Data missingness 

presents an analytical challenge when working with low-pass WGBS data, where many common 
subgrouping analyses such as visualisation, clustering and classification do not tolerate missing 

values. When applying the recommended 5x filter to the low-pass samples in this study, just 69,101 
CpGs in common across all assessed samples are identified out of a possible 27,860,185, with an 

average 11,523,459 CpGs missing per sample. Over 60% of missing CpGs were recovered when 
applying a lower filter of 3x, but the risk of including methylation values at lower read depths has not 

yet comprehensively been assessed. Missing data handling for methylation microarray platforms form 

a straightforward component of most processing pipelines, with a wide array of optimised algorithms 
available, including k-nearest neighbours, linear regression, and random forest. However, most of 

these approaches become computationally unfeasible when handling WGBS data where the beta 
value matrices involved exhibit significantly increased dimensionality (over millions of CpG rows per 

sample column) and sparsity. Current studies testing the capability of methylation sequencing for brain 
tumour classification have avoided imputation entirely, drastically subsetting the total number of CpGs 

for downstream analysis (Kuschel et al., 2021; van Paemel et al., 2020). Whilst they have demonstrated 

success to a certain degree, we deemed it necessary to impute missing data to provide a 
comprehensive analysis of the tumour and to test the fidelity of low-pass imputation.  

Imputation algorithms for WGBS are available, with linear regression-based machine/deep learning 

models showing the most promise in providing robust methylation value prediction for sparse datasets 
(Stekhoven et al., 2012; Zou et al., 2018). Regression based methods have been shown to be highly 

effective for the imputation of methylation beta values, where the long-and short-range correlations 

are easily recapitulated by simple linear regression (Lena et al., 2019). Machine learning algorithms 

such as Random Forest and XGBoost can increase the accuracy of such predictions via training on 
neighbouring features (CpGs) within the same sample and common features in other samples. One 

imputation software based on the XGBoost algorithm, BoostMe, has been shown to outperform other 
WGBS imputation algorithms and exhibited the highest computational efficiency (Zou et al., 2018). 

This was confirmed after a pilot study tested our NMB cohort (n=36) within the HPC infrastructure 

available, which showed that imputation could be performed with less than 1TB RAM. Whilst this level 
of memory is high, it remains below that which has been available to that of previously mentioned 
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projects that have not implemented imputation and is well within the computational capabilities of 

most clinical HPC architectures (Kuschel et al., 2021).  

Application of the BoostMe algorithm to the combined WGBS cohort used in this study predicted 
methylation data with excellent performance (Figure 3.8). For test CpG sets (n = 1,000,000) for all 

samples, the imputation model achieved an average root-mean-squared error (RMSE) of 0.15 (SD = 
0.03), accuracy of 0.93 (SD = 0.03), area under the receiver operating characteristic curve (AUROC) of 

0.97 (SD = 0.02) and area under the precision recall curve (AUPRC) of 0.99 (SD = 0.01). Both NMB and 

ICGC cohorts were combined prior to model implementation to leverage the increased CpG coverage 
present in the high-depth cohort. When focusing on each cohort individually RMSE performance for 

NMB samples was 0.18 (SD = 0.02, significantly higher than that of imputed ICGC sample data with 
an RMSE of 0.12 (SD = 0.02, t-test, p = < 0.001). An observed fall in performance for NMB samples 

was not unexpected, given that far greater numbers of missing values are present than that of high 
coverage data. Additionally, imputation performance for the chosen algorithm in this study exceeded 

that achieved by other algorithms dealing with lower amounts of missing data in other studies, 

providing evidence that BoostMe is one of the top performing algorithms for WGBS data, even at low 
pass (Zou et al., 2018).  
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Figure 3.8 - Validation and test CpG set imputation model performance for all samples both high and low-pass WGBS data (split into NMB an ICGC 
cohorts).  
 
Key: The black line denotes the median value across all validation/test sets. Either side of the box denote the 25th and 75th percentiles, and the whiskers 
correspond to the inter quartile range. Dots outside of this range are considered outliers. 
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The excellent imputation performance is further demonstrated by the distribution of imputed values 

compared to known values. Imputed values mimic the bimodal distribution of known methylation 
values almost perfectly, where a continuous imputed value distribution was observed with peaks close 

to 0 and 1 (Figure 3.9). 

The coverage filter applied to the combined WGBS cohort had a small, yet significant effect on model 
performance, where a higher coverage filter performed slightly better (Average RMSE = 0.145, SD = 

0.03) than a lower coverage filter (Average RMSE = 0.148, SD = 0.03, p = < 0.001). Whilst significant, 

the difference is small, and it remains difficult to comment on whether the total number of CpGs that 
are recovered when using a lower coverage threshold offer additional benefits that offset the poorer 

imputation model performance identified at this stage of the analysis. Model performance significantly 
falls with each drop in coverage (p < 0.001) with a more pronounced drop in coverage from 4x onwards 

(Figure 3.10). Imputation of ICGC sample data performs significantly better in all tested metrics than 
NMB sample data at each downsampled level of coverage (p < 0.001). Whilst similar, the difference 

between the two serves to highlight the differences taken in each approach taken to downsampling, 

with greater levels of missingness present in internally sequenced data than that of externally 
sequenced samples. 
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Figure 3.9 - Beta value distributions of non-missing (red) and imputed (blue) CpG data for high and low-pass WGBS sample data.  
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Figure 3.10 – Mean test CpG set performance for 
downsampled high and low-pass WGBS data. 
Imputation model performance was measured using 
root mean squared error (RMSE), area under the 
receiver operating characteristic curve (AUROC), 
area under the precision-recall curve (AUPRC) and 
accuracy. 
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3.4.2.2 – Potential for future optimisation 
Imputation enables nearly all processed CpGs of the methylome to be brought forward for downstream 

analyses, alleviating many of the downstream analytical hurdles that are presented when working with 

sparse methylation datasets. Despite this, memory consumption for imputation, even for the relatively 
modest sized cohort in this study is prohibitively high for research groups that do not use HPC 

infrastructures. The development of low-memory imputation methodologies is therefore crucial if low-

pass WGBS studies involving much larger cohorts are to be conducted. One such solution may be the 
introduction of a sliding window approach, where only a small subset of a matrix is loaded in memory 

at one time, drastically reducing the amount of memory required. Such an approach applying kNN has 
recently been offered as part of a WGBS processing pipeline named BSBolt, which may offer a solution 

to this computational obstacle (Farrell et al., 2021). Regardless, the implementation of imputation via 

the BoostMe algorithms is a robust and effective method of handling missing data and should be 
included as part of processing pipelines for low-pass WGBS where possible. 
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3.4.3 – WGBS platform produces highly correlated 
methylation data to corresponding CpGs located on 
the array platform at low-sequencing depths 

 
3.4.3.1 – Cross-platform correlation analysis 
 
Following the generation of high-throughput, non-missing methylation data for both WGBS and Array 
platforms, the final analytical step was to perform a cross-platform correlation analysis for all matched 

samples. By subsetting WGBS CpG sites to the genomic co-ordinates of all probe sites located on 
the Illumina Methylation450k manifest, a Pearson correlation coefficient value was derived for matched 

samples to characterise the concordance of WGBS and Microarray beta value estimates. The 
subsetting method used was adapted from methyLiftover, a prevalent function for creating WGBS-

derived beta matrices that map to array probe manifests (Titus et al., 2016). Liftover of all WGBS 

samples in this study matched non-missing CpGs to 469,341 probe sites out of a total 485,577. When 
disregarding for 3,091 non-CpG probes and 65 random SNP probes included as part of the 450k 

manifest (Bibkova et al., 2011), over 96% of probe sites are covered by all samples in this study, 

representing a suitably high coverage suitable for correlation. When accounting for probes filtered 
during array cohort processing, the proportion of covered probes increases, with a total 420,809 CpGs 

present out of a total 422,027 (99.7%) brought forward for analysis. 

 
Overall inter-platform correlation between WGBS and Methylation microarray for non-imputed sample 

data used in this study was very high. Average Pearson product-moment correlation coefficient (PCC) 
for ICGC sample data was 0.97 (SD = 0.006), replicating the correlation observed by the original study 

(Hovestadt et al., 2014). PCC for NMB sample data was significantly lower owing to lower sequencing 

depth (PCC = 0.95, SD = 0.014, t-test - p = < 0.001). When including WGBS CpGs sequenced at 3x 
or above, the inter-platform PCC is significantly lower (PCC = 0.94, SD = 0.014, p = 0.02). Average 

PCC values for downsampled data remains high for both sample cohorts (Figure 3.11). PCC for NMB 
samples do not exhibit a significant fall until reaching 5x coverage (PCC = 0.93, SD = 0.016, p = < 

0.001), at which point PCC falls with each sequential drop in depth, reaching 0.84 at 1x (SD = 0.026, 
p = 0.004). PCC for ICGC samples significantly falls when downsampling from 30x to 10x, falling from 

0.97 (SD = 0.006) to 0.96 (SD = 0.006) respectively (p = < 0.001). PCC for each subsequent drop in 

coverage remains the same until reaching 6x, similar to the NMB cohort (p = < 0.001).  
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Figure 3.11 - Cross-platform Pearson correlation values for downsampled high and low-pass WGBS cohorts. 
 
Key: The black line denotes the mean value across all samples. Either side of the box denote the 25th and 75th percentiles, and the whiskers correspond to 
the inter quartile range. Dots outside of this range are considered outliers. 
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The high correlations observed between beta values calculated using Array and low-pass WGBS 

provides support for the use of the platform for subgrouping analyses. The concordant beta values 
that can be derived from low pass raise the possibility that the molecular subgroups of 

medulloblastoma can be visually identified and correctly classified by existing classification algorithms 
trained using microarray feature sets. The high correlation identified in this study at low pass is 

consistent with other studies, where correlation values >0.9 are obtained for WGBS samples 
sequenced at 10x and above (Titus et al., 2016). Achieving a cross-platform correlation that is any 

higher would be very difficult, particularly for low-pass data (i.e., 10x or below). For example, a CpG 

locus with a true methylation value of 65% would be difficult to recapitulate using WGBS; a methylation 
value of only 60 or 70%, at best, could be achieved using 10x data, whereas any beta value estimate 

using array may be more accurate given that values are calculated via fluorescence intensity-based 

scale (Zou et al., 2018). Such a scenario highlights the drawbacks of using low-pass data, but the high 
PCC obtained at coverages as low as 5x in this study shows that may be less problematic for 

downstream analysis that often involves the analysis of multiple CpGs and is not dependent on the 

investigation of any single CpG. 
 

 

3.4.3.2 – Filter recommendations/summary 
 
Inter-platform correlation for imputed data is significantly lower in both cohorts. ICGC data (30x) 

exhibits an average PCC fall of 0.01 for all samples, falling from 0.97 to 0.96 respectively (paired t-test, 
p = 0.02). NMB samples (10x) display greater falls, falling to 0.90 (SD = 0.02, p = < 0.001) when applying 

a 5x threshold and 0.93 (SD = 0.02, p = < 0.001) when using a 3x threshold respectively. This disparity 
emphasises the far greater numbers of missing values present when applying a higher coverage filter 

for low-pass data (5x = 11,730,289 / 3x = 5,166,995) and highlights that whilst imputation is useful, it 
is inherently not as accurate as a true, sequenced methylation value (Figure 3.12). Although imputation 

models perform significantly better and non-missing correlation values are significantly higher when 

using a higher coverage threshold, the improved correlation offered when using a lower threshold 
offers support for applying such a filter when dealing with low pass data, as it indicates that the 60% 

of missing CpGs recovered are better correlated to array based estimates than imputed values. 
Significant PCC improvements are observed when using a lower coverage threshold down to 6x (p = 

< 0.001), further demonstrating the benefits of retaining more originally sequenced CpGs (Figure 3.12).  
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Figure 3.12 – Cross-platform correlation analysis for downsampled low-pass WGBS data. 
 
Key: The black line denotes the mean value across all samples. Either side of the box denote the 
25th and 75th percentiles, and the whiskers correspond to the inter quartile range. Dots outside of 
this range are considered outliers. 
 
 

In summary, it was determined that applying a low coverage filter of 3x would be the recommended 
approach taken during pipeline optimisation for low-pass WGBS data during this study. Although 

imputation models perform better and non-missing values correlate, the vast amount of missing data 
lost when applying a higher filter causes these gains to be subsequently lost after imputation.  

Ultimately, it was judged that the issue of data missingness is the most significant factor when dealing 
with low-pass WGBS data and the significant number of CpGs recovered (over 60%) when using a 

low-pass filter places less of a burden on the chosen imputation model (larger proportion of missing 
data to predict), resulting in significantly improved concordance between the WGBS and array 

platforms. Increased concordance between the two platforms increases the likelihood that robust 

molecular subgrouping calls can be obtained using low-pass WGBS sample data. 
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3.4.4 – Conclusions/chapter summary 
 
The optimised pre-processing pipeline presented in this chapter successfully demonstrates that high 
quality, non-missing methylation data can be obtained from samples sequenced using low-pass 

WGBS. Sequenced data was high in quality, providing sample reads capable of being used for various 

NGS-based analyses, such as variant calling and high-resolution aneuploidy detection. A side-effect 
of filtering reads is that a proportion of read depth is subsequently sacrificed, resulting in the final 

coverage of reads being lower than that of the intended sequencing depth. Externally acquired data 
did not suffer from this issue, as data was already pre-processed. Proportional downsampling of both 

cohorts was performed using different methods due to the different format that each dataset was 
acquired in. This led to differences in downsampled data, with decreased missingness and increased 

coverage observed in pre-processed sample data that was now downsampled at the read level. 

Methylation data processing filtered unreliable CpGs effectively, providing over 25 million CpGs for 
downstream analyses. The issue of CpG missingness was highlighted at this stage for low-pass 

samples, where over 11 million CpGs were missing on average per sample and just 60,000 common 
CpGs were shared between 36 samples at 10x, a number that would only decrease as cohort size 

increases. Over 60% of missing CpGs could be recovered if using a lower coverage filter but would 
present the risk of including potentially unreliable methylation data. However, cross-platform 

correlation between WGBS and matched array data was very high, with a significant drop in correlation 
observed in lower depth samples and again when using a lower coverage threshold during processing. 

 

Without imputation, any analytical approach using such a small set of common CpGs would be subject 
to severe bias, with just a random fraction of the methylome available for investigation. Imputation was 

therefore imperative, and it was demonstrated that performing XGBoost algorithm-based imputation 
via BoostMe that accurate, bimodally distributed methylation data could be obtained, with excellent 

model performance from low-pass WGBS clinical sample data. Performance significantly fell with 
decreasing coverage, but nevertheless remained strong for sample data at depths as low as 4x, 

rendering the use of imputation a necessity if one wishes to perform any analysis using this platform 

at low pass. Unsurprisingly, imputed data correlates significantly less than true values, at which stage 
the utilisation of a lower coverage filter during processing presents significant benefits. The increased 

number of true CpGs recovered by using a lower filter result in significantly greater cross-platform 
correlations for low-pass data. Ultimately, although trained imputation models perform significantly 

better using higher coverage features, the vastly increased amount of missing data results in poorer 
concordance between WGBS and array calculated beta values, offsetting differences in imputation 

model performance. Such lower coverage filters (i.e., 3x) have seldom been used for WGBS (Laufer et 

al., 2021), and consequently both standard and lower coverage filters were here considered for 

application to low-pass data. Going forward, the inclusion of an effective imputation strategy should 
form an essential component of WGBS processing pipelines, especially for low-pass data. Its 
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successful implementation allows the full potential of low-pass WGBS to be realised, with tens of 

millions of CpGs available for downstream analyses such as molecular subgrouping. 
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Chapter 4 – Molecular subgrouping of 
medulloblastoma via low-depth whole genome 

bisulfite sequencing 
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4.1 – Introduction 
 
Expression and methylation profiling studies of MB led to the identification of discrete molecular 
subgroups present within the disease (Northcott et al., 2011; Taylor et al., 2012; Schwalbe et al., 2013). 

These subgroups: WNT, SHH, Group 3, and Group 4, each display distinct molecular and clinical 

phenotypes including age at onset and importantly, patient prognosis (Figure 4.1a-b). Patients with 
WNT tumours are associated with favourable survival, typically over 90% for childhood cases (Clifford 

et al., 2006; Ellison et al., 2005).  SHH tumours are heterogenous in outcome, which is dependent on 

age, tumour histology and TP53 mutation status (Garcia-Lopez et al., 2021). Group 3 is a subgroup 

characterised by its higher rates of metastases and poor prognosis (Section 1.7.4), with MYC amplified 

patients in this subgroup performing badly (Sharma et al., 2019). The picture is less clear for Group 4 

patients (accounting for ~35% of all patients) which is the least biologically understood. This 
association between clinical outcome and molecular subgroup culminated in their incorporation of 

molecular subgroup into the WHO ‘Classification of Tumours of the Central Nervous System’ (Louis et 

al., 2016). Their definition has transformed how the disease is studied and, importantly, how it is 
managed in the clinic, with the molecular subgroup that a patient belongs to a key consideration for 

clinicians when deciding on appropriate treatment strategies. For example, the increased survival 

exhibited by WNT patients has led to clinical trials being implemented that test the effect of decreased 
treatment intensity in this group, with the aim of alleviating many of the neuro-cognitive deficits that 

are associated with conventional MB treatment (ClinicalTrials.gov Identifier: NCT01878617). SHH 
inhibitors are in turn being investigated for use with SHH subgroup patients (ClinicalTrials.gov 

Identifier: NCT01878617). Since 2016, more recent studies have further identified additional subtypes 
present within SHH, Group 3, and Group 4, signalling a move to more precise classification and clinical 

management of MB in the future (Louis et al., 2021).  
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Figure 4.1a – Demographic and molecular features of the current consensus molecular subgroups and subtypes of medulloblastoma (Hovestadt et al., 
2019).  
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Figure 4.1b – Demographic and molecular features of the current consensus molecular subgroups and subtypes of medulloblastoma (Hovestadt et al., 
2019).  



Faculty of Health & Life Sciences    Northumbria University 
 

149 
 

After subgroups of MB were identified, it was imperative that clinically applicable assays were 

developed that could diagnose subgroup with high accuracy. Although current WHO clinical guidelines 
recognise WNT, SHH and collectively place groups 3 and 4 as non WNT/ non SHH molecular variants 

(Figure 4.2), distinguishing between Group 3 and Group 4 is a clinical requirement for most institutions 
and is beneficial for patient stratification in research and clinical trials. Initially, transcriptomic assays 

were developed such as the NanoString where a gene set of 22 genes were used to determine the MB 
subgroups (Schwalbe et al., 2011 Ramaswamy et al., 2013). Its clinical application was limited 

however, primarily due to cost, high misclassification rates, and difficulties regarding implementation 

in developing countries (Korshunov et al., 2017). A qPCR method based on 21 biomarkers offered a 

reliable method of subgroup classification, but the high number of genes rendered it impractical for 
use clinically (Kunder et al., 2013). Contemporaneously, it became clear that DNA methylation profiling 

was the most reliable means of subgroup classification (Schwalbe et al., 2013; Hovestadt et al., 2013). 

The four primary molecular subgroups of medulloblastoma were originally identified via gene 

expression, but methylation profiling is a superior alternative due to ability to robustly identify 
subgroups from FFPE tissue derivatives, coupled with increased accuracy above other routine 

methods such as mutation screening (which is hampered by the paucity of recurrent mutations in MB) 
and immunohistochemistry. DNA methylation is also the platform that was utilised to identify further 

clinically relevant heterogeneity within the medulloblastoma subgroups 3 and 4, where 8 subtypes 
were identified (Sharma et al., 2019). Subgroup prediction via methylation microarray can 

subsequently guide a clinician down the correct diagnostic path and offers the potential for further 

targeted molecular testing, if appropriate. For example, a tumour identified as WNT can be further 
submitted for beta-catenin mutation analysis or an SHH tumour submitted for germline variant analysis 

and/or TP53 mutation status. 
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Figure 4.2 - Current risk-adapted algorithm for medulloblastoma (Northcott et al., 2019). Since their identification, the molecular subgroup of a 
medulloblastoma tumour forms a key primary component of patient risk stratification.  
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The capability of the methylation array to offer accurate subgroup prediction has cemented the 

platform as the current gold-standard in paediatric brain tumour diagnostics. DNA methylation is a 
highly robust and accessible measurement and in recent years has enabled researchers to define new 

tumour entities and classes. The DKFZ central nervous system tumour classifier can assign a brain 
tumour into a class with high accuracy, originally trained using 2801 samples from 81 different tumour 

types (Capper et al., 2018). The classifier was built upon the Illumina 450k and EPIC methylation 

microarrays which, due to the technical and economical limitations of more comprehensive techniques 
such as WGBS and RRBS, has remained the technique of choice for researchers since its inception in 

2011 (Bibikova et al., 2011). This has ultimately led to the accumulation of many thousands of tumour 

samples analysed using the platform which enabled the creation of the large reference cohorts that 
are necessary to create classifiers with good prediction accuracy and performance. Through 

collaboration with other institutes, the current DFKZ database now comprises over 50,000 tumours 
analysed by 450k and EPIC array, and has led to the identification of extremely rare, biologically 

relevant tumour types (Perez & Capper, 2020). The identification of tumour types using DNA 

methylation is typically done via unsupervised learning techniques, which cluster methylation patterns 
comprising thousands of CpG sites based on their similarities and differences. As cohort sizes 

increase, these techniques become more powerful, allowing the identification of rare tumour entities. 
Combining this analysis with machine learning allows methylation profiles for each defined tumour 

class to become a diagnostic tool, allowing for incoming diagnostic samples to be assigned into its 
respective class with an associated probability measure.  

 
The development of the current DFKZ brain tumour classifier remains ongoing, with the continuing 

addition of 450k and EPIC array samples contributing to further optimisation as recently as 2021. The 

abundance of methylation microarray sample data and clear utility practically guarantees continued 
development in the coming years but the previous advantages of the platform, namely its low cost and 

low input sample requirements have been eroded in recent years in comparison with other techniques. 
Superior techniques for methylation analysis are now becoming feasible, where methylation 

sequencing data has demonstrated similar classification performance when integrated with 
methylation microarray reference sets (Kuschel et al., 2021). This integration is of vital importance if 

the field is to progress from methylation microarray and take advantage of more advanced 

technologies, whilst retaining the information gleaned from the many thousands of samples analysed 
by methylation microarray. As demonstrated in 3.4.3, WGBS sample data generated in this project is 

highly correlated to matched samples analysed using methylation microarray, raising the possibility 

that low-pass WGBS can be successfully integrated into array-based classifiers. In addition to 
integration, the increased polarisation of methylation values derived from the WGBS platform may 

have an impact on CpG variability, of which the most variable CpGs are typically taken forward for 
unsupervised analyses and subgroup visualisation. When considering this potential increased 

variability and the fact that just 3% of all CpGs are assessed by the array, an investigation into the 
variability of the entire methylome would provide valuable insights into CpG variability outside of the 
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array probe manifest. Whilst other platforms like RRBS and Nanopore have shown success in CNS 

tumour classification (van Paemel et al., 2020; Kuschel et al., 2021), they are limited by a severe lack 
of CpG coverage due to the combined effects of low depth and lack of imputation. Whilst they show 

clear potential prognostically, the issue of data missingness magnifies as cohort sizes increase due to 

decreasing numbers of CpGs shared across all samples, which limits its attractiveness for use in 
discovery. The successful imputation of low-pass WGBS samples achieved in this project (Section 

3.4.2) provides the complete data necessary to test the capability of the platform in discerning the 
molecular subgroups of medulloblastoma. Additionally, comparing how WGBS derived feature sets 

perform in classification compared to those derived from DNA methylation microarray may 
demonstrate the potential for the platform in contributing to further subgroup refinement in 

medulloblastoma and other rare tumour entities. 
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4.2 – Aims & objectives 
 
The primary research objective of this chapter was to assess the potential for low-pass WGBS sample 
data to identify the molecular subgroups of medulloblastoma. The analyses presented in this chapter 

primarily are concerned with the integration of low-pass WGBS methylation data into existing array-

based classifier utilities and investigating the potential performance of classifiers built solely upon 
WGBS-derived sample training sets. As most unsupervised high-dimensional clustering investigations 

initially rely on variance filtering to select only the most informative features, the variability of all CpGs 
in the medulloblastoma methylome of the combined WGBS cohort was surveyed and compared to 

the probe variability observed in the matched array cohort. Variable CpGs identified were mapped to 
variable probes identified using the array to determine the degree to which each set of features overlap. 

This enabled the determination whether there is additional variability that is captured outside of the 

current DNA methylation microarray probe manifest. In addition, the genomic co-ordinates of the most 
variable CpGs were compared to investigate any differences in the chromosomal distribution of 

variable CpGs/probes between the two platforms.  
 

Following this analysis of CpG variability, the dimensionality of the combined WGBS medulloblastoma 
cohort was reduced to the most variable features (n=10,000) and applied to a range of prominent 

dimensionality reduction/visualisation techniques to investigate whether the MB molecular subgroups 
were easily identified. This was conducted in parallel with both the matched array cohort and ‘Liftover’ 

WGBS cohort to observe whether any differences in sample clustering is observed. Finally, WGBS 

sample data would be integrated with DFKZ brain tumour classifier reference medulloblastoma sample 
data to investigate how low-pass WGBS sample data clusters amongst non-matched sample data 

that is currently used for clinical classification (Capper et al., 2018). Following visualisation, WGBS 

methylation data would be applied to two pre-existing medulloblastoma classifiers whose code was 
made available for use in this project. Both the subgroup assignment and associated class probability 

for both MB WGBS cohorts would be collected and compared to that of matched array data to 
investigate the assessment of imputed low-pass WGBS data with pre-existing classifiers trained using 

array feature sets. After integration, a comprehensive performance analysis between native classifiers 
built upon the WGBS and Array medulloblastoma cohorts used in this study was presented. Each 

classifier would be trained, validated, and respective performance assessed to provide a direct 

comparison between both platforms when being used to train classifiers with matched sample sets. 
In addition, matched downsampled WGBS cohorts will also be used to train classifiers to assess the 

effect of lowering coverage on classification performance. 
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4.3 – Materials & methods 
 
 
4.3.1 – Analysis Overview 
 

 
Figure 4.3 – Graphical overview of all analyses conducted within chapter 4. Further details (e.g., 
software, parameters used, references) are provided in subsequent sections. 
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4.3.2 – Combined cohort description 
 
A combined cohort of 70 primary WGBS medulloblastoma samples (ICGC 30x = 34, NMB 10x = 36) 
and 8 cerebellar samples (Foetal = 4, Adult = 4), as prepared in section 3.3.2, were used in the following 

analyses. One medulloblastoma sample, NMB_390, was a matched FFPE/fresh frozen pair. A 
corresponding DNA methylation microarray cohort (n=77) was also used in parallel where possible to 

ensure comparability at each stage of the analysis (Table 4.1). Missing values present in both datasets 
were imputed as described in section 3.3.9. Downsampled matched WGBS cohorts were also used 

(10x -> 1x) to test the effect of coverage on any results obtained. To determine the molecular subgroup 

and subtypes of all primary medulloblastoma samples, sample array data was applied to the DFKZ 
brain tumour classifier version 11b6 (Capper et al., 2018). Molecular subtype was determined using 

the Group3/4 classifier as defined by Sharma et al., (2019). 

 
Tumour subgroup composition was chosen carefully for the NMB WGBS cohort, with the majority of 

samples chosen being classified with high probability in their respective molecular subgroup according 

to the DFKZ brain tumour classifier. Molecular subtype composition was considered, with a deliberate 
over-representation of subtype VII samples, due to molecular and clinical evidence that a possible split 

may be present within this subtype (Sharma et al., 2019). 
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Table 4.1 – Demographics of combined medulloblastoma cohort (n=70) 
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4.3.3 – Computing resources/software 
 
All subsequent analyses described in sections 4.3.3 and 4.3.4 were conducted using the R statistical 
computing environment version 4.0.3 – “Bunny-Wunnies Freak Out” within RStudio (R Core Team, 

2021). Native classifier training steps detailed in section 4.3.5 was conducted using the ROCKET High 

Performance Computing service (Newcastle University).  

 
 

4.3.4 – Analysing methylation variability 
 
Prior to unsupervised analysis of methylation data, combined cohort beta value matrices for WGBS 
and Array cohorts were transposed and isolated to the top 100,000, 32,000, 10,000 and 1,000 

CpGs/probes as defined by a standard deviation measure calculated for each feature (e.g., row of beta 
values for all samples). For each feature set, the genomic co-ordinates (hg19) of each feature were 

recorded, and the chromosomal distribution of each feature set tabulated. 

 
To determine the degree at which the most variable features identified via WGBS overlap with features 

identified by DNA methylation microarray, each feature set (cast as a data frame RObject) was 
subsequently converted into GRange objects and checked for overlapping ranges with both the 

Illumina Human Methylation 450k and EPIC probe manifests. Any CpG identified within the feature set 
derived from the WGBS cohort that mapped exactly with the genomic co-ordinates specified in each 

manifest was considered a match. Statistically significant differences in the chromosomal distribution 

of the top 10,000 features between Array / Liftover / WGBS cohorts were determined via two 
proportion z-test. As the WGBS platform surveys singular CpGs and each probe assessed by the DNA 

methylation microarray is intended to encompass a range of ~50 CpGs (owing to the assumption that 
neighbouring CpGs typically exhibit correlated methylation status) (Illumina, 2021), Feature sets were 

overlapped with each manifest again with decreased precision, considering each CpG as overlapping 
with a probe site if it fell within 25, 50 and 125bp either side of a probe site. 
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4.3.5 – Dimensionality reduction/visualisation 
 
Following variance filtering, each feature set for WGBS (including all downsampled datasets) and DNA 
methylation microarray platforms was visualised using multiple dimensionality reduction techniques – 

Principal component analysis (PCA), uniform manifold approximation and projection (UMAP) and t-

distributed stochastic neighbour embedding (t-sne) (Section 2.3.4). Cohorts were visualised with and 
without control cerebellar samples and colour assigned according to their respective molecular 

subgroup and subtype as defined by DNA methylation microarray classification via the DFKZ brain 
tumour classifier version 11b6. 

 
For PCA, principal components were calculated for each feature set using the prcomp function within 

the stats v4.0.3 package using default settings (R Core Team, 2021). UMAP was performed using the 

umap function of the umap package using a Euclidean metric (Konopka, 2020). The seed was 
preserved. The neighbour’s parameter was adjusted depending on the number of samples used (Table 

4.2). T-sne was computed using the Rtsne function within the rtsne packages, version 0.15 using a 
seed of 25 (Krijthe, 2015). Default parameters were applied excluding theta = 0 max_iter = 100,000. 

Perplexity was adjusted depending on the number of samples used (Table 4.2). A second t-sne 
analysis was performed using settings as defined in the landmark paper by Capper et al., (2018) used 

to cluster the original DFKZ brain tumour classifier reference cohort. Briefly, an eigenvalue 

decomposition of all principal components (no. components = total cohort size – 1) using the eigs 
function of the RSpectra package 0.12 was initially performed. All principal components were then 

brought forward for t-sne analysis using the same parameters defined above.  

 

 
Table 4.2 – Adjusted t-sne and UMAP parameters used during visualization for each dataset. Both 
perplexity (tsne) and n_neighbors (UMAP) parameters have a significant effect on the degree to 
which each algorithm clusters neighbouring data points. 
 
 
To investigate how WGBS sample data clusters amongst non-matched DNA methylation microarray 
data, a final t-sne plot was calculated using the WGBS samples in this study with the medulloblastoma 

sample component of the DFKZ reference cohort (n=426). Samples were acquired using the from the 

NCBI Gene Expression Omnibus (GEO), accession number GSE109381. The same variable features 
(n = 32,000) were used as defined by Capper et al., (2018) by performing variance filtering on the entire 

reference cohort (n=2801) prior to subsetting to just MB tumour samples. WGBS samples were then 

combined with the dataset at co-ordinates corresponding to each respective probe site and t-sne 
calculated using the same parameters as defined previously (Capper et al., 2018).
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4.3.6 – Applying WGBS sample data to existing DNA 
methylation microarray classifiers to predict the 
subgroups of medulloblastoma 

 
To test the capability of WGBS derived sample data to be classified into the subgroups of 
medulloblastoma, WGBS beta value matrices were applied to the Methylation Array Classifier (MAC) 

(Newcastle University, 2021) using two training feature sets (n=10,000) that define the four classic 
molecular subgroups of medulloblastoma and the Schwalbe et al., (2017) seven subgroup 

classification. Briefly, the classifier is based upon the support vector machine algorithm, validated, and 

trained using 220 450k samples. WGBS sample data could not be directly applied to the DFKZ brain 
tumour classifier as the classifier and its associated development code is not publicly available. Whilst 

array-based classifiers only accept IDAT files (Raw methylated/unmethylated probe intensities) it is 

beta values that are ultimately used for training models and testing incoming samples. This enables 
WGBS sample data to easily be integrated into DNA methylation microarray classifiers as beta values 

are also used. Combined WGBS (at each downsampled level of coverage) and matched array samples 
were applied to both classifier training sets, and each class and its associated probability was 

tabulated. Statistical differences in mean classification probability were calculated as stated in 3.3.5. 
 

 
4.3.7 – Performance assessment of validated multi-class 

models trained using WGBS derived methylation data 
 
To investigate the potential capability of MB subgroup classification models trained using feature sets 
derived from the WGBS platform, numerous multi-class classification models using samples 

sequenced in this study and compared them to like-for-like models trained using matched array 
samples with array-defined features. For each classifier, a total of 77 samples were used (the matched 

FFPE sample was removed from WGBS cohort to ensure identical training set size and composition) 
in a 10-times repeated 7-fold cross-validation. Briefly, the cohort was split into 7 parts (folds), with 6 

folds used for model training and 1-fold used for model testing. The classifier is trained 7 times, with 

each different fold left out one time. This process is subsequently repeated 10 times, with the sample 
composition in each fold randomly selected for each repeat. The folds are kept identical for all models 

by using the same randomised seed value prior to dataset splitting. Various combinations of 
parameters were tested for each model a total of 25 times randomly (Table 4.3). All model training and 

testing was performed within the caret software package in RStudio (Kuhn, 2021).  
 

 

 
 

 



Faculty of Health & Life Sciences    Northumbria University 
 

160 
 

To determine performance, we assessed models using the following metrics: 

 

• Accuracy – The fraction of correct class label assignments. A score of 1 would denote perfect 

classifier performance 

 

• Cohen’s kappa statistic – An adjusted accuracy measure that accounts for assignments are 

correct by random chance according to the frequency of each class. Like accuracy, a score 

of 1 would represent perfect performance after according for chance. 
 

• Area under receiver operating characteristic curve (AUC) – A measure of the ability of the 

model to correctly predict class. To determine this, a curve is plotted denoting the true positive 

rate against the false positive rate, where the AUC corresponds to the total area underneath 
the curve. Better performing models display AUC values closer to 1, with 1 being a perfect 

score. 
 

• Log-loss – The negative average of the log of each assignment probability. Calculated values 

are produced for each sample that class assignments with lower probabilities or incorrect 

assignments are penalised more heavily, producing greater log loss values. A perfect classifer 
that assigns each class correctly with maximum probability would be represented with a log 

loss value of 0, with poorer models producing high log loss values. 
 

A total of seven multi-class classification algorithms capable of assigning class probability were tested: 

elastic net, random forest, support vector machine with linear kernel, support vector machine with 
radial kernel, XGBoost with linear booster and XGBoost with tree booster, and logic regression. All 

models were trained to predict the four primary molecular subgroups of medulloblastoma as well as 
recognise control cerebellar tissue using the top 10,000 most variable features (WGBS = CpGs, Array 

= probes, Liftover = CpG sites that map to corresponding probe sites on the 450k probe manifest) as 
defined using a standard deviation measure. 
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Table 4.3 – Chosen models for performance testing. All tuneable parameters within the caret 
software framework were tuned 25 times using randomly selected values. 
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4.4 – Results & discussion 
 
4.4.1 – CpGs of greater variability are present within the 

medulloblastoma methylome that are not assessed by 
the DNA methylation microarray platform 

 
Analysing CpG methylation values in our sequencing cohort compared to the probe methylation values 
in our matched DNA methylation microarray cohort revealed multiple differences between both 

platforms. Significantly larger numbers of CpGs capture greater variability than probes assessed by 
the DNA methylation microarray platform (Figure 4.4). A standard deviation measure of 0.25 is typically 

applied when concerned with dimensionality reduction in medulloblastoma methylation datasets, at 
which point the increased variability captured by WGBS becomes clear. A total of 3,990,549 CpGs 

sequenced using WGBS were retained when applying a standard deviation filter of 0.25 compared to 

just 27,211 probes sequenced using the array for matched samples. The top 10,000 most variably 
methylated probes display standard deviation values ranging from 0.17-0.43 compared to 0.40-0.46 

and 0.38-0.45 for the top 10,000 most variably methylated CpGs WGBS samples when applying a 
depth filter of 3 or 5 respectively. There are multiple technical explanations that can possibly explain 

the increased variance observed. Beta values display increased polarisation when analysed using 
WGBS, ranging from 0-1 compared to probe intensity beta values which typically range from 0.1-0.9, 

inherently lowering the possible standard deviation value that can be calculated from methylation data 
analysed using the array platform. Beta values calculated using low-depth WGBS may also contribute 

to increased variability, with sequencing errors contributing to larger changes in any methylation value 

that is calculated for any respective CpG site. However, any such effect is likely to be minimal, given 
the high correlation of methylation data between both platforms (Section 3.4.3).  

 
Figure 4.4 – Density plot of standard deviation value distribution of all features for WGBS (green, n = 
26,549,033 CpGs) and Array (red, n = 422,027 probes). 
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Aside from technical differences, such a stark increase in variability can also be explained by the sheer 

number of CpGs that are not measured by the array, with just 3% of CpGs assessed by the methylation 
EPIC platform (Zou et al., 2018). The DNA methylation microarray typically contains a single probe at 

each position of interest, relying on the assumption that neighbouring CpGs exhibit correlated 

methylation (Eckhardt et al., 2006). The manufacturer states that each probe is typically representative 
of a range of 50 CpGs within any given site of interest (Illumina, 2021). The array platform deliberately 

targets regions of genetic importance, namely CpG islands, genes, promoter, and enhancer regions, 

and therefore overlooks the large swathes of intergenic and repetitive regions of the genome. Such 
regions have been shown to display global demethylation in cancer, with many hypomethylated 

regions shared among different tumour types (Baylin & Jones, 2011). Despite WGBS being performed 
in MB previously, a comprehensive analysis of genome-wide methylation was not reported (Hovestadt 

et al., 2014). To investigate whether any of the increased variability observed was contributed by CpGs 

not covered by the methylation microarray probe manifest, the top 10,000 most variable CpGs 
assessed by the methylation microarray platforms (both 450k and EPIC) were overlapped using their 

respective genomic location. When looking for exact CpG/probe matches, just 2.9% and 4.4% of 
features overlap with the 450k and EPIC probe sites respectively (Table 4.4). To account for local 

correlations in CpG methylation status, the range either side of the CpG of interest was increased to 

25bp, 50bp and 125bp to be classed as overlapping with any probe site. Unsurprisingly, the number 
of sites determined to be overlapping increases, with 36% and 42% of probe sites found within 125bp 

either side of any probe site assessed by the 450k and EPIC platforms respectively (Table 4.4). This 
significant proportion is likely by design, owing to the deliberate selection of regions of genomic 

interest during probe selection of the methylation microarray platform. However, over 50% of the most 
variable CpGs are not assessed by the methylation microarray, indicating that there are many CpGs 

that capture significant variance that are simply not covered by the array even when applying a range 
of 125bp either side of a probe site.  

 
Table 4.4 – Number of top 10,000 most variable CpGs identified via WGBS that overlap with probes 
assessed by the Illumina methylation 450k and EPIC microarrays. 
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4.4.2 – WGBS derived variable CpGs are differentially 
distributed across chromosomes compared to the 
array platform 

 
Following the identification of a large proportion of variable CpGs in the medulloblastoma methylome, 
that are not assessed by the DNA methylation microarray probe manifest, the chromosomal 

distribution the top 10,000 most variable CpGs compared to the most variable probes for matching 
array samples (Figure 4.5) was investigated. The proportion of features changes significantly within 20 

out of 22 chromosomes (not including sex chromosomes) when analysing the most variable CpGs 

sequenced via WGBS compared to probes analysed via microarray (Two proportion z-test where p < 
0.05) (see appendix – 8.1.5). In addition, the methylation microarray probe manifest does not assess 

all chromosomes equally by design. For example, chromosome 9 is assessed by just 2% of all probes 
in the 450k manifest, where 1.43% of variable probe sites are found in the array cohort. The proportion 

of variable CpGs found in WGBS samples is significantly higher, with 3.18% of the top 10,000 most 
variably methylated CpGs found in this chromosome (p = < 0.005). Out of 10,000 features, the greatest 

proportion of variable features assessed by the microarray are located on chromosome 1 (10.07%) 
compared to 9.38% of features when using WGBS (p = 0.024). Since chromosome 1 is the largest 

chromosome, the presence of significant proportions of variable features is expected, but out of all 

chromosomes analysed, it does not contain the greatest proportion of variable CpGs when sequencing 
the medulloblastoma methylome via WGBS. Out of the top 10,000 most variable CpG sites, 9.7% are 

located on chromosome 5 (p < 0.005) and over 10% of the top 1000 CpGs are located on chromosome 
7 (p < 0.005).  

 

 
Figure 4.5 – Chromosomal distribution of the top 10,000 most variable features derived from both 
WGBS and Array medulloblastoma cohorts 
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It is difficult to comment any further on why CpGs are distributed in this manner when analysing the 

methylome as no further related analyses were conducted during this project. However, it became 
clear that there is substantial, variable methylation occurring at CpG loci located in InterCGI regions 

(described as CpGs located at least 4kb away from CpG islands) located outside of probe sites 
assessed by the DNA methylation microarray that may be of biological interest (Figure 4.6). InterCGI 

regions are typically methylated, and large amounts of differential methylation occurs within these 
regions (McCabe et al., 2009) in cancer cells and during cell differentiation. InterCGI regions are 

typically intergenic, located far from CpG islands which are located within promoters and are known 

to harbour regulatory elements, although research in this area remains lacking (Nelson, Hersh & Carroll, 
2004). The discovery of increased CpG variability within the medulloblastoma methylome therefore 

warrants further investigation, given the potential for the methylation patterns of each subgroup of 

medulloblastoma to be more comprehensively defined. 
 

 

4.4.3 – Molecular subgroups of medulloblastoma are 
recapitulated when visualising cohorts sequenced via 
WGBS 

 
Following variance filtering, various dimensionality reduction techniques were used to attempt to 
visualise the molecular subgroups of medulloblastoma using the most variable CpGs/probe sites in 

our WGBS/Array medulloblastoma cohorts. Dimensionality reduction techniques such as PCA, t-sne 

and UMAP (Section 2.3.4) are often used when dealing with high-dimensional data (McInnes, Healy & 
Melville, 2020; van der Maaten & Hinton, 2008). In this study, PCA, t-sne and UMAP were applied to 

the top 10,000 most variable features to our combined WGBS and Array medulloblastoma cohorts. As 
expected for the DNA methylation array cohort, the molecular subgroups of medulloblastoma are 

visually distinct regardless of the technique applied (Figure 4.7). Both NMB and ICGC samples cluster 
amongst each other, indicating that any batch effects from each cohort are minimal and that 

appropriate pre-processing was applied to the NMB cohort. WNT tumours cluster separately, as do 

SHH tumours. SHH tumours cluster near that of cerebellar tissue, in line with the findings that tumours 
of this subgroup originate from cerebellar granule neuron progenitor cells (Tamayo-Orrego & Charron, 

2019). Unsurprisingly, both Group 3 and 4 tumours cluster more closely together, with some overlap 
observed between samples of each group. Clustering both Array and WGBS ‘Liftover’ data together 

shows that matched samples were preserved as sample pairs within their respective subgroup (Figure 
4.8). This demonstrates that the high correlations between samples assessed by WGBS and array is 

being translated into similar findings when applying identical analyses to the data, which is 
encouraging when considering the future integration of WGBS sample data into existing array classifier 

utilities. 
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Figure 4.6 – Visualisation of the top 10,000 most variable features derived from our combined 
medulloblastoma DNA methylation microarray cohort (n=77). Samples denoted as 30x (circles) 
describe the ICGC cohort, whereas 10x samples (triangles) denote the NMB cohort 
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Figure 4.7 – Visualisation of the top 10,000 most variably methylated CpGs within the 
medulloblastoma WGBS cohort (n=77), subset to CpGs that map directly to probe sites located on 
the Illumina DNA Methylation 450k microarray. Samples denoted as 30x (circles) describe the ICGC 
cohort, whereas 10x (triangles) describe the low-pass NMB cohort. 
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When applying the same techniques to the top 10,000 most variably methylated CpGs for the 

combined WGBS cohort, the molecular subgroups of medulloblastoma are maintained, but with a 
degree of greater separation observed between the groups (Figure 4.9). The WNT and SHH molecular 

subgroups appear to cluster more densely, and groups 3 and 4 appear to cluster with slightly increased 
separation. This is highly encouraging, given that the WGBS cohort used involves samples sequenced 

at least seven years apart by different institutions at different levels of coverage (Hovestadt et al., 

2014). This increased separation observed is likely due to several reasons, not least of which the 
deliberate selection of samples that are confidently classified with high probability contributing to the 

clear separation observed. Groups 3 and 4 exhibit clear separation in the WGBS cohort save for 2 
samples, one from each cohort (Figure 4.9). These samples, ICGC_MB5 and NMB_772, are classified 

by the DFKZ paediatric brain tumour classifier as a group 3 with intermediate probability (0.86) and a 

group 3 with very low probability (0.56). For NMB_772, there does not appear to be any clinical features 
that are distinctly characteristic of group 3 (i.e., MYC amplification), but it was also classified as a 

subtype V with low probability, which comprises tumours belonging to both groups 3 and 4 (Sharma 

et al., 2019).  
 

The fact that the subgroups 3 and 4 cluster with such a clear degree of separation when using WGBS-

derived CpGs is cause for further investigation into intergenic methylation between the two subgroups, 
given the importance of defining group 3 and 4 more clearly given the clinical implications of incorrectly 

classifying tumours. It is recognised however, that the number of samples analysed in this study is 
modest and are by no means irrefutable evidence that groups 3 and 4 are clearly separate entities 

when considering the whole methylome. When visualising this cohort by subtype, there does not 
appear to be any separation between subtypes I and VI, which represents samples belonging to both 

subtypes (Figure 4.10). Regardless, it is important that additional samples (including ones that are 
currently difficult to classify) are analysed via WGBS to investigate whether this clear separation 

continues to persist. 
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Figure 4.8 – UMAP clustering of the top 10,000 most variable features as identified within our array 
(n =69), Liftover (n = 138) and WGBS (n = 69). The removal of cerebellar samples enables UMAP to 
focus solely on differences between the subgroups of medulloblastoma. UMAP groups highly similar 
samples closely together, where the presence of two group 3 samples within the group 4 cluster 
may be indicative of possible misclassification for these samples. 
 

�üͥ/ÅͨæΝ�đͥăͥ�đđaͥ

BÐaͨæđØėͥğͥ�ÐÐͥHaØùÐ�ėğͥN3�Bͥ

�üͥ�đđa �üͥX"�Hͥ



Faculty of Health & Life Sciences    Northumbria University 
 

170 
 

Figure 4.9 – UMAP clustering of the top 10,000 CpGs identified for the WGBS cohort, restricted to 
Group 3 and Group 4. Samples are coloured by Group 3 / 4 consensus molecular subtype, defined 
by Sharma et al., (2019). 
 
 
The application of dimensionality reduction techniques is incredibly useful for exploratory data 
analysis, helping to indicate whether features within the dataset may be used successfully to make 

predictions, given the degree of class separation that is present within a dataset. It can also be used 
to identify any outliers that are present within the dataset that may not have been clearly seen during 

prior processing. One such sample was identified as a possible outlier sample; ICGC_MB17 (Figure 

4.10). Further investigation of the methylation levels present within this sample showed high levels of 
intermediate methylation across all top 10,000 features selected. The reasons for this are currently 

unclear, as there was no indication that the sample was of poor-quality during QC. Further 
investigation of this sample and how it behaves during classification is therefore necessary to establish 

whether its removal is necessary for downstream analysis.  
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Figure 4.10 Identification of outlier sample in WGBS cohort (ICGC_MB17 – outlined in black).  
A) Clustering of matched array data reveals the sample does not cluster abnormally, B) but is clearly 
identified when clustering our WGBS samples (denoted with a red circle). C) Plotting methylation 
levels of all samples via heatmap (denoting beta values of 0-1 by a yellow-red colour intensity scale) 
reveals a stripe like pattern caused by this sample, characterised by high levels of intermediate 
methylation present in almost all the top 10,000 features analysed. 
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Figure 4.11 – Hierarchical clustering of the top 10,000 most variable features in our WGBS and Array medulloblastoma cohorts. Each cell in the heatmap 
corresponds to a feature (CpG / probe), denoting beta value using a colour intensity scale ranging from yellow (beta = 0) to red (beta = 1). 
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To investigate the degree to which WGBS sample-derived beta values cluster with non-matching array 

samples, we clustered our combined WGBS cohort with the reference medulloblastoma cohort that 
formed part of the initial DFKZ paediatric brain tumour classifier cohort (n = 426) (Capper et al., 2018). 

Following variance filtering of the entire cohort to ensure the same feature set was used, we integrated 

our WGBS MB sample CpG beta values at all 32,000 matching probe sites and clustered using t-sne 
(Figure 4.12). Encouragingly, WGBS sample data clusters by its respective subgroup, demonstrating 

that imputed WGBS sample data clusters well with array sample data sourced and analysed from 
different institutions. The differences in platform were evident, however, where WGBS samples were 

typically located on the periphery of their respective primary subgroup clusters. This is most 
pronounced in the SHH cluster where WGBS MB samples display their own Infant/Child-Adult subtype 

split on the distal edges of the SHH array cluster. T-sne clusters closely related samples nearer 

together, explaining both the correct clustering displayed by WGBS MB samples and their respective 
positions on the edges of each cluster as WGBS derived beta values are numerically more like each 

other rather than other array samples. This behaviour is only apparent when clustering with non-
matched sample data, whereas sample pairs cluster more closely when performing t-sne with our 

matched cohorts. Regardless, such findings are of note, given the clear inter-operability that is seen 
between sample data derived from both platforms. The fact that MB data from both platforms cluster 

tightly amongst their respective subgroups indicates that it is possible that array-trained classification 
tools (like that of the DFKZ paediatric brain tumour classifier) offer potential to classify WGBS sample 

data, given their similarity to that of samples used in current classifier reference sets in dimension 

reduction visualisations.  
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Figure 4.12 – t-sne: Overlaying WGBS samples onto MNP reference medulloblastoma samples (n = 
426).  
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4.4.4 – Medulloblastoma samples sequenced via low-pass 
WGBS can successfully be assigned into subgroup 
using pre-existing DNA methylation microarray 
classifiers 

 
Regarding classification, the integration of both platforms was hypothesised to be possible given that 

methylation data from both platforms are highly correlated and can be analysed in the same format 
(beta values). Provided the issue of missing data is resolved by imputation, WGBS sample data could 

theoretically be applied to classifier tools following processing, where WGBS sample data (subset to 
respective array-defined probe sites) effectively mimics that of any other array test sample. Most 

publicly available classifiers, including the DFKZ brain tumour classifier, accept sample data only in 
the IDAT format – the raw data format for DNA methylation microarray sample data. Unless the 

software is publicly available, allowing beta values to be integrated at the processed data input stage, 

it is impossible to use WGBS methylation values currently. To test the capability of WGBS sample data 
to be integrated with array-based classifiers, two pre-existing medulloblastoma classifiers were used 

for which software access was unrestricted. Both classifiers are based upon the support vector 
machine algorithm and utilise a 10,000-probe reference set to predict both the four molecular 

subgroups and a previously defined seven-group classification defined by Schwalbe et al., which splits 

SHH into infant and child/adult subtypes and both groups 3 and 4 in to low/high-risk subtypes 
respectively (Schwalbe et al., 2017). 

 

Application of NMB WGBS sample data (10x) to both classifiers revealed high concordance with that 
of matching array samples, with a mean WGBS sample probabilities of 0.967 (SD = 0.057) and 0.904 

(SD = 0.133) returned by both 4 and 7 subgroup classifiers respectively (Tables 4.5 & 4.6). For both 
classifiers, all 10,000 features (probes) within the training set had a subsequent matched CpG within 

our NMB WGBS cohort, since all missing data was imputed. Matched array data returned mean class 

assignment probability scores of 0.949 (SD = 0.104) for the 4-group classifier, significantly lower than 
WGBS sample data (paired t-test, p = 0.031). For the seven-subgroup classifier, matched array 

samples were assigned with a mean probability of 0.913 (SD = 0.113), with no significant difference 
between platforms (p = 0.341). For the 35 matched samples tested, all were concordant for our 4-

group classifier, including the single FFPE/fresh-frozen pair. This sample, a WNT tumour, was 
classified with a probability of 0.886 and 0.922 for FFPE and fresh frozen tissue respectively, 

highlighting the well-known difference in quality between both DNA sources. For the Schwalbe et al. 

classifier, 33 out of 35 samples were concordant between platforms. Both samples, NMB_549 and 
NMB_181, belonged to the SHH subtype and exhibited significant falls in assignment probability. All 

the results were obtained using WGBS data for which a 3x coverage filter during pre-processing. When 
applying sample data processed with a standard filter of 5x, no significant change in class assignment 

probability for the 4-group classifier was observed (p = 0.905), but a significant fall in probability when 

predicting the Schwalbe et al., subtypes (p = 0.005) (see appendix – 8.1.4). A similar difference was 
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observed when testing the effect of coverage on mean class assignment probability, with no significant 

changes in probability observed by the 4-group classifier but significant falls with each drop in 
coverage for the 7-group classifier. ICGC sample data performed equally as well when applying 

matched, high depth WGBS sample data to both classifiers (Tables 4.5 & 4.6). Mean assignment 
probabilities of 0.970 (SD = 0.057) and 0.873 (SD = 0.150) were obtained for both 4 and 7-group 

classifiers respectively. No significant difference was observed between ICGC and NMB cohorts for 
either classifier, indicating that samples sequenced at 10x perform adequately (t-test, p > 0.05). 

Compared to matched array samples, no significant difference in assignment probability was 

observed, with mean array assignment probabilities of 0.964 (SD = 0.071) and 0.870 (SD = 0.150) 
obtained for each classifier. Like that of the NMB cohort, complete concordance for the 4-group 

classifier was observed, and 3 misclassifications when classifying 7-groups. All 3 samples were also 
classified with low probability (< 0.6) when applying array sample data, making it likely that these 

samples are inherently difficult to classify using the defined features that form part of this classifiers 
training set.  
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Table 4.5 – Classifier performance (4-group) for combined WGBS and Array cohorts. Each cohort is split into ICGC (n = 34) and NMB (n = 36) respectively, 
as each dataset was originally sequenced at different levels of depth. 

Table 4.6 – Classifier performance (7-group) for both WGBS and array cohorts.



Faculty of Health & Life Sciences    Northumbria University 
 

178 
 

The results observed in this project demonstrate that medulloblastoma tumour samples sequenced 

via WGBS can seamlessly be integrated into pre-existing classifier models and predict molecular 
subgroup with excellent precision. Concordance between the platform and matched DNA methylation 

microarray samples is very high, with 100% concordance observed when classifying the four 
molecular subgroups of medulloblastoma and over 90% concordance when applying the Schwalbe 

et al., (2017) classification model. Both models are trained solely using small numbers (i.e., <500) of 

array samples, and this success indicates that the current optimised DFKZ brain tumour classifier, 
which was derived initially from 2801 tumour samples, would in a similar way likely be capable of 

classifying WGBS sample data with high accuracy. This could be achieved by making their software 
publicly available, allowing researchers to apply WGBS sample data at their own discretion following 

processing, or by enabling sample data to be uploaded in the form of a beta value matrix. Whilst this 

seems simple, it presents some risk as uploaded data is not subject to standardised pre-processing 
(e.g., no imputation) and may result in incorrect classification calls. Indeed, whilst data was processed 

effectively and demonstrates that low-pass WGBS MB samples classify with high probability using our 
methods, it may be more pertinent to further adapt array-based classifier training sets to deal with 

WGBS sample data for testing. For example, studies testing the capability of RRBS and nanopore 
sequencing for paediatric brain tumour classification leverage array training sets by binarizing beta 

values to 1 and 0 to mimic the numerical binomial distribution of methylation sequencing data (van 
Paemel et al., 2021; Kuschel et al., 2021). However, such an approach disregards the potential 

significance of hemi-methylation, which has been shown to be an important biomarker in 

tumorigenesis (Sun et al., 2021; Shao et al., 2009). In addition, WGBS sample data has been shown to 

be highly correlated to array beta value calculations suggesting that such a binarisation step may not 
be necessary. Both studies also do not impute data, drastically reducing the number CpGs available 

for training due to random missingness causing a fall in the number of common CpGs shared as cohort 
size increases. Whilst this does not significantly hamper prediction capability too much in these 

studies, data missingness would undoubtedly become a limiting factor as cohort sizes increase. 

Regardless, to confirm these findings, further research is needed to comprehensively evaluate how 
WGBS sample data classifies with array-trained models with increased cohort sizes extended to 

include additional tumour types.  
 

Whilst performance is high in this study, the cohort size is modest and the NMB cohort was carefully 
selected to include highly classifiable samples. For the small number of difficult to classify samples, 

this was also typically the case for matched array samples, suggesting that the features selected by 

DNA methylation microarray may not be suitable for these cases. This potentially could be resolved 
when considering the increased CpG variability observed outside of the microarray probe manifest, 

which contributed to increased visual separation between subgroups. This increased variability also 
offers potential for optimisation of subgroup definition based on whole genome methylome profiles. 

This may be of particular benefit when dealing with the additional subtypes that are continuing to be 
identified in medulloblastoma (e.g., subtypes I-VIII, SHH subtypes), where the whole methylome may 
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enable difficult to classify samples to be classified more confidently. Further research is required in 

this area regarding WGBS and MB subgroup classification. Whether there is currently an appetite for 
this is questionable, given the clear benefits of the methylation array platform and continuing 

development with the platform. Such research would not be able to be conducted until WGBS 
sequencing is routinely employed by other clinical institutions. Until such a stage is reached, it makes 

sense to continue to take advantage of the pre-existing array sample data that is available, and the 
integration of WGBS subgroup classification into pre-existing array classifier models has been shown 

to be a relatively easy quality of life addition in this study. Such an integration is an important, 

necessary step if the field is to take advantage of methylation sequencing technologies, ensuring a 
smooth transition to such platforms in the coming years. 
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4.4.5 – Validated classifier models trained using low-pass 
WGBS perform equally to array trained models 

 
Given the increased variability found among CpGs not covered by the array platform, it was deemed 

prudent to survey how classifier models trained to predict the molecular subgroups of 
medulloblastoma perform when trained solely using WGBS samples rather than samples analysed via 

DNA methylation microarray. This allows WGBS-derived classifiers to take forward CpGs of increased 

variability for training, which may enable the creation of models that can predict molecular subgroup 
with greater accuracy and higher probability than array-based alternatives. To investigate this, seven 

suitable classification algorithms were applied; capable of assigning multiple classes alongside an 
associated class probability measure; elastic net, random forest, XGBoost (linear/tree boost 

algorithms), SVM (linear/radial kernel) and logic regression.  Each model was trained using the top 
10,000 most variable CpGs/probes for our matched WGBS and Array cohorts (n=77) and validated 

performance using a 10 times 6-fold cross validation, allowing a direct statistical comparison in 
performance. For each algorithm, validation performance for all models is presented and a comparison 

between WGBS and Array trained models is drawn. An overview is given of the effect of 

downsampling, and coverage filter applied to WGBS data provided. A summary of mean validation 
model performance is provided in the appendix (8.1.9). 

 
 

4.4.5.1 – Elastic net 
 
Validated performance of elastic net classification models was excellent across both platforms. When 
training with all samples (n=77), cross-validated WGBS models returned a mean accuracy of 0.967, 

adjusted Cohen’s Kappa statistic (CK) of 0.956, AUC of 0.999 and log loss of 0.117 (Figure 4.13). When 
considering the effect of lowering coverage, model performance remained stable, with a fall in log loss 

observed at 2x (Figure 4.14). The final values selected for the WGBS trained model was alpha = 0.4 

and lambda = 0.10, whereas for our array model alpha = 0.4 and lambda = 0.010 respectively. No 
statistical difference in model performance was observed when training models with WGBS sample 

data filtered using either threshold of 3x or 5x. Array trained models performed similarly, with 
statistically equal accuracy (0.985, p = 0.060), CK (1, p = 0.054) and AUC (1.00, p = 1) values observed. 

Mean log loss, a measure of the divergence in class assignment probability compared to the true class 
probability (closer to 0 indicates better performance), was lower, yielding a mean of 0.084 (p < 0.001). 

The high performance observed using the elastic net algorithm is consistent with other studies 

involving medulloblastoma datasets (Weishaupt et al., 2019) and methylation data in general (Zhuang 

et al., 2012), where its suitability is well established. 
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Figure 4.13. Mean elastic net classifier validation performance for Array, 
LiftOver and WGBS derived training sets (n = 10,000 features).  
 
Legend: The black dot denotes the median value across all validation 
tests, either side of the box denote the 25th and 75th percentiles, and 
the whiskers correspond to the inter quartile range. Dots outside this 
range are considered outliers. 
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Figure 4.14. Mean elastic net classifier performance for 
array, liftover and each downsampled level of coverage. 
 
Legend: Classification models with good performance 
will yield AUC, accuracy and CK statistics close to 1, 
with 1 being a perfect score. Log-loss values are a 
measure of how close all assigned prediction 
probabilities are to the true class (e.g., Molecular 
subgroup). Poorly trained classifiers exhibit lower class 
assignment probabilities and will display higher log-loss 
values, with 0 being a perfect score. 
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4.4.5.2 – Random forest 
 
Generally, the random forest classifiers performed equivalently between platforms, with high mean 
accuracy (WGBS = 0. 973, Array = 0.980), mean CK (WGBS = 0.964, Array = 0.973) and AUC (WGBS 

= 0.997, Array = 0.998) for both platforms respectively (p = 1.000) (Figure 4.15). Log loss performance 

was statistically lower for the array trained model (WGBS = 0.360, Array = 0.297, p = < 0.001), 
indicating greater assignment probabilities for each sample across all parameter combinations tested. 

For our WGBS cohort, trained models performed best using 1000 trees and mtry = 60 whereas the 
optimal model trained using array data used 1250 trees and mtry = 9999. Like elastic net, a drop-off 

in performance was observed at ~5x (Figure 4.16). When comparing WGBS models trained using 
sample data pre-processed with a filter of 5x or 3x, the application of a lower filter resulted in 

significantly better performing models, with greater mean accuracy (High filter = 0.973, Low filter = 

0.980), CK (High filter = 0.940, Low filter = 0.964) log loss (High filter = 0.386, Low filter = 0.360) 
observed. (p < 0.001) (see appendix). Similar performance using random forest is encouraging, given 

the algorithm handles outliers well and is not as susceptible to overfitting.  
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Figure 4.15. Mean random forest classifier validation performance 
for Array, LiftOver and WGBS derived training sets (n = 10,000 
features).  
 
Legend: The black line denotes the median value across all 
validation tests, either side of the box denote the 25th and 75th 
percentiles, and the whiskers correspond to the inter quartile 
range. Dots outside this range are considered outliers. 
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Figure 4.16. Mean random forest classifier performance 
for array, liftover and each downsampled level of 
coverage. 
 
Legend: Classification models with good performance will 
yield AUC, accuracy and CK statistics close to 1, with 1 
being a perfect score. Log-loss values are a measure of 
how close all assigned prediction probabilities are to the 
true class (e.g., Molecular subgroup). Poorly trained 
classifiers exhibit lower class assignment probabilities and 
will display higher log-loss values, with 0 being a perfect 
score. 
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4.4.5.3 – Extreme gradient boosting 
 

For our cohorts, linear boosted models performed relatively poorly compared to other algorithms in 

both WGBS and array sample trained models. No statistical difference was observed in mean model 
accuracy (WGBS = 0.875, array = 0.882), CK (WGBS = 0.834, array = 0.843) and AUC (WGBS = 0.980, 

array = 0.983) performance (p = 1.000), whereas log loss was statistically lower in WGBS trained 
models (WGBS = 0.369, array = 0.420, p < 0.001). Optimal parameters for our WGBS trained classifier 

was rounds = 100, lambda = 0.1, alpha = 0 and eta = 0.3. Parameters were identical for our array 
trained model apart from lambda which was set at 0. Like other models, the usage of WGBS data 

filtered with a 3x filter resulted in greater model performance, with greater mean accuracy (high filter 
= 0.818, low filter = 0.875), CK (high filter = 0.759, low filter = 0.834), AUC (high filter = 9.965, low filter 

= 0.980) and lower log loss values (high filter = 0.508, low filter = 0369) observed (p = < 0.02) (see 

appendix). Tree boosted models performed marginally better than linear boosted models in both 
platforms. All performance measures were superior in both platforms, with higher mean accuracy 

(WGBS = 0.906, array = 0.961, p < 0.001), CK (WGBS = 0.873, array = 0.948, p = < 0.001), AUC (WGBS 
= 0.991, array = 0.999, p = 1.000) and lower log loss (WGBS = 0.323, array = 0.263, p = 0.029) values 

observed. Mean log loss was also significantly lower when applying a 3x filter during WGBS processing 
(high filter = 0.392, low filter = 0.323, p < 0.001). Both models exhibited unstable performance as 

coverage fell, with 1x performing most poorly (Figures 4.17 & 4.18). 
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Figure 4.17. Mean XGBoost (Linear booster) classifier 
validation performance for Array, LiftOver and WGBS 
derived. Training sets (n = 10,000 features).  
 
Legend: Classification models with good performance 
will yield AUC, accuracy and CK statistics close to 1, 
with 1 being a perfect score. Log-loss values are a 
measure of how close all assigned prediction 
probabilities are to the true class (e.g., Molecular 
subgroup). Poorly trained classifiers exhibit lower class 
assignment probabilities and will display higher log-loss 
values, with 0 being a perfect score. 
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Figure 4.18. Mean XGBoost (Tree booster) 
classifier validation performance for Array, 
LiftOver and WGBS derived. Training sets (n = 
10,000 features).  
 
Legend: Classification models with good 
performance will yield AUC, accuracy and CK 
statistics close to 1, with 1 being a perfect 
score. Log-loss values are a measure of how 
close all assigned prediction probabilities are to 
the true class (e.g., Molecular subgroup). Poorly 
trained classifiers exhibit lower class assignment 
probabilities and will display higher log-loss 
values, with 0 being a perfect score. 
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4.4.5.4 – Support vector machine 
 
We trained SVM classifiers using both linear and radial kernels (Figures 4.19 & 4.20). SVM performance 
using linear kernels was excellent for both platforms, with high mean accuracy (WGBS = 0.963, array 

= 0.985, p = 0.015), CK (WGBS = 0.950, array = 0.980, p = 0.005), AUC (WGBS = 0.997, array = 1.000, 

p = 0.085) and low log loss (WGBS = 0.382, array = 0.344, p = < 0.001) values reported (Table 4.7). 
For WGBS samples, our optimal classification model was obtained using a cost value of 128, whereas 

cost was optimal at 32 for our array model. Accuracy, CK and AUC performance measures remained 
stable in WGBS models trained using samples processed with a 3 or 5x filter, but log loss was 

significantly lower in our low filter cohort (high filter = 0.392, low filter = 0.382, p = < 0.001). 
Performance was significantly worse when training SVM classifiers using a radial basis function kernel 

for both platforms. Accuracy (WGBS = 0.771, array = 0.768, p = 1.00), CK (WGBS = 0.695, array = 

0.686, p = 1.000) and AUC (WGBS = 0.899, array = 0.928, p = < 0.001) was low, whereas mean log 
loss was the highest out of all algorithms tested (WGBS = 0.899, array = 0.895, p = 1.000), indicating 

that samples were predicted with poor probability as well as low accuracy. SVM classifiers are typically 
better suited to binary classification cases and the chosen kernel is recognised to have a significant 

impact on performance, which is evidently the case in this project. 
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Figure 4.19. Mean SVM (Linear kernel) 
classifier validation performance for Array, 
LiftOver and WGBS derived. Training sets (n = 
10,000 features). 
 
Legend: Classification models with good 
performance will yield AUC, accuracy and CK 
statistics close to 1, with 1 being a perfect 
score. Log-loss values are a measure of how 
close all assigned prediction probabilities are 
to the true class (e.g., Molecular subgroup). 
Poorly trained classifiers exhibit lower class 
assignment probabilities and will display higher 
log-loss values, with 0 being a perfect score. 
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Figure 4.20. Mean XGBoost (Radial kernel) 
classifier validation performance for Array, LiftOver 
and WGBS derived. Training sets (n = 10,000 
features). 
 
Legend: Classification models with good 
performance will yield AUC, accuracy and CK 
statistics close to 1, with 1 being a perfect score. 
Log-loss values are a measure of how close all 
assigned prediction probabilities are to the true 
class (e.g., Molecular subgroup). Poorly trained 
classifiers exhibit lower class assignment 
probabilities and will display higher log-loss 
values, with 0 being a perfect score. 
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4.4.5.5 – Logic regression 
 
Interestingly, validated logistic regression classifiers performed well in this study for both platforms. 
Performance was excellent, with high mean accuracy (WGBS = 0.977, array = 0.969, p = 0.178), CK 

(WGBS = 0.969, array = 0.959, p = 0.173), AUC (WGBS = 1.000, array = 1.000, p = 1.000) and low log 

loss (WGBS = 0.068, array = 0.070, p = 0.009) observed (Figures 4.21).  No fall in performance was 
observed in models trained using downsampled datasets (Figure 4.22), which is possibly explained by 

the increased proportion of binary values in WGBS data as sequencing depth falls. Classifiers trained 
using WGBS sample data filtered using a 5x threshold produced models that performed with 

significantly lower mean log loss values (high filter = 0.043, low filter = 0.068, p = < 0.001). 
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Figure 4.21. Mean logic regression classifier validation 
performance for Array, LiftOver and WGBS derived 
training sets (n = 10,000 features).  
 
Legend: The black line denotes the median value 
across all validation tests, either side of the box denote 
the 25th and 75th percentiles, and the whiskers 
correspond to the inter quartile range. Dots outside 
this range are considered outliers. 
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Figure 4.22. Mean logic regression classifier 
validation performance for Array, LiftOver and 
WGBS derived. Training sets (n = 10,000 features). 
 
Legend: Classification models with good 
performance will yield AUC, accuracy and CK 
statistics close to 1, with 1 being a perfect score. 
Log-loss values are a measure of how close all 
assigned prediction probabilities are to the true 
class (e.g., Molecular subgroup). Poorly trained 
classifiers exhibit lower class assignment 
probabilities and will display higher log-loss 
values, with 0 being a perfect score. 
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4.4.5.6 – Model limitations 
 
While our results show concordance between both WGBS and DNA methylation microarray trained 
classification models in predicting the molecular subgroups of medulloblastoma, they are subject to 

some limitations. Due to the modest number of samples in this study, no independent holdout data 
set was created, preventing an unbiased evaluation of all optimised final models. To address this, we 

ensured that all models were assessed via k-fold repeated cross-validation, where model performance 

is assessed numerous times on different isolated partitions of the original training set. Whilst this 
method is established as a useful way of minimising the risk of model overfitting, the lack of an 

independent test set ultimately prevents us from assessing whether the model is truly applicable to 
unseen, incoming samples. In fact, the small cohort size used for training (fewer than 100 samples) is 

another limitation of our analyses. Ideally, training sets should be as large as possible, particularly 
when concerned with the classification of multiple heterogenous classes such as the molecular 

subgroups of medulloblastoma (Capper et al., 2018). 

 
To ensure comparability, we utilised the same method of feature selection – unsupervised variance 

filtering of all beta values to the top 10,000 CpGs as defined by a standard deviation measure. This 

feature selection method has been used multiple times when dealing with methylation data and is 
shown to capture the variability between the subgroups of medulloblastoma effectively in other studies 

(Sharma et al., 2019; Maros et al., 2020). However, many of the algorithms tested may be more suited 

to embedded methods such as the feature importance measure of random forest (Capper et al., 2018) 
or wrapper methods like recursive feature elimination with the SVM algorithm (Guyon et al., 2002). In 

fact, the application of unsupervised variance filtering may be quite unsuitable, and comprehensive 

analysis into the appropriate feature selection algorithm should be performed when focusing on a 
particular algorithm (Maros et al., 2020). However, for this study we deemed our feature selection 

method as appropriate, given our intention to investigate the capability of WGBS data to produce 

comparable performance to that of matched array sample data and not to generate a fully optimised 
classification model. 

 

Finally, the usage of class labels derived from array data may influence the performance of classifiers 
trained with samples sequenced by WGBS. Given the increased CpG variability and separation 

observed between classes when accounting for CpGs missed by the DNA methylation microarray, 
particularly between that of group 3 and 4 (this resulted in some samples currently identified as group 

3 clustering clearly amongst group 4 samples), it is possible that class labels may differ slightly if they 
were identified using these feature sets. Indeed, the increased CpG variability observed in this study 

puts forward a strong case for subgroup optimisation using WGBS. Many samples remain difficult to 
classify via methylation microarray classifiers, and with training sets for the DFKZ classifier reaching 

>50,000 samples (Perez & Capper, 2020), it is likely that further optimisation for the more common 

tumour entities such as the subgroups of medulloblastoma would be challenging, given the limited 
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number of features to select within the array platform. The inclusion of these additional variable 

features may lead to the identification of further optimised methylation profiles for each respective 
subgroup and potentially subtype of medulloblastoma. This may have clinical implications for patients, 

particularly for those with tumours whose subgroup cannot be predicted reliably. However, much of 
this is hypothetical and would need to be tested as part of a comprehensive study that attempts to 

redefine the subgroups of medulloblastoma using similar clustering approaches to studies that 
identified them using the DNA methylation microarray platform. 

 

 

4.5 – Summary & conclusion 
 
The analyses presented in this chapter successfully demonstrate the utility of WGBS derived 

methylation data as an effective and potentially superior substitute for DNA methylation array tumour 
data. Variance filtering of the entire methylome in a matched cohort of MB tumour samples revealed 

significantly greater numbers of CpGs that capture greater variability than that of probe sites assessed 
by the DNA methylation microarray platform. A total of 3,990,549 CpGs were identified as variable 

(defined using a standard deviation measure > 0.25) compared to just 27,211 probe sites in the 
matched microarray cohort. Whilst technical differences between the platforms and low sequencing 

explain some of the increased variability observed, just 36% and 42% of the top 10,000 variable CpGs 
were identified as overlapping within 125bp of any respective probe site located on the DNA 

methylation microarray manifest. This indicates that a significant amount of CpG variability found in 

MB samples in this study are found in intergenic and repetitive regions not assessed by the array. 
Variability was found to be differentially distributed between both platforms, although it is likely this 

may be due to the design of the array platform not being proportionally equal to each respective 
chromosome size by design. Regardless, the clear substantial variable methylation identified provides 

motivation for the establishment of whole methylome profiles for the subgroups of MB. 
 

Applying various dimensionality reduction techniques to the most variable features revealed that the 

molecular subgroups of medulloblastoma were visually recapitulated when using methylation in our 
WGBS MB cohorts. We demonstrate that WGBS sample data clusters among their respective 

subgroup irrespective of sequencing batch or depth, with near identical clustering patterns observed 
between WGBS and Array data. We observe potentially greater degrees of separation between groups 

3 and 4, likely due to the increased variability inherent to the WGBS-derived feature set and the 
deliberate selection of highly classifiable samples in our cohort. Two samples, a group 3 with 

intermediate probability and a low probability group 4 classified as MBNOS cluster amongst group 4 
samples to a much greater degree when utilising the WGBS derived feature set. This is nonetheless 

an encouraging finding, given the two share highly similar methylation profiles when analysed using 

DNA methylation microarray. Clustering WGBS derived samples to the original DFKZ paediatric brain 
tumour classifier reference MB cohort corroborated our findings, demonstrating that WGBS MB 
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sample methylation values cluster among their respective subgroup among non-matched samples 

analysed from various institutions.  
 

The observed inter-operability between WGBS and Array derived methylation values when applying 
visualisation techniques translated further when testing the capability of array trained classifier 

platforms to predict the molecular subgroup of MB tumours sequenced using WGBS. Applying WGBS 
sample data to historical MB subgroup classifiers (for which we had full development access to) 

predicted subgroups with high concordance to matched array samples. Mean classification probability 

was high for both 4 and 7 subgroup classifiers, with mean class prediction probabilities of 0.967 (SD 
= 0.055) and 0.873 (SD = 0.144) respectively. Matched array data was classified with lower 

probabilities when considering the 4-group classifier (mean probability = 0.949, SD = 0.104, p = 0.031), 
and equally for the 7-group classifier respectively (mean probability = 0.913, SD = 0.113, p = 0.341).  

 
These findings demonstrate that tumour samples sequenced via WGBS can seamlessly be integrated 

into pre-existing classification models with high precision. This can be achieved if a classifier model 
and its associated training set is publicly available, as beta values from either sequencing or array 

sources are compatible. Whilst this is a simple integration for a bioinformatician with intermediate 

experience, it is subject to risk as no sample data that has not been processed effectively may result 
in incorrect classification calls. The successful integration of WGBS into pre-existing Array classifiers 

is an important and beneficial finding for researchers whose work involves paediatric brain tumour 
classification and is an important step if the field is to ensure a smooth transition from the array 

platform to methylation sequencing in the coming years. The development of in-house classifier 
models trained using WGBS sample data to predict the molecular subgroups of medulloblastoma 

performed excellently for nearly all algorithms tested, performing similarly to models trained using 

array data. This high concordance indicates that native WGBS trained classifiers will likely perform 
equally to that of current array trained models once sufficient WGBS sample data has accumulated. 

Our analyses were not without limitations however, namely due to small cohort size and lack of 
specialised feature selection. Regardless, all our findings suggest that there is significant variability 

located in regions not assessed by the DNA methylation microarray platform. This variability translates 
into increased visual separation when applying dimensionality reduction techniques and concordant 

classification performance when using array-defined subgroup class labels. It is therefore not an 
unlikely hypothesis that there is room to further define the methylation profile for each potential 

subgroup and subtype of medulloblastoma by using the whole methylome, and further study should 

be encouraged in this area using larger cohorts of samples.



Faculty of Health & Life Sciences    Northumbria University 
 

198 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Chapter 5 – Generating diagnostic readouts for 
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5.1 – Introduction 
 
The identification of variable molecular features in MB is vital to current risk stratifications (Section 
1.7.7) achieved by using a variety of different platforms in a research setting and is largely dependent 

on resources and the overarching goals of any given study. Aneuploidy and/or gene copy number 

measurements can be inferred using a variety of methods, with both microarray and karyotype 
methodologies predominating for many years. Alongside its application as the current gold-standard 

for brain tumour/subgroup identification (Capper et al., 2018), DNA methylation microarrays have been 

widely used to infer copy number variation (CNV) as an additional readout, given its capability to detect 
large structural variation and the advantage of deriving a copy number profile alongside a methylation 

subgroup call at no additional cost (Cho et al., 2019). Indeed, a comprehensive CNV profile for each 

submitted sample is returned as part of the DFKZ paediatric brain tumour classifier analytical pipeline 
using the ‘conumee’ package, which pools together methylated and unmethylated signal intensities 

and calculates a ratio against a reference set of diploid samples that have a balanced genome 
(Hovestadt & Zapatka, 2017). CNV analysis of MB tumours samples analysed via DNA methylation 

microarray has enabled broad whole and single-arm chromosomal changes to be called with high 
accuracy. Its utility extends further to larger focal gains/losses where probe sites are numerous. 

However, the platform is inherently limited by design, with its gene-centric focus limiting the calling of 

variation in intergenic regions and uneven probe coverage preventing focal changes to be reliably 
identified where probe density is low. Regardless, the capability to infer CNV from the methylation 

microarray platform remains incredibly useful, and the integration of genomic and epigenomic 
analyses presents significant economic benefits to researchers. 

 
DNA methylation microarrays can also be employed for differential methylation analysis. Briefly, 

differential methylation analysis involves the detection of differentially methylated probes (DMPs) 
and/or regions (DMRs) between sample groups (e.g., subgroup-specific regions of highly 

increased/decreased DNA methylation) and is of significant interest in clinical research when 

concerned with identifying subgroup-specific biomarkers. DMRs are known to occur throughout the 
genome, and the array is often employed as a cost-effective approach to identify DMRs around genic 

and well-established regulatory regions. DMRs are increasingly being identified as biomarkers, both 
diagnostic and prognostic, in many different tumour types including medulloblastoma (Meyer et al., 

2021). However, due to the relative paucity of inter-genic coverage, the platform is unable to 

comprehensively assess DMRs within intergenic regions. 
 

Sequencing approaches are used to identify clinically important mutations in MB, with WGS and WES 
increasingly being employed in research (Northcott et al., 2017). Whilst the use of whole genome 

sequencing is a clear gold-standard, the costs of generating sequencing data at high enough depths 

to reliably call variants (i.e., >30x) are out of reach for most. WES offers a cheaper alternative, where 
sequencing costs are lowered by focusing only on exonic regions. However, both sample preparation 
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and bioinformatic processing remains complex, and sacrificing whole genome coverage presents 

additional questions regarding its utility compared to other limited sequencing platforms. For 
diagnostic and/or research purposes, a mutation panel covering a range of genes relevant to MB and 

its associated heritable diseases are typically used to minimise costs (Mattocks et al., 2010). The 

reliable identification of mutation status in MB remains an integral part of most clinical studies of MB 
as well as for patient stratification. The determination of TP53 status in SHH tumours is a crucial 

prognostic indicator for patients, where tumours with TP53 mutations are associated with 41% 5-year 

overall survival compared to 81% for tumours with wildtype TP53 (Northcott et al., 2019). 

 
The employment of DNA methylation microarray for subgroup assignment and a multi-gene mutation 

panel are becoming prevalent in medulloblastoma diagnostics in developed nations. The use of the 
microarray has persisted over many years, which consequently has generated significant collections 

of tumour methylomes. Over 50,000 paediatric brain tumour samples now exist within the current 

DFKZ brain tumour classifier, and the clustering of over 1501 Group 3 and 4 samples has enabled the 
identification of further molecular subtypes within them, each associated with distinct survival profiles 

and clinically relevant markers of disease (Capper et al., 2018; Sharma et al., 2019). The main reason 

for the continued use of the array platform has been economic, since methylation sequencing 
platforms like WGBS have, until recently, required significant amounts of input DNA and library 

preparation/sequencing costs have been appreciably higher than what is needed for DNA methylation 
microarrays. However, these barriers to entry have since been lowered, and the cost of generating 

low-pass data (0.1 - <10x) is now reaching a comparable price to the DNA methylation microarray 
platform (in 2021: 10x WGBS = ~£430 / Array = £300). The major benefit of methylation sequencing is 

that all CpGs can be interrogated in the methylome, compared to just 1.5-3% from both Illumina 

Methylation 450k and EPIC platforms respectively (Zou et al., 2018). Like the array, many additional 
analyses in addition to DNA methylation measurement can be performed using methylation 

sequencing assays. Differential methylation-based analyses can be performed with single nucleotide 

resolution across the entire methylome, far superior to the coverage that array platforms offer. 
Crucially, intergenic DMRs can be identified when using methylation sequencing, which are known to 

be associated with tumorigenesis (Rodriguez et al., 2006; Timp et al., 2014). Rather than inferring copy 

number through summed methylation signal intensities, as is done for the methylation microarray, 
copy number analysis can be performed at the sequencing read level, offering the potential for CNV 

to be detected at significantly greater resolution throughout the entire genome. For example, SNCAIP 

duplication, a marker of group 4 medulloblastoma, is a single copy tandem duplication event that is 
impossible to detect using methylation array due to its size and small number of probes located at that 

locus and instead requires sequencing-based approaches to detect reliably (Northcott et al., 2012). 

CNV calling is well established for WES and WGS, and many tools are now available for use with 
WGBS (Talevich et al., 2016; Raman et al., 2019). The utility of methylation sequencing at low-pass to 

be used to call chromosomal copy number aberrations has not been extensively explored, and 

reference-free copy number (i.e., standalone CNV estimation without a diploid control cohort) calling 
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has yet to be tested in research. Methylation sequencing also offers the possibility of variant calling, 

with many numerous specialised bisulfite sequencing variants calling tools available (Liu et al., 2021; 
Merkel et al., 2019). 

 

The use of WGBS throughout this project has demonstrated that the platform can be used effectively 
to generate high quality, full-resolution methylation data for the entire methylome at low pass that is 

highly correlated to array generated data in matched samples. The detection of increased variability 

and increased visual separation observed between the molecular subgroups of medulloblastoma when 
considering CpGs located in regions missed by the array platform provides the motivation to establish 

whole methylome profiles for each respective subgroup of medulloblastoma (Section 4.4.1). These 
findings demonstrate that the use of low-pass WGBS is at the very least on an equal footing to array 

for direct methylation-based analyses, such as methylome-based tumour subgrouping. Moreover, the 
platform potentially offers a higher-resolution alternative for copy number estimation and could also 

be used for variant calling, although reliable estimates may be coverage-dependent. Additionally, 

differential methylation analysis provides the possibility to define DMRs in intergenic regions, offering 
the potential to identify additional biomarkers specific to each subgroup/subtype. When considering 

the typical cost of both methylation array coupled with panel sequencing, the cost of low-pass WGBS 
becomes more comparable (2021 price: 10x WGBS = ~£430, Array + Panel = ~£550). As well as 

lowering cost, if WGBS can be utilised to derive both methylation and genomic diagnostic data, 
significantly less strain would be placed on diagnostic laboratories for MB diagnosis, as all essential 

data could be obtained using a single assay.
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5.2 – Aims & objectives 
 
The key aim of this chapter was to develop a range of optimised, clinically relevant analyses that form 
an important part of medulloblastoma diagnostics using low pass WGBS sample data - copy number 

variation, mutation detection and differential methylation. Using a cohort of internally sequenced 

samples (n=36), we aimed to develop an optimised, robust copy number calling pipeline for low-pass 
WGBS samples. As no raw control sample data (available in BAM file format) was available in this 

study, the optimised pipeline had to be capable of calling CNVs without a paired reference sample 
set. After a pipeline was established, identified regions of aneuploidy were compared to CNVs called 

from DNA methylation microarray analysis of matched samples.  We also investigated whether 
reference-free CNV methodologies in WGBS could call focal regions of aneuploidy with higher 

resolution than that of array-based methods. The possibility of detecting disease-relevant mutations 

was investigated by developing pipelines for variant calling from low-pass WGBS. Finally, to 
investigate the landscape of DMRs within subgroups, a comprehensive analysis of DMR distribution 

and gene ontology enrichment was performed on WGBS data and compared to matched array 
samples, providing insights into the degree of intergenic subgroup-specific methylation patterns 

present in MB. The group 3/4 subtype VII had previously been shown to exhibit additional, clinically 
relevant heterogeneity (Sharma et al., 2019) and the ability of WGBS to better distinguish this 

heterogeneity was investigated. 
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5.3 – Materials & methods 
 
5.3.1 – Analysis Overview 
 

 
Figure 5.1 – Graphical overview of all analyses conducted within chapter 5. Further details (e.g., 
software, parameters used, references) are provided in subsequent sections. 
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5.3.2 – Cohort description 
 
Aneuploidy detection via WGBS required that sample data was provided in the binary alignment map 
format (BAM). As our ICGC cohort (n = 42) was acquired as a large, pre-processed beta value matrix, 

these samples were not used during this analysis. Our NMB cohort, consisting of 36 primary 

medulloblastoma samples was taken forward for CNV analysis. Samples were prepared as described 
in 3.3.2 and raw data processed to convert fastq files into aligned, deduplicated high quality BAM files 

as described in 3.3.5. One sample, NMB_390, was a matched FFPE/fresh frozen pair. Our 
corresponding matched DNA methylation microarray cohort was also limited to only NMB sample data 

(n=35) and was processed as described in 3.3.7.2. To test the capability of our proposed CNV 
methodology in identifying gene amplifications, our NMB cohort was carefully selected to ensure that 

several samples were present with known, validated amplifications of MYC (n= 9) and MYCN (n= 8) 

(Table 5.1).  

 

 
Table 5.1. Gene validation data for NMB cohort used in aneuploidy analysis 
 
Differential Methylation based analyses were conducted using methylation values – either beta values 
or logit-transformed beta values (i.e., M values), allowing analyses to be performed using all samples 

involved in this study (n = 78). As well as conducting differential methylation analysis in a subgroup 

specific manner, the methylome landscape of the molecular subtype VII was investigated, since there 
was clinico-pathological evidence for a further split as defined by NMF (Sharma et al., 2019). The 

sequencing cohort was deliberately enriched for samples of this subtype (n = 13), enabling the 

investigation of the differential methylation landscape between these two NMF-defined groups – 
termed VII_1 and VII_2 (Table 5.2). 
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Sample_ID Subtype VII split (NMF) 
NMB_77 Grp4_LR1_1 
NMB_178 Grp4_LR1_2 
NMB_185 Grp4_LR1_2 
NMB_250 Grp4_LR1_2 
NMB_416 Grp4_LR1_2 
NMB_529 Grp4_LR1_1 
NMB_733 Grp4_LR1_1 
NMB_867 Grp4_LR1_2 

ICGC_MB19 Grp4_LR1_2 
ICGC_MB26 Grp4_LR1_2 
ICGC_MB32 Grp4_LR1_1 
ICGC_MB40 Grp4_LR1_1 
ICGC_MB90 Grp4_LR1_1 

 
Table 5.2 – NMF assignments of further subtypes present within subtype VII samples in our 
combined cohort (n=13). Subtype definitions (Grp4_LR1_1 and Grp4_LR_2) were obtained from 
Sharma et al., (2019). 
 
 

5.3.3 – Chromosomal copy number estimation 
 
5.3.3.1 – Computing resources/software 
 
All 36 NMB WGBS samples were analysed in the BAM file format using the ROCKET High Performance 

Computing service (Newcastle University). The ROCKET hardware infrastructure consists of 123 

compute nodes in total, with the largest compute nodes consisting of 56 cores (27.4GB per core) and 
8.7TB scratch space. A shared main data file store of 500TB is available to all users. Unless stated 

otherwise, all software was installed and executed within the Linux CentOS7 operating system. All 
scripts were written using VIM 8.2. WGBS CNV analysis was conducted using CNVkit v 0.9.9 (Talevich 

et al., 2016), installed within a virtual Python language environment via Anaconda, an open-source 

data science analysis toolkit (Anaconda, 2021). Prior to CNV calling, BAM files were sorted into 
chromosomal order using the ‘sort’ command within SAMtools version 1.9 (Li et al., 2009). 

 

For our 35 methylation microarray samples, CNV analysis was conducted using the R statistical 
computing environment version 4.0.3 – “Bunny-Wunnies Freak Out” within RStudio (R Core Team, 

2021). CNV analysis was conducted using conumee version 1.9.0 (Hovestadt & Zapatka, 2017). 
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5.3.3.2 – Establishment of an optimised reference-free CNV 
calling pipeline for use with low-pass WGBS sample 
data 

 
As BAM files are used for CNV analysis of data obtained via sequencing-based platforms, our cohort 
was left without a set of control cerebellum samples to use as a reference set. This required the 

establishment of a suitable method of performing copy number analysis without reference data. Tools 
capable for CNV analysis with low-pass data are typically termed as depth of coverage methodologies 

(DOC). Briefly, DOC tools split sample data into genomic bins to mitigate the issues caused by 

sequencing gaps and low read depth which would otherwise contribute to inaccurate (or ‘noisy’) 
segments being called (Vardhanabhuti et al., 2014).  After binning, reads are typically normalised 

against a set of matched reference samples sequenced at the same depth. These act as a suitable 

guide of diploidy, from which test sample read counts can be normalised against to derive an accurate 
copy number ratio (increased read depth is indicative of higher copy number, and vice versa). Tools 

that offer CNV calling without a reference are uncommon, and even more so when using samples 
sequenced at low depth that have previously been bisulfite converted.  

 
Following a literature search, it was determined that CNVkit had good potential to be used for CNV 

analysis of bisulfite sequencing data (Talevich et al., 2016). The tool is open source, compatible with 

numerous sequencing methodologies including whole-exome, target panels and whole genome 
sequencing, and has a range of bias correction options that can be applied. One such correction is for 

GC content, which varies between 38-48% across all chromosomes, and its fluctuation is known to 
affect mapping consistency (Bentley et al., 2008). This correction is optional within CNVkit rather than 

mandatory, making it more suitable to bisulfite treated DNA than other tools. Crucially, CNVKit allows 

for aneuploidy to be inferred from test data without control samples, offering the option to construct a 
‘generic’ reference derived from the hg19 reference genome, where it automatically assigns a log2 

read depth of 0 to all bins. Theoretically, this should enable the calling of at least large-scale CNVs 

with relative ease when applying default settings, with the potential for smaller regions of aneuploidy 
to be detected should the pipeline be optimised. Other tuneable parameters are provided that make 

the tool more suited for dealing with whole genomes. The option ‘—no-edge’ prevents bias corrections 
within the reference and fix commands that deals with the lower depths typically observed around the 

end regions of exome reads which is also not necessary for whole genome sequencing data. Bin size 
can also be tuned, which is highly applicable when working with data sequenced at lower depths. To 

account for repetitive sequences that may interfere with read-depth calculations, CNVKit also provides 

a list of repetitive regions that are subsequently removed from both generic reference and sample data 
prior to analysis (Talevich et al., 2016). 

 
To establish the capability of CNVKit in predicting aneuploidy with low-pass WGBS data, we first 

applied it to one sample, NMB_17, using default parameters unless stated in Table 5.3. Visual 
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inspection of identified segments showed high levels of noise present in the data. However, clear 

large-scale regions of aneuploidy appeared to be identified, providing motivation to optimise 
parameters further. Upon inspection of the default list of regions that were filtered, it was identified 

that many problematic regions such as centromeres, telomeres and bridge assembly gaps that are 
known to affect read mapping were not included in this list. Such regions are difficult to analyse and 

affect normalisation of test samples to any reference if not removed. Any effects would be 
compounded further in this case since a generic reference rather than a matched reference was used. 

The inclusion of centromeric and telomeric regions resulted in bins of ranging levels of ploidy, visually 

represented as stripes seen at the middle and ends of each chromosome when visually inspecting 
segments. 

 

Table 5.3 – Summary of optimized CNVkit parameters for aneuploidy estimation of WGBS samples 
sequenced at low-pass. 
 
 
To optimise the CN calling, the current CNVKit filter regions list were augmented with additional 
regions to be filtered, including centromeric, telomeres and other known regions of poor mappability 

(Table 5.4). Applying CNVKit using these parameters to five samples resulted in much improved 
segmentation. However, all called segments were characterised by undesirably high standard 

deviation values for all segments (SD = 0.28) – indicating that bins may be spread across calling 
thresholds. Whilst this is less problematic for large scale changes (whole chromosome arms), it is a 

sign of poor-quality segmentation when dealing with focal regions, making it difficult to determine 
whether smaller segments are artefactual, a false call or a genuine gain/loss. Low sequencing depth 

was a likely contributing factor to the segment log2 variability observed across the genomes, where 

coverage is often variable. Increasing the bin size is a measure often employed to reduce noise in CNV 
outputs, resulting in more accurate and reliable segmentation. This is at the expense of resolution but 

is a necessary sacrifice to make when attempting to optimise a reliable method of calling CNVs with 
low-coverage data. The combination of more stringent filtering and increased window size (from 10kb 

to 50kb) resulted in much improved segmentation, with a 58% reduction in segment variability across 
all called segments in the same five samples (SD = 0.12). Validated focal amplifications of MYC and 

MYCN could clearly be identified, providing confidence that these set of parameters were optimal and 

could be used to call focal regions of 150kb or larger reliably (Figure 5.2). Following parameter 
optimisation, CNVKit was applied to all 36 samples in the NMB cohort. Segment co-ordinates were 

cross-referenced with UCSC Sequence and Annotation data for the hg19 reference genome to 
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annotate any genes contained within each segment. Segment statistics were also tabulated and bin-

level log2 ratios and segment calls were visualised for all chromosomes via scatter plot. 

 

 
Table 5.4 – List of filter regions incorporated into CNVKit pipeline. Co-ordinate lists were obtained 
from the ENCOD genome browser (ENCODE, 2022)
 
 

5.3.3.3 – Validation of MYC/MYCN amplifications 
 
To test the sensitivity of our optimised CNV pipeline in calling clinically relevant gene amplifications of 
MB, samples were included with previously validated amplifications of MYC and MYCN (see table 1). 

Samples with MYC and MYCN amplifications in our NMB cohort were previously assessed using either 

fluorescence in situ hybridization (FISH) or via multiplex ligation-dependent probe amplification assay 
(MLPA) (Table 5.5). 

 

 
Table 5.5 – List of samples in NMB cohort with known, validated MYC/MYCN amplifications 
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Figure 5.2 Optimisation of CNVKit for low-pass WGBS. The inclusion of additional filter regions, threshold adjustment and increased bin size results in 
effective read binning, segmentation and calling of both large and focal regions of aneuploidy. 
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5.3.3.4 – Copy number variation analysis of matched DNA 
methylation microarray cohort 

 
Aneuploidy detection was conducted on our matched array cohort (n = 35) using the Bioconductor 

package conumee (Hovestadt & Zapatka, 2017) as previously described (Schwalbe et al., 2017). 119 

‘control’ samples were used as a reference for normalisation, obtained from the DFKZ Paediatric Brain 
Tumour classifier control reference cohort (Capper et al., 2018). Segment co-ordinates were recorded, 

and statistics were tabulated. All called segments via conumee were cross-referenced against those 

called by our CNVKit pipeline to determine the degree of concordance between both platforms. 
Segments were deemed as concordant if greater than 50% of their length were overlapping.   

 

 
5.3.4 – Variant calling of low-pass WGBS cohort 
 
To investigate the capability of using low-pass WGBS data to call variants, we used the specialised 
methylation and sequence variant calling program ‘bs_call’ (Merkel et al., 2019). Bs_call forms part of 

the popular gemBS pipeline for bisulfite sequencing data processing/analysis and has been shown to 

call variants with high accuracy in high-depth cohorts of samples. For variant calling, ‘bs_call’ takes 
advantage of both reads, applying Bayesian inference to calculate the probability of each possible 

genotype at any given loci, accounting for bisulfite conversion rate, methylation ratio and sequence 
error rate. For example, T->C SNPS (shown as T:A in the reference genome) will present as T:G base 

pairs in bisulfite treated reads. For each specific site, the genotype with the highest maximum 

likelihood estimate is selected, allowing base content to be assigned accurately. In line with GATK 
best practices, each variant is assigned various established quality measures including phred scaled 

genotype quality (GQ), read depth (DP) and mapping quality (MQ). 
 

Bs_call was initially applied to four samples, NMB_169, NMB_181, NMB_436 and NMB_787. Variants 
were assessed in the regions of the genome measured by current diagnostic target sequencing panels 

used in MB, which surveys 60 medulloblastoma-associated genes at 1644 loci (gene list provided in 

the appendix – 8.1.8). Variants were annotated with Jannovar version 0.36 (Jager et al., 2014) using 
the hg19 RefSeq gene database (NCBI, 2022).  Anticipating a low yield of high-quality variants, a soft 

filtering approach was used, followed by manual inspection of all filtered variants. Variants were filtered 

using the following parameters: QUAL >equal 20, DP >equal 2, MQ >equal 40. As expected, the total 
number of variants called for each sample was low, with a mean depth across all variants of 5.39x; 

this result led to a decision to abandon variant calling analysis for remaining samples, due to the very 
high chance of non-confidently called variants called using low-pass WGBS.    
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5.3.5 – Differential methylation analysis 
 
Following aneuploidy detection and variant calling, subgroup specific regions of differential 
methylation were identified in MB across the entire methylome using WGBS, and the number, 

distribution, and ontology of differentially methylated regions (DMRs) called compared were compared 

to DMRs detected using matched DNA methylation microarray samples. The cohort was split into five 
groups: WNT (n = 10), SHH (n = 11), Group 3 (n = 23), Group 4 (n = 26) and Normal Cerebellum (n = 

8).  In addition to subgroup specific DMR calling, we also investigated whether differential methylation 
was present within subtype VII of the current consensus group 3/4 molecular subtypes, where there 

was evidence of a further split with clinical significance identified via NMF unsupervised clustering of 
DNA methylation microarray data (Sharma et al., 2019). To identify differential methylation within this 

subtype, we performed a direct comparison between both VII_1 and VII_2 samples subsets (VII_1 = 6, 

VII_2 = 7). Group VII_1 and VII_2 samples corresponded to groups denoted as Group4_LR_1 and 
Group4_LR_2 as defined by Sharma et al., (2019) (Section 5.3.1). 

 

 

5.3.5.1 – DMR detection of low-pass WGBS samples via 
metilene 

 
To identify regions of differential methylation for WGBS sample data, we used metilene (Juhling et al., 

2016). Rather than utilise matrix statistics, metilene utilises circular binary segmentation (CBS) to 
identify differences between mean methylation levels between sample groups. Briefly, the whole 

genome of samples is split into regions of consecutive methylation values with gaps no larger than 
300 nucleotides. For these regions, the mean methylation difference for all CpGs is calculated between 

sample groups and circular binary segmentation is applied to identify changepoints in methylation. 
Regions are recursively segmented until a DMR reaches a minimum size of 10 CpGs or the p-value of 

any given subsegment is larger than the ‘parental’ segment. The statistical significance of segments 

is determined via Kolmogorov-Smirnov test. Metilene was chosen due to its demonstrated superior 
performance compared to other popular tools for calling DMRs with methylation data – MOABS (Sun 

et al., 2014) and BSmooth (Hansen et al., 2012) by the author (Juhling et al., 2016). In this study, 

performance was assessed by validating the DMRs detected against known DMRs that correlated 
with gene expression in the same group 4 samples (n=12) and control cerebellum samples (n = 8) that 

comprise our ICGC sample cohort (Hovestadt et al., 2014). Out of the 39 DMRs that correlate with 

gene expression, 29 were identified using metilene, the highest of all tools tested (Juhling et al., 2016). 
We therefore judged the tool to be highly suitable for analysis, given its demonstrable excellent 

performance when applied to samples from this study. For each group comparison, we selected DMRs 

that exhibited a mean difference in methylation of 0.5 or greater.   
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5.3.5.2 – DMR detection of array data using DMRcate 
 
DNA methylation microarray subgroup specific DMRs were identified using the Bioconductor 
packages limma version 3.4.6.0 (Ritchie et al., 2015) and DMRcate version 2.4.1 (Peters et al., 2015). 

Briefly, limma fits a linear model to all CpG sites for each sample, producing a matrix of M value 

differences between each sample where each probe site is a row, and each sample is a column. A 
paired t-test is calculated for each row between sample groups, computing both the mean methylation 

difference and its associated standard error for each probe. A t-statistic is also calculated, denoting 

the ratio of the M value compared to its associated standard error. DMRcate computes p-values based 
upon a Gaussian smoothed model of all t-statistics, enabling significantly differentially methylated 

probe sites to be identified. Differentially methylated probes are then agglomerated into DMRs, 
provided they are within 1000bp of each other. This agglomeration continues until the mean 

methylation difference significantly decreases, producing a final DMR with a differential methylation 
beta value calculated based on the average methylation difference across all inverse log transformed 

M values. For each group comparison we considered only DMRs that exhibited a methylation beta 

difference greater than 0.3. 
 

 

5.3.5.3 – Subgroup-specific DMR annotation and gene 
ontology analysis 

 
To identify subgroup specific DMRs, two group comparisons for each molecular subgroup were 
performed. Differentially methylated regions were identified between the subgroup of interest and 

normal cerebellum, and between the subgroup of interest and the remaining 3 subgroups. Any DMRs 
that were identified in both comparisons were determined to be subgroup-specific (i.e., DMRs that 

only occur within the subgroup of interest). To investigate the distribution and characteristics of DMRs 
specific to each subgroup, the annotatr R package (Cavalcante & Sartor, 2017) was used to annotate 

DMRs relative to its genomic position within the hg19 reference genome. The annotation distribution 
of all subgroup specific DMRs was recorded and plotted using ggplot2 (Wickham, 2016). For DMRs 

that annotated to genic regions, we conducted a gene ontology enrichment analysis using the list of 

genes affected by differential methylation with a focus on biological processes. Genic regions include 
regions 1-5kb upstream of the TSS, promoter regions, 5’UTR/3’UTR, exons/introns, and coding 

sequence regions. Significantly enriched terms were identified by applying an adjusted p-value 
(calculated via Fishers exact test) filter of 0.05. Remaining terms were then ranked based upon their 

respective “combined score” – a robust ranking measure that incorporates the calculated p-value with 
a z-score – which measures the deviation of each genes rank respective to its expected rank within 

each gene set library (Chen et al., 2013). To further refine the list of over-represented terms, terms 

were filtered using a combined score cut-off of >15 to identify the most significantly enriched biological 
processes affected by differential methylation for each subgroup. 
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5.4 – Results & discussion 
 
5.4.1 – Application of an optimised reference-free CNVKit 

pipeline to low-pass WGBS samples successfully 
identifies large regions of aneuploidy with excellent 
concordance to current array methodologies 

 
Application of our optimised CNV pipeline to low-pass WGBS sample data showed excellent 

performance regarding the identification of both whole chromosome and single-arm regions of 
aneuploidy. When comparing array-derived whole and single-arm calls as a reference, our optimised 

pipeline called these regions with 96.9% sensitivity, with just 7 out of 36 samples not attaining 100% 
sensitivity (Figure 5.3). CNVs called by both platforms include many chromosomal signatures 

previously associated with specific molecular subgroups of MB, including isochromosome 17q, 
monosomy 6, gain of chromosome 7 and loss of chromosome 11. 
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Figure 5.3. Presence/absence heatmap denoting 
the sensitivity of WGBS-derived whole/single arm 
aneuploidy calls in our low-pass NMB cohort (n = 
36) compared to calls identified for matched array 
samples.  
 
Paired gains and losses are denoted by light 
green and blue cells whereas unmatched 
gains/losses are denoted by darker shades of 
green and blue respectively. 
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Outside of concordant segments, the WGBS pipeline identified a greater number of whole 

chromosomal calls which were missed when analysing samples via array. A total of 23 additional whole 
chromosomal aberrations were identified in the sample cohort compared to paired methylation 

microarray samples (Figure 5.4). Manual inspection of whole-chromosomal aberrations called by 
WGBS showed that these segments were high quality (characterised by low segment standard 

deviation values and upper/lower confidence intervals that did not overlap with its respective calling 
threshold) across bins contained within non-matched segments called by WGBS that were not 

identified via array (an example for NMB_362 is provided in the appendix – 8.1.6). NMB_17, the sample 

that exhibited the largest discordance in the number of whole and single-arm chromosome calls 
compared to its matched array sample, exhibited a mean log2 copy ratio of 0.4 (SD = 0.11, CI = 0.39 

– 0.40) and -0.47 (SD = 0.13, 95% CI = -0.47 – -0.48) for gains and losses respectively. Both upper 
and lower 95% confidence intervals fall comfortably above and below threshold values for gain and 

losses, indicating that whole chromosomal segment calls are robust and high in quality. Inspection of 
array segmentation calls for NMB_17 showed that chromosomes 8, 10, 11 & 16 losses exhibited lower 

copy numbers but fell below the threshold of -0.22 used in this study (chr8 = -0.214, chr10 = -0.186, 
chr11 = -0.155, chr16 = -0.177). Further validation is needed, but it is likely that array-based methods 

have simply fallen short in calling these regions of loss due to the lower number of positions (probe 

sites) from which to infer copy number. Sequencing platforms, even at lower depths calculate copy 
number with bins that span entire chromosomes, providing a more robust and superior means of CNV 

detection (Coutelier et al., 2021). 

 
A similar number of segments were called between both platforms, with a mean number of segments 
(41 and 39 called across all samples for WGBS and Array pipelines respectively (p = 0.491 – paired t-

test) when focusing solely on called gains and losses (Table 5.6). Whilst segment numbers were similar, 
segments identified as gain/losses that overlapped between both platforms varied. When considering 

segments identified from one platform that overlapped with at least 50% of the length of a segment 
identified by the other platform (multiple segments that overlap with one called by another were 

counted as singular), it was found that gain/loss calls via WGBS overlapped with 62% of array called 

gains/losses (Figure 5.4). Whilst relatively low, this degree of overlap is commonly seen when 
comparing tools used to predict copy number (Kilaru et al., 2019). Differences can be caused by 

several technical factors, including calling thresholds, segment size and total number of bins per 

segment. Investigating the average segment size for identified gains/losses between WGBS and array 
showed that average segment size was similar (WGBS = 39.4mb, Array = 36.4mb), showing that 

although large-scale changes are predicted with high concordance, differences in segment calling do 
exist between the WGBS pipeline and conumee and which require further investigation. 
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Table 5.6 – Number of segments called by WGBS and array CNV pipelines for matched NMB 
samples. Gains and losses are also tabulated separately to check for any statistical bias in calling 
(assessed via paired t-test). 
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Figure 5.4 – Number of segments called by CNVKit (WGBS) and conumee (Array) that were 
overlapping. Segments were deemed as overlapping if at least 50% of its length was encompassed 
by a corresponding segment called by the other platform. 
 
 
5.4.2 – Validated amplifications of MYC and MYCN are 

identified with improved sensitivity  
 
To test the sensitivity of the optimised CNVKit pipeline to detect focal regions of amplification and 

deletion, the number of called amplifications of MYC (n=9) and MYCN (n=8) was compared in 

samples where the events have been validated with either FISH (MYC = 4, MYCN = 3) or MLPA 

(MYC = 5, MYCN = 5) and further compared to the number of amplifications detected using matched 

array data via conumee. For DNA methylation microarray, conumee identified 4 out 9 MYC 
amplifications (sensitivity = 44.44%) and 2 out of 8 MYCN amplifications respectively (sensitivity = 

25%). Sensitivity in detecting FISH validated amplifications in isolation was markedly higher, where 3 

out of 4 MYC amplifications (75% sensitivity) and 2 out of 3 MYCN amplifications (66% sensitivity) 

were identified. The MYC amplification that was missed appeared to be a convoluted issue regarding 

segmentation. The individual gene score (a more accurate log2 measure of the bins that the sole 
gene of interest encompasses) was high (log2 = 0.8), but an overall gain of chromosome 8 (log2 = 

0.202) has overshadowed the amplification, resulting in no separate segment being identified. The 
sensitivity of the reference free CNVKit pipeline was marginally improved, where 5 out of 9 MYCN 
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amplifications (sensitivity = 55.56%) and 2 out of 8 MYCN amplifications (sensitivity = 25%) were 

identified respectively. All FISH validated MYC amplifications were detected in our WGBS cohort 

(sensitivity = 100%), whereas 2 out of 3 MYCN amplifications were successfully identified (sensitivity 

= 66%). For NMB_169, amplification of MYC was clearly identified, where amplified segments were 
successfully called independent of the gain observed across the whole of chromosome 8 (Figure 

5.5). 

 
MLPA called amplifications were not detected as reliably by either platform. For DNA methylation 

microarray, no MYC or MYCN amplifications were identified. Both NMB_318 and NMB_774 had whole 

arm and whole chromosome gains or 8 identified rather than a MYC amplification respectively. For 
NMB_318, a similar situation arose to NMB_169, where the individual gene score was high (0.516), 

but the overall segment value was called for the entire chromosome arm rather than a raised segmental 

value for the focally amplified region. The reference free approach for WGBS successfully identified 
this MYC amplification in NMB_318, where a low-level amplification was successfully identified. MLPA 

has been shown to identify smaller regions of amplification compared to FISH, offering an explanation 

as to why both methods in this study were not as sensitive in calling regions validated by MLPA. It is 
likely that smaller regions could be identified via WGBS had we sequenced at higher depth, but we 

subsequently had to increase our minimum bin size to 50kb to increase robustness for calling for low-
pass WGBS sample data.  

 
Far greater numbers of focal regions were called from WGBS compared to DNA methylation 

microarray. Out of all segments identified, 51 were called that were smaller than 1mb in size via 

conumee, whereas 148 were identified using CNVKit. One such additional focal region identified was 
a SNCAIP duplication in sample NMB_362 (Group 4, Subtype VI, log2 = 0.96). This event is completely 

missed by conumee, where a balanced profile is observed (Figure 5.6). As window sizes were identical, 

the increased number of focal regions identified was likely solely due to the increased coverage offered 
by WGBS as opposed to a limited number of probe loci by the array. This demonstrates that increased 

genome coverage offered by WGBS still provides additional power in calling regions of focal 
amplification or deletion at low pass compared to the array, where the uneven distribution of probes 

makes it difficult to identify all regions reliably. 
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Figure 5.5 - Presence of a MYC amplification that is identified independent of the remaining gain in chromosome 8 by CNVKit. (A) but is subsequently 
missed during segmentation by conumee (B), where an entire chromosomal segment is called. All dots correspond to bins (minimum size = 50kb), whereas 
horizontal lines correspond to segments. WGBS segments that differ from diploid copy number are donated by orange colour.  
 



Faculty of Health & Life Sciences    Northumbria University 
 

220 
 

Figure 5.6 - Reference-free aneuploidy detection using CNVKit can be used to call focal events of aneuploidy that are missed when using methylation 
microarray. A) Whole genome plots of log2 copy number ratio via CNVKit for NMB_362. Identified segments are represented by horizontal lines. Segments 
deemed as significant are coloured orange. B) Chromosome 5 plots of log2 copy number ratio for NMB_362 identified via CNVKit (top) and conumee 
(bottom). Red dotted lines represent thresholds used to define gains and losses.
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5.4.3 – Analytical limitations of copy number analysis 
 
Whilst the data presented in this chapter shows that our optimised reference-free CNV calling pipeline 
can identify both large and focal regions of aneuploidy with high sensitivity, it is subject to some 

limitations. Like the issues identified in 4.4.4.6, the modest sample size used in these analyses (n = 36) 

makes it difficult to know whether the pipeline is amenable across a wide range of tumour types. Whilst 
samples were selected with care to ensure a significant number of samples with validated MYC/MYCN 

amplifications were present, more sample data is needed to comprehensively establish the true 

sensitivity of the optimised CNVKit pipeline. This is more apparent when considering the additional 
identification of other clinically relevant CNVs like that of SNCAIP, where just one event was recorded 

in our study. Whilst the sample belongs to group 4 where the event is enriched, validated data for 

SNCAIP in this study is lacking and such information for SNCAIP and indeed other genes would be 
necessary to establish the true capability of our pipeline to detect focal amplifications across the 

genome.   

 
All DNA methylation microarray samples used in this study were analysed using the Illumina 

Methylation450k platform, which has since been superseded by the MethylationEPIC array. The EPIC 
array offers almost twice as much coverage as the 450k platform and has been shown to be marginally 

superior in detecting regions of aneuploidy compared to its predecessor (Kilaru et al., 2020). It would 

therefore be prudent that a comparison be made between the optimised pipeline for WGBS and 
segments identified using the EPIC array to provide a contemporary comparison between both 

platforms. In 2022, the 450k probe remains platform of choice for classification, and for routine 
tumour/subgroup assignment, EPIC samples are subset to probes that match to those of its 

predecessor (~90% of probes are matching), and many analyses that combine data from both 

platforms are also subject to the same limitation.  
 

Finally, it must be acknowledged that the calling thresholds that were established for our optimised 
CNVKit pipeline are subjective to the user and decision making regarding CNV thresholds in general 

can vary between studies. Typically, they are determined by individuals experienced in aneuploidy 
analysis via manual inspection of segmentation plots for a handful of samples with clearly recognisable 

events of ploidy (e.g., WNT samples with monosomy 6) and/or validation data regarding chromosomal 
aberrations (e.g. MYC amplification via FISH). Many ‘near-miss’ events can be seen in segmentation 

data from both platforms, particularly from our CNVKit pipeline, suggesting that there may be further 

room for threshold optimisation. However, adjusting thresholds must be done with caution, since it 
presents the risk of identifying false-positive regions of aneuploidy. It is usually more appropriate to 

correct near-miss events manually, where such surrounded by segments called as clear gains or 

losses can be recovered.
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5.4.4 – Reliable variant calling is beyond the capability of 
low-pass WGBS 

 
The reliable detection of TP53 and CTNNB1 mutations forms a crucial component of MB diagnostics, 

where all tumours typically undergo mutation assessment via a multi-target NGS panel. Standard NGS 

panels for medulloblastoma typically seek to identify variant status of ~50-60 genes implicated in MB 
tumorigenesis and its associated Mendelian disorders. WGBS offered the possibility of uniting both 

methylation and sequencing-based diagnostics under one platform, and despite the low depth of our 
NMB cohort, it was investigated whether BS-seq variant calling software could call mutations from 

low-pass data. Application of ‘bs_call’ to our initially sequenced 4 pilot samples (NMB_169, NMB_181, 

NMB_436, NMB_787) generated poor quality results, identifying 1,642, 1,746, 2,059 and 1,724 variants 
for each sample respectively. Anticipating most variants to be low coverage, we applied a soft filtering 

approach that ignored sequence depth and focused solely on QUAL score. For all samples, this 
reduced the number of variants significantly, where 15, 27, 38 and 32 variants passed filtering for 

NMB_169, NMB_181, NMB_436 and NMB_787 respectively. Manual inspection of all remaining 
variants revealed that depth was low across all variants (Figure 5.7). Out of 112 passing variants, just 

3 were identified above 10x. 
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Figure 5.7. Depth frequency of passing variants 
identified by bs_call for NMB_169, NMB_181, 
NMB_436 and NMB_787. 
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Identifying variants at low pass was always expected to be a difficult task. GATK best practices 

recommend that quality score calibration is performed below these depths, which bs_call does not 
offer – adding further doubt to any called variants in this analysis. Whilst CNV calling pipelines could 

feasibly be optimised at low-pass due to read agglomeration strategies, such strategies cannot be 
applied to variant calling, where read depth plays a crucial role in genotype determination. Indeed, the 

application of a filter greater than 10x may be necessary when dealing with WGBS sequencing data, 
where bisulfite treatment of DNA can hamper genomic coverage distribution. Despite this, bisulfite 

seq-specialised software has been shown to call variants reliably, albeit at high sequencing depths 

(Merkel et al., 2019). Popular BS-seq mutation callers such as Bis-SNP have shown that depths as 
low as 16x can detect variants with comparable false discovery rates to depths as high as 32x (Liu et 

al., 2012), but most tools still recommend depths of at least 50x to call variants reliably using WGBS 

data. Given the potential to incorporate mutation analysis as part of WGBS analytical pipelines, further 

research is required to establish what minimum level of coverage could be used to call variants reliably 
with this platform – an important consideration given the economic cost of increasing sequencing 

coverage. 
 

 
5.4.5 – Greater numbers of differentially methylated 

regions are identified from WGBS data compared 
matched array 

 
Subgroup specific analysis of our combined array cohort via DMRcate identified 781, 229, 299 and 

143 hypo/hypermethylated DMRs that exhibited a methylation change of 30% (Δ > 0.3) for WNT, SHH, 
Group 3 and Group 4 subgroups respectively. The number of DMRs identified fell significantly when 

filtering for DMRs that exhibited greater differential methylation (Table 5.7). The characteristics of 
DMRs called varied between each subgroup of MB (Table 5.8). WNT specific DMRs were most 

numerous (n = 781) and on average the widest, with a mean width of 832bp. Much lower numbers of 

subgroup specific DMRs were detected within SHH (n = 229), Group 3 (n = 299) and Group 4 (n = 143). 
The longest DMR identified was present within the SHH subgroup, reaching 7,725bp. Compared to 

group 4, over twice the amount of specific DMRs were identified within group 3 and DMRs identified 
within this group spanned greater distances on average.
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Table 5.7 – Total number of subgroup specific DMRs identified by DMRcate (Array). 
 
 
 

Table 5.8 – Basic statistics of subgroup specific DMRs identified by DMRcate (Array) and metilene 
(WGBS) 
 
 
 

Table 5.9 – Total number of subgroup specific DMRs identified by metilene (WGBS) 
 
 
 

Table 5.10 – Total number of DMRs identified by metilene that overlap with at least one probe 
located on the Illumina Methylation450k or MethylationEPIC probe manifests. 
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Far greater numbers of DMRs were identified in our WGBS analysis compared to the array. When 

seeking DMRs that exhibited a mean methylation difference of 50% or greater (beta value difference 
of 0.5), 23,797, 5,707, 7,777 and 8,767 subgroup specific DMRs were identified for WNT, SHH, Group 

3 and Group 4 respectively. DMRs that exhibited greater methylation differences of 60% and 70% 
remained well in excess of what was identified when analysing array data (Table 5.9). Compared to 

our array analysis, mean DMR width increased in all subgroups, as did DMR length. When investigating 
the degree to which DMRs identified in our WGBS analysis overlapped with DMRs identified via array, 

low rates of overlap were observed, with 45%, 52%, 15% and 43% for WNT, SHH, Group 3 and Group 

4 respectively (Table 5.8). 
 

Various technical explanations can be offered to explain the increased number of DMRs detected via 
WGBS compared to the array. The capability to analyse the methylome at single-site resolution 

increases the likelihood that regions of differential methylation can be detected – particularly smaller 
DMRs below 100bp and regions between or outside of the range of probe sites. To establish the 

degree to which DMRs identified in our WGBS were located within regions covered by the array probe 
manifest, we overlapped them with co-ordinates for probe loci from either the Illumina Methylation 

450k or EPIC manifests (Table 5.10). The degree of overlap varied between subgroups, where 29%, 

55%, 40% and 34% of WNT, SHH, Group 3 and Group 4 specific DMRs overlapped with at least one 
probe site on the 450k manifest. The rate of overlap increased when overlapping with the EPIC 

manifest, although not proportionally – where 43%, 66%, 57% and 50% of WNT, SHH, Group 3 and 
Group 4 specific DMRs were identified as overlapping. These large differences point to significant 

levels of subgroup specific differential methylation occurring within regions not measured by the array, 
but also raises additional questions as to why many DMRs detected via array are not also called via 

WGBS in the same group comparisons. The increased beta value polarisation observed in methylation 

data derived from WGBS (even more so when dealing with samples sequenced at lower depths) would 
likely result in any difference in methylation observed to also be larger. This was in part behind the 

reasoning to increase the methylation difference required in WGBS to 50% for a DMR to be called, 
and this difference may contribute to the low rates of overlap observed between both platforms. The 

inverse is also true, where a decreased range in beta value intensities produced by the array is also 
likely to result in a lower number of DMRs being identified. The fact that different software was used 

to call DMRs is also likely a contributing factor, although the degree to which this is affecting calls is 
difficult to determine and requires further study. The DMRcate package is now compatible with WGBS 

data, and time constraints prevented performing this comparison in this study. Regardless, our data 

demonstrates significant amounts of DMRs are being detected throughout the methylome within each 
subgroup of MB, particularly within intergenic regions that are not measured by the design of either 

the Illumina Methylation 450k or EPIC platforms. 
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5.4.6 – Subgroup-specific differential methylation is 
occurring throughout the methylome that is missed by 
the array platform 

 
Genomic annotation of all DMRs called by both platforms revealed subgroup specific patterns in DMR 
distribution between each platform. Owing to the gene-centric design of the DNA methylation 

microarray, DMRs identified in our array analysis encompassed primarily coding regions (Table 5.11). 
Large increases in the number of DMRs overlapping with open sea regions were identified for all 

subgroups in our WGBS analysis (Table 5.12). The distribution of hypo/hypermethylation within SHH 

changed depending on the platform used (Figures 5.8 & 5.9).  Where DMRs detected via array were 
predominantly hypomethylated, large numbers of hypermethylated DMRs were detected in our WGBS 

cohort.  Whilst general trends in DMR distribution can be analysed from the data presented in this 
study, the degree to which annotations overlap must be considered. Due to the size of some DMRs 

regularly extending beyond 1000bp, multiple biologically relevant regions can be covered by a single 
DMR. For example, many open sea CpGs are within intronic regions, and the high levels of intronic 

DMRs detected in each subgroup also overlap with intergenic CpG regions. To provide an example, a 
paired annotation matrix detailing the degree of overlap observed in SHH subgroup specific DMRs is 

provided in the appendix – 8.1.7. 

Table 5.11 – Array subgroup-specific DMR distribution organized by annotation type 
 

Table 5.12 – WGBS subgroup-specific DMR distribution organized by annotation type. 
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The biologically related groups 3 and 4 shared similar DMR distributions, where both groups were 

characterised by significant numbers of DMRs within open sea regions. We observed differences in 
the pattern of differential methylation within each subgroup, where group 3 specific DMRs were 

predominantly hypermethylated in our array analysis, and more hypomethylated DMRs identified in 
our WGBS analysis (Figures 5.8 & 5.9). Group 4 DMRs exhibited higher levels of hypermethylation in 

all DMRs compared to group 3 – a trend that became more pronounced when considering DMRs 
within the whole methylome.   

 

Despite the overlap, what is clear from this data is that significant numbers of subgroup specific DMRs 
within open sea regions are present within medulloblastoma that are being missed by the array 

platform. These regions could play a key role in the establishment of comprehensive subgroup profiles 
within medulloblastoma with potential biological significance. This is particularly relevant for group 4, 

where the large number of novel DMRs identified in intergenic and open sea regions may hold the key 
to further establishing the biology of the subgroup, where chromosomal instability and aberrant 

genetic imprinting are recognised as key traits (Northcott et al., 2012).   
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Figure 5.8. 
Distribution of 
subgroup specific 
hyper/hypomethylat
ed DMRs detected 
by DMRcate (Array) 
and metilene 
(WGBS) in WNT 
(Top) and SHH 
(Bottom) 
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Figure 5.9. 
Distribution of 
subgroup specific 
hyper/hypomethylat
ed DMRs detected 
by DMRcate (Array) 
and metilene 
(WGBS) in Group 3 
(Top) and Group 4 
(Bottom) 
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5.4.7 – Ontology analysis of genes affected by differential 
methylation identifies greater numbers of enriched 
subgroup-specific biological processes in WGBS 
compared to DNA methylation microarray 

 
For DMRs that overlapped with genes, a gene ontology (GO) enrichment analysis was performed to 

identify subgroup-specific biological processes that were over-represented. Vastly increased numbers 
of over-represented biological processes were identified by our WGBS analysis compared to array 

(see appendix – 8.1.7). WNT enriched terms were the most numerous across both platforms, reflective 
of its distinct biology and greater number of DMRs detected relative to other subgroups. 13 pathways, 

including nervous (adjusted p-value = < 0.001, combined score = 112.196) and circulatory system 
development (adjusted p-value = 0.021, combined score = 40.981) were enriched in gene lists 

identified in our array analysis. Far greater numbers of enriched pathways were identified in our WGBS 

analysis, where 61 pathways were identified as being over-represented. Many additional biological 
processes were identified as being significant, including neuron differentiation (adjusted p-value = 

0.003, combined score = 26.226) and WNT signalling processes (adjusted p-value = 0.004, combined 
score = 27.727). SHH enriched terms occurred in lower numbers, with 2 and 11 enriched processes 

identified by our Array and WGBS analyses respectively. Lower numbers of enriched terms were 
identified in groups 3 and 4 (Group 3 = 2, Group 4 = 1) by array, increasing again when analysing gene 

sets derived from our WGBS analysis. 11 biological processes were identified in group 3, including 

regulation of cell migration (adjusted p-value = 0.021, combined score = 19.095) – a pathway 
implicated in tumour metastasis, which is also a characteristic trait of the subgroup. 49 pathways were 

identified in our group 4 analysis, including microtubule binding (adjusted p-value = 0.033, combined 
score = 31.777) – an important mechanism that can contribute to chromosomal instability. 

 
The large number of enriched terms identified as significant in our WGBS analysis was likely due to 

the increased number of DMRs detected using the platform. In our data, this has led to significantly 
more genes being identified, leading to more terms being identified as enriched. The small cohort size 

may also affect the power of our findings, but both tools have been shown to handle small group 

comparisons well by their respective authors (Juhling et al., 2015; Peters et al., 2015). However, 
increased sample numbers would have enabled us to detect DMRs specific to molecular subtypes 

rather than subgroups, providing an estimation that is more reflective of the current consensus of the 

molecular landscape of MB. Whether or not the enriched terms identified are biologically linked to 
tumorigenesis within each subgroup is beyond the scope of this study but is cause for further 

investigation given the developmental and neurological nature of most pathways found to be enriched. 
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5.4.8 – NMF-directed splitting of subtype VII is supported 
by differential methylation analysis 

 
The deliberate selection of large numbers of subtype VII samples in the sequencing cohort allowed 

the investigation of the DMR landscape between the two putative subtype VII variants (Sharma et al., 

2019). The array analysis identified just one hypermethylated DMR affecting a CpG island within the 
PPT2 gene. Consistent with the subgroup-directed analysis, significantly greater numbers were 

identified in the WGBS analysis of subtype VII. 5,981 DMRs were identified, with a total of 84 biological 
processes identified as enriched following gene ontology analysis (Appendix 8.1.7). Highest scoring 

terms included mesenchymal stem cell differentiation (adjusted p-value = 0.013, Combined score = 

26.127), mesonephros development (adjusted p-value = 0.009, Combined score =115.167) and neuron 
fate specification (adjusted p-value = 0.028, Combined score = 134.918).  Like the group 4 

comparison, large numbers of DMRs overlapped with open sea CpGs, and VII_1 exhibits increased 
levels of hypermethylation compared to VII_2. These findings are conflicting with that of Sharma et al., 

that identified hypomethylation among the most variable loci between the two groups (Sharma et al., 

2019). 

 
The molecular subtypes of medulloblastoma have been established relatively recently. Beyond 

mutation and aneuploidy associative analyses, the methylome landscape has not yet been 
established. Clinical support for the split of subtype VII is largely restricted to age, of which the 

distribution of subtype VII is bimodal (Sharma et al., 2019). The increased hypermethylation observed 

in VII_1 may in part be explained by the increased age of patients that fall within this category, where 
global demethylation occurs as cells age (Johnson et al., 2012). When considering the capability of 

subtypes to be classified with high probability using DNA methylation array, the detection of high 

numbers of DMRs within subtype VII across the entire methylome is not surprising, and further 
research is needed to understand the biological implications that may be associated with the high 

levels of differential methylation observed within this subtype. 
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5.5 – Summary & conclusion 
 
The data presented in this chapter effectively highlights both the limitations and potential for using 
low-pass WGBS to obtain clinically relevant readouts in medulloblastoma. Parameter optimisation and 

the addition of telomeric, centromeric and other recognised regions of low read mappability 

throughout the genome to the existing filter resulted in highly effective CNV detection in the low-pass 
WGBS MB cohort, without a matched set of control samples for reference normalisation. Throughout 

the optimisation process, it became clear that called segments were generally low in quality when 
using smaller window sizes, characterised by high standard deviation statistics called for all segments 

(SD = 0.28). To overcome this, bin size was increased to 50kb, which resulted in a 58% reduction in 
segment variability (SD = 0.12). This translated into high quality segmentation, which has the capacity 

to identify whole and single-arm regions of aneuploidy with 96.908% sensitivity compared to those 

called by conumee in our matched array cohort. In addition, a further 23 additional whole chromosomal 
aberrations were identified in our WGBS cohort, which upon inspection appeared to fall short of being 

identified in our array analysis. Whilst minimum window size for both pipelines are identical, WGBS 
offers a more robust and superior means of copy number segmentation, where bins are present 

throughout the genome and not spaced unevenly at pre-determined probe sites of interest. The 
optimised CNVkit pipeline is capable of reliably identifying focal regions of aneuploidy, including 

amplifications and deletions as small as 150kb-200kb. Validated amplifications of MYC and MYCN 
were identified with 100% and 66% sensitivity, outperforming the array cohort. Additional focal regions 

of amplification/deletion were identified compared to the array including SNCAIP within group 4, 

although our limited validation set, and overall cohort size requires further study to confirm initial 
findings. Sequencing platforms such as WGS and WES can be used to identify focal amplifications 

across the genome but do not offer the capability to analyse methylation simultaneously. The 
demonstrable high performance compared to current array methodologies achieved in this study place 

WGBS in a uniquely advantageous position in deriving accurate large and focal copy number estimates 
throughout the whole genome, where the optimised pipeline offers a means to achieve this without 

the need for reference samples, even at low pass. 

 
To investigate the capability of low-pass WGBS in calling clinically important mutations in MB, the BS-

seq specialised variant calling software was applied to 4 pilot samples. The results generated were 
poor, with the depth of all passing variants too low to be called reliably using established variant calling 

filters. Calling variants correctly and reliably either requires large cohorts of samples from which to 
pool coverage from or higher sequencing depth – both of which were beyond the means of this study. 

Identifying variants is a crucial component of medulloblastoma diagnostics and the current means of 
identifying them via targeted sequencing panels remains a superior method of achieving this compared 

to low-pass WGBS. Further research is therefore required to establish a minimum level of coverage 

suitable for reliable mutation detection using WGBS. 
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An initial survey of the landscape of differential methylation of the medulloblastoma methylome was 

performed in a subgroup-specific manner, demonstrating that highly increased numbers of DMRs are 
identified using WGBS than are currently detected using DNA methylation microarray. DMRs are called 

at higher resolution with greater differential change, enabling DMRs to be detected that exhibit 
significant changes in methylation compared to the array.  These findings highlight that significant 

differential methylation is occurring in regions not measured by the array platform. These findings were 
corroborated when annotating subgroup specific DMRs with genomic location. The genomic 

distribution and nature of hypo/hypermethylation among DMRs was subgroup-specific, with the 

greatest number of DMRs identified overlapping with open sea CpGs than any other region. These 
distributions differ to the array, where DMRs are inherently identified in genic regions, due to the 

deliberate gene-centric design of the platform. Differential methylation between groups 3 and 4 
became more pronounced when considering the DMR landscape of the entire methylome, where 

subgroup specific DMRs were identified in large numbers and are concentrated among intergenic and 
open sea regions. Given the biological implications of intergenic methylation and chromosomal 

instability, this is an interesting finding that provides motivation for the establishment of whole-
methylome profiles for subgroups/subtypes of medulloblastoma. Ideally, this would be conducted in 

a subtype specific manner if cohort size is large enough. It was demonstrated that differences in 

differential methylation exist throughout the methylome within subtype VII, for which there was 
evidence for a further split based upon clinical and clustering characteristics when analysing array 

data (Sharma et al., 2019). 5,981 DMRs were detected between the NMF-directed subsets of subtype 

VII, with over 84 biological processes identified as enriched following GO analysis. Beyond 
associations with aneuploidy and variants for each subtype, the methylation landscape of subtypes 

has not been comprehensively established, and findings suggest that characterising the whole 
methylome may help further refine the subtype landscape of medulloblastoma. Overall, it was 

demonstrated that WGBS can be employed to derive superior aneuploidy and DMR detection 
compared to the array platform. The increased variability located in intergenic regions and increased 

coverage of all regions of the genome enable events from both analyses to be detected in greater 

numbers with higher resolution. Importantly, the identification of these events is a crucial component 
of medulloblastoma research and diagnostics and its demonstrable superiority at low pass will likely 

increase the appeal of the platform over current microarray platforms going forward given its likely 
compatibility with array-based classifier models. 
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Chapter 6 – Summary & Discussion 
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6.1 - Introduction 
 
Medulloblastoma (MB) is a grade IV embryonal brain tumour that occurs in the posterior fossa of the 
cerebellum (Louis et al., 2021). It is the most common malignant brain neoplasm in children, accounting 

for 65% of embryonal diagnoses (Ostrom et al., 2020). Current treatment strategies for MB comprise 

surgical resection followed by chemotherapy and craniospinal radiation. Metastasis is a common, 

identified in 20-30% of cases upon presentation (Zapotocky et al., 2017). Relapse is common, 

occurring in 30% of patients, at which stage it is near universally fatal (Hill et al., 2020). Survival in 

standard risk patients (>3 years, gross total resection, non-metastatic) is high, with 5-year survival 
reaching between 70 and 85% (Gajjar et al., 2006; Oyharcabal-Bourden et al., 2005). High risk patients 

(< 3 years, sub-total resection and/or metastatic) understandably perform worse, where 5-year survival 

rates of less than 70% are reported (Jackaki et al., 2012; Gandola et al., 2009). Extensive study of 
medulloblastoma involving many 100s of samples led to the identification significant heterogeneity 

underlying the disease. Methylation profiling of MB patients led to the identification of four molecular 

subgroups; WNT, SHH, Group 3 and Group 4 – based upon distinct methylation, molecular and clinical 
profiles (Northcott et al., 2011; Taylor et al., 2012). Since 2016, more recent studies with larger sample 

sets have identified additional heterogeneity within subgroups, with subtypes now identified within 

SHH, Group 3 and Group 4. The distinct interplay between clinical outcome and molecular subgroup 
culminated in their recognition by the WHO in 2016, and subtypes are also now recognised to likely 

play a role in future classifications (Louis et al., 2021). 

 
DNA methylation analysis lies at the heart of subgroup/subtype determination in medulloblastoma and 

other paediatric brain tumours. It plays a key role in paediatric brain tumour diagnostics, and data from 
1000s of samples was used to develop the DFKZ paediatric brain tumour classifier (Capper et al., 

2018). The model is built upon the DNA methylation microarray platform, a cost-effective assay that 

interrogates ~850,000 CpGs, including 99% of genes and 95% of CpG islands (Pidsley et al., 2016). 

Combining the array with targeted gene sequencing panels enables the identification of most clinical 
features associated with medulloblastoma (i.e., aneuploidy, mutation, subgroup), and has helped to 

elevate the array platform to its current ‘gold-standard’ status across the field of paediatric neuro-
oncology. While its diagnostic utility is clear, the array is prone to variable turnaround times due to the 

specialist laboratory infrastructure required and costs can spiral when not submitting samples in 
batches (Perez & Capper, 2020). It is also proprietary, presenting the risk of being discontinued. This 

has happened twice over the course of the platform’s lifetime and its creator Illumina now offer a 
Methyl Capture sequencing kit that offers a superior alternative (Illumina, 2022). Methylation 

sequencing offers a means of interrogating the methylome at single-base resolution and whole 

genome bisulfite sequencing (WGBS) offers the potential to interrogate nearly all ~28.3 million CpGs 
within the human genome on a per-sample basis (Frommer et al., 1992). Despite its conception in the 

1990s, adoption of the technique has been limited due to high sample input requirements and 

economic cost.  It has not been until recently that new methodologies have been developed that have 
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enabled the platform to become a feasible alternative to the array, with the costs of low pass 

sequencing now reaching comparable levels to the array platform (in 2021: 10x WGBS = ~£430 / Array 
= £300). 

 
Like the array, WGBS generates methylation data in the form of beta values, allowing it to be used 

analogously in many analytical pipelines. Theoretically this could apply to classification, where WGBS 
sample data could be applied to array trained classifiers for subgroup prediction. The platform also 

offers a superior alternative when concerned with other analyses such as differential methylation and 

aneuploidy detection, where the single-site resolution and whole genome coverage offered by WGBS 
can potentially be leveraged to call regions of differential methylation and chromosomal copy number 

variation with increased resolution. This is incredibly useful for identifying focal aneuploidy or 
differential methylation events within genes and intergenic regions which are not covered sufficiently 

the array. WGBS offers the possibility to unite both NGS and methylation analysis within a single 
platform, offering a robust, independent means of reaching a definitive subgroup diagnosis in 

medulloblastoma. The platform represents an untapped potential for methylation analysis within MB, 
where a wealth of extra data of potential biological significance has yet to be comprehensively 

investigated throughout the medulloblastoma methylome. 

 
Given the drawbacks of the array, increasing economic appeal and superiority of the WGBS platform, 

the use of methylation sequencing is likely to become more prominent over the next decade. In 
addition, genome sequencing will become more integrated within diagnostic laboratories of developed 

nations in the coming years, where methylation sequencing could theoretically play a part in 
medulloblastoma diagnostics (Genomics England, 2020). For WGBS to be adopted within paediatric 

oncology, the development of a robust processing methodology suitable for clinical analysis of 

samples sequenced using WGBS must be established. Whilst some pipelines exist, none are 
specialised to deal with low-pass data – which for now at least is the most attractive economic option. 

However, working with data sequenced at low pass presents many issues regarding data missingness 
that render it unsuitable unless addressed. This project set out to investigate the capability of low-

pass WGBS in being used for the clinical analysis of medulloblastoma, and to ultimately determine 
whether robust molecular subgrouping is a feasible proposition for clinical samples sequenced using 

the platform. In chapter 3, a robust, optimised processing methodology for clinical samples analysed 
using low-pass WGBS is presented (Section 3.4.1). It was demonstrated that machine-learning based 

imputation methodologies can be used to overcome the issue of data missingness associated with 

sequencing at low-pass (Zou et al., 2018), allowing popular subgrouping analyses like clustering and 
classification to be performed downstream without issue (Section 3.4.2). Correlation analysis of 

imputed sample data to matched array samples show high correlation present between CpGs and 

respective probe sites located on the array platform (section 3.4.3). A comprehensive analysis of the 
effect of lowering coverage on the performance of each analytical step of our optimised pipeline is 
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presented, providing valuable insights into the quality of sample data returned as sequencing depth 

decreases. 
 

In chapter 4, low-pass WGBS sample data generated from chapter 3 was used to investigate its 
capability to be utilised to detect the molecular subgroups of medulloblastoma. Low-pass WGBS 

methylation data was integrated with and applied to existing array-based classifiers, demonstrating 
that robust, accurate subgroups can be assigned to each sample, comparable to probabilities 

acquired from matched array data (Section 4.4.3). CpG variability was interrogated throughout the 

whole methylome compared to that observed at probe sites within the array, revealing that significant 
variability is present among the molecular subgroups of medulloblastoma that is currently missed 

entirely by array platforms (Section 4.4.1). Visualisation of the most variably methylated sites for both 
platforms revealed increased separation present among subgroups for the samples tested in our 

cohort. WGBS data was clustered with non-matched medulloblastoma samples that form part of the 
current DFKZ reference cohort, showing that subgroup clustering patterns are maintained irrespective 

of platform or coverage (Section 4.4.2). Finally, an overview of molecular subgroup classifier 
performance was presented for models trained solely using WGBS data compared to like-for-like 

models trained using matched array data (Section 4.4.4). Validation performance was equal for most 

models tested, and performance remained stable until reaching coverages as low as 2x. 
 

In chapter 5, an investigation into the capability of low-pass WGBS to be used to generate clinically 
relevant readouts that are useful for medulloblastoma diagnostics was presented. An optimised, 

robust pipeline capable of calling regions of aneuploidy with high sensitivity was presented compared 
to current established array methodologies, without a reference sample set (Section 5.4.2). The 

increased coverage afforded by WGBS enabled additional focal regions of aneuploidy to be identified, 

and that validated amplifications of MYC and MYCN can be identified with superior sensitivity 
compared to the array platform (Section 5.4.3). We applied variant calling to low-pass WGBS samples, 

demonstrating that reliable mutations cannot be identified at low-pass (section 5.4.4). Finally, we 
provided a comprehensive analysis of DMR distribution and gene ontology enrichment using WGBS 

methodologies compared to the array, providing insights into the degree of subgroup-specific 
methylation patterns present within MB throughout the genome (Sections 5.4.5 - 5.4.8).  
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6.2 – High quality, non-missing methylation data can be 
generated for clinical samples sequenced via low-pass 
whole genome bisulfite sequencing that is highly 
correlated to matched array sample data 
 
For low-pass methodologies to be adopted, they must be capable of generating high quality data that 

can be used effectively in downstream analyses. The primary issue concerning low pass sequencing 
data is data missingness, which significantly hampers the ability to glean useful biological data from 

the platform. When considering WGBS, the types of data generated are two-fold – aligned reads and 
methylation ratios for all CpGs. Whilst sequencing analyses like aneuploidy detection have shown 

demonstrable success at low pass in WGS and WES by pooling reads into bins (Raman et al., 2019), 

methylation data generated at low pass presents significant issues. Analyses integral to subgrouping 
studies like classification and clustering do not tolerate missing data, and for WGBS to be integrated 

into existing classification tools, methylation data must be available for individual CpGs. Data 
missingness compounds as cohort size increases, where the total number of common CpGs continues 

to fall significantly. Missing data handling for methylation microarray platforms forms a straightforward 

component of processing, with a wide range of optimised imputation algorithms available like k-
nearest neighbours, random forest, and linear regression. Most approaches are unfeasible when 

concerned with WGBS data, where the computational pressures of loading very large matrices 
encompassing tens of millions of CpGs per sample become too high for most computing clusters. 

Current paediatric oncology research that utilises bisulfite sequencing has avoided the issue entirely, 
avoiding imputation and instead drastically subsetting sequenced data down to common CpGs 

(Kuschel et al., 2021; van Paemel et al., 2020). 

 
For this project, we sequenced a representative cohort of 36 primary medulloblastoma samples. In 

addition, we acquired an external cohort of 34 primary medulloblastoma and 8 control cerebellum 

samples, publicly available in a pre-processed format (beta values) (Hovestadt et al., 2014). Pre-
processing of sequencing data produced high quality sequencing reads, generating an average 

paired-end sequencing yield of 217,290,129 reads for all samples. Alignment rates very high, 

averaging 78.75% across all samples, enabling us to reach an average depth of 7.18x following across 
all samples following methylation data extraction.  Externally acquired samples did not suffer from this 

issue, as data was acquired in a pre-processed format and did not require read filtering (Mean depth 
= 29.48x). Analysis of extracted methylation data demonstrated key differences in beta values 

calculated using WGBS sequencing than are via the array. Beta values are increasingly bimodally 
distributed due to the read-count based calculation method in which beta values are calculated. This 

effect was more pronounced in lower coverage data, where the number of reads to calculate from 
decreased. The increased bimodal distribution observed would likely impact methylation variability, a 

key component of feature selection in subgrouping studies (Northcott et al., 2017; Capper et al., 2018; 

Sharma et al., 2019).  
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The issue of data missingness was made apparent following processing of methylation data. Applying 

the currently recommended filter of 5x to our cohort resulted in just 69,101 common CpGs across all 
assessed samples, with an average 11,523,459 CpGs missing per sample. This led to the adjusting of 

the depth filter to 3x, judged to be a necessary step to recover as much methylation data as possible 
– over 60% of missing CpGs were recovered. Following filtering, we imputed missing methylation 

values using BoostMe, a machine learning based imputation algorithm built upon the XGBoost 
algorithm (Zou et al., 2018). Imputation model performance was excellent, with low RMSE (0.15, SD = 

0.03), high accuracy (0.93, SD = 0.03), high AUROC (0.97, SD = 0.02) and high AUPRC (0.99, SD = 

0.01). Model performance significantly fell with each drop in coverage, with a more pronounced drop 
in coverage from 4x onwards. Overall, BoostMe was found to be highly amenable to the data 

generated in this study, where performance has exceeded that achieved by other algorithms dealing 

with lower rates of missing data in other studies (Zou et al., 2018). A cross-platform correlation analysis 
between methylation values produced by our processing pipeline and beta values for matched 

samples analysed via DNA methylation microarray at CpG sites that correspond to probe sites using 

LiftOver (Titus et al., 2016) was performed. Overall, inter-platform correlation for imputed data was 
significantly lower (determined via paired t-test) than non-imputed data (PCC = 0.95, SD = 0.014, p = 

0.02), but recovered significantly when using data filtered using a 3x depth filter (PCC = 0.93, SD = 

0.02, p < 0.001) rather than 5x (PCC = 0.90, SD = 0.02, p = < 0.001), emphasising the negative affect 
that imputing far greater numbers of missing values presents when applying a high coverage filter to 

low pass data. Regardless, correlation remains high and is consistent with other studies that employ 
WGBS at 10x depth and above (Titus et al., 2016). 

 

In summary, an optimised pre-processing pipeline capable of generating high quality, non-missing 
methylation data obtained from clinical tumour samples sequenced using low-pass WGBS is 

presented. Both sequence and methylation data are high quality, and imputation via BoostMe 
produces data that corelates well to matched array sample data. Going forward, the inclusion of an 

imputation strategy is deemed to be an absolute necessity if one wishes to comprehensively analyse 
bisulfite sequencing data at low pass. Its inclusion allows for the full potential of low-pass WGBS to 

be realised, making tens of millions of CpGs available for downstream analyses. 
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6.3 – Medulloblastoma sample data sequenced via low-
pass WGBS can seamlessly be integrated into pre-existing 
array trained classification models 
 
DNA methylation is a robust measurement that has shown success in helping researchers define new 
tumour entities and classes. Methylation analysis has relied upon the DNA methylation array platform, 

where it has remained the platform of choice for over a decade. This stagnation ultimately resulted in 
an unintended benefit – the accumulation of many thousands of samples analysed using the same 

platform, generating large reference sets numbering in the thousands. In paediatric oncology this has 

culminated in the development of the DFKZ CNS tumour classifier, capable of assigning tumour 
samples into 81 different tumour types based upon methylation patterns (Capper et al., 2018). This 

development remains ongoing, and the abundance of sample data and clear utility guarantees 

continued development in the coming years. With methylation sequencing techniques becoming more 
prominent, it is vital that methylation data obtained from these platforms can be integrated with array-

based classifiers to take advantage of more advanced technologies whilst not forfeiting the 
classification capabilities achieved by analysing many thousands of array samples. Provided the 

software is publicly available, processed beta values derived from WGBS samples can be applied to 
array trained models, enabling classification calls to be assigned to any sample of interest. 

 
To test the ability of array trained models in predicting the molecular subgroup of medulloblastoma 

samples sequenced via low-pass WGBS, we applied WGBS sample beta values to two pre-existing 

support vector machine classifiers capable of predicting both the four classic molecular subgroups of 
medulloblastoma (WNT, SHH, Group 3, Group 4) and a previous 7-group classification (WNT, SHH-

Child, SHH-Infant, Group 3 High Risk, Group 3 Low Risk, Group 4 High Risk, Group 4 Low Risk) 
(Newcastle University, 2021; Schwalbe et al., 2017). High probabilities of assignment in both internal 

(NMB) and external (ICGC) cohorts was observed. All 36 samples were correctly assigned into 

subgroup when applied to the 4-group classifier (Mean probability = 0.967, SD = 0.057). Surprisingly, 
matched array probabilities were significantly lower (Mean probability = 0.949, SD – 0.104, paired t-

test: p = 0.031). All 34 primary MB samples in the ICGC cohort were also correctly classified (Mean 
probability = 0.970, SD = 0.057, p > 0.05), with no significant difference observed between both 

cohorts and to matched array samples (Mean probability = 0.964, SD = 0.071, p > 0.05), indicating 

that the effect of sequencing coverage was negligible in our cohort. 7-group classification of WGBS 
samples was slightly poorer, with NMB samples classing with equal probability to matched array data 

(WGBS: Mean probability = 0.904, SD = 0.133 / Array: Mean probability = 0.913, SD = 0.113, p > 0.05). 
A total of 33 out of 36 samples were correctly classified, with both misclassifications belonging to the 

SHH subgroup. ICGC samples also performed equally (WGBS: Mean probability = 0.873, SD = 0.150 
/ Array: Mean probability = 0.870, SD = 0.150), with no significant difference in probability observed 

between cohorts or platforms. 
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These results demonstrated that medulloblastoma tumour samples sequenced via WGBS at low pass 

can seamlessly be integrated into pre-existing classifier models to predict subgroup with excellent 
performance. Concordance is very high, indicating that similar models like the current DFKZ brain 

tumour classifier would also be highly amenable to WGBS sample data if software was publicly 
available to researchers. Whilst this seems like a simple step, it presents some risk if proper care isn’t 

taking during sample processing. A lack of imputation or incorrect processing may result in incorrect 
classification, putting forward a case for the development of standardised processing guidelines for 

WGBS samples prior to their use with the classifier of interest. Previous studies have attempted to 

calibrate array classifier training sets to be more suited to WGBS methylation data by ‘binarizing’ beta 
values – effectively rounding values to 1 and 0 to mimic the bimodal distribution of methylation 

sequencing data (van Paemel et al., 2021; Kuschel et al., 2021). Whether or not this has had much of 

an effect is up for debate given our findings and such an approach ignores hemi-methylation, which 
is known to be an important biomarker in tumorigenesis (Sun et al., 2021; Shao et al., 2009). Overall, 

our findings demonstrate that WGBS samples sequenced at low pass that are processed using the 

methodologies in this study can be classified with high probability, an important step if the field is to 
ensure a smooth transition from the array platform to methylation sequencing in the coming years. 
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6.4 – CpGs of greater variability are present throughout the 
medulloblastoma methylome that contribute to increased 
visual separation of medulloblastoma subgroups 
 
Establishing CpG variance across all samples within a cohort is a crucial component of subgroup 
discovery and classification studies involving methylation data. Filtering non-variable CpGs helps 

reduce data dimensionality, easing computational pressure whilst retaining information which captures 
the most variability. In subgrouping studies, these most variable features are focused upon, as it is 

assumed that the most variable sites capture the separation observed between sample groups. 

Typically, standard deviation filtering is applied, where it has been shown to be especially effective 
when dealing with methylation data (Zhuang, Wedschwendter & Teschendorff, 2012). Variance filtering 

of CpGs/probes in our combined WGBS and array medulloblastoma cohorts revealed multiple 
differences between platforms. Over 3,990,549 CpGs were identified to be highly variable (SD > 0.25) 

compared to just 27,211 probes. This variability became more pronounced when filtering for the top 
10,000 features (WGBS: 0.40 – 0.46 / Array: 0.17-0.43). Whilst an interesting finding, technical 

differences between the platform help to explain the significantly increased variability that is captured 
by methylation sequencing. Beta values are polarised towards 0 and 1, whereas probe-based 

intensities typically only reach 0.1-0.9, limiting any standard deviation value that can be calculated at 

any locus. This effect likely becomes more pronounced when dealing with methylation sequencing 
data obtained at low pass, where sequencing errors cause larger changes methylation values. Despite 

these technical differences, such an increase in variability could not solely be caused by technical 
differences, but more likely by the fact that all CpGs are being interrogated. The EPIC platform covers 

just 3% of all CpGs in the genome (Zou et al., 2018), with each probe relying on the assumption that 

neighbouring CpGs exhibit correlated methylation (Eckhardt et al., 2006). Overlapping the top 10,000 

most variable CpGs identified within our WGBS cohort with all probes located on the Illumina 
Methylation EPIC manifest revealed that just 439 (4.4%) were overlapping. When accounting for a 

probe width of 50bp, just 1270 (12.7%) were overlapping and when increasing our range further to 
250bp (at which point multiple probes begin to overlap) 4,214 (42.1%) CpGs were identified as 

overlapping. 
 

The manner that most variably methylated CpGs were distributed throughout chromosomes was 

investigated. Given the fact that array probes are unevenly distributed by design, it was anticipated 
that CpGs would be distributed proportional to chromosome size. This was not the case. Whilst 

chromosome 1 captured the greatest number of variable probe sites by the array, significantly less 
CpGs were identified within this chromosome (Array: 1,007 / WGBS: 938, two proportion z-test = 

0.024). Instead, significant numbers of variable CpGs were present within chromosome 5 and over 
10% were present within chromosome 7 when narrowing down to the top 1,000 most variable CpGs. 

While we cannot comment further on why we see uneven distributions of variable methylation within 
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the medulloblastoma methylome, it is clear that substantial levels of variable methylation is occurring 

in regions missed by the array.  
 

Finally, the molecular subgroups of medulloblastoma were visualised using PCA, t-sne and UMAP for 
the top 10,000 CpGs/probes identified in our WGBS and array cohorts. Substructures representing all 

four molecular subgroups could be identified with distinct separation in both cohorts, with each 
respective subgroup appearing to cluster more densely and with greater separation in our WGBS 

cohort. This was an encouraging finding, given that our cohort consisted of two separate datasets 

sequenced in different laboratories and processed with different methods (Hovestadt et al., 2014). Like 
that of increased variability, technical reasons that contribute to increased variance likely contribute to 

the increased separation observed. In addition, samples were deliberately selected that were classified 

with high probability, which is also a significant contributory factor. However, the fact that groups 3 
and 4 cluster with such a clear degree of separation when accounting for variability located throughout 

the methylome is cause for further investigation given the constant motivation to further define groups 
3 and 4 which share similar methylation profiles defined via array. The WGBS cohort was integrated 

with the medulloblastoma reference cohort that formed part of initial DFKZ paediatric brain tumour 
classifier cohort (n = 426) (Capper et al., 2018). Data from both platforms clustered well, with 

subgroups persisting and WGBS samples sitting around cluster fringes of each respective subgroup 

cluster. The data from chapter 4 demonstrates clear inter-operability between methylation data derived 
from both platforms, and in part explains the ability for WGBS sample data to be classified confidently 

into subgroup using array trained models. 
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6.5 – Classifiers trained using low pass WGBS samples to 
predict the molecular subgroups of medulloblastoma 
perform equally to array-trained models 
 
 
Methylation sequencing platforms for use in methylation diagnostics has seen increasing prominence 

in recent years. Both RRBS and low pass nanopore sequencing data has been used alongside array 
datasets for classifier training with success, even without imputation. Given the high correlation 

observed between WGBS and array, the increased variability observed throughout the methylome, 
and more distinct visual clusters observed in WGBS, classifier models trained using WGBS derived 

feature sets in predicting the molecular subgroups of medulloblastoma was investigated. For both 
platforms, seven prominent multi-class algorithms were trained; elastic net, random forest, XGBoost 

(linear & tree boosting), support vector machine (linear & radial kernel) and logic regression, to predict 

the molecular subgroups of medulloblastoma using our combined cohort of medulloblastoma 
samples. For each model, the top 10,000 most variable CpGs/probes were used for training and 

performance was determined using a 10 times 6-fold cross validation strategy. 
 

Validation performance of most models was excellent, with comparable performance observed 
irrespective of the platform or training sets used. Our logic regression model was the top performer – 

an adaptive regression algorithm that is highly amenable to binary predictors (e.g., 0 and 1) (Ruczinksi 

et al., 2012). We observed high mean accuracy (WGBS = 0.977, array = 0.969, p = 0.178), CK (WGBS 
= 0.969, array = 0.959, p = 0.173), AUC (WGBS = 1.000, array = 1.000, p = 1.000) and low log loss 

(WGSB = 0.068, array = 0.070, p = 0.009) between both platforms, with no fall in performance observed 

in downsampled datasets like that seen in other algorithms that were tested. The use of logic 
regression in methylation classification has scantly been tested and these findings support further 

testing of logic regression models in WGBS classification models. However, it must be acknowledged 
that this analysis was only exploratory, with low sample numbers and a lack of test set available for 

more comprehensive performance testing. Feature selection was not specialised for each algorithm, 
which may hold back the performance of some algorithms like random forest and support vector 

machine models (Guyon et al., 2002; Capper et al., 2018). However, our initial findings are encouraging 

and indicate that WGBS trained models will likely perform equally to that of array models once WGBS 
sample data has accumulated. 

 



Faculty of Health & Life Sciences    Northumbria University 
 

245 
 

6.6 – Low-pass WGBS can be used to generate clinically 
relevant readouts in medulloblastoma 
 
The identification of molecular features forms a crucial part of diagnosis in medulloblastoma and other 

paediatric brain tumours (Louis et al., 2021). The combination of methylation class assignment and 

clinical feature identification forms a critical component in medulloblastoma diagnostics and will likely 
play an increasingly important role in future WHO classifications. Regions of aneuploidy (copy number 

variation) like monosomy 6 and MYC amplification are associated with WNT and group 3 respectively, 
and the determination of TP53 mutation is used by clinicians to stratify SHH patients. The identification 

of these features typically involves the employment of various platforms. Aneuploidy measurements 

are typically inferred using methylation microarray and/or karyotyping approaches like FISH, and 
mutation status is achieved via targeted sequencing panel. Aneuploidy using DNA methylation 

microarray is a popular option for researchers in paediatric oncology, where a subgroup call can also 
be obtained at no additional cost. Whole and single-arm chromosomal changes can be called with 

high accuracy and focal gains/losses can be called where probe sites are numerous. However, the 
probe centric design inherently limits calling, where a lack of whole genome coverage and uneven 

probe distribution resulting in many regions of aneuploidy being missed. The calling of differentially 
methylated regions (DMRs) is also limited, where many regions of differential methylation are missed. 

 

The combination of DNA methylation microarray and multi-gene mutation panel play critical roles in 
medulloblastoma diagnostics in developed nations. However, sequencing based approaches offer a 

powerful alternative that has the potential to interrogate the whole genome simultaneously. WGBS is 
uniquely placed to offer both sequencing and methylation-based analyses, and the cost of generating 

data at low-pass is becoming economically comparable to array (10x WGBS = ~£430 / Array = £300). 
The whole genome coverage offered by WGBS theoretically can be used to derive chromosomal copy 

number estimates with greater resolution than that offered by the array. DMRs could be identified 

throughout the methylome and with greater resolution thanks to the single-site resolution offered by 
the platform. Sequencing approaches have successfully been used to identify clinical variants and 

regions of aneuploidy in MB, with WGBS and WES increasingly being employed in research (Northcott 
et al., 2017). Variant calling is also possible, with specialised bisulfite sequencing variant calling tools 

available (Liu et al., 2021; Merkel et al., 2019). Tools for CNV calling are available that are compatible 

with WGBS (Talevich et al., 2016; Raman et al., 2019), but have yet to be applied to WGBS sample 

data sequenced at low pass. The same applies for variant calling and differential methylation analysis 
has not yet been applied comprehensively in medulloblastoma. 

 

In chapter 5, low-pass WGBS sample data was used to attempt to detect CNVs, variants and regions 
of differential methylation in medulloblastoma. An optimised CNVKit pipeline supplemented with 

additional filter regions to identify whole and single-arm regions of aneuploidy was presented, with 
96.908% sensitivity compared those called by conumee in our matched array cohort. Focal regions of 
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aneuploidy could be identified as small as 150kb-200kb without a reference cohort of samples for 

normalisation. Validated regions of MYC and MYCN with 100% and 66% sensitivity were identified 
respectively, exceeding that in the matched array cohort. Further additional whole chromosomal 

aberrations were detected that appeared to be missed by conumee, as well as focal regions including 

a SNCAIP duplication within a group 4 sample, although validation is needed to corroborate our 
findings. The excellent copy number calling performance demonstrated in chapter 5 places WGBS in 

an advantageous position compared to the array, enabling accurate copy number estimates to be 

identified throughout the genome, even at low pass. The capability of low-pass WGBS to be used to 
call variants using ‘bs call’ (Merkel et al., 2019) was then investigated. Unfortunately, this was 

unsuccessful, where coverage was too low to call variants reliably. 

 
Analysing the landscape of differential methylation throughout the entire methylome in a subgroup 

specific manner revealed vastly increased numbers of DMRs were identified in WGBS compared to 
array-based analysis. DMRs were larger and called with greater methylation change on average across 

all molecular subgroups, with the greatest proportion of DMRs found to overlap with open sea CpGs 
rather than regions covered by the array manifests. These findings agreed with out variable features 

analysis, highlighting that significant differential methylation is occurring in medulloblastoma that is 

missed when analysing samples via array. Genomic annotation of DMRs revealed subgroup-specific 
patterns that differed wildly compared to DMRs identified in our array cohort. Gene ontology analysis 

of DMRs that overlapped with genic regions identified significantly greater numbers of enriched 
biological processes that were affected by differential methylation than were in our array analysis. 

 
A focused analysis within the NMF directed split of subtype VII was also performed, for which there 

was clinical evidence identified when analysing array sample data (Sharma et al., 2019). Over 5,981 

DMRs were identified that enriched over 84 biological processes. The same analysis in our array cohort 
identified just a single DMR that enriched 1 biological process respectively. Our findings put forward 

a strong case for the usage of low-pass WGBS in being a comparable (and potentially superior) 
alternative to the DNA methylation microarray platform in identifying differentially methylated regions. 

The evidence that significant amounts of variability is present within medulloblastoma that is missed 

by the array is compelling, and the large differences observed between subgroups suggest that they 
could play a role in providing a more comprehensive, optimised whole-methylome profiles for each 

respective subgroup/subtype. 
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6.7 – Future work 
 
6.7.1 – Developing additional methods of imputation for 

use with WGBS that are less memory-intensive 
 
Imputation of missing data is a necessary step to circumvent the high degree of missingness that is a 

key obstacle when working with data sequenced at low pass. Imputation is a memory-intensive 
operation, with most established techniques for imputing array methylation data becoming 

computationally unfeasible when concerned with WGBS methylation values, where a significantly 
higher degree of missingness is present per sample across ~28million CpGs. We demonstrated 

success using machine-learning based methods, where missing values were predicted with excellent 

model performance but with the caveat that significant amounts of computing power required to 
achieve this, even with our modest cohort size (<100 samples). Whilst our method is successful for 

our cohort (n = 78), it would quickly become unfeasible when working with larger cohorts numbering 
in the 100s or 1000s. To increase accessibility to researchers, the development of imputation 

techniques that place less of a memory burden upon computing infrastructure is a necessity. Some 
research is beginning to take place regarding the implementation of imputation algorithms optimised 

for whole genome methylation data – namely the introduction of sliding-window approaches. Sliding 

window-based approaches require that only a portion of a matrix is loaded at any one time, 
significantly reducing memory burden. Such an approach would be directly applicable to WGBS, 

where there is no need for an entire matrix to be within memory at any time, and rather just a subset 
of CpG rows, where typically only neighbouring CpGs are needed to impute any specific CpG of 

interest. A sliding-window k-nearest neighbour approach has now been developed, but its capability 
to impute WGBS has not been robustly tested in clinical sample data yet (Farrell et al., 2021). The k-

nearest neighbours’ algorithm is an established imputation technique for use with DNA methylation 

microarray but is not the most effective method (Di Lena et al., 2020) – the development of other, 

established methods of imputation that are compatible with WGBS would be an important step 
forward to increase the accessibility of low-pass WGBS to researchers. 

 

 
6.7.2 – Establishment of user-friendly software for data 

handling of samples sequenced via low-pass WGBS 
 
The bioinformatic techniques described throughout this document are complex. Various packages 

across multiple programming languages are utilised and would require at least intermediate to 
advanced bioinformatics experience to establish and use within a high-performance computing 

environment. Many software suites that bring together multiple analytical packages are available, even 
for WGBS (gemBS, BSBolt) which enable them to more accessible to researchers that are lacking the 

bioinformatic experience required to process samples and generate meaningful analytical data. Uniting 
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the analyses presented in this project – sample processing, methylation extraction, subgrouping, copy 

number calling and differential methylation would present a significant ‘quality-of-life’ improvement for 
users with limited bioinformatics experience interested in analysing WGBS sample data at low pass.  

 
 
6.7.3 – Enabling WGBS sample compatibility with the DFKZ 

paediatric brain tumour classifier 
 
This study has demonstrated that the molecular subgroups of medulloblastoma can successfully be 

determined using low-pass WGBS. Methylation values are highly correlated to matched sample data 
analysed via methylation microarray, enabling WGBS sample data to be applied to pre-existing array-

trained classification models to obtain molecular subgroup calls with high probability. Classifiers 
trained to assign subgroup accept data in the form of beta values, which is a universal measurement 

of methylation used by both the array and methylation sequencing platforms. Providing software for 
the classification model of interest is publicly available, WGBS samples can easily be applied to 

models to derive a subgroup prediction. In this study we used two SVM models to derive subgroup 
but there usage clinically has since been superseded by the DFKZ paediatric brain tumour classifier. 

We were not able to test the performance of this classifier in assigning subgroup to WGBS sample 

data as the software is unfortunately not publicly available. Given the data from this study, investigating 
the compatibility of WGBS sample data with the DFKZ classifier would be an important next step in 

ensuring a smooth transition towards methylation sequencing in the coming years.  
 

 
6.7.4 – Novel ‘omics profiling of medulloblastoma subtypes 

via WGBS 
 
This study has demonstrated the capability of low-pass WGBS to be used to generate accurate 
measurements of methylation throughout the methylome, supplemented further with generation of 

CNV and DMR calling throughout the whole genome. Given the increased methylation variability 
observed throughout the methylome, it would be an important future goal to characterise the 

methylation profile of the medulloblastoma subtypes throughout the methylome without being 
restricted to sites covered by the methylation microarray. We show that significant differential 

methylation is occurring throughout the genome, which contribute to characterising distinct, separable 

methylation profiles within the subtypes of medulloblastoma. This study was restricted to 
characterising molecular subgroups due to cohort size but where sample size was sufficient in subtype 

VII, we show that the proposed NMF-directed split within this subtype can be characterised by distinct 
patterns of differential methylation. Sequencing of more samples would enable such an analysis to be 

done, and unification with gene expression datasets would allow any direct correlations between 
methylation and expression to be identified.
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6.8 – Implication of Results 
 

The data produced in this project show that WGBS has significant potential to be used as a platform 

for clinical diagnostics in medulloblastoma in the coming years. Even at lower depths, high-quality 

methylation values and aneuploidy calls can be generated that are capable of being used for accurate 
subgroup assignment and risk stratification, with variant calling also shown to be possible at higher 

depths. These results are promising, demonstrating applicability for WGBS to be used as a platform 
for clinical diagnostics in medulloblastoma in the coming years. Whilst this project focuses on 

paediatric medulloblastoma, the applicability of a methylation-based assay for classification and 
aneuploidy analysis extends to that of other paediatric CNS tumour types, which rely on the generation 

of the same data to reach accurate subgroup diagnosis and risk stratification within their respective 

tumour types (Locke et al., 2019). Indeed, WGBS-based assays may also be applicable outside of 
CNS tumours. Many methylation marker-based assays are available that are designed to detect the 

presence of multiple different types of cancers. One example is the EPICUP assay, built upon the 

Illumina Methylation450k platform and is used to identify the primary tissue origin of cancers 
diagnosed with an unknown origin (Moran et al., 2016). Outside of cancer, genome wide methylation 

profiling has shown utility as a tool for the molecular diagnosis of neurodevelopmental presentations 

and congenital anomalies, highlighting the potential for WGBS to be applied among other types of 
disease (Arif-Eshghi et al., 2019).  

 

Such a scenario where WGBS is used in a diagnostic setting is not unreasonable, where the 
implementation of sequencing infrastructure within healthcare systems in developed nations is 

becoming more prominent (Stark et al., 2019). Governments in over 14 developed nations have 

invested over $4 billion into the establishment of sequencing infrastructure since 2013, with the UK’s 
NHS Genomics England entering partnership with Illumina to implement DNA sequencing as standard 

diagnostic practice for rare genetic diseases in 2020 (Genomics England, 2020). With Illumina being 
the provider of the methylation microarray and WGBS requiring just an additional bisulfite treatment 

step to take advantage of such infrastructure, it is easy to envision a future where WGBS-based 
diagnostic assays like that described in this project could be used within such infrastructure in the 

future. Cost is an important factor in the adoption of assays in a clinical setting and demonstrating that 
high-quality low-depth methylation data can be generated in this project provides significant economic 

benefit. With sequencing costs continuing to fall for WGBS and alternative library preparation methods 

continuing to lower DNA input requirements, it is highly likely that the cost of WGBS may fall below 
that which is currently offered by Illumina for the methylation microarray (WGBS vs Array costs).   
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6.9 – Concluding remarks 
 
In this study we describe an optimised pipeline for processing, quality control and analysis of clinical 
sample data sequenced at low pass. Our pipeline includes imputation, which successfully imputes 

missing values with high correlation compared to matched array samples.  Data generated is suitable 
for subgrouping, where we show that high subgroup assignment probabilities can be acquired by 

applying WGBS sample data directly to existing classification models trained using array data. 
Validated classification models trained using WGBS sample data perform equivalently to identical 

models trained using matched array data, and we show that performance is robust across most 

models tested at coverages as low as 1x. 
 

We surveyed the entire methylome of medulloblastoma and highlight that methylation that cannot be 
detected via array platforms is highly variable among molecular subgroups. This subsequently 

translated to increased subgroup separation when applying visualisation techniques. This translated 
further when analysing the landscape of differential methylation within medulloblastoma, where we 

identified significantly increased numbers of differentially methylated regions compared to array-based 

analyses in the same samples. Finally, we present an optimised copy number variation calling pipeline 
suitable for use with low-pass WGBS. Large scale chromosomal alterations are detected with near 

identical sensitivity to array-based methods and additional focal regions are successfully identified 
without a reference cohort of samples for normalisation. 

 
In summary, we describe a platform-independent assay for molecular subgrouping of 

medulloblastoma via low-pass WGBS. It performs equivalently to array-based methods at comparable 
cost and provides a proof-of-concept for its routine adoption in a research and clinical setting using 

standard WGS technologies. Finally, analysis of the whole methylome enabled the elucidation of 

existing heterogeneity with greater resolution compared to the array, indicating that additional 
heterogeneity is present within medulloblastoma that has hitherto been inaccessible. 
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8.1 – Cohort data 
 
8.1.1 – Sequencing quality control 
 
8.1.1.1 – WGBS Sequencing summary statistics – ICGC 

Cohort 
 

Supplementary Table 2a: WGBS sequencing summary of clinical samples    
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ICGC_MB1 623,811,831 0.000353 27.88 0.951 0.924 0.759 0.742 0.001 

ICGC_MB2 679,702,451 0.000304 34.23 0.956 0.939 0.841 0.742 0.001 
ICGC_MB5 761,206,409 0.000266 29.56 0.954 0.932 0.773 0.765 0.004 

ICGC_MB6 1,006,457,176 0.000245 47.64 0.960 0.953 0.923 0.786 0.001 
ICGC_MB7 547,859,028 0.000201 25.75 0.950 0.910 0.689 0.706 0.002 

ICGC_MB9 649,852,593 0.000221 30.49 0.948 0.905 0.750 0.655 0.001 
ICGC_MB14 654,669,051 0.000190 34.38 0.952 0.922 0.783 0.643 0.001 

ICGC_MB15 719,001,068 0.000224 29.71 0.956 0.936 0.790 0.776 0.003 
ICGC_MB16 461,919,986 0.000218 24.66 0.951 0.903 0.644 0.640 0.001 

ICGC_MB17 639,660,281 0.000154 27.23 0.954 0.934 0.771 0.748 0.002 
ICGC_MB18 653,579,657 0.000157 31.14 0.955 0.937 0.819 0.617 0.001 

ICGC_MB19 587,665,221 0.000248 29.10 0.954 0.927 0.771 0.748 0.001 
ICGC_MB24 697,002,657 0.000225 27.40 0.954 0.926 0.737 0.729 0.005 

ICGC_MB26 490,624,716 0.000305 25.90 0.932 0.877 0.679 0.714 0.002 
ICGC_MB28 499,879,430 0.000212 23.87 0.951 0.917 0.683 0.717 0.001 

ICGC_MB32 470,816,475 0.000167 25.52 0.947 0.891 0.633 0.677 0.002 
ICGC_MB34 684,371,826 0.000243 32.55 0.955 0.938 0.819 0.736 0.001 

ICGC_MB35 648,538,423 0.000229 33.69 0.956 0.941 0.850 0.731 0.001 
ICGC_MB36 603,889,519 0.000226 24.91 0.953 0.910 0.600 0.615 0.001 

ICGC_MB37 526,163,635 0.000267 27.98 0.936 0.888 0.720 0.709 0.001 
ICGC_MB38 522,819,649 0.000228 26.47 0.953 0.921 0.715 0.762 0.003 

ICGC_MB39 543,486,878 0.000149 26.94 0.955 0.930 0.731 0.726 0.002 
ICGC_MB40 723,780,166 0.000261 33.48 0.956 0.943 0.871 0.738 0.002 

ICGC_MB45 415,724,933 0.000243 23.56 0.939 0.874 0.613 0.685 0.001 
ICGC_MB46 527,997,449 0.000181 28.28 0.943 0.888 0.681 0.737 0.002 

ICGC_MB49 693,227,248 0.000216 29.59 0.956 0.939 0.820 0.709 0.001 
ICGC_MB50 499,302,201 0.000223 27.76 0.948 0.905 0.712 0.648 0.000 

ICGC_MB51 501,578,694 0.000218 27.79 0.927 0.867 0.681 0.727 0.001 
ICGC_MB88 605,391,048 0.000204 26.50 0.952 0.920 0.708 0.679 0.001 
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ICGC_MB90 622,979,349 0.000221 28.03 0.952 0.917 0.713 0.673 0.002 

ICGC_MB95 570,923,398 0.000229 24.36 0.950 0.908 0.640 0.705 0.003 
ICGC_MB107 1,201,274,488 0.000218 38.72 0.956 0.941 0.853 0.686 0.001 

ICGC_MB112 529,480,840 0.000217 21.46 0.943 0.877 0.551 0.664 0.001 
ICGC_MB113 871,611,832 0.000220 30.15 0.954 0.918 0.718 0.665 0.003 

F1 501,571,570 0.000255 24.94 0.949 0.917 0.721 0.759 0.001 

F2 617,905,211 0.000206 28.15 0.954 0.938 0.814 0.773 0.001 
F3 435,441,857 0.000228 18.33 0.949 0.886 0.420 0.761 0.001 

F4 657,120,569 0.000268 29.33 0.955 0.941 0.841 0.776 0.001 

A1 547,548,547 0.000259 22.93 0.917 0.807 0.550 0.723 0.014 

A2 616,337,590 0.000277 27.66 0.949 0.917 0.752 0.750 0.012 
A3 567,857,361 0.000286 26.07 0.945 0.900 0.700 0.744 0.012 

A4 702,268,485 0.000245 31.71 0.952 0.928 0.808 0.749 0.011 

Minimum 415,724,933 0.000149 18.33 0.917 0.807 0.420 0.615 0.000 

Average 621,007,162 0.000231 28.47 0.950 0.914 0.730 0.715 0.003 
Maximum 1,201,274,488 0.000353 47.64 0.960 0.953 0.923 0.786 0.014 

 
 



Faculty of Health & Life Sciences    Northumbria University 
 

292 
 

 
8.1.2 – Methylation quality control 
 
8.1.2.1 – NMB Methylation QC summary via RnBeads2.0 
 

Sample_ID 
Number of 
CpG Sites 
Covered  

Mean 
Cytosine 
Coverage 

No. CpGs 
with 

coverage ≥ 
5 

No. CpGs 
with 

coverage 
≥ 10 

No. 
CpGs 
with 

coverage 
≥ 30 

No. CpGs 
with 

coverage 
≥ 60 

Sites Masked with 
NA (5 Coverage 
Filter Applied) 

Sites Masked with 
NA (3 Coverage 
Filter Applied) 

NMB_17 26,586,855 6.27886559 16,438,339 4,527,018 14,354 5,308 12,553,586 5,146,677 

NMB_77 26,733,652 6.807915133 18,137,956 5,552,429 16,741 6,015 10,664,301 4,023,884 

NMB_79 26,785,108 6.759724807 18,154,790 5,457,494 15,181 5,493 10,954,705 4,036,484 

NMB_169 26,408,687 6.274207461 15,975,444 4,119,770 57,447 37,375 12,534,493 5,249,066 

NMB_178 26,806,819 7.430507924 19,048,803 6,960,309 21,299 6,748 9,982,634 3,819,716 

NMB_181 26,409,438 6.376894162 16,486,049 4,295,771 49,288 38,986 12,233,771 4,975,057 

NMB_185 26,882,443 6.966158582 18,285,961 5,900,001 19,925 6,859 11,178,852 4,227,338 

NMB_187 26,915,152 7.086040569 18,953,356 6,078,388 19,346 6,983 10,343,566 3,765,899 

NMB_203 26,886,886 6.901275626 18,428,986 5,803,352 17,290 6,248 10,443,129 3,918,522 

NMB_250 27,016,146 7.816834977 19,992,410 8,135,706 24,690 6,183 9,748,030 3,536,307 

NMB_273 26,696,034 6.546758893 17,140,816 4,838,300 21,240 11,413 11,833,758 4,682,422 

NMB_318 26,440,301 6.463608754 16,050,019 4,857,876 37,871 5,700 12,539,272 5,391,869 

NMB_362 26,743,882 6.622579474 17,509,363 5,143,802 17,509 6,461 11,558,581 4,509,850 

NMB_363 26,771,580 6.385916446 17,260,329 4,562,290 15,123 5,613 11,937,556 4,585,606 

NMB_378 26,790,271 6.579376371 17,373,067 5,111,123 21,846 6,922 11,640,699 4,541,187 

NMB_390 26,786,479 6.860999312 18,174,770 5,785,345 18,314 6,356 11,032,396 4,262,627 

NMB_390_FFPE 24,893,503 6.424897091 14,057,686 5,003,042 27,562 5,714 14,082,067 7,258,368 

NMB_416 26,608,005 6.746878317 17,401,641 5,485,890 17,075 5,987 11,869,700 4,687,757 
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NMB_433 26,472,545 6.226843849 15,931,459 4,503,401 14,889 5,479 12,894,570 5,505,417 

NMB_436 26,832,761 7.085801756 18,735,247 6,254,748 19,401 6,586 9,966,740 3,783,439 

NMB_529 26,922,302 8.519824791 20,692,671 9,566,702 42,238 7,372 8,498,355 3,152,509 

NMB_549 26,620,486 7.264023129 17,429,713 5,331,993 142,149 75,483 15,685,787 7,095,179 

NMB_610 26,585,586 6.42453121 16,986,452 4,668,279 14,823 5,674 11,797,850 4,692,187 

NMB_725 26,777,618 6.354703208 17,150,555 4,396,671 15,600 5,991 13,286,797 5,320,043 

NMB_729 27,144,207 7.617011873 20,546,242 7,600,658 18,484 5,926 8,703,170 2,941,546 

NMB_733 26,554,239 7.02696432 17,464,020 6,028,917 30,279 6,280 12,146,972 4,950,256 

NMB_758 26,496,914 6.523205948 15,919,545 4,127,702 42,610 32,365 12,934,260 5,445,215 

NMB_769 26,609,630 6.266817201 16,114,371 3,898,890 29,906 21,139 12,934,415 5,220,055 

NMB_772 26,789,509 6.746752059 17,875,028 5,414,289 17,637 5,962 11,513,518 4,434,461 

NMB_774 26,756,277 6.413380494 17,246,044 4,594,041 16,009 6,075 11,656,171 4,505,674 

NMB_787 26,548,503 6.518779985 17,136,172 4,818,145 14,768 5,453 12,000,997 4,727,611 

NMB_803 26,904,387 6.976522082 18,694,716 5,869,489 18,757 6,453 10,478,815 3,847,059 

NMB_858 26,987,918 7.75348228 20,360,567 7,751,122 21,421 7,225 8,516,973 2,963,589 

NMB_867 26,736,720 6.897012199 17,742,206 5,786,233 18,820 6,150 11,678,751 4,617,309 

NMB_870 26,770,744 6.552362123 17,786,632 4,813,365 15,701 6,048 11,349,968 4,206,830 

NMB_890 26,500,265 6.33615977 16,665,895 4,395,065 14,071 5,534 11,705,352 4,645,376 
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8.1.2.2 – ICGC methylation QC summary via RnBeads 2.0 
 

Sample_ID 
Number of 
CpG Sites 
Covered  

Mean Cytosine 
Coverage 

No. CpGs with 
coverage ≥ 5 

No. CpGs with 
coverage ≥ 10 

No. CpGs with 
coverage ≥ 30 

No. CpGs with 
coverage ≥ 60 

Sites Masked 
with NA 

ICGC_A1 25,501,620 24.39562542 25,501,620 22,177,630 8,049,356 271,136 0 
ICGC_A2 26,506,374 29.12012032 26,506,374 25,620,755 12,300,460 167,674 0 
ICGC_A3 26,404,867 26.95651874 26,404,867 24,910,629 10,328,164 137,470 0 
ICGC_A4 26,653,257 32.57667095 26,653,257 25,853,677 15,288,854 565,111 0 
ICGC_F1 26,551,635 25.69125988 26,551,635 25,394,913 8,590,024 62,796 0 
ICGC_F2 26,639,991 29.46192568 26,639,991 26,177,756 12,677,202 91,781 0 
ICGC_F3 26,499,123 19.26177538 26,499,123 24,726,921 1,687,945 32,919 0 
ICGC_F4 26,747,379 30.03018595 26,747,379 26,210,611 13,724,502 93,697 0 

ICGC_MB1 26,569,816 29.2740427 26,569,816 25,790,459 12,417,461 169,142 0 
ICGC_MB2 26,681,042 35.02786184 26,681,042 26,115,641 16,730,868 1,308,393 0 
ICGC_MB5 26,625,869 30.37727595 26,625,869 25,903,991 12,613,604 612,284 0 
ICGC_MB6 26,801,382 48.60023744 26,801,382 26,581,656 22,702,159 6,232,605 0 
ICGC_MB7 26,568,081 26.49778368 26,568,081 25,184,757 9,460,681 252,673 0 
ICGC_MB9 26,491,141 31.40323733 26,491,141 25,089,006 13,501,597 1,068,802 0 
ICGC_MB14 26,564,945 35.75889146 26,564,945 25,704,765 15,132,288 2,572,119 0 
ICGC_MB15 26,594,506 30.23855698 26,594,506 25,449,493 12,768,947 591,737 0 
ICGC_MB16 26,596,573 25.34982353 26,596,573 24,971,879 8,058,461 379,198 0 
ICGC_MB17 26,642,117 28.52756581 26,642,117 26,080,263 11,349,416 123,961 0 
ICGC_MB18 26,653,107 31.909972 26,653,107 26,023,944 14,287,443 668,321 0 
ICGC_MB19 26,641,708 30.37387318 26,641,708 25,890,801 12,944,289 589,988 0 
ICGC_MB24 26,705,536 28.07686594 26,705,536 25,687,509 10,630,154 337,378 0 
ICGC_MB26 25,983,078 27.10432806 25,983,078 24,177,774 10,216,849 244,272 0 
ICGC_MB28 26,605,272 24.5552421 26,605,272 25,367,814 7,191,222 60,700 0 
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ICGC_MB32 26,414,794 26.50908018 26,414,794 24,717,770 8,891,994 611,287 0 
ICGC_MB34 26,679,148 34.33558103 26,679,148 26,172,707 15,950,755 1,120,694 0 
ICGC_MB35 26,705,695 35.15060469 26,705,695 26,279,804 17,579,554 807,527 0 
ICGC_MB36 26,591,438 25.48934149 26,591,438 24,922,712 6,220,850 114,980 0 
ICGC_MB37 26,131,156 29.79701862 26,131,156 24,792,395 12,966,514 260,363 0 
ICGC_MB38 26,667,911 27.15444446 26,667,911 25,546,846 9,835,672 339,041 0 
ICGC_MB39 26,717,768 27.57922982 26,717,768 25,766,837 9,998,409 340,449 0 
ICGC_MB40 26,668,310 34.29185123 26,668,310 26,217,531 17,437,689 419,500 0 
ICGC_MB45 26,101,958 24.52459724 26,101,958 24,007,367 7,795,472 130,561 0 
ICGC_MB46 26,342,637 29.83820333 26,342,637 24,773,823 11,615,470 1,098,457 0 
ICGC_MB49 26,663,104 30.30732315 26,663,104 26,056,023 13,217,825 306,600 0 
ICGC_MB50 26,466,406 28.97450957 26,466,406 25,239,028 11,187,106 485,046 0 
ICGC_MB51 25,873,535 29.26243128 25,873,535 23,981,920 11,708,765 744,065 0 
ICGC_MB88 26,630,903 27.21376876 26,630,903 25,438,922 9,851,015 302,141 0 
ICGC_MB90 26,581,518 28.71199512 26,581,518 25,259,467 11,006,045 643,516 0 
ICGC_MB95 26,536,008 25.07211966 26,536,008 25,051,775 7,617,399 302,767 0 
ICGC_MB107 26,784,259 39.60073407 26,784,259 26,244,589 18,050,218 3,329,892 0 
ICGC_MB112 26,348,038 22.27310049 26,348,038 24,185,621 5,339,355 68,980 0 

ICGC_MB113 26,645,016 31.54009331 26,645,016 25,645,261 12,143,616 1,602,015 0 
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8.1.3 – Imputation 
 
8.1.3.1 - BoostMe model performance – ICGC Cohort – Effect of downsampling on RMSE 
 
Root mean squared error for all per sample imputation models at each level of sequencing depth and coverage filter tested.  
Key: 10x5 = 10x sequencing depth processed using a 5x filter   
 

Sample_ID 30x 10x5 10x3 9x5 9x3 8x5 8x3 7x5 7x3 6x5 6x3 5x3 5x1 4x3 4x1 3x1 2x1 1x1 

ICGC_A1 0.12 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.16 0.15 0.16 0.17 0.20 0.17 0.21 0.23 0.25 0.27 

ICGC_A2 0.11 0.13 0.14 0.14 0.14 0.14 0.15 0.14 0.15 0.15 0.16 0.16 0.18 0.17 0.20 0.21 0.24 0.27 

ICGC_A3 0.11 0.13 0.14 0.13 0.14 0.14 0.14 0.14 0.15 0.14 0.15 0.16 0.18 0.17 0.20 0.21 0.24 0.26 

ICGC_A4 0.10 0.13 0.13 0.13 0.13 0.13 0.14 0.14 0.14 0.14 0.15 0.15 0.17 0.16 0.19 0.21 0.23 0.26 

ICGC_F1 0.10 0.13 0.14 0.13 0.14 0.14 0.14 0.14 0.15 0.15 0.16 0.16 0.18 0.17 0.20 0.22 0.25 0.27 

ICGC_F2 0.10 0.13 0.13 0.13 0.13 0.13 0.14 0.14 0.14 0.14 0.15 0.16 0.17 0.17 0.19 0.21 0.24 0.27 

ICGC_F3 0.11 0.14 0.15 0.15 0.16 0.15 0.16 0.15 0.17 0.16 0.17 0.18 0.21 0.18 0.23 0.25 0.27 0.29 

ICGC_F4 0.10 0.12 0.13 0.13 0.13 0.13 0.14 0.13 0.14 0.14 0.15 0.15 0.17 0.16 0.19 0.21 0.23 0.27 

ICGC_MB1 0.12 0.14 0.15 0.15 0.15 0.15 0.16 0.15 0.16 0.16 0.17 0.17 0.19 0.18 0.21 0.22 0.25 0.28 

ICGC_MB2 0.11 0.13 0.13 0.13 0.13 0.13 0.14 0.14 0.14 0.14 0.15 0.15 0.17 0.16 0.18 0.20 0.22 0.26 

ICGC_MB5 0.10 0.13 0.13 0.13 0.13 0.13 0.14 0.14 0.14 0.14 0.15 0.16 0.18 0.16 0.19 0.21 0.24 0.27 

ICGC_MB6 0.09 0.11 0.11 0.11 0.11 0.11 0.12 0.12 0.12 0.12 0.13 0.13 0.14 0.14 0.15 0.17 0.19 0.23 

ICGC_MB7 0.11 0.14 0.14 0.14 0.15 0.14 0.15 0.15 0.16 0.15 0.16 0.17 0.19 0.17 0.21 0.22 0.25 0.28 

ICGC_MB9 0.13 0.16 0.16 0.16 0.17 0.16 0.17 0.17 0.17 0.17 0.18 0.19 0.21 0.20 0.22 0.25 0.27 0.31 

ICGC_MB14 0.16 0.18 0.19 0.19 0.19 0.19 0.20 0.19 0.20 0.20 0.21 0.21 0.24 0.22 0.25 0.27 0.30 0.33 

ICGC_MB15 0.10 0.12 0.12 0.12 0.13 0.12 0.13 0.13 0.13 0.13 0.14 0.14 0.16 0.15 0.18 0.19 0.22 0.24 

ICGC_MB16 0.15 0.17 0.18 0.18 0.18 0.18 0.19 0.19 0.19 0.19 0.20 0.21 0.23 0.21 0.25 0.27 0.29 0.32 

ICGC_MB17 0.10 0.14 0.14 0.14 0.15 0.14 0.15 0.15 0.16 0.15 0.16 0.17 0.20 0.18 0.21 0.23 0.26 0.30 

ICGC_MB18 0.14 0.16 0.17 0.17 0.17 0.17 0.18 0.18 0.18 0.18 0.19 0.19 0.21 0.20 0.23 0.25 0.28 0.31 

ICGC_MB19 0.12 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.15 0.16 0.17 0.18 0.17 0.20 0.21 0.23 0.26 
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ICGC_MB24 0.11 0.13 0.14 0.13 0.14 0.14 0.15 0.14 0.15 0.14 0.15 0.16 0.18 0.17 0.20 0.22 0.24 0.26 

ICGC_MB26 0.12 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.16 0.15 0.16 0.17 0.19 0.17 0.21 0.22 0.25 0.28 

ICGC_MB28 0.13 0.15 0.16 0.16 0.16 0.16 0.17 0.16 0.17 0.17 0.18 0.18 0.21 0.19 0.22 0.24 0.27 0.29 

ICGC_MB32 0.11 0.14 0.14 0.14 0.15 0.14 0.15 0.14 0.16 0.15 0.16 0.17 0.20 0.17 0.21 0.23 0.25 0.28 

ICGC_MB34 0.12 0.15 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.16 0.17 0.17 0.19 0.18 0.20 0.22 0.25 0.28 

ICGC_MB35 0.13 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.16 0.16 0.17 0.17 0.19 0.18 0.20 0.22 0.24 0.27 

ICGC_MB36 0.18 0.21 0.21 0.21 0.22 0.21 0.22 0.22 0.22 0.22 0.23 0.24 0.26 0.24 0.28 0.30 0.32 0.35 

ICGC_MB37 0.13 0.15 0.16 0.15 0.16 0.16 0.16 0.16 0.17 0.16 0.17 0.18 0.20 0.19 0.21 0.23 0.26 0.29 

ICGC_MB38 0.10 0.12 0.13 0.12 0.13 0.13 0.13 0.13 0.14 0.13 0.14 0.15 0.17 0.15 0.19 0.20 0.23 0.25 

ICGC_MB39 0.11 0.14 0.14 0.14 0.14 0.14 0.15 0.14 0.15 0.15 0.16 0.16 0.19 0.17 0.20 0.22 0.25 0.28 

ICGC_MB40 0.11 0.13 0.13 0.13 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.16 0.17 0.17 0.18 0.20 0.23 0.27 

ICGC_MB45 0.14 0.17 0.17 0.17 0.17 0.17 0.18 0.18 0.18 0.18 0.19 0.19 0.22 0.20 0.24 0.26 0.28 0.31 

ICGC_MB46 0.10 0.12 0.13 0.12 0.13 0.13 0.14 0.13 0.14 0.13 0.14 0.15 0.18 0.16 0.19 0.21 0.23 0.25 

ICGC_MB49 0.13 0.15 0.15 0.15 0.16 0.16 0.16 0.16 0.16 0.16 0.17 0.18 0.19 0.18 0.21 0.23 0.25 0.28 

ICGC_MB50 0.14 0.16 0.17 0.16 0.17 0.17 0.17 0.17 0.18 0.17 0.18 0.19 0.21 0.20 0.23 0.25 0.27 0.30 

ICGC_MB51 0.11 0.13 0.13 0.13 0.13 0.13 0.14 0.13 0.14 0.14 0.15 0.15 0.18 0.16 0.19 0.21 0.23 0.26 

ICGC_MB88 0.13 0.16 0.16 0.16 0.17 0.17 0.17 0.17 0.18 0.17 0.18 0.19 0.21 0.20 0.23 0.25 0.27 0.30 

ICGC_MB90 0.13 0.16 0.16 0.16 0.17 0.16 0.17 0.17 0.18 0.17 0.18 0.19 0.21 0.20 0.23 0.25 0.28 0.31 

ICGC_MB95 0.12 0.15 0.15 0.15 0.16 0.15 0.16 0.16 0.17 0.16 0.17 0.18 0.21 0.19 0.23 0.25 0.27 0.30 
ICGC_MB10
7 0.14 0.16 0.16 0.16 0.17 0.16 0.17 0.17 0.17 0.17 0.18 0.18 0.20 0.19 0.21 0.23 0.25 0.29 
ICGC_MB11
2 0.15 0.17 0.18 0.17 0.18 0.18 0.19 0.18 0.19 0.18 0.20 0.20 0.24 0.21 0.25 0.27 0.29 0.32 
ICGC_MB11
3 0.15 0.17 0.18 0.17 0.18 0.17 0.18 0.18 0.19 0.18 0.19 0.19 0.22 0.20 0.23 0.25 0.27 0.29 
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8.1.3.2 - BoostMe model performance – NMB Cohort – Effect of downsampling on RMSE 
 
Root mean squared error for all per sample imputation models at each level of sequencing depth and coverage filter tested.  
Key: 10x5 = 10x sequencing depth processed using a 5x filter   
 

Sample_ID 30x 10x5 10x3 9x5 9x3 8x5 8x3 7x5 7x3 6x5 6x3 5x3 5x1 4x3 4x1 3x1 2x1 1x1 
NMB_17 0.19 0.18 0.19 0.19 0.20 0.19 0.20 0.19 0.20 0.19 0.21 0.21 0.25 0.22 0.26 0.28 0.30 0.32 
NMB_77 0.16 0.15 0.16 0.15 0.16 0.16 0.16 0.16 0.17 0.16 0.17 0.17 0.20 0.18 0.21 0.22 0.24 0.26 
NMB_79 0.18 0.18 0.18 0.18 0.19 0.18 0.19 0.18 0.19 0.19 0.20 0.20 0.24 0.21 0.25 0.27 0.28 0.31 
NMB_169 0.18 0.17 0.18 0.18 0.19 0.18 0.19 0.18 0.19 0.18 0.20 0.20 0.24 0.20 0.26 0.27 0.29 0.31 
NMB_178 0.17 0.16 0.17 0.16 0.17 0.17 0.17 0.17 0.18 0.17 0.18 0.18 0.21 0.19 0.23 0.24 0.26 0.28 
NMB_181 0.23 0.22 0.23 0.22 0.23 0.22 0.23 0.22 0.23 0.23 0.24 0.24 0.28 0.25 0.29 0.30 0.32 0.34 
NMB_185 0.17 0.16 0.17 0.16 0.17 0.16 0.18 0.17 0.18 0.17 0.18 0.19 0.22 0.19 0.23 0.25 0.27 0.29 
NMB_187 0.16 0.15 0.16 0.16 0.16 0.16 0.17 0.16 0.17 0.16 0.17 0.17 0.20 0.18 0.21 0.23 0.24 0.26 
NMB_203 0.17 0.17 0.17 0.17 0.18 0.17 0.18 0.17 0.18 0.18 0.19 0.19 0.22 0.20 0.23 0.25 0.27 0.29 
NMB_250 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.16 0.17 0.16 0.17 0.17 0.21 0.18 0.22 0.23 0.25 0.27 
NMB_273 0.16 0.16 0.16 0.16 0.17 0.16 0.17 0.16 0.17 0.16 0.18 0.18 0.21 0.18 0.22 0.24 0.25 0.27 
NMB_318 0.19 0.18 0.19 0.19 0.20 0.19 0.20 0.19 0.20 0.19 0.20 0.21 0.25 0.21 0.26 0.27 0.29 0.31 
NMB_362 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.17 0.16 0.17 0.17 0.20 0.17 0.21 0.23 0.24 0.26 
NMB_363 0.18 0.17 0.18 0.17 0.18 0.18 0.19 0.18 0.19 0.18 0.19 0.20 0.23 0.20 0.25 0.26 0.28 0.30 
NMB_378 0.20 0.19 0.20 0.19 0.20 0.20 0.20 0.20 0.21 0.20 0.21 0.21 0.25 0.22 0.26 0.27 0.29 0.31 
NMB_390 0.19 0.19 0.19 0.19 0.19 0.19 0.20 0.19 0.20 0.19 0.20 0.20 0.24 0.21 0.24 0.25 0.27 0.28 
NMB_390_FFPE 0.18 0.18 0.18 0.18 0.18 0.18 0.19 0.19 0.19 0.19 0.19 0.20 0.22 0.20 0.23 0.24 0.26 0.28 
NMB_416 0.15 0.14 0.15 0.14 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.17 0.20 0.17 0.21 0.23 0.24 0.26 
NMB_433 0.19 0.18 0.19 0.18 0.19 0.18 0.19 0.19 0.20 0.19 0.20 0.20 0.24 0.21 0.25 0.26 0.27 0.29 
NMB_436 0.18 0.18 0.18 0.18 0.19 0.18 0.19 0.19 0.19 0.19 0.20 0.20 0.23 0.21 0.24 0.25 0.27 0.29 
NMB_529 0.19 0.18 0.19 0.19 0.19 0.19 0.20 0.19 0.20 0.19 0.20 0.21 0.24 0.21 0.25 0.27 0.29 0.32 
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NMB_549 0.23 0.22 0.23 0.21 0.22 0.22 0.22 0.22 0.23 0.22 0.23 0.23 0.27 0.24 0.28 0.29 0.31 0.33 
NMB_610 0.21 0.20 0.21 0.21 0.21 0.21 0.21 0.21 0.22 0.22 0.22 0.23 0.26 0.23 0.27 0.28 0.30 0.32 
NMB_725 0.18 0.17 0.18 0.17 0.18 0.17 0.18 0.18 0.19 0.18 0.19 0.19 0.23 0.20 0.24 0.26 0.27 0.29 
NMB_729 0.18 0.17 0.18 0.17 0.18 0.17 0.18 0.18 0.19 0.18 0.19 0.20 0.23 0.20 0.24 0.26 0.28 0.31 
NMB_733 0.17 0.16 0.17 0.16 0.17 0.16 0.17 0.16 0.17 0.16 0.17 0.18 0.21 0.18 0.22 0.23 0.25 0.27 
NMB_758 0.22 0.22 0.22 0.22 0.23 0.22 0.23 0.22 0.23 0.23 0.24 0.24 0.28 0.25 0.29 0.30 0.32 0.34 
NMB_769 0.21 0.20 0.21 0.21 0.22 0.21 0.22 0.21 0.22 0.22 0.23 0.23 0.27 0.24 0.29 0.30 0.32 0.34 
NMB_772 0.17 0.16 0.17 0.16 0.17 0.16 0.17 0.16 0.17 0.17 0.18 0.18 0.21 0.19 0.22 0.24 0.25 0.27 
NMB_774 0.19 0.18 0.19 0.18 0.19 0.19 0.19 0.19 0.20 0.19 0.20 0.21 0.24 0.21 0.25 0.27 0.29 0.31 
NMB_787 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.17 0.20 0.17 0.21 0.22 0.23 0.25 
NMB_803 0.18 0.17 0.18 0.17 0.18 0.17 0.18 0.18 0.19 0.18 0.19 0.19 0.22 0.20 0.23 0.25 0.26 0.28 
NMB_858 0.18 0.17 0.18 0.18 0.18 0.18 0.18 0.18 0.19 0.18 0.19 0.20 0.22 0.20 0.23 0.25 0.26 0.29 
NMB_867 0.15 0.15 0.15 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.17 0.20 0.17 0.21 0.22 0.24 0.26 
NMB_870 0.19 0.18 0.19 0.18 0.19 0.19 0.19 0.19 0.20 0.19 0.20 0.20 0.23 0.21 0.25 0.26 0.27 0.30 

NMB_890 0.17 0.16 0.17 0.16 0.17 0.16 0.17 0.16 0.17 0.17 0.18 0.18 0.21 0.18 0.22 0.23 0.24 0.26 
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8.1.3.3 – BoostMe model performance – ICGC cohort – Validation & test set performance 
for ICGC cohort (30x) 

 

Sample ID 

Validation Set Test Set 

RMSE AUROC AUPRC Accuracy RMSE AUROC AUPRC Accuracy 
ICGC_A1 0.12 0.98 1.00 0.96 0.12 0.98 1.00 0.96 
ICGC_A2 0.11 0.99 1.00 0.96 0.11 0.99 1.00 0.96 
ICGC_A3 0.11 0.99 1.00 0.96 0.11 0.99 1.00 0.96 
ICGC_A4 0.11 0.99 1.00 0.96 0.11 0.99 1.00 0.96 
ICGC_F1 0.10 0.99 1.00 0.96 0.10 0.99 1.00 0.96 
ICGC_F2 0.10 0.99 1.00 0.97 0.10 0.99 1.00 0.97 
ICGC_F3 0.11 0.99 1.00 0.96 0.11 0.99 1.00 0.96 
ICGC_F4 0.10 0.99 1.00 0.97 0.10 0.99 1.00 0.97 
ICGC_MB1 0.12 0.98 1.00 0.95 0.12 0.98 1.00 0.95 
ICGC_MB2 0.11 0.99 1.00 0.96 0.11 0.99 1.00 0.96 
ICGC_MB5 0.10 0.99 1.00 0.96 0.10 0.99 1.00 0.96 
ICGC_MB6 0.09 0.99 1.00 0.97 0.09 0.99 1.00 0.97 
ICGC_MB7 0.11 0.99 1.00 0.96 0.11 0.99 1.00 0.96 
ICGC_MB9 0.13 0.97 0.99 0.92 0.13 0.97 0.99 0.92 
ICGC_MB14 0.16 0.95 0.98 0.90 0.16 0.95 0.98 0.90 
ICGC_MB15 0.10 0.99 1.00 0.97 0.10 0.99 1.00 0.97 
ICGC_MB16 0.15 0.97 0.99 0.91 0.15 0.97 0.99 0.91 
ICGC_MB17 0.10 0.98 1.00 0.96 0.10 0.98 1.00 0.96 
ICGC_MB18 0.14 0.98 0.99 0.92 0.14 0.97 0.99 0.92 
ICGC_MB19 0.12 0.98 1.00 0.96 0.12 0.98 1.00 0.95 
ICGC_MB24 0.11 0.99 1.00 0.96 0.11 0.99 1.00 0.96 
ICGC_MB26 0.12 0.98 1.00 0.95 0.12 0.99 1.00 0.95 
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ICGC_MB28 0.13 0.98 0.99 0.95 0.13 0.98 0.99 0.95 
ICGC_MB32 0.11 0.99 1.00 0.96 0.11 0.99 1.00 0.96 
ICGC_MB34 0.12 0.98 1.00 0.95 0.12 0.98 1.00 0.95 
ICGC_MB35 0.13 0.98 0.99 0.95 0.13 0.98 0.99 0.95 
ICGC_MB36 0.18 0.95 0.97 0.88 0.18 0.95 0.97 0.88 
ICGC_MB37 0.13 0.98 0.99 0.94 0.13 0.98 0.99 0.94 
ICGC_MB38 0.10 0.99 1.00 0.97 0.10 0.99 1.00 0.97 
ICGC_MB39 0.11 0.99 1.00 0.96 0.11 0.99 1.00 0.96 
ICGC_MB40 0.11 0.99 1.00 0.96 0.11 0.99 1.00 0.96 
ICGC_MB45 0.14 0.97 0.99 0.93 0.14 0.97 0.99 0.93 
ICGC_MB46 0.10 0.99 1.00 0.97 0.10 0.99 1.00 0.97 
ICGC_MB49 0.13 0.98 0.99 0.95 0.13 0.98 0.99 0.94 
ICGC_MB50 0.14 0.98 0.99 0.93 0.14 0.98 0.99 0.93 
ICGC_MB51 0.10 0.99 1.00 0.96 0.11 0.99 1.00 0.96 
ICGC_MB88 0.13 0.98 0.99 0.93 0.13 0.98 0.99 0.94 
ICGC_MB90 0.13 0.97 0.99 0.93 0.13 0.97 0.99 0.93 
ICGC_MB95 0.12 0.98 0.99 0.94 0.12 0.98 0.99 0.94 
ICGC_MB107 0.14 0.97 0.99 0.93 0.14 0.97 0.99 0.93 
ICGC_MB112 0.15 0.97 0.99 0.92 0.15 0.97 0.99 0.92 
ICGC_MB113 0.15 0.97 0.99 0.93 0.15 0.97 0.99 0.93 

Average 0.12 0.98 0.99 0.95 0.12 0.98 0.99 0.95 
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8.1.3.4 - BoostMe model performance – ICGC cohort – Validation & test set performance for 
ICGC cohort (10x – 3x filter) 
 

Sample ID 

Validation Set Test Set 

RMSE AUROC AUPRC Accuracy RMSE AUROC AUPRC Accuracy 
NMB_17 0.19 0.94 0.98 0.89 0.19 0.94 0.98 0.89 
NMB_77 0.16 0.97 0.99 0.94 0.16 0.97 0.99 0.94 
NMB_79 0.18 0.95 0.99 0.91 0.18 0.95 0.99 0.91 
NMB_169 0.18 0.95 0.99 0.91 0.18 0.95 0.99 0.91 
NMB_178 0.17 0.96 0.99 0.93 0.17 0.96 0.99 0.93 
NMB_181 0.23 0.91 0.97 0.87 0.23 0.91 0.97 0.87 
NMB_185 0.17 0.96 0.99 0.93 0.17 0.96 0.99 0.93 
NMB_187 0.16 0.97 0.99 0.94 0.16 0.97 0.99 0.94 
NMB_203 0.17 0.96 0.99 0.92 0.17 0.96 0.99 0.92 
NMB_250 0.16 0.97 0.99 0.94 0.16 0.97 0.99 0.94 
NMB_273 0.16 0.97 0.99 0.94 0.17 0.97 0.99 0.94 
NMB_318 0.19 0.95 0.98 0.91 0.19 0.95 0.98 0.91 
NMB_362 0.16 0.97 0.99 0.94 0.16 0.97 0.99 0.94 
NMB_363 0.18 0.95 0.99 0.92 0.18 0.95 0.99 0.92 
NMB_378 0.20 0.95 0.98 0.90 0.20 0.95 0.98 0.90 
NMB_390 0.19 0.95 0.99 0.92 0.19 0.95 0.99 0.92 
NMB_390_FFPE 0.18 0.96 0.99 0.93 0.18 0.96 0.99 0.93 
NMB_416 0.15 0.97 0.99 0.95 0.15 0.97 0.99 0.95 
NMB_433 0.19 0.95 0.99 0.92 0.19 0.95 0.99 0.91 
NMB_436 0.18 0.95 0.99 0.92 0.18 0.95 0.99 0.92 
NMB_529 0.19 0.95 0.98 0.90 0.19 0.95 0.98 0.90 
NMB_549 0.23 0.93 0.97 0.87 0.23 0.93 0.97 0.87 
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NMB_610 0.21 0.95 0.98 0.89 0.21 0.95 0.98 0.89 
NMB_725 0.18 0.96 0.99 0.92 0.18 0.96 0.99 0.92 
NMB_729 0.18 0.96 0.98 0.91 0.17 0.96 0.98 0.91 
NMB_733 0.17 0.97 0.99 0.94 0.17 0.97 0.99 0.94 
NMB_758 0.22 0.94 0.96 0.87 0.22 0.94 0.96 0.87 
NMB_769 0.21 0.94 0.96 0.87 0.21 0.94 0.96 0.87 
NMB_772 0.17 0.97 0.99 0.93 0.17 0.97 0.99 0.93 
NMB_774 0.19 0.96 0.98 0.91 0.19 0.96 0.98 0.90 
NMB_787 0.16 0.97 0.99 0.95 0.16 0.97 0.99 0.95 
NMB_803 0.18 0.96 0.99 0.93 0.18 0.96 0.99 0.93 
NMB_858 0.18 0.96 0.99 0.92 0.18 0.96 0.99 0.92 
NMB_867 0.15 0.97 0.99 0.95 0.15 0.97 0.99 0.95 
NMB_870 0.19 0.96 0.99 0.92 0.19 0.96 0.99 0.92 
NMB_890 0.17 0.97 0.99 0.94 0.17 0.97 0.99 0.94 

Average 0.18 0.96 0.99 0.92 0.18 0.96 0.99 0.92 
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8.1.4 – Applying WGBS sample data to pre-existing array trained classifier models to 
predict the molecular subgroups of medulloblastoma 

 
8.1.4.1 – 4-group classifier results  
 

Coverage 

  WGBS - ICGC WGBS - NMB Array - ICGC Array - NMB 

Filter 
Applied 

No. 
probes 

matched 
to 10k 
feature 

set. 

Mean 
Assignment 
probability 
(Std Dev) 

No. 
probes 

matched 
to 10k 
feature 

set. 

Mean 
Assignment 
probability 
(Std Dev) 

No. 
probes 

matched 
to 10k 
feature 

set. 

Mean 
Assignment 
probability 
(Std Dev) 

No. 
probes 

matched 
to 10k 
feature 

set. 

Mean 
Assignment 
probability 
(Std Dev) 

30x   10,000 0.970 (0.057) NA NA 

9,643 0.964 (0.071) 9,643 0.949 
(0.104) 

10x 
5x 10,000 0.968 (0.060) 10,000 0.967 (0.055) 
3x 10,000 0.970 (0.055) 10,000 0.968 (0.057) 

9x 
5x 10,000 0.967 (0.061) 10,000 0.964 (0.069) 
3x 10,000 0.970 (0.055) 10,000 0.968 (0.055) 

8x 
5x 10,000 0.964 (0.067) 10,000 0.958 (0.084) 
3x 10,000 0.970 (0.055) 10,000 0.969 (0.049) 

7x 
5x 10,000 0.960 (0.078)  10,000 0.956 (0.069) 
3x 10,000 0.969 (0.057) 10,000 0.969 (0.076) 

6x 
5x 10,000 0.950 (0.100) 10,000 0.940 (0.101) 
3x 10,000 0.968 (0.060) 10,000 0.968 (0.054) 

5x 
3x 10,000 0.965 (0.065) 10,000 0.965 (0.068) 
1x 10,000 0.971 (0.052) 10,000 0.963 (0.076) 

4x 
3x 10,000 0.957 (0.083) 10,000 0.960 (0.072) 
1x 10,000 0.971 (0.051) 10,000 0.965 (0.070) 
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3x 1x 10,000 0.970 (0.053) 10,000 0.965 (0.065) 
2x 1x 10,000 0.967 (0.058) 10,000 0.967 (0.052) 
1x 1x 10,000 0.948 (0.093) 10,000 0.953 (0.086) 

 
 
 
8.1.4.2 – 7-group classifier results 
 

Coverage 

  WGBS - ICGC WGBS - NMB Array - ICGC Array - NMB 

Filter 
Applied 

No. 
probes 

matched 
to 10k 
feature 

set. 

Mean 
Assignment 
probability 
(Std Dev) 

No. 
probes 

matched 
to 10k 
feature 

set. 

Mean 
Assignment 
probability 
(Std Dev) 

No. 
probes 

matched 
to 10k 
feature 

set. 

Mean 
Assignment 
probability 
(Std Dev) 

No. 
probes 

matched 
to 10k 
feature 

set. 

Mean 
Assignment 
probability 
(Std Dev) 

30x   10,000 0.873 (0.150) NA NA 

9,651 0.870 (0.150) 9,651 0.913 
(0.115) 

10x 
5x 10,000 0.872 (0.150) 10,000 0.873 (0.144) 
3x 10,000 0.874 (0.149) 10,000 0.905 (0.131) 

9x 
5x 10,000 0.871 (0.149) 10,000 0.862 (0.147) 
3x 10,000 0.874 (0.148) 10,000 0.903 (0.131) 

8x 
5x 10,000 0.870 (0.148) 10,000 0.850 (0.144) 
3x 10,000 0.873 (0.147) 10,000 0.898 (0.136) 

7x 
5x 10,000 0.873 (0.137) 10,000 0.818 (0.154) 
3x 10,000 0.872 (0.148) 10,000 0.890 (0.141) 

6x 
5x 10,000 0.871 (0.136) 10,000 0.763 (0.178) 
3x 10,000 0.871 (0.148) 10,000 0.880 (0.148) 

5x 3x 10,000 0.870 (0.148) 10,000 0.862 (0.160) 
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1x 10,000 0.872 (0.151) 10,000 0.914 (0.127) 

4x 
3x 10,000 0.870 (0.142) 10,000 0.841 (0.154) 
1x 10,000 0.870 (0.154) 10,000 0.912 (0.129) 

3x 1x 10,000 0.870 (0.152) 10,000 0.908 (0.131) 
2x 1x 10,000 0.868 (0.149) 10,000 0.894 (0.137) 
1x 1x 10,000 0.856 (0.159) 10,000 0.847 (0.164) 
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8.1.5 – CpG variability analysis 
 
8.1.5.1 – CpG variability (Array vs Liftover cohort) 
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8.1.5.2 – CpG variability (Top 100,000 CpGs) – WGBS vs Array 
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8.1.5.3 – Chromosomal distribution of top 10,000 most variable features (WGBS / Liftover / 
Array cohorts) 

 
* denotes significantly different proportion compared to array – calculated using two-proportion z-test 

Chromosome Array Liftover WGBS 

1 1,007 1081 * 938  * 
2 864 902 788  * 
3 372 389 467  * 
4 432 498  * 410 
5 612 648 970  * 
6 908 797 * 582  * 
7 650 700 705  * 
8 389 395 513  * 
9 143 147 318  * 
10 600 565 450  * 
11 623 679  * 392  * 
12 615 637 461  * 
13 359 374 434  * 
14 301 350  * 318 
15 262 293 496 
16 437 333  * 238  * 
17 571 512  * 342  * 
18 117 132 315  * 
19 356 233  * 228  * 
20 156 138  * 313  * 
21 94 105 148  * 

22 132 92  * 174  * 
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8.1.6 – Copy number analysis 
 
8.1.6.1 – Example conumee segmentation results – NMB_362 
 

chromosome start end size  log2 call 
chr1 560,684 148,927,230 148,366,546 -0.009 Balanced 
chr1 149,077,230 149,379,823 302,593 0.213 Gain 
chr1 149,629,823 249,195,311 99,565,488 -0.017 Balanced 
chr10 105,000 36,950,000 36,845,000 0.222 Gain 
chr10 37,675,000 46,175,000 8,500,000 -0.009 Balanced 
chr10 46,313,482 47,660,823 1,347,341 0.162 Gain 
chr10 48,252,854 135,462,374 87,209,520 -0.001 Balanced 
chr11 130,000 1,575,000 1,445,000 -0.32 Loss 
chr11 1,625,000 48,550,000 46,925,000 -0.495 Loss 
chr11 48,950,000 134,873,258 85,923,258 0.014 Balanced 
chr12 172,870 133,770,948 133,598,078 -0.007 Balanced 
chr13 19,110,000 115,079,939 95,969,939 -0.005 Balanced 
chr14 19,325,000 107,119,770 87,794,770 0.007 Balanced 
chr15 20,275,000 102,410,696 82,135,696 -0.002 Balanced 
chr16 105,000 35,017,901 34,912,901 0.015 Balanced 
chr16 46,517,901 87,525,000 41,007,099 -0.388 Loss 
chr16 87,575,000 90,222,377 2,647,377 -0.297 Loss 
chr17 25,000 9,825,000 9,800,000 -0.391 Loss 
chr17 9,900,000 16,575,000 6,675,000 -0.511 Loss 
chr17 16,725,000 19,025,000 2,300,000 -0.357 Loss 
chr17 19,150,000 81,122,605 61,972,605 0.25 Gain 
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chr18 80,000 77,983,624 77,903,624 0.002 Balanced 
chr19 180,000 59,084,492 58,904,492 0.021 Balanced 
chr2 130,000 243,026,238 242,896,238 -0.015 Balanced 
chr20 155,000 62,907,760 62,752,760 0.011 Balanced 
chr21 10,848,948 48,084,948 37,236,000 -0.009 Balanced 
chr22 16,373,925 51,197,283 34,823,358 0.003 Balanced 
chr3 155,000 197,831,215 197,676,215 -0.018 Balanced 
chr4 80,000 190,972,138 190,892,138 -0.033 Balanced 
chr5 55,000 140,225,000 140,170,000 -0.032 Balanced 
chr5 140,275,000 140,825,000 550,000 -0.157 Balanced 
chr5 140,875,000 180,777,630 39,902,630 -0.017 Balanced 
chr6 155,000 170,952,534 170,797,534 0.003 Balanced 
chr7 55,000 159,039,332 158,984,332 0.159 Gain 
chr8 105,000 146,252,011 146,147,011 -0.004 Balanced 
chr9 80,000 141,076,716 140,996,716 -0.005 Balanced 
chrX 2,484,119 154,780,280 152,296,161 -0.02 Balanced 
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8.1.6.2 – Example CNVkit segmentation results – NMB_362 
 

chromosome start end size  log2 cn call probe/bins 
Focal 

gene of 
interest? 

stdev iqr mad bivar mse sem ci_lo ci_hi 

chr1 750,100 249,225,300 248,475,200 -0.01 2 Balanced 4342   0.12 0.09 0.07 0.07 0.01 0.00 -0.02 -0.01 

chr2 10,000 243,052,100 243,042,100 0.01 2 Balanced 4626   0.08 0.08 0.06 0.06 0.01 0.00 0.00 0.01 

chr3 60,000 15,364,321 15,304,321 -0.59 1 Loss 303   0.08 0.10 0.08 0.08 0.01 0.00 -0.60 -0.58 

chr3 15,364,321 197,798,000 182,433,679 0.00 2 Balanced 3561   0.07 0.08 0.06 0.06 0.00 0.00 0.00 0.00 

chr4 69,600 3,761,390 3,691,790 0.31 3 Gain 71   0.14 0.11 0.08 0.09 0.02 0.02 0.29 0.34 

chr4 3,761,390 190,795,300 187,033,910 0.01 2 Balanced 3642   0.14 0.08 0.06 0.06 0.02 0.00 0.00 0.01 

chr5 85,500 121,635,512 121,550,012 0.02 2 Balanced 2314   0.07 0.08 0.06 0.06 0.00 0.00 0.01 0.02 

chr5 121,635,512 121,885,507 249,995 0.96 4 Gain 5 SNCAIP 0.21 0.26 0.05 0.02 0.05 0.11 0.74 1.09 

chr5 121,885,507 180,599,700 58,714,193 -0.01 2 Balanced 1150   0.08 0.09 0.06 0.07 0.01 0.00 -0.02 -0.01 

chr6 461,610 98,079,775 97,618,165 -0.01 2 Balanced 1765   0.07 0.09 0.06 0.07 0.01 0.00 -0.01 -0.01 

chr6 98,079,775 170,915,300 72,835,525 0.37 3 Gain 1452   0.07 0.08 0.06 0.06 0.00 0.00 0.36 0.37 

chr7 49,700 159,128,663 159,078,963 0.56 3 Gain 3015   0.10 0.08 0.06 0.07 0.01 0.00 0.56 0.57 

chr8 185,300 146,304,022 146,118,722 0.01 2 Balanced 2785   0.08 0.09 0.06 0.07 0.01 0.00 0.01 0.02 

chr9 10,000 210,024 200,024 -0.45 1 Loss 4   0.12 0.19 0.15 0.12 0.01 0.07 -0.57 -0.35 

chr9 210,024 141,053,300 140,843,276 -0.01 2 Balanced 2157   0.08 0.09 0.07 0.07 0.01 0.00 -0.02 -0.01 

chr10 60,000 13,048,645 12,988,645 -0.42 1 Loss 260   0.07 0.09 0.07 0.07 0.01 0.00 -0.43 -0.41 

chr10 13,048,645 135,437,600 122,388,955 0.00 2 Balanced 2270   0.10 0.09 0.07 0.07 0.01 0.00 0.00 0.01 

chr11 196,300 49,065,071 48,868,771 -0.98 1 Loss 970   0.13 0.11 0.08 0.09 0.02 0.00 -0.99 -0.97 

chr11 49,065,071 134,946,516 85,881,445 -0.01 2 Balanced 1615   0.09 0.09 0.07 0.07 0.01 0.00 -0.01 0.00 

chr12 187,000 133,825,400 133,638,400 -0.01 2 Balanced 2578   0.08 0.09 0.07 0.07 0.01 0.00 -0.02 -0.01 

chr13 19,194,200 115,109,878 95,915,678 0.01 2 Balanced 1870   0.07 0.08 0.06 0.06 0.00 0.00 0.01 0.02 

chr14 20,303,800 107,289,540 86,985,740 0.00 2 Balanced 1737   0.08 0.09 0.06 0.07 0.01 0.00 -0.01 0.00 

chr15 20,166,200 102,411,600 82,245,400 -0.03 2 Balanced 1527   0.09 0.10 0.07 0.07 0.01 0.00 -0.03 -0.02 
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chr16 60,000 83,643,390 83,583,390 -0.04 2 Balanced 1301   0.11 0.09 0.07 0.07 0.01 0.00 -0.05 -0.04 

chr16 83,643,390 90,155,800 6,512,410 -0.57 1 Loss 129   0.14 0.13 0.10 0.12 0.02 0.01 -0.60 -0.55 

chr17 0 18,279,231 18,279,231 -0.30 2 Balanced 362   0.09 0.10 0.08 0.08 0.01 0.00 -0.30 -0.29 

chr17 18,279,231 18,928,600 649,369 -0.55 1 Loss 13   0.25 0.24 0.22 0.25 0.06 0.07 -0.72 -0.39 

chr17 19,140,800 70,852,805 51,712,005 0.53 3 Gain 925   0.12 0.10 0.07 0.08 0.01 0.00 0.52 0.54 

chr17 70,852,805 81,195,210 10,342,405 0.90 4 Gain 205   0.18 0.09 0.07 0.08 0.03 0.01 0.87 0.92 

chr18 127,000 78,017,248 77,890,248 0.03 2 Balanced 1477   0.07 0.08 0.06 0.06 0.00 0.00 0.03 0.04 

chr19 210,155 59,118,983 58,908,828 -0.10 2 Balanced 1090   0.14 0.12 0.09 0.10 0.02 0.00 -0.11 -0.09 

chr20 60,000 26,184,300 26,124,300 -0.58 1 Loss 515   0.09 0.10 0.08 0.08 0.01 0.00 -0.59 -0.57 

chr20 29,521,147 62,887,700 33,366,553 -0.04 2 Balanced 658   0.08 0.10 0.07 0.08 0.01 0.00 -0.05 -0.03 

chr21 14,670,197 48,119,895 33,449,698 0.00 2 Balanced 668   0.07 0.09 0.06 0.07 0.01 0.00 -0.01 0.00 

chr22 16,962,100 51,220,000 34,257,900 -0.05 2 Balanced 662   0.11 0.10 0.07 0.08 0.01 0.00 -0.06 -0.05 

chrX 2,699,520 154,931,043 152,231,523 -1.03 1 Loss 2916   0.28 0.11 0.08 0.08 0.08 0.01 -1.04 -1.02 
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8.1.7 – Differential methylation analysis 
 
 
8.1.7.1 – Degree to which DMR annotations overlap – SHH example 

16541238 6 0 368 273 199 589 533 774 898 401 421 210

12382139 185 4 462 286 226 550 572 790 1224 585 523 279

6 185 432 85 41 31 43 83 92 119 253 96 120 47

0 4 85 2990 172 136 106 352 426 507 1601 205 1265 272

368 462 41 172 725 315 41 237 330 442 438 355 9 45

273 286 31 136 315 491 33 314 363 491 421 141 2 14

199 226 43 106 41 33 387 259 210 387 210 93 71 10

589 550 83 352 237 314 259 1109 860 1109 892 228 38 20

533 572 92 426 330 363 210 860 117010791020 286 31 26

774 790 119 507 442 491 387 1109107915571168 358 88 41

898 1224 253 1601 438 421 210 892 102011683112 494 18 290

401 585 96 205 355 141 93 228 286 358 494 918 42 108

421 523 120 1265 9 2 71 38 31 88 18 42 1918 233

210 279 47 272 45 14 10 20 26 41 290 108 233 588
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8.1.7.2 – Gene ontology analysis – Subtype VII - VII_1 vs VII_2 DMRs (Array) 
 

Term Implicated 
Genes p-value Adjusted p-

value Odds Ratio Combined 
Score 

acyl-CoA biosynthetic process (GO:0071616) 1 / 14 0.003 0.006 512.385 3012.375 

fatty-acyl-CoA metabolic process 
(GO:0035337) 1 / 19 0.004 0.006 369.963 2062.218 

fatty acid derivative biosynthetic process 
(GO:1901570) 1 / 24 0.005 0.006 289.464 1545.991 

fatty-acyl-CoA biosynthetic process 
(GO:0046949) 1 / 30 0.006 0.006 229.506 1174.653 
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8.1.7.3 – Gene ontology analysis – Subtype VII – VII_1 vs VII_2 DMRs (WGBS) 
 

Term Implicated Genes p-value Adjusted p-value Odds Ratio Combined Score 

nervous system development (GO:0007399) 116/455 0.000 0.000 2.489 80.269 

positive regulation of transcription from RNA 
polymerase II promoter (GO:0045944) 178/848 0.000 0.000 1.947 55.575 

regulation of transcription from RNA 
polymerase II promoter (GO:0006357) 271/1478 0.000 0.000 1.660 43.146 

positive regulation of transcription, DNA-
templated (GO:0045893) 213/1120 0.000 0.000 1.723 41.130 

neuron differentiation (GO:0030182) 43/139 0.000 0.000 3.206 60.640 

heart development (GO:0007507) 43/149 0.000 0.000 2.901 48.297 

chordate embryonic development 
(GO:0043009) 23/56 0.000 0.000 4.965 82.166 

renal system development (GO:0072001) 23/59 0.000 0.000 4.551 70.105 
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negative regulation of cell differentiation 
(GO:0045596) 42/150 0.000 0.000 2.780 42.734 

embryonic organ development (GO:0048568) 21/53 0.000 0.000 4.671 67.802 

gland development (GO:0048732) 26/75 0.000 0.000 3.781 54.774 

skeletal system development (GO:0001501) 40/146 0.000 0.000 2.696 37.999 

digestive tract development (GO:0048565) 18/43 0.000 0.000 5.121 69.624 

epithelium development (GO:0060429) 33/115 0.000 0.001 2.871 37.323 

urogenital system development (GO:0001655) 12/22 0.000 0.001 8.522 109.997 

embryonic organ morphogenesis 
(GO:0048562) 15/33 0.000 0.001 5.922 75.815 

kidney development (GO:0001822) 22/63 0.000 0.001 3.819 48.209 

cell morphogenesis (GO:0000902) 21/59 0.000 0.001 3.933 49.011 
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axon guidance (GO:0007411) 40/158 0.000 0.001 2.420 28.923 

skeletal system morphogenesis (GO:0048705) 14/31 0.000 0.001 5.851 69.858 

ear morphogenesis (GO:0042471) 12/24 0.000 0.002 7.101 83.197 

central nervous system development 
(GO:0007417) 50/217 0.000 0.002 2.140 24.905 

negative regulation of transcription, DNA-
templated (GO:0045892) 142/813 0.000 0.002 1.527 17.357 

negative regulation of transcription from RNA 
polymerase II promoter (GO:0000122) 105/565 0.000 0.002 1.641 18.634 

positive regulation of nucleic acid-templated 
transcription (GO:1903508) 95/502 0.000 0.002 1.676 18.694 

respiratory system development 
(GO:0060541) 13/29 0.000 0.002 5.770 63.923 

regulation of Wnt signaling pathway 
(GO:0030111) 30/109 0.000 0.002 2.706 29.906 

circulatory system development 
(GO:0072359) 30/109 0.000 0.002 2.706 29.906 
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digestive system development (GO:0055123) 11/22 0.000 0.003 7.098 76.932 

embryonic limb morphogenesis (GO:0030326) 14/34 0.000 0.003 4.972 52.927 

muscle tissue morphogenesis (GO:0060415) 10/19 0.000 0.004 7.884 83.038 

positive regulation of synaptic transmission 
(GO:0050806) 21/67 0.000 0.005 3.247 33.218 

generation of neurons (GO:0048699) 33/130 0.000 0.005 2.425 24.692 

axonogenesis (GO:0007409) 49/223 0.000 0.005 2.011 20.333 

branching involved in ureteric bud 
morphogenesis (GO:0001658) 10/20 0.000 0.005 7.096 70.648 

dorsal/ventral pattern formation (GO:0009953) 10/20 0.000 0.005 7.096 70.648 

ureteric bud morphogenesis (GO:0060675) 10/20 0.000 0.005 7.096 70.648 

embryonic digestive tract development 
(GO:0048566) 10/20 0.000 0.005 7.096 70.648 
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carbohydrate biosynthetic process 
(GO:0016051) 14/36 0.000 0.006 4.520 44.665 

heart morphogenesis (GO:0003007) 17/50 0.000 0.007 3.661 35.445 

limb morphogenesis (GO:0035108) 10/21 0.000 0.008 6.450 60.809 

mesonephros development (GO:0001823) 7/11 0.000 0.009 12.407 115.167 

negative regulation of multicellular 
organismal process (GO:0051241) 31/125 0.000 0.010 2.349 21.579 

branching morphogenesis of an epithelial 
tube (GO:0048754) 15/43 0.000 0.011 3.805 34.355 

inner ear morphogenesis (GO:0042472) 10/22 0.000 0.012 5.912 52.850 

regulation of epithelial to mesenchymal 
transition (GO:0010717) 20/68 0.000 0.013 2.962 26.127 

synapse assembly (GO:0007416) 19/63 0.000 0.013 3.069 27.049 

regulation of mesenchymal stem cell 
differentiation (GO:2000739) 5/6 0.000 0.013 35.425 310.390 
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autonomic nervous system development 
(GO:0048483) 8/15 0.000 0.013 8.104 70.968 

digestive tract morphogenesis (GO:0048546) 8/15 0.000 0.013 8.104 70.968 

positive regulation of stem cell differentiation 
(GO:2000738) 7/12 0.000 0.016 9.925 84.566 

cardiac right ventricle morphogenesis 
(GO:0003215) 7/12 0.000 0.016 9.925 84.566 

embryonic digestive tract morphogenesis 
(GO:0048557) 6/9 0.000 0.017 14.174 119.620 

columnar/cuboidal epithelial cell 
differentiation (GO:0002065) 6/9 0.000 0.017 14.174 119.620 

regulation of potassium ion transport 
(GO:0043266) 13/36 0.000 0.017 4.012 33.661 

cardiac muscle tissue development 
(GO:0048738) 13/36 0.000 0.017 4.012 33.661 

sympathetic nervous system development 
(GO:0048485) 8/16 0.000 0.021 7.091 57.993 

calcium ion import (GO:0070509) 11/28 0.000 0.021 4.591 37.342 
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cellular response to retinoic acid 
(GO:0071300) 14/42 0.000 0.025 3.550 28.292 

oligosaccharide biosynthetic process 
(GO:0009312) 12/33 0.000 0.026 4.055 32.091 

neuron fate commitment (GO:0048663) 7/13 0.000 0.026 8.270 65.010 

lung development (GO:0030324) 11/29 0.000 0.028 4.336 33.709 

development of primary male sexual 
characteristics (GO:0046546) 14/43 0.000 0.028 3.427 26.376 

oligosaccharide metabolic process 
(GO:0009311) 18/63 0.000 0.028 2.842 21.832 

respiratory tube development (GO:0030323) 10/25 0.000 0.028 4.729 36.272 

negative regulation of epithelial to 
mesenchymal transition (GO:0010719) 10/25 0.000 0.028 4.729 36.272 

ureteric bud development (GO:0001657) 8/17 0.000 0.028 6.302 48.262 

thyroid gland development (GO:0030878) 6/10 0.000 0.028 10.630 81.151 
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gas transport (GO:0015669) 6/10 0.000 0.028 10.630 81.151 

forelimb morphogenesis (GO:0035136) 6/10 0.000 0.028 10.630 81.151 

mesenchymal to epithelial transition 
(GO:0060231) 6/10 0.000 0.028 10.630 81.151 

long-term synaptic potentiation (GO:0060291) 9/21 0.000 0.028 5.319 40.528 

embryonic skeletal system development 
(GO:0048706) 9/21 0.000 0.028 5.319 40.528 

kidney epithelium development (GO:0072073) 5/7 0.000 0.028 17.711 134.918 

neuron fate specification (GO:0048665) 5/7 0.000 0.028 17.711 134.918 

regulation of neuron projection development 
(GO:0010975) 28/119 0.001 0.030 2.189 16.451 

homophilic cell adhesion via plasma 
membrane adhesion molecules (GO:0007156) 18/64 0.001 0.031 2.780 20.775 

activation of protein kinase B activity 
(GO:0032148) 11/30 0.001 0.031 4.108 30.541 
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gonad development (GO:0008406) 15/49 0.001 0.032 3.132 23.211 

endocrine system development (GO:0035270) 10/26 0.001 0.035 4.433 32.369 

anterior/posterior axis specification 
(GO:0009948) 8/18 0.001 0.038 5.672 40.749 

positive regulation of synaptic transmission, 
glutamatergic (GO:0051968) 8/18 0.001 0.038 5.672 40.749 

cardiac muscle tissue morphogenesis 
(GO:0055008) 12/36 0.001 0.045 3.548 24.863 

metanephric mesenchyme development 
(GO:0072075) 6/11 0.001 0.047 8.503 59.155 
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8.1.8 – Variant calling 
 
8.1.8.1 – Diagnostic panel gene list 
 
MDM4 
KIF26B 
NBAS 
MYCN 
MDM4 
GLI2 
LRP1B 
NEB 
CTNNB1 
MDM4 
CACNA1D 
PIK3CA 
FBXW7 
APC 
SNCAIP 
CSNK2B 
TNXB 
EYA4 
ABCA13 
CDK6 
SMO 
KMT2C 
SHH 
EPPK1 
CDKN2A 
CDKN2B 
PTCH1 
TSC1 
PTEN 
LDB1 
SUFU 
ATM 
KMT2D 
MDM2 
BRCA2 
OTX2 
SPTB 
AKT1 
RYR3 
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MAN2C1 
TSC2 
CREBBP 
PALB2 
GTF3C1 
CTDNEP1 
GPS2 
TP53 
PRKAR1A 
TCF4 
ALPK2 
CDH7 
SMARCA4 
FCGBP 
LTBP4 
NLRP5 
CBFA2T2 
SMARCB1 
EP300 
BCOR 
DDX3X 
KDM6A 
ZMYM3 
FLNA 
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8.1.9 – Development of WGBS-trained classifier models 
 
8.1.9.1 – Mean validation performance – XGBoost (Tree booster) 
 
Coverage Kappa (Mean) Accuracy (Mean) logLoss (Mean) AUC (Mean) 

1x 0.815 0.861 0.477 0.987 
2x 0.879 0.909 0.383 0.994 
3x 0.895 0.922 0.337 0.996 
4x 0.906 0.929 0.326 0.997 
5x 0.897 0.923 0.316 0.997 
6x 0.857 0.893 0.367 0.991 
7x 0.913 0.934 0.326 0.995 
8x 0.866 0.899 0.342 0.995 
9x 0.877 0.907 0.344 0.996 
10x 0.883 0.912 0.352 0.994 
30x 0.873 0.906 0.323 0.991 

WGBS 0.873 0.906 0.323 0.991 
Liftover 0.940 0.955 0.278 0.999 
Array 0.948 0.961 0.263 0.996 

 
 
Coverage Kappa (Mean) Accuracy (Mean) logLoss (Mean) AUC (Mean) 
10x (High 
Filter) 0.845 0.884 0.392 0.991 
10x (Low 
Filter) 0.873 0.906 0.323 0.991 

Array 0.948 0.961 0.263 0.996 
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8.1.9.2 – Mean validation performance – XGBoost (Linear booster) 
 
Coverage Kappa (Mean) Accuracy (Mean) logLoss (Mean) AUC (Mean) 

1x 0.747 0.808 0.593 0.966 
2x 0.799 0.849 0.498 0.978 
3x 0.799 0.848 0.448 0.983 
4x 0.808 0.855 0.447 0.983 
5x 0.812 0.858 0.431 0.985 
6x 0.802 0.850 0.458 0.979 
7x 0.870 0.902 0.360 0.990 
8x 0.828 0.871 0.412 0.984 
9x 0.809 0.856 0.472 0.975 
10x 0.846 0.885 0.424 0.983 
30x 0.834 0.875 0.369 0.980 

WGBS 0.834 0.875 0.369 0.980 
Liftover 0.843 0.882 0.395 0.980 
Array 0.843 0.882 0.420 0.983 

 
 
Coverage Kappa (Mean) Accuracy (Mean) logLoss (Mean) AUC (Mean) 
10x (High 
Filter) 0.759 0.818 0.508 0.965 
10x (Low 
Filter) 0.834 0.875 0.369 0.980 

Array 0.843 0.882 0.420 0.983 
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8.1.9.3 – Mean validation performance – Support vector machine (Linear kernel) 
 
Coverage Kappa (Mean) Accuracy (Mean) logLoss (Mean) AUC (Mean) 

1x 0.933 0.950 0.360 0.998 
2x 0.961 0.970 0.351 0.999 
3x 0.961 0.970 0.357 0.998 
4x 0.950 0.963 0.363 0.998 
5x 0.941 0.956 0.370 0.997 
6x 0.959 0.969 0.369 0.997 
7x 0.961 0.971 0.368 0.998 
8x 0.957 0.968 0.373 0.998 
9x 0.956 0.967 0.380 0.997 
10x 0.955 0.967 0.377 0.997 
30x 0.950 0.963 0.382 0.997 

WGBS 0.950 0.963 0.382 0.997 
Liftover 0.979 0.984 0.343 0.999 
Array 0.980 0.985 0.344 1.000 

 
 
Coverage Kappa (Mean) Accuracy (Mean) logLoss (Mean) AUC (Mean) 
10x (High 
Filter) 0.937 0.953 0.392 0.996 
10x (Low 
Filter) 0.950 0.963 0.382 0.997 

Array 0.980 0.985 0.344 1.000 
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8.1.9.4 – Mean validation performance – Support vector machine (Radial kernel) 
 
Coverage Kappa (Mean) Accuracy (Mean) logLoss (Mean) AUC (Mean) 

1x 0.539 0.649 0.974 0.895 
2x 0.587 0.683 0.959 0.894 
3x 0.623 0.711 0.944 0.895 
4x 0.549 0.644 0.938 0.920 
5x 0.557 0.651 0.927 0.919 
6x 0.680 0.759 0.907 0.894 
7x 0.686 0.764 0.905 0.895 
8x 0.681 0.760 0.909 0.895 
9x 0.682 0.761 0.916 0.894 
10x 0.684 0.762 0.914 0.894 
30x 0.695 0.771 0.899 0.899 

WGBS 0.695 0.771 0.899 0.899 
Liftover 0.664 0.756 0.881 0.922 
Array 0.686 0.768 0.895 0.928 

 
 
Coverage Kappa (Mean) Accuracy (Mean) logLoss (Mean) AUC (Mean) 
10x (High 
Filter) 0.697 0.774 0.878 0.901 
10x (Low 
Filter) 0.695 0.771 0.899 0.899 

Array 0.686 0.768 0.895 0.928 



Faculty of Health & Life Sciences    Northumbria University 
 

331 
 

8.1.9.5 – Mean validation performance – Logic regression  
 
Coverage Kappa (Mean) Accuracy (Mean) logLoss (Mean) AUC (Mean) 

1x 0.975 0.981 0.054 1.000 
2x 0.979 0.984 0.046 1.000 
3x 0.973 0.980 0.054 1.000 
4x 0.982 0.987 0.046 1.000 
5x 0.979 0.984 0.050 1.000 
6x 0.975 0.981 0.056 1.000 
7x 0.975 0.981 0.057 1.000 
8x 0.980 0.985 0.048 1.000 
9x 0.975 0.981 0.045 1.000 
10x 0.975 0.981 0.052 1.000 
30x 0.978 0.984 0.043 1.000 

WGBS 0.978 0.984 0.043 1.000 
Liftover 0.976 0.982 0.061 1.000 
Array 0.959 0.969 0.070 1.000 

 
 
Coverage Kappa (Mean) Accuracy (Mean) logLoss (Mean) AUC (Mean) 
10x (High 
Filter) 0.978 0.984 0.043 1.000 
10x (Low 
Filter) 0.969 0.977 0.068 1.000 

Array 0.959 0.969 0.070 1.000 
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8.1.9.6 – Mean validation performance – Random Forest 
 
Coverage Kappa (Mean) Accuracy (Mean) logLoss (Mean) AUC (Mean) 

1x 0.870 0.904 0.650 0.994 
2x 0.945 0.959 0.519 0.997 
3x 0.948 0.961 0.458 0.997 
4x 0.959 0.969 0.423 0.997 
5x 0.966 0.974 0.395 0.998 
6x 0.937 0.953 0.397 0.997 
7x 0.955 0.966 0.384 0.998 
8x 0.954 0.965 0.377 0.998 
9x 0.959 0.969 0.370 0.998 
10x 0.963 0.972 0.359 0.998 
30x 0.964 0.973 0.360 0.997 

WGBS 0.964 0.973 0.360 0.997 
Liftover 0.949 0.962 0.349 0.999 
Array 0.973 0.980 0.297 0.999 

 
 
Coverage Kappa (Mean) Accuracy (Mean) logLoss (Mean) AUC (Mean) 
10x (High 
Filter) 0.940 0.955 0.386 0.996 
10x (Low 
Filter) 0.964 0.973 0.360 0.997 

Array 0.973 0.980 0.297 0.999 
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8.1.9.7 – Mean validation performance – Elastic net 
 
Coverage Kappa (Mean) Accuracy (Mean) logLoss (Mean) AUC (Mean) 

1x 0.940 0.955 0.219 0.999 
2x 0.973 0.980 0.158 0.999 
3x 0.959 0.969 0.143 1.000 
4x 0.963 0.973 0.134 0.999 
5x 0.978 0.984 0.120 1.000 
6x 0.961 0.971 0.135 0.999 
7x 0.968 0.976 0.113 1.000 
8x 0.967 0.975 0.111 1.000 
9x 0.961 0.971 0.114 1.000 
10x 0.964 0.973 0.122 0.999 
30x 0.956 0.967 0.117 0.999 

WGBS 0.956 0.967 0.117 0.999 
Liftover 0.980 0.985 0.106 1.000 
Array 0.980 0.985 0.084 1.000 

 
 
Coverage Kappa (Mean) Accuracy (Mean) logLoss (Mean) AUC (Mean) 
10x (High 
Filter) 0.951 0.963 0.117 0.999 
10x (Low 
Filter) 0.956 0.967 0.117 0.999 

Array 0.980 0.985 0.084 1.000 
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