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Abstract: The use of automation, Internet-of-Things (IoT), and smart technologies is being rapidly 
introduced into the development of agriculture. Technologies such as sensing, remote monitoring, 
and predictive tools have been used with the purpose of enhancing agriculture processes, aquapon-
ics among them, and improving the quality of the products. Digital twinning enables the testing and 
implementing of improvements in the physical component through the implementation of compu-
tational tools in a ‘twin’ virtual environment. This paper presents a framework for the development 
of a digital twin for an aquaponic system. This framework is validated by developing a digital twin 
for the grow beds of an aquaponics system for real-time monitoring parameters, namely pH, elec-
troconductivity, water temperature, relative humidity, air temperature, and light intensity, and sup-
ports the use of artificial intelligent techniques to, for example, predict the growth rate and fresh 
weight of the growing crops. The digital twin presented is based on IoT technology, databases, a 
centralized control of the system, and a virtual interface that allows users to have feedback control 
of the system while visualizing the state of the aquaponic system in real time. 

Keywords: digital twin; IoT; precision farming; aquaponics farm 4.0 
 

1. Introduction 
Aquaponics is a farming method that combines the use of recirculating aquaculture 

systems (RAS) and hydroponics, growing symbiotically aquatic organisms and plants [1]. 
As an overview, the waste of aquatic animals in the aquaculture tanks contains dangerous 
levels of ammonia, if allowed to accumulate. In aquaponic processes, the ammonia-enriched 
effluent is taken towards biofilters where nitrifying bacteria break down ammonia into ni-
trites and nitrates. The nitrates then produced can be used as plant nutrients. After that, all 
the water is recirculated again to the aquaculture tanks safely [2]. The symbiotic process of 
aquaponics makes this technology green, sustainable, and highly desirable to tackle food 
security. Therefore, it is getting increased attention from researchers and practitioners alike 
because of its ability to save resources while offering high efficiency [3]. 

Although aquaponics shows an immense potential, it has become difficult for pro-
ducers to adopt this system due to the economic feasibility at the commercial scale [4]. For 
example, it is determined that RAS is two to three times more expensive than raising fish 
in open ponds [5]. Another main consideration that limits aquaponic systems of being 
profitable is the current required workforce. As these systems are quite complex due to 
their multiple biological components and requirements, such as disease prevention or 
monitoring water quality and levels, the workload is considerable, leading to continuous 
rigorous inspections seven days a week, 24 h per day [5]. Estimations made by Tokunaga 
et al. state that, in aquaponic environments, labor costs can reach around 46% of the total 
operating costs and about 40% of the total annual costs [6]. 
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Under this scenario, it seems feasible to start working towards the automation, con-
trol, and implementation of smart systems in aquaponics to reduce labor costs and in-
crease profitability by adopting precision agriculture [7]. Recently, valuable contributions 
have been made towards mobile and computer devices to monitor parameters [8–13], re-
mote applications to monitor and control outputs [14–19], wireless networks and sensors 
[20], and smart implementations [21,22]. However, to integrate all the considered inputs 
and smart systems, a complex model is needed that enables users to intuitively make use 
of and monitor the available systems. On top of that, a simulated scenario for aquaponics 
will benefit from a deeper understanding of the correlations between parameters, caused 
by the symbiotic relationship between the biological systems, thus, leading to optimiza-
tion and increased control over the system. In the authors opinion, developing a digital 
twin would support this research effort. 

Digital twins (DTs) are commonly composed of three components: a physical entity, 
its virtual representation, and the communication channels between them [23]. DTs are 
typically adopted to improve the performance of physical entities by leveraging compu-
tational power and techniques and by using a virtual counterpart [24]. Within the Industry 
4.0 ecosystem, DT offers an agile, smart, and cost-effective environment that enhances the 
systems’ productivity [25]. The origin of DTs is attributed to Michael Grieves and the work 
developed with John Vickers of NASA in 2003 [26]. The initial conception intended to 
provide the foundations for product life-cycle management for situations where the pos-
sibility of gathering data was scarce, manually performed, and/or limited by the available 
resources [26], with the potential risk of, eventually, putting the concept in standby. The 
interest in digital twins nowadays is mainly attributed to the advances in the technologies 
around the Industry 4.0 era, such as the Internet-of-Things (IoT), big data, real-time sen-
sors, and big data management and processing techniques [27,28].  

A representation of the basic principles behind a digital twin is displayed in Figure 
1. Jones et al. conducted highly valuable work characterizing the digital twin concept 
through a literature review, facing the reality where the ideas around digital twinning 
were diverse and did not converge, mainly due to the disorganized rapid growth of the 
applications, limiting the nourishment of the area and the maturation of the concept [24]. 
As of today, a better and clearer understanding about the components of a DT and their 
interrelationships is considered, and the expected impact of future research will be higher 
and in a broad range of industrial applications. 

 
Figure 1. Digital twin schematic. 

This paper proposes to move forwards on the application of digital twins in aqua-
ponics, following on from the current literature, and close the loop back to the physical 
system. A digital twinning process of the grow beds (hydroponics component) of an aq-
uaponic system is developed. The main objective of the presented research is to create a 
virtual platform in which aquaponic practitioners can visualize the results obtained 
through sensors and smart systems in real time. For example, an interface is proposed to 
showcase the individual growth rate and fresh weight of crops estimated using an online 
tool based on image processing and deep learning segmentation [29]. Moreover, system 
parameters such as pH, electroconductivity, water temperature, relative humidity, envi-
ronment temperature, and light intensity are recorded and linked to the performance met-
rics. From there, a database is created to serve as a base for the implementation of smart 
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algorithms that relate performance metrics versus parameters to achieve optimal param-
eters. Finally, an exploratory analysis of the information is presented as an intuitive ap-
proach of the behavior of the system. 

This paper is organized as follows: first, the related work is presented in Section 2; a 
generic framework of a digital twin is introduced in Section 3.1 based on the systematic 
review; next, Section 3.2 reports on the proposed framework for aquaponics; then, Section 
4 encompasses the case study, experimental setup, and components used for this research; 
and, lastly, in Section 5, the results obtained as proof of concept are presented and dis-
cussed. 

2. Related Work 
The adoption of a digital twin is a valuable tool for the optimization of the process 

and labor reduction because it promotes the implementation of models for prediction, 
optimization, and the use of monitoring interfaces. It has been researched quite exten-
sively over the years in the field of agriculture and precision farming. However, few con-
tributions that researched to implement the concept of digital twins in agriculture as well 
as aquaponic systems can be found in the literature. The primary reasons for this are the 
complexity of system, the dependence on natural conditions (climate, soil, humidity) and 
the presence of living physical twins (plants and animals) and non-living physical twins 
(indoor farm buildings, grow beds, outdoor agricultural fields, agricultural machinery) 
[30]. A brief analysis of these DTs is presented in this section. 

A model was constructed to simulate the behavior of the system under current mon-
itored conditions (air temperature and humidity, light intensity, pH, electroconductivity, 
water level, water flow, and water temperature) [28]. The authors modeled some system 
characteristics such as the fish feed rate, the total dissolved solids in water, the fish weight 
gain, the water pH and nitrates, and plant growth. The author reported good estimations 
in most of the predicted models, except for the nitrates and plant growth. The main draw-
back of their proposed system lies in the lack of feedback from the real system in terms of 
plant growth and rate. This result is expected since the changing conditions of the envi-
ronment and the ‘somehow’ changing-adapting behaviors of the living organisms alter 
their growth conditions continuously. In another study, a morphological framework is 
developed for a digital twin of a product-service-system to support potato harvesting [31]. 
To realize the foundations of DT in agriculture, Naoum et al. developed ‘AgROS’, an emu-
lation tool based on the Robot Operating System, which could be used for assessing the 
efficiency of real-world robot systems in customized fields [32]. It allows farmers to select 
their actual field from a map layout, import the landscape of the field, add characteristics 
of the actual agricultural layout (e.g., trees, static objects), select an agricultural robot from 
a predefined list of commercial systems, import the selected UGV into the emulation en-
vironment, and test the robot’s performance in a quasi-real-world environment [32]. In 
another study, a digital twin was developed for smart vertical farming by building a 
cyber-physical system (CPS) so farmers can better understand the state of their farms re-
garding the use of resources and equipment [33]. The proposed system gathers data from 
the soil probe and displays its information in a dashboard which enables the further de-
ployment of more soil probes and other monitoring and controlling devices to create a 
fully operating digital twin [33]. A digital twin model was developed by Jose et al. aiming 
at the joint creation of physical and digital layers of IoT-enabled structures for vertical 
farming to improve productivity, allow self-configuration to environmental changes, pro-
mote energy saving, ensure self-protection with continuous structural monitoring, and 
reach self-optimization learning from multiple data sources [34]. Payman et al. presented 
an ‘AgScan3D+’, an automated dynamic canopy monitoring system to generate a digital 
twin of every tree on a large orchard scale [35]. It consists of a spinning 3D LiDAR plus 
cameras that can be retrofitted to a farm vehicle and provides real-time on-farm decision 
support by monitoring the condition of every plant in 3D, such as their health, structure, 
stress, fruit quality, and more [35]. 
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3. Research Methodology 
The digital twin framework for aquaponics and the process developed in this paper 

is based on the available literature, which takes on consideration theory and review pub-
lications on digital twins [23,24,26], manufacturing processes [27,36,37], and farming im-
plementations [28–35,38]. In the following subsections, the general concepts of digital twin 
implementation and its use to develop an aquaponics framework are explained. 

The analysis in this paper is based on a comprehensive systematic review of the lit-
erature about digital twins. The objective of this research is to propose a framework of 
digital twinning that can be generally applied to aquaponic systems. For this purpose, 
quantitative methods are used; in this case, a systematic approach, experimentation, and 
validation using the circular approach of design research science. The systematic analysis 
is based on a qualitative analysis of selected journals and conferences that infers the frame-
work proposed. The experimentation design and setup are done using the CropKing® 
NFT Desktop System, Lodi, OH, USA. In this sense, the plant selected is Little Gem Ro-
maine lettuce, which takes 14 days from seeding to harvest. Specific details about the ex-
perimentation procedure are defined in Section 3.2. 

3.1. Digital Twinning Framework 
The generic methodology for the construction of a digital twin framework and its 

application is based in Figure 2, which displays the schematics of the relationship between 
the digital twin components [24]. A twinning process is based on the virtual-to-physical 
and physical-to-virtual relationships in which identical scenarios are presented in both 
environments. The main concepts and processes needed for a digital twin are presented 
below. 

 
Figure 2. Digital twinning schematics, including main components and information flow (adapted 
from [24]). 

The concept of physical and virtual entity refers to a specific real object, product, 
machine, or process and its virtual counterpart. Expanding the concept, the word envi-
ronment is introduced for both cases (i.e., physical environment and virtual environment) 
that refers to the whole system and the internal relationships; not just limited to the level 
interactions (physical-to-virtual and virtual-to-physical).  

The parameters are another key component of a digital twin system, and it refers to 
the type of data and information of the processes that is passed between the physical and 
virtual environments. Fidelity and state are two attributes that describe the characteristics 
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of the selected parameters. Fidelity describes the value and accuracy of each parameter, 
while state describes its current condition.  

The other two important components are the physical-to-virtual connection and the 
virtual-to-physical connection. In these connections lie the main differentiators of digital 
twins compared to other virtualization processes, i.e., simulation models. Physical-to-vir-
tual connection is the communication and virtualization process: how the state of the 
physical entity or environment is transferred to the virtual parameters such as interfaces, 
graphs, databases, and so forth. There are two phases in this connection type, metrology 
and realization. Metrology refers to the method in which the parameters are captured (i.e., 
sensors) and sent to the virtual component, and realization refers to the virtualization ap-
proach used to update and execute accordingly regarding the parameter inputs. The con-
tinuous mode in how this connection is established is what makes this process an online 
interaction. The virtual-to-physical connection represents the flow of information that 
goes from the virtual side to the physical part. This information or analysis output enables 
the functionality in the physical system to adjust or change its processes, for example, to 
improve its performance. This connection is identical to its physical-to-virtual counter-
part, with similar actions (metrology and realization) as aforementioned. In Jones’ opin-
ion, this is the valuable paradigm of digital twins since it defines the bidirectional rela-
tionship between the virtual and the physical twins. However, the official definition of the 
digital twin by the CIRP encyclopedia of production engineering does not include this 
interaction as mandatory, which is also addressed by the same authors [39].  

Physical and virtual processes are the specific activities performed on each of the 
levels, i.e., simulations, modelling, prediction, and optimization of virtual processes or 
manufacturing tasks, along with the control and design of physical processes. Finally, the 
twinning rate defines how the frequency at which the virtual and physical environments 
are synchronized, which leads to the consideration of digital twins as a real-time virtual-
ization.  

In the next subsection, the generic framework just presented is implemented for aq-
uaponic systems. Based on the concepts just introduced, these general components are 
defined in an aquaponic framework. 

3.2. Aquaponics Digital Twin Framework 
Aquaponics itself is a complex farming method due the also complex relationships 

between its components. Developing a digital twin framework addresses the need to have 
a better understanding of these relationships and how they can be improved. Following 
the framework aforementioned, the digital twin for aquaponic systems is discussed below 
and summarized in Table 1. 

Table 1. List of generic components in the aquaponics digital twin framework. 

Component Framework Definition Aquaponics Framework 

Physical entity 
Specific real object, product, machine, or process physically pre-

sent 
Fish tanks and/or grow beds 

Virtual entity Replica of the existing physical entity into the virtual world 3D models or virtual representations of the physical entities 

Physical environment All the physical entities and the relationships between them 
Physical entities plus pumps, lights, humidifiers, water 

treatments, sensors, etc. 

Virtual environment 
Virtual entities and the tools to display them such as graphs, 

buttons, interfaces, models, etc. 
Interfaces, graphs, tables, buttons, notifications, etc. 

Parameters 
Parameters that define the behaviour of the physical system and 

help the virtual environment to perform the mimicking 
Including, but not limited to, pH, electroconductivity, RH, 

ammonia, nitrites, nitrates, light intensity, etc. 

States 
State of the parameters, can be defined in terms of values, levels, 

stage, etc.; fidelity and state are inherent adjectives of the state 
Values of the related parameters for the physical entities 

Physical-to-virtual 
connection (PVc) 

How the data is transferred from the physical to the virtual en-
vironment 

IoT technologies such as wireless modules, SQL, program-
ming languages, among others 

Virtual-to-physical 
connection (VPc) 

How the data is transferred from the virtual to the physical en-
vironment 

Type of physical and virtual controller, i.e., RsLinx for the 
ABB controller 
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Metrology 
Measuring the state of the parameters in either of the physical or 

virtual environments 
Sensors, cameras, etc., for PVc; evaluation tools and mathe-

matical models for VPc 

Realization 
The actions that the correspondent environment take to ad-

just/change based on the metrology input 
Databases, dashboards, notifications, etc., in the PVc; hard-

ware control, changes in levels, etc., in the VPc 
Physical processes Processes executed in the physical environment Seedling, harvesting, feeding, water treatments, etc. 

Virtual processes Processes executed in the virtual environment 
Smart prediction models, data tracking and recording, levels 

adjustments, etc. 

Twinning rate 
Rate at which the interaction between environments is per-

formed 

Commonly ‘real-time’ for critical processes; in non-critical 
processes, defined elapsed time may range from 5 min to 30 

min 

In an aquaponics system, the physical entity refers to the fish tanks, where the fish are 
farmed, and the grow beds. The virtual entity is a virtual representation of the physical en-
tities. As such, 3D modeling software is often used to build these objects, machines, or pro-
cesses in the virtual environment. The physical and virtual environments involve all the 
individual physical components and the virtual processes associated to them. For example, 
the physical environment includes the biofilters, pumps, feeders, aerators, humidifiers, sen-
sors, etc., in addition to the physical entities previously mentioned. Then, the virtual envi-
ronment includes the interface, buttons, notifications, graphs, tables, and so forth that estab-
lish a virtual dashboard or interface that represents the physical environment. A visualiza-
tion of the physical and virtual environments used in this study can be found in Figure 3. 

 
Figure 3. Digital twinning representation of the studied aquaponics system. 

Parameters are an important component in any digital twinning process and ex-
tremely relevant to virtualize and simulate an aquaponic system [7]. Following the litera-
ture, several parameters are defined in aquaponics: pH, water and air temperatures, water 
level, dissolved oxygen, electroconductivity, total dissolved solids, salinity, total ammo-
nia-nitrogen, nitrites, nitrates, flow, relative humidity, and light intensity, among others. 
In some cases, more complex dependent parameters obtained from the physical side can 
be included as parameters, for example, fish age, plant growth, or remaining available 
resources. Those parameters monitor the performance of the system in a more compre-
hensive fashion. 

Physical-to-virtual and virtual-to-physical connections are mostly generic in a digital 
twinning process and depend more on the controllers and interfaces adopted rather than 
the aquaponics application itself. On the one hand, generic tools used in the physical-to-
virtual connection can vary from industrial protocols and applications developed by hard-
ware and software companies to open-source developments. For example, SQL, MySQL, 
or PHP are commonly used for the transfer and storage of the data acquired, to build 
procedures, and to control internal processes. Additionally, several IoT technologies are 
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now available to build robust connections, e.g., wireless modules. On the other hand, the 
virtual-to-physical connection is mostly limited by the specific components chosen in the 
physical and virtual side, although on a few occasions, connections may be built using 
open-source communication protocols at the risk of having cybersecurity issues. 

Further, the dependence of communication protocols and physical devices increases 
when considering the incompatibility of physical devices and certain software or commu-
nication protocols. For example, taking the commercial controllers from the ABB company 
(Allen Bradley PLC’s), the communication system will solely rely on RsLinx, which is the 
communication protocol from the company that allow their PLC to send and receive in-
formation and be controlled remotely. The initial selection of the physical system brand 
determines the protocols and software that will be used to generate the digital twin. Part 
of it can be avoided if the use of micro-controllers is implemented to control the physical 
environment. The development of the connection tools is easier since they are mostly open 
source and are available for the use with Raspberry Pi, Arduino, and other open-source 
controllers. Herein, the software or programming language that is used to build the inter-
face is the main factor for the resources available, in which each case is different.  

Finally, aquaponics metrology is often constructed through a series of sensors for the 
parameters, cameras, mathematical, and smart models installed in the grow beds and fish 
tanks. Realization refers to the reactive effect of the metrology part and makes use of the 
controller used and the metrology applied, while the twinning rate defines the heartbeat 
of the system. To display sensor results, asynchronous updating of its values occurs every 
second; however, if more complex processes are developed, such as prediction tools or 
optimal parameters adjustments, elapsed times around 5 min is a good option. As aqua-
ponic systems are slow dynamical processes, changes occur in the long term, enabling 
long synchronization of the digital twin, and easing the introduction of complex and te-
dious tasks. 

4. Hydroponic Grow Bed Digital Twin 
4.1. Case Study 

A case study is developed to prove the concept of the digital twin in aquaponics. The 
scope of the experimentation is limited to applying the concept in the hydroponics (grow 
beds) component of the aquaponics environment. For this case study, Figure 4 illustrates 
the specific aquaponic components using the framework provided in the previous section. 
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Figure 4. Proposed digital twin framework, after [24]. 

Physical entity refers to the grow beds, and virtual entity refers to the built model 
that mimics it. The physical environment are all the components listed in Section 3.2, and 
the virtual environment are the virtual entity, information displayed, and the graphical 
user interface (GUI). The parameters are the sensor measurements. The values of the com-
ponents are considered the state of the parameters. 

The physical–virtual connection is achieved using a wireless sensing module, php, 
MySQL, and the connection from the visual studio to the database in the network. Here, 
the metrology is the action of sensing the parameters, and the realization in the physical 
system corresponds to the database construction with the process of gathering and ana-
lyzing the raw data. The virtual–physical connection is executed using the IoT Core mod-
ule and Visual Studio to control the outputs in the main controller. The metrology stage 
in this connection mode refers to the growth rate and fresh weight estimation using the 
prediction models and the logical process to evaluate the sensed values against the opti-
mal levels. The realization, on the other hand, in this case, is the action to turn on or off 
the outputs depending on the conditions. Physical processes are specifically the growing 
of the plants and the processes involved (water flow, humidity, light), and the sensing of 
the parameters. Virtual processes correspond to the execution of the prediction process, 
the logical classification of the levels, and the remote monitoring and control of the sys-
tem. Lastly, the twinning rate is determined by the one second for the display of the sen-
sors values, the five-minute interval between the database records, and the thirty-minute 
time-lapse between predictions. 

The project development will be explained following an explanatory process. First, 
the experimental setup will be described along the components installed and the experi-
mental principles such as frequency and working logic. Secondly, the process to calculate 
the growing rate and fresh weight estimation will be shortly explained. Third, the process 
used to construct the database will be introduced. Fourth, the twinning interface and the 
tools to build it will be presented. Fifth, the feedback loop from the virtual to the physical 
environment will be introduced, and the performed actions will be explained in detail. 
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4.2. Experimental Setup 
A hydroponic grow bed setup is designed and constructed for the experimentation 

part. The frame of the device was assembled using MDF (medium density fiber) board. 
This holds the NFT channel (grow bed) with a water pump and a heater, two cameras 
(one at the side and other one at the top of the grow bed), artificial growing lights, a cam-
era ring light (to provide consistent light to the cameras), and a humidifier. As for the 
sensors introduced in the system, pH, electroconductivity, water temperature, air humid-
ity, air temperature, and luminosity are used. For the main controller, a Raspberry Pi is 
selected, while an Arduino Nano is employed as the sensing unit. A list of all the experi-
mental setup components is presented below:  
• 1 CropKing® NFT Desktop System. 
• 1 Water Pump 
• 1 Water Heater (25 degrees Celsius) 
• 2 ELP 1080P Webcam (2.8–12 mm HD Lens) 
• 1 Growth Light (T5 high output bulb, 24 W). 
• 1 Camera Ring Light (56-LED Lamps)  
• 1 Humidifier 
• 1 Raspberry Pi controller 3B+ 
• 1 4-Channel Relay Module (110–220 V) 
• 1 Arduino nano micro-USB Microcontroller 
• 1 Liquid PH Value Detection Sensor 
• 1 Analog Electrical Conductivity Sensor 
• 1 DS18B20 Water Temperature Sensor 
• 1 DHT22 Air Temperature and Humidity Sensor 
• 1 LDR Sensor 
• 1 ESP8266 Wireless Sensor 
• 1 2-Channel Relay Module (5 V) 
• 1 5 V Power Supply  

The two cameras are connected to the Raspberry Pi and work with scheduled scripts 
that take pictures every 30 min from 6:00 am to 6:00 pm. The growing lights, the camera 
ring, and the humidifier are connected to the four-channel relay module which is trig-
gered by outputs from the main controller. For the sensor modules, all of them are in-
stalled in an Arduino Nano with the corresponding configurations. The pH and electro-
conductivity sensors are connected to a two-channel relay module to avoid measuring 
problems. In addition, an ESP8266 Wi-Fi Sensor is installed in the Arduino, allowing the 
data to be transmitted wirelessly to the main controller (Raspberry Pi) and to the twining 
interface for real-time sensor values display. 

4.3. Growth Rate and Fresh Weight Estimation 
The estimation of the grow rate and fresh weight of the leafy crops is done through 

a smart implementation using a predictive model for the localization and multi-instance 
segmentation of the plants. The model was constructed using the MASK-RCNN frame-
work proposed by He et al. [40]. The images acquired by the experimental setup are first 
conditioned to avoid radial and tangential distortion [41], and then are segmented using 
MASK-RCNN. From the prediction model, a script routine is created using Python to ex-
tract the parameters of interest which are listed in Table 2. 
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Table 2. List of features extracted. 

Plant Features 
Side view area 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
Height 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
Width 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
Centroid side 𝐶𝐶𝑥𝑥𝑥𝑥𝑠𝑠 
Top view area 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 
Centroid top 𝐶𝐶𝑥𝑥𝑥𝑥𝑡𝑡 
Depth 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡 

With these parameters, the overall height, width, and depth are calculated to derive 
the growing rate of the plants. A linear regression model is then created to describe the 
fresh weight of the plants, which is validated using experimental results. The fresh weight 
model is presented in Equation (1), and the values of linear regression coefficients are 
presented in Table 3. Sample images from the segmentation process are shown in Figure 
5. 

𝑌𝑌 =  𝛽𝛽0 + 𝛽𝛽1X 2 + ⋯+ 𝛽𝛽𝑛𝑛X 𝑛𝑛 (1) 

Table 3. List of linear regression coefficients. 

Plant Features 
β1 Height −0.000859 
β2 Depth +0.001044 
β3 Width +0.005135 
β4 Side Area −0.000007 
β5 Top Area +0.000042 
β0 Intercept +0.246012 

 

 
(a) (b) 

Figure 5. Example of segmented plant identification: (a) side image, (b) top image. 

The whole model validation and explanation can be found in a previous work; hence, 
it is recommended to consult it for further details [29]. 

4.4. Database 
Building the database is a key step towards the construction of this digital twin model 

and future uses of the model in knowledge discovery in databases (KDD) techniques. Re-
garding the digital twinning process, the mechanisms to send and receive information, 
the fidelity and accuracy of the information, and the twining rate are defined in this step. 
As per the experimental setup, six sensors are used to monitor the current state of the 
system: pH, electroconductivity, water temperature, relative humidity, air temperature, 
and light intensity. To ensure the future deployment of the system at a larger scale, the 
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sensing module is designed as an external device to the main controller; therefore, an Ar-
duino Nano is implemented for this task. The limitation about connectivity of the Arduino 
Nano is overcome using an ESP8266 wireless sensor that allows the controller to send data 
wirelessly to the main controller, a Raspberry Pi. 

The IoT sensing module processes the values from the different sensors and sends 
the information through a digital access point to the Raspberry Pi every five minutes. The 
main controller formats and inserts the values in a MySQL database at the local level using 
PHP. During this process, a host computer executes a parallel process using the growth 
rate and fresh weight models and sends the obtained results to the main database every 
30 min, synchronously with the other records. Figure 6 shows the model of the relational 
database designed with the tables and relationships used. 

 
Figure 6. Model of the relational database implemented for the digital twin proposed for aquaponic 
systems. 

In summary, a database that describes the current state of the system is available and 
can be accessed through an IP address from any point in the network. As such, this allows 
the communication between any devices in the network at any time. Further details are 
also described in a previous work [42]. Figure 7 displays the IoT sensing module interac-
tion process.  

 
Figure 7. Schema of the digital twinning integration for the hydroponic grow beds of an aquaponic 
system. 

sensors_records masked_results acc_masked_records

variables



Sensors 2022, 22, 7393 12 of 19 
 

 

4.5. Twinning Interface 
One of the main benefits of digital twins is its ability to close the gap between the 

user and the digital process [43]. This can be achieved by giving them a clear understand-
ing about the state of the digital process and the internal activities performed. Introducing 
a visualization tool in the digital twin process removes the idea of a ‘digital black box’, 
giving them total control and supervision of the system at the physical and virtual levels. 
The twinning interface concept describes the virtual graphical display of the system. The 
graphical interface is designed using Visual Studio, and it is directly connected to the da-
tabase to retrieve the information it needs for displaying. Additionally, a direct connection 
to the IoT sensing module is done via serial communication, allowing real-time sensed 
values to be retrieved every second. Six different windows are designed to offer the user 
organized and appropriate requested information, as shown in Figure 8, the different win-
dows are ‘Home’, ‘Sensors Tracking’, ‘Database’, ‘Imaging’, ‘Predictions’ and ‘About’. 

 
Figure 8. Digital twin interface: (a) ‘Home’ window; (b) ‘Sensors Tracking’ window; (c) ‘Database’ 
window; (d) ‘Imaging’ window; (e) ‘Predictions’ window; (f) ‘About’ window. 

In the ‘Home’ window, a replica of the physical entity (NFT channel) is designed and 
acts as the main component of this interface. Interactive and resizable reproductions of 
the plants are modeled, and the current size of the crops in the physical side at real time 
are mimicked in the virtual environment. Information about the growth rate and weight 
of each of the plant is displayed. For the plant’s growth, a decision model is built to cate-
gorize the actual size of the plant and assign a stage from 1 to 12. This categorization is 
made by calculating the growth area along the 14 days from previous runs, averaging 
them and dividing them evenly throughout the 12 stages; thus, every stage corresponds 
to an area interval (i.e., stage 1: 0 cm2 to 1 cm2). Based on this level, the scalable digital 
model that represents the plant current growth status is displayed to the user. The second 
window is named ‘Sensors Tracking’, where tracking graphs for each sensor are displayed 
with the historical values of the sensors and is updated every 5 min synchronously with 
the ‘sensors-records’ table. Third, the ‘Database’ window is where the all the entries of the 
‘sensors-records’ are displayed. Fourth, ‘Imaging’ gives the user the opportunity to visu-
alize the segmentation output of the masked leafy vegetables, as seen in Figure 5, and to 

c)b)

d)

a)

e) f)
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identify potential problems in the image processing results. As explained before, top and 
side pictures are taken of the plants every 30 min, with the purpose of extracting infor-
mation about the state of the plants (see Table 1). Once a new set of pictures is available, 
a Python script is executed to run a prediction model to identify the plants’ location and 
extract the features of each of them using instance segmentation. At this point, the digital 
interface connects to a specific folder and retrieves the masked images to present them in 
the window ‘Masked images’ for the user. The features from the plants are saved into a 
MySQL table named ‘masked-results’. A structured procedure is designed into MySQL to 
be triggered by the insertion of a new value in this ‘masked-results’ table; therefore, it 
constantly calculates the average of the area, height, width, and depth features, grouping 
by view, instance, and date. This data is saved in a new table named ‘accumulative-
masked-records’. Fifth, the ‘Predictions’ window is where the predictive models used 
show their results. This window displays, through graphs at the record level, the side and 
top area of each of the plants and the daily calculations automatically made by the MySQL 
procedure. The digital interface by itself calculates the growing rate based on the change 
in the area of the plant and the fresh weight of the plants using the values in named ‘ac-
cumulative-masked-records’, and the logistic linear model shown in Equation (1) and Ta-
ble 2. Lastly, the ‘About’ window displays information about the working principle of the 
interface.  

All the windows share a lower banner that displays the current values of the sensors 
that are retrieved directly from the sensing module every second. A logical procedure is 
then developed to showcase the status of the grow bed at that moment. On the other hand, 
this parameter’s values are saved every five minutes directly by the main controller (Rasp-
berry Pi) into a MySQL table in the network called ‘sensors-records’. After this evaluation, 
a three-color code similar to ‘traffic lights’ displays the current status when compared to 
predetermined correct ranges. For each parameter, the color chosen is assigned as green 
if the value is between the acceptable levels, yellow if it ends near the maximum or mini-
mum (15% from the limits), and red if the value is not conforming, displaying to the user 
not only the value, but also the meaning of the read measurements in terms of perfor-
mance and adequate growth environment for the plants. A summary of those parameter 
ranges is presented in Table 4, from [7]. Figure 9 shows the communication between the 
interfaces. 

Table 4. Optimal parameters for aquaponics experimentation. 

Parameters Aquaponic 
pH 6.5–7.0 
Electroconductivity 100–2000 µSiemens/cm 
Water Temperature 17–30 °C 
Relative Humidity 50–80% 
Air Temperature 22–30 °C 
Light Intensity > 450 lux 
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Figure 9. Communication between the interface, MySQL, and the physical component. 

4.6. Feedback Loop 
The feedback loop refers to the virtual–physical connection and the way the virtual 

environment sends an action to be executed in the physical environment. This is possible 
using the IoT Core connection in Visual Studio. For this case study, simple orders for the 
feedback loop are designed to prove the concept: the main controller in the physical sys-
tem is prepared with scripts to turn on and off the system growing lights, humidifiers, 
and ring lights for the cameras, as requested.  

After the twinning model retrieves the sensor information and evaluates whether the 
levels in humidity or light intensity are in the correct range of values, it automatically 
sends a request to the Raspberry Pi to turn on, off, or adjust the specific device to reach 
adequate values. In addition, this action can be performed manually by a set of buttons in 
the interface. All of the automatic decisions and changes made by the digital twin are 
logged and notified to the operator of the system via e-mail. Figure 10 illustrates this 
working principle. 

 
Figure 10. Working principle illustrating automation and control. 
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5. Results 
5.1. Feedback Control 

As a basic procedure to prove the working principle, and as a first step of the future 
work related to the autoregulation of an aquaponic system, the interface can autono-
mously turn on/off any actuators of the system, i.e., the humidifier or the growing lights, 
by sending an instruction to the Raspberry Pi through the IoT Core module in Visual Stu-
dio to activate or deactivate the relays (as shown in Figure 10). To validate this communi-
cation and test the virtual-to-physical connection, the order to turn off the humidifier is 
sent after detecting ‘humidity’ values out of the limits. Figure 11 shows relative humidity 
(RH) values during the reported experimental setup. As observed, once the current value 
of the humidity in the system reaches the maximum acceptable value of 80% (see Table 
4), the humidifier is turned off. After a brief period of overpass, the system humidity starts 
to decrease progressively until it returns back to acceptable levels. The humidifier will 
remain off until the lower limit for acceptable humidity (50%) is reached, at which point 
it will be turned on again. 

The objective of all the control systems in any aquaponic setup should aim to correct 
the parameter values in the minimum amount of time in order to reduce its negative ef-
fects on the plants’ growth. Depending on the parameter selected, differences in time re-
sponse can be critical to maintain a healthy environment [44,45]. The presented example 
is, in no fashion, an accurate representation of an optimized solution to control the hu-
midity in the aquaponic environment. However, it presents a clear interface that permits 
the testing and optimization of such controls, either by directly accessing the physical sys-
tems or by creating a simulated environment based on the entries stored in the database. 

 
Figure 11. Relative humidity correction after sensor feedback and control response. 

5.2. Discussion 
Through the continuous analysis and monitoring of the data, it is possible to get a better 

understanding of the growing behavior of the plants. The presented system proves to be 
reliable at identifying trends and linking parameters of the environment to two design per-
formance metrics, which is the initial step towards complex implementations. The research 
community and the aquaponics/hydroponics practitioners will highly benefit from this con-
tribution. Figure 12 displays the growing behavior of the three different plants throughout 
the whole growth process and on a daily basis. With this implementation, the user is con-
stantly aware of the status of the sensors and, consequently, the plants, and can turn on/off 
system actuators at will, such as lights and humidifiers. Furthermore, live data can be ana-
lyzed almost instantaneously with the use of KDD algorithms that, for example, allow the 
system to estimate the growth rate of the plants and predict their weight. As such, a com-
plete understanding of the process can be presented with not only the status of the param-
eters, but also the incidence of them in the outputs (performance metrics).  
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Figure 12. Visualization of the area trends in plants, based on overall system growth (top) or indi-
vidual instances (bottom). 

From the results obtained during the experimentation, it is noted that plant #1 had 
an overall growth rate of 15%, with a side growth rate of 14.7% and a top growth rate of 
15.6%. The average growth rate in plant #2 was 14.46%, the side growth rate was 10.25% 
and the top growth rate was 18.67%. For plant #3, the average growth rate was 23%, with 
a side growth rate of 22.73% and a top growth rate of 23.16%. As observed, plants growing 
under the same conditions theoretically do grow at different rates. One of the limitations 
of the presented study is that some design and physical aspects of the aquaponics system, 
such as the air flow in the system or the distance between plants, are not included. This 
limits the potential modeling of the growth rate of the plants based on the data obtained 
using the proposed system. Extension of the proposed system to include these factors, 
among others, will be pursued by the authors in the near future. 

Further analysis can be done by comparing, not only the daily growth rates, but the 
daytime growth rates versus the nightly growth rates. In this study, it was found that 
plants grow faster during the morning/afternoon, with an average growth rate of 28%, 
while growth was reduced to an average of 16% during the evening/night. Similarly, an-
alyzing other records from the sensing values during the experimentation, it is interesting 
to find that the pH values of the water are slightly higher during the morning with an 
average of 0.15 difference, with average values of 6.9 and 7.05, respectively. The opposite 
effect can be found regarding the electroconductivity, where higher values are consist-
ently found during the nights, with average of 2500 µS/cm and 2550 µS/cm, respectively. 
Another finding, which is more intuitive, is about the relative humidity behavior: higher 
values are found at night, with values around 15–20% higher in comparison with the 
morning hours. As such, based on the empirical evidence for the plants studied, different 
resources’ consumption and control strategies might be needed for different hours of the 
day, while keeping the objective of maximizing the growth of the plant at the end of the 
day and throughout the whole growth process.  

Some limitations about this framework and system can be addressed. A generic dig-
ital twin framework is adapted to the aquaponics technology; however, the scope is 
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limited to the resources available: the hydroponics beds. Including the fish tank and cor-
responding systems, namely biofilters, feeding systems, etc., of the aquaponics system in 
future developments is necessary to finalize the complete digital twinning of the process. 
Monitoring the weight of the fish (density in the tanks), assessing their health, and includ-
ing the inherent associated parameters, such as ammonia transformation and dissolved 
oxygen, will definitely open more possibilities regarding the control and optimization of 
the process. Finally, the digital twin aquaponics framework can be validated as a whole 
in future developments. 

6. Conclusions 
Aquaponics is becoming a popular method as a sustainable solution for indoor food 

production. Under the background of ‘Industrial 4.0′, digital twinning technology has 
been widely used as a tool to realize the interaction and interconnection between physical 
and virtual spaces. This paper describes the framework and implementation of the digital 
twin technology for the hydroponic component of an aquaponic system. By integrating 
IoT technology, databases, control strategies, artificial intelligence, and visualization tools, 
the virtual model of the physical system can be created, updated to reflect status changes 
in real time, and represents a comprehensive reference for aquaponic users. 

The presented study showcases the use of the digital twin platform to acquire data 
in real time, make use of data-driven algorithms to determine growth rate and fresh 
weight, and make informed decisions towards a healthy aquaponic environment. Ulti-
mately, it presents a platform towards optimizing crop yield in aquaponic systems. The 
benefit of this paper for research and practitioners is the provision of an integrated de-
tailed framework for digital twinning, which is to be enriched to determine optimal func-
tionality of aquaponic systems and provide clear performance metrics that support com-
mercialization of the aquaponics technology. 
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