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Abstract This study presents a thorough theoretical

and experimental investigation on the nonlinear

damping of in-plane micromachined electromechan-

ical resonators. More specifically, experiments are

conducted on an electrically actuated bridge resonator,

and the primary resonance response of the system is

obtained at various AC and DC voltages. A nonlinear

theoretical model is developed using the Euler–

Bernoulli beam theory while accounting for the

geometric, electrostatic (including fringing field

effect), and damping nonlinearities. Two damping

models are considered in the theoretical model: the

Kelvin–Voigt model, which for this system is a

nonlinear damping model due to the presence of

geometric nonlinearities. The second damping model

consists of linear, quadratic, and cubic damping terms.

A high-dimensional discretisation is performed, and

the nonlinear dynamics of the resonator are examined

in detail in the primary resonance regime by con-

structing the frequency response diagrams at various

AC and DC voltages. Thorough comparisons are

conducted between the experimental data and the

theoretical results for different damping conditions. It

is shown that the microresonator displays strong

nonlinear damping. Detailed calibration procedures

for the nonlinear damping models are proposed, and

the advantages and disadvantages of each nonlinear

damping model are discussed.

Keywords Nonlinear damping � Nonlinear
vibration � MEMS resonators � Experimental

investigation

1 Introduction

Microelectromechanical systems (MEMS) [1–3] have

been drawing significant attention over the last decade

thanks to their small size, low power consumption,

high sensitivity, and low cost [4]. These devices have

widespread important applications in environmental

monitoring [5], air quality measurement [6, 7], mass
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sensors [8, 9], pressure sensors [10], communications

[11, 12], logic/memory [13, 14], and energy harvesting

[15–17]. Electrostatically driven resonators have been

the subject of ongoing research since the early work of

Nathanson et al. [18]. The use of the electrostatic force

is to drive the MEMS resonators statically or dynam-

ically in the linear or nonlinear regimes. Electrostat-

ically actuated MEMS resonators were proposed for

various applications such as tunable resonators [19],

synchronisation [20], sensing [21, 22], and micromir-

rors [23].

Commonly, these MEMS resonators consist of a

movable electrode and a fixed electrode, mainly based

on slender silicon microbeams. The movable electrode

is mainly modelled as a microbeam (whose length is

much higher than its width and thickness) deflecting

towards the fixed electrode as applying a bias voltage

[24]. A sudden collapse into the fixed electrode, also

known as the pull-in instability, occurs if the voltage

exceeds a critical value. The static and dynamic

behaviours were investigated in depth in the literature

theoretically and experimentally due to the continu-

ously increasing exploitation of these microsystems

[19, 24–28]. Analysing the behaviour of these res-

onators is commonly based on the classical model

(Euler–Bernoulli beam theory) or the nonclassical

mechanical model of the beam.

The main difficulty of the theoretical modelling of

these movable structures is the accurate prediction of

the nonlinear vibration of these resonators as driven

electrostatically, which is crucial for various potential

applications [29–31]. One of the key factors to be

considered in modelling MEMS resonators is damp-

ing, which can be intrinsic, such as thermoelastic

[32–35], or extrinsic, such as squeeze film [33, 36–44]

damping. Damping lowers the quality factor ofMEMS

resonators affecting adversely their performance,

making the quality factor a key parameter design for

a wide range of applications such as timing and

sensing. More recently, Alcheikh et al. [45] investi-

gated the effect of air damping on the quality factor of

in-plane nano- and microresonators actuated by two

stationary electrodes (for actuation and sensing).

On the other hand, as the oscillation amplitude

increases, the energy dissipation tends to deviate from

the linear viscous dissipation and start to vary

nonlinearly. The nonlinear energy dissipation (or

nonlinear damping) has drawn specific attention in

the last decade. For instance, Amabili [46–48] studied

the nonlinear damping in large-amplitude vibrations

of rectangular plates, both theoretically and experi-

mentally. Li and Shaw [49] examined the effect of

nonlinear damping in the dynamic response of a

single-degree-of-freedom system subject to both

direct and parametric excitations. Croy et al. [50]

proposed and studied a microscopic mechanism for

energy dissipation in electrically actuated nanome-

chanical resonators; they found that the coupling

between flexural modes and in-plane phonons results

in nonlinear damping for out-of-plane oscillations. An

in-depth theoretical and experimental investigation

highlighting the effect of different damping sources

(e.g. thermoelastic, anchor losses, and Akhiezer) on

the quality factor of MEMS silicon resonators was

conducted by Kenny and co-authors [51–53]. More

recently, nonlinear damping in graphene nanores-

onators motivated several interesting studies

[50, 54–58]. For instance, Eichler et al. [56] studied

the damping of mechanical resonators based on

graphene membranes and carbon nanotubes and found

that damping strongly and nonlinearly depends on the

amplitude of motion. Keşkekler et al. [58] studied

experimentally nonlinear damping in graphene

nanoresonators; they investigated the parametric res-

onance tuning of a graphene nanodrum by monitoring

nonlinear dissipation over a wide frequency range.

Furthermore, Dolleman et al. [57] investigated mul-

timode parametric resonance in opto-thermally

excited graphene membranes and showed that nonlin-

ear damping is essential for examining their large-

amplitude parametric resonance. Nonlinear damping

was used recently for different applications in sensing

[59], energy harvesting [60], vibration isolation

[61, 62], and was shown experimentally for graphene

[58].

Despite these valuable studies, there is still no

comprehensive study on nonlinear damping in in-

plane MEMS resonators with relatively large gaps.

The present study conducts a thorough investigation

on the nonlinear damping in in-plane micromachined

electromechanical resonators using carefully con-

ducted experiments and an accurate nonlinear
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theoretical model. It should be noted that the main aim

of this study is to develop a damping model that

accurately captures MEMS resonators’ nonlinear

response without focusing on or specifically identify-

ing the sources of nonlinear dissipation (e.g. thermoe-

lastic, viscoelastic, anchor losses). More specifically,

detailed procedures are provided for calibrating

different nonlinear damping models using minimum

number of experimental frequency responses, which

can be applied to any micro-/nano-resonator irrespec-

tive of the type of nonlinear damping. The experi-

mental set-up is explained in Sect. 2, followed by a

detailed nonlinear model development in Sect. 3. The

theoretical and experimental results are presented for

various cases and discussed in detail in Sect. 4.

Finally, a summary of the key findings is presented

in Sect. 5.

2 Experimental set-up

The clamped–clamped in-plane microbeam under

consideration (shown in Fig. 1a) is fabricated from

SOI (Silicon on Insulator) wafers with a highly

conductive Si device layer. The geometric parameters

of the microbeam are given in Table 1.

To excite the microbeam, the resonator is actuated

electrostatically by a DC polarisation voltage VDC and

an AC harmonic voltage of amplitude VAC and

frequency x. The resonance frequencies and the

frequency response curves of the resonating

microbeam were measured experimentally using the

stroboscopic video microscopy from Polytec, as

shown in Fig. 1c. To minimise the effect of squeeze

film damping, the microbeam is placed in a vacuum

chamber with a pressure of 950mTorr set throughout

the experiments. Even though the microbeam is

actuated by one stationary electrode, one should note

Fig. 1 a Optical image of the electrostatically actuated in-plane microbeam. b A 3D schematic of the microbeam. c Experimental set-

up

Table 1 Geometrical

properties of the silicon

clamped–clamped

microbeam

Quantity Value (lm)

Length (L) 800

Thickness (h) 3

Width (b) 25

Gap (d) 8
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that the microbeam is sandwiched between two

electrodes, as shown in Fig. 1a. The damping models

are considered in a general way to capture any

dissipation in the system, either structural or those

associated with the airgap.

3 System model development

In this section, the nonlinear equation of motion for the

MEMS resonator under consideration is derived using

the Euler–Bernoulli beam theory. More specifically,

due to the clamped–clamped configuration of the

microbeam, the midplane-stretching nonlinearity is

considered. This study utilises a Kelvin–Voigt model,

resulting in a nonlinear damping mechanism due to the

presence of geometric nonlinearity. Apart from the

Kelvin–Voigt damping, a general nonlinear damping

mechanism (for the transverse motion) is modelled as

well. These damping mechanisms will be examined in

detail in Sect. 4.

Based on the Kelvin–Voigt model, the stress–strain

relationship is given by:

rxx ¼ Eexx þ gotexx; ð1Þ

where E is the microbeam’s Young’s modulus and g is
its material damping coefficient.

Denoting the longitudinal and transverse displace-

ments by u and w, respectively, and accounting for the

midplane-stretching nonlinearity, the axial strain can

be formulated as:

exx ¼ oxuþ
1

2
oxwð Þ2�zoxxw: ð2Þ

The variation of the potential energy of the

microbeam and the virtual work of the viscous

component of the axial stress are expressed as:

dP ¼
ZL

0

Z

A

EexxdexxdAdx; ð3Þ

dWV ¼ �
ZL

0

Z

A

gotexxdexxdAdx; ð4Þ

in which d is the variational operator. The variation of
the kinetic energy of the microbeam is given by:

dK ¼ qA r
L

0

otud otuð Þ þ otwd otwð Þ½ �dx; ð5Þ

where q is the mass density and A is the cross-sectional

area of the microbeam.

The bridge resonator is actuated through the

electrostatic capacitance load, which is modelled

using the Meijs–Fokkema formula [63] given by

fe¼
1

2
eV2 b

d�wð Þ2
þ0:265

b
1
4

d�wð Þ
5
4

þ0:53
h

1
2

d�wð Þ
3
2

" #
;

ð6Þ

in which V¼VDCþVACcos xtð Þ. TheMeijs–Fokkema

formula accounts for the fringing field effect via two

additional terms (i.e. the second and third terms in

Eq. (6)) and provides reliable predictions with less

than 2% deviation from the results of a finite element

model, for the case when b/d C 1 and 0.1 B h/d B 4

[63]. As such, the virtual work of the electrostatic load

can be formulated as:

dWE ¼ r
L

0

1

2
e VDC þ VAC cos xtð Þð Þ2

b

d � wð Þ2
þ 0:265

b
1
4

d � wð Þ
5
4

þ 0:53
h

1
2

d � wð Þ
3
2

" #
dwdx;

ð7Þ

where e is the medium’s permittivity.

Substituting Eqs. (3–5) and Eq. (7) into the gener-

alised Hamilton’s principle, neglecting the longitudi-

nal inertia, and taking into account the work of a

general nonlinear cubic damping mechanism for w

dWD ¼ �
ZL

0

c1otwþ c2otw otwj j þ c3 otwð Þ3
h i

dwdx;

ð8Þ
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yield the following nonlinear equation governing the

transverse motion of the MEMS resonator:

qAottwþc1otwþc2otw otwj jþc3 otwð Þ3þEIoxxxxw

þgIotxxxxw�EA

2L
oxxw

ZL

0

oxwð Þ2dx

�gA
2L

oxxw

ZL

0

2oxwotxwdx�
1

2
e VDCþVACcos xtð Þð Þ2

b

d�wð Þ2
þ0:265

b
1
4

d�wð Þ
5
4

þ0:53
h

1
2

d�wð Þ
3
2

" #
¼0:

ð9Þ

Defining the following dimensionless quantities

x̂ ¼ x

L
; ŵ ¼ w

d
; a1 ¼

Ad2

2I
; gd ¼

g
ET

;s ¼ t

T
;X

¼ xT; c 1ð Þ
d ¼ c1L

4

EIT
; c

2ð Þ
d ¼ c2L

4d

EIT2
; c

3ð Þ
d

¼ c3L
4d2

EIT3
; b1 ¼

b

d
; b2 ¼

b

h
; ð10Þ

where T ¼ L2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qA= EIð Þ

p
, and defining the coefficient

of the electrostatic load term as a2 ¼ ebL4= 2EId3ð Þ,
the dimensionless equation of motion of the MEMS

resonator can be written as:

ossŵþc
1ð Þ
d osŵþc

2ð Þ
d osŵ osŵj jþc

3ð Þ
d osŵð Þ3þox̂x̂x̂x̂ŵ

þgdosx̂x̂x̂x̂ŵ�a1ox̂x̂ŵ
Z1

0

ox̂ŵð Þ2dx̂

�a1gdox̂x̂ŵ
Z1

0

2ox̂ŵosx̂ŵdx̂�a2 VDCþVACcos Xsð Þ½ �2

1

1� ŵð Þ2
þ0:265

1

b
3
4

1 1� ŵð Þ
5
4

þ0:53
1

b
1
2

1b
1
2

2 1� ŵð Þ
3
2

" #
¼0

ð11Þ

To solve Eq. (11) numerically, first it needs to be

discretised in the spatial domain and reduced to a set of

nonlinear ordinary differential equations (ODEs). To

this end, the transverse displacement is defined as:

ŵ x̂; sð Þ ¼
XN
k¼1

Nk x̂ð Þqk sð Þ; ð12Þ

where qkðsÞ denotes the kth unknown time-dependent

generalised coordinate for the transverse motion and

NkðbxÞ represents the corresponding dimensionless

eigenfunction for a linear clamped–clamped beam.

Next, the finite series expansion defined for bw in

Eq. (12) is substituted into Eq. (11), and then, the

Galerkin method is applied resulting in:

XN
k¼1

ossqk sð Þ þ c
1ð Þ
d osqk sð Þ

� �
r
1

0

Nj x̂ð ÞNk x̂ð Þdx̂
� �

þ r
1

0

Nj x̂ð Þ c
2ð Þ
d

XN
k¼1

Nk x̂ð Þosqk sð Þ
XN
k¼1

Nk x̂ð Þosqk sð Þ
�����

�����
 !

dx̂

þ c
3ð Þ
d

XN
k¼1

XN
l¼1

XN
m¼1

osqk sð Þosql sð Þosqm sð Þ r
1

0

Nj x̂ð ÞNk x̂ð ÞNl x̂ð ÞNm x̂ð Þdx̂
� �

þ
XN
k¼1

qk sð Þ þ gdosqk sð Þð Þ r
1

0

Nj x̂ð Þox̂x̂x̂x̂Nk x̂ð Þdx̂
� �

� a1
XN
k¼1

XN
l¼1

XN
m¼1

qk sð Þql sð Þqm sð Þ r
1

0

Nj x̂ð Þox̂x̂Nk x̂ð Þ r
1

0

ox̂Nl x̂ð Þox̂Nm x̂ð Þdx̂
� �

dx̂

� �

� a1gd
XN
k¼1

XN
l¼1

XN
m¼1

qk sð Þql sð Þosqm sð Þ r
1

0

Nj x̂ð Þox̂x̂Nk x̂ð Þ r
1

0

2ox̂Nl x̂ð Þox̂Nm x̂ð Þdx̂
� �

dx̂

� �

� a2 VDC þ VAC cos Xsð Þ½ �2r
1

0

Nj x̂ð Þ 1

1�
PN

k¼1 Nk x̂ð Þqk sð Þ
� 	2 þ 0:265

b
3
4

1 1�
PN

k¼1 Nk x̂ð Þqk sð Þ
� 	5

4

2
4

þ 0:53

b
1
2

1b
1
2

2 1�
PN

k¼1 Nk x̂ð Þqk sð Þ
� 	3

2

3
5dx̂ ¼ 0 j ¼ 1; 2; . . .;N

ð13Þ
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The discretisation procedure for the proposed

MEMS model with nonlinear damping is challenging

due to the presence of terms that cannot be integrated

in closed form, namely the damping term involving

os bwj j and the electrostatic load term involving w-

dependent components in the denominator. Hence, to

ensure accuracy when applying the Galerkin tech-

nique, these terms are kept intact and spatial integra-

tions are conducted numerically while retaining

sufficient number of terms. This procedure leads to

very large discretised equations of motion, but ensures

accurate results. Furthermore, N is set to 10, resulting

in a 10-degree-of-freedom (dof) model, ensuring

converged results. The resultant discretised 10-dof

model is solved numerically using a continuation

method; the simulation results are discussed in detail

in Sect. 4.

4 Results and discussion

In this section, the nonlinear resonance response of the

MEMS resonator is examined in detail and extensive

comparisons are conducted between the theoretical

and experimental results. Different linear and nonlin-

ear damping models are examined to determine the

model that works best for various DC and AC voltage

levels when calibrated only once. In other words, the

goal is to find a damping model that can be calibrated

once using experimental data at a specific level of

excitation and then used reliably at other excitation

levels and vibration amplitudes.

Two sets of experiments are conducted, one at

VDC ¼ 5 V and the other at VDC ¼ 30 V. The primary

resonance response of the MEMS resonator is cap-

tured at various AC voltage levels for each case, i.e. at

VAC ¼ 0:4; 5:5; 10; and 20 V for the case of VDC ¼ 5

V, and at VAC ¼ 0:5; 1:0; 2:0; and 7:0 V for the case of

VDC ¼ 30 V.

The geometric properties of the fabricated

microbeam are given in Table 1, resulting in a1 ¼
42:667 and a2 ¼ 1:049� 10�2 considering a flexural

rigidity of 8:44� 10�12 Nm2 and a mass density of

2350 kg/m3. These values lead to a good match with

the experimental linear and nonlinear responses, and

hence, the residual stress is neglected. In the results

shown in this section, x1 indicates the first dimen-

sionless natural frequency of the resonator, which is

related to its dimensional counterpart ex1 via

x1 ¼ ex1T . Additionally, wd denotes the midpoint

transverse oscillation amplitude measured from the

deflected state caused by the DC voltage. Furthermore,

in all the theoretical results, solid lines indicate

stable periodic solutions, while dashed lines represent

unstable periodic solutions.

4.1 Linear viscous damping model

First, the Kelvin–Voigt damping coefficient gd and the

nonlinear damping coefficients, i.e. c
ð2Þ
d and c

ð3Þ
d , are

set to zero in order to examine the performance of the

linear viscous damping model in predicting the peak

vibration amplitude at higher excitation levels when

calibrated based on the results at relatively low

excitation magnitudes. For this case, only the exper-

imental results conducted at VDC ¼ 5 V are used. Two

cases are considered to examine the performance of

the linear viscous damping model as discussed in

detail next.

For the first case, the linear damping coefficient,

c
ð1Þ
d , is calibrated using the experimental frequency

response at VAC ¼ 0:4 V, resulting in c
ð1Þ
d ¼ 0:107.

Then, the AC voltage is increased to 5.5 V while

keeping c
ð1Þ
d fixed, and the resultant theoretical

frequency response is constructed and compared to

the experimental one, as shown in Fig. 2a. As seen, the

linear damping model significantly overestimates the

peak amplitude when it is calibrated for very small

oscillation amplitudes and kept intact for higher-

amplitude oscillation predictions.

For the second case, the experimental frequency

response for VAC ¼ 5:5 V is used to calibrate the

linear damping model and then the frequency response

for VAC ¼ 10 is obtained while keeping c
ð1Þ
d intact.

The initial calibration for this case results in

c
ð1Þ
d ¼ 0:305, and the result of the comparison is

shown in Fig. 2b. A similar behaviour is seen for this

case in which the linear damping model overestimates

the peak oscillation amplitude for the higher AC

excitation level of 10 V. Furthermore, the comparison

between the values of c
ð1Þ
d for the two cases examined

shows that the calibrated coefficient for the case

VAC ¼ 5:5 V is almost three times larger than that for

the case of 0.4 V AC excitation level. This shows that

as the AC voltage is increased from 0.4 to 5.5 V, the

linear damping coefficient needs to be increased from
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0.107 to 0.305 so that the theoretical model predictions

match the experimental ones, which again shows the

inaccuracy of the linear damping model.

It is evident from the linear damping analysis that

irrespective of which excitation level is chosen to

calibrate the damping model, as the excitation mag-

nitude is increased, the linear damping model

overestimates the peak amplitude. Hence, a nonlinear

damping mechanism must be used to capture this

nonlinearly increasing energy dissipation at higher

oscillation amplitudes.

4.2 Kelvin–Voigt model

In this section, a comparison similar to the one in

Sect. 4.1 is conducted, while replacing the linear

damping model with a Kelvin–Voigt model; hence,

c
ð1Þ
d , c

ð2Þ
d , and c

ð3Þ
d are set to zero, and the value of gd is

obtained using the experimental frequency response at

VAC ¼ 0:4 V for the first case and using the one at

VAC ¼ 5:5 V for the second case. It should be noted

that the Kelvin–Voigt model has both linear and

nonlinear components; however, the coefficient of

damping for both components is the same and equal to

gd; hence, it does not allow for separate calibration of

the linear and the nonlinear damping coefficients.

First, the Kelvin–Voigt model is calibrated based

on the low-amplitude frequency–response at 0.4 AC

voltage, resulting in gd ¼ 2:10� 10�4. Then, gd is

kept fixed and the AC voltage is increased to 5.5 V.

The result of the comparison is shown in Fig. 3a. As

seen, while the Kelvin–Voigt model works better than

the linear damping (i.e. as seen from comparison of

Fig. 3a to Fig. 2a), it still overestimates the peak

amplitude by a large margin. To investigate whether

this is due to calibration with a very small oscillation

amplitude, for the next case, the Kelvin–Voigt damp-

ing coefficient is calibrated using the experimental

frequency response for VAC ¼ 5:5 V, resulting in

gd ¼ 5:80� 10�4. Obtaining the frequency response

for VAC ¼ 10 using the new value of gd and plotting

against the experimental one in Fig. 3b show that the

Kelvin–Voigt model again overestimates the peak

amplitudes at higher AC excitation levels. Hence,

although the Kelvin–Voigt model works better than

the linear damping model owing to its nonlinear parts,

it still cannot reliably predict the peak amplitude at

excitation levels higher than the one it is calibrated for.

4.3 Modified Kelvin–Voigt model with two

damping coefficients

In the previous section, it was shown that the Kelvin–

Voigt model cannot be used to predict peak amplitudes

at different excitation levels reliably with a fixed

(a)

(b)

Fig. 2 Frequency responses of theMEMS resonator at VDC ¼ 5

V, and different AC voltages (denoted on the curves). Circles:

experimental data; lines: theoretical predictions using the linear

damping model with a coefficient of a c
ð1Þ
d ¼ 0:107 calibrated

based on the experimental results for VAC ¼ 0:4 V and b c
ð1Þ
d ¼

0:305 calibrated based on the experimental results for VAC ¼
5:5 V
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damping coefficient for both linear and nonlinear

terms. More specifically, even though the Kelvin–

Voigt model used in this study is a nonlinear damping

model, it still underestimates the energy dissipation at

higher oscillation amplitudes, which indicates the

presence of a strong nonlinear damping in the MEMS

resonator. Hence, to have more flexibility in adjusting

the nonlinear damping in the Kelvin–Voigt model, a

modified version is examined in this section with two

damping coefficients. More specifically, the coeffi-

cient of the linear damping term in the Kelvin–Voigt

model is replaced by g lð Þ
d and that of the nonlinear

damping term is replaced by g nð Þ
d . This allows for

adjusting each coefficient separately and provides

more flexibility in modelling the damping for both

small- and large-amplitude oscillations as explained in

the following.

For such a damping model, two experimental

frequency responses are needed to calibrate the

coefficients: one at very low excitation level where

the response is mostly linear and one at larger

excitation level where the system clearly shows a

nonlinear behaviour. To this end, the frequency

responses at VAC ¼ 0:4 and 5:5 V (for the case with

VDC ¼ 5 V) are used to calibrate the two coefficients

of the modified Kelvin–Voigt model. The calibration

procedure is as follows: first, an initial estimate of the

value of linear damping coefficient, i.e. g lð Þ
d , is

obtained by setting g nð Þ
d to zero and calibrating g lð Þ

d

using the resonance response at VAC ¼ 0:4 V. This

provides a relatively accurate initial estimate for g lð Þ
d as

the response of the system is mostly linear at this low

excitation level. Then, while keeping g lð Þ
d fixed, the

value of g nð Þ
d is chosen such that a match is obtained

between the theoretical and experimental frequency

responses at 5.5 V AC excitation level. Since the

addition of g nð Þ
d will slightly affect the oscillation

amplitude for the case VAC ¼ 0:4 V, both g lð Þ
d and g nð Þ

d

coefficients are slightly modified until good matches

are obtained at both 0.4 V and 5.5 V AC excitation

levels.

This calibration procedure results in g lð Þ
d ¼ 2:0�

10�4 and g nð Þ
d ¼ 8:5� 10�3. The values of gðlÞd and g nð Þ

d

are then kept fixed, while the AC voltage is increased

to 10 and then 20 V. The result of the comparison

between experimental and theoretical frequency

responses at various AC voltage levels is shown in

Fig. 4. The good fit between the results at VAC ¼ 0:4

V and 5.5 V is expected, as the experimental results at

these excitation levels were used to calibrate the

damping model. However, as seen in the figure, the

new modified Kelvin–Voigt model does an excellent

job at predicting correct peak oscillation amplitudes at

larger AC voltage excitations, even though both

(a)

(b)

Fig. 3 Frequency responses of theMEMS resonator at VDC ¼ 5

V, and different AC voltages (denoted on the curves). Circles:

experimental data; lines: theoretical predictions using the

Kelvin–Voigt model with a coefficient of a gd ¼ 2:10� 10�4

calibrated based on the experimental results for VAC ¼ 0:4 V

and b gd ¼ 5:80� 10�4 calibrated based on the experimental

results for VAC ¼ 5:5 V
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damping coefficients were kept fixed. Hence, Fig. 4

shows that the procedure used for calibrating the

damping coefficients is robust, as it uses a very small-

amplitude frequency response to almost eliminate the

nonlinear effects and calibrates the linear part; the

nonlinear part can thenbe calibratedusing any relatively

large-amplitude experimental frequency response.

To further examine the reliability of the proposed

modified Kelvin–Voigt model, another set of exper-

imental data is considered, which was conducted at

VDC ¼ 30 V and several AC voltages, namely

VAC ¼ 0:5, 1:0, 2:0, and 7:0 V. The material damping

coefficients, i.e. g lð Þ
d and g nð Þ

d , are kept fixed, and the

frequency responses of the MEMS resonator at these

AC voltage levels are constructed numerically. A

comparison between the numerical and experimental

results is shown in Fig. 5. As seen, even though the

modified Kelvin–Voigt model was calibrated using a

completely different set of experimental results, it still

works very well in capturing the primary resonance

response and peak amplitudes at these new DC-AC

excitation levels. It is noticed that the modified

Kelvin–Voigt model predicts generally smaller peak

amplitudes compared to the experimental results; the

maximum error in estimating the peak amplitude is

less than 9% and the average percentage error in

estimating the peak amplitude for all AC voltage

levels is 6.5%.

4.4 Cubic nonlinear damping model

In this section, the performance of the cubic nonlinear

damping model is examined in detail. To this end, the

Kelvin–Voigt damping is removed from the MEMS

model so as to examine only the cubic damping model.

Two formulations of the cubic damping model are

investigated: one with the linear and cubic terms (i.e.

neglecting the quadratic term) and one with all linear,

quadratic, and cubic terms being considered. The

former is referred to as the cubic model, and the latter

as the general quadratic–cubic model.

Starting with the cubic model, a procedure similar

to the one used in Sect. 4.3 is followed here to

calibrate the two damping coefficients, i.e. c
ð1Þ
d and

c
ð3Þ
d . More specifically, the model is calibrated using

the experimental results conducted at VDC ¼ 5 V,

making use of the two lower-amplitude frequency

responses. The damping coefficients are then kept

fixed, and the frequency responses at other AC and DC

voltages are obtained and compared to the experi-

mental results.

Fig. 4 Frequency responses of theMEMS resonator at VDC ¼ 5

V, and various AC voltages (denoted on the curves). Circles:

experimental data; lines: theoretical predictions using the

modified Kelvin–Voigt model with the two damping coeffi-

cients calibrated based on the experimental data for VAC ¼ 0:4
and 5:5 V

Fig. 5 Frequency responses of the MEMS resonator at VDC ¼
30 V, and for various AC voltages (denoted on the curves).

Circles: experimental data; lines: theoretical predictions using

the modified Kelvin–Voigt model with the same damping

coefficients as the ones used in Fig. 4
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Similar to the previous section, the cubic damping

modelhasa linearandanonlinear term;hence, thedamping

coefficients can be calibrated using two frequency

responses, i.e. the ones conducted at VAC ¼ 0:4 and 5:5

V. Following a calibration procedure similar to the one

in Sect. 4.3 results in c
ð1Þ
d ¼ 0:100 and c

ð3Þ
d ¼ 0:038.

These damping coefficients are then kept fixed, and

two sets of numerical simulations are conducted; one

set at 5 V DC voltage and VAC ¼ 10 and 20 V, and

another set at 30 V DC voltage and VAC ¼ 0:5, 1:0,

2:0, and 7:0 V. The comparisons between numerical

and experimental results are shown in Fig. 6. More

specifically, Fig. 6a shows the comparison for the set

of results at VDC ¼ 5 V, while Fig. 6b shows that at

VDC ¼ 30 V. As seen in Fig. 6a, the cubic damping

model works well in capturing the peak amplitudes at

VAC ¼ 10 and 20 V once calibrated using the results at

VAC ¼ 0:4 and 5.5 V. However, it is seen that the

cubic damping model slightly underestimates the peak

amplitude, and this becomes more visible at higher AC

voltage levels. Nevertheless, it still does a very good

job in capturing the nonlinear damping in the system.

Looking at the set of results conducted at a higher

level of DC voltage, Fig. 6b, a similar behaviour is

observed, i.e. the cubic model captures the peak

amplitude correctly at relatively lower AC voltages;

however, as the AC voltage is increased, it tends to

underestimate the peak amplitude. Similar to the

modified Kelvin–Voigt model, for the case of Fig. 6b

themaximumerror is less than 9%but the average error

is slightly lower at 5%. The underestimation of the

peak amplitude at higher AC voltages can be attributed

to the fact that the only nonlinear term in the damping

model is of cubic order, which increases very rapidly as

the oscillation amplitude (and hence velocity)

increases. To further study this, the general quad-

ratic–cubic model will be examined next to investigate

whether the addition of a quadratic term can improve

the overall performance of the damping model.

The general quadratic–cubic model consists of three

damping coefficients, i.e. c
ð1Þ
d , c

ð2Þ
d , and c

ð3Þ
d , which need

to be determined using the experimental data. Since

there are three unknown coefficients, three experi-

mental frequency responses are required to calibrate

the model. It should be noted that the three coefficients

might also be determined using, for instance, two

frequency responses, but in that case optimum values

cannot be found and hence the model might not work

as intended. Hence, the experimental frequency

responses at VAC ¼ 0:4, 5:5, and 10 V (at 5 V DC

voltage) are selected for the calibration process. It

should be noted that the calibration procedure for this

case is not as straightforward as the previous case and

is more iterative. The goal is to achieve an optimised

mix of quadratic and cubic terms that can lead to larger

(a)

(b)

Fig. 6 Frequency responses of the MEMS resonator at a VDC ¼
5 V and b VDC ¼ 30 V, and various AC voltages (denoted on the

curves). Circles: experimental data; lines: theoretical predic-

tions using the cubic damping model with the two damping

coefficients calibrated based on the experimental data for VAC ¼
0:4 and 5:5 V (sub-figure (a))
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peak amplitudes at higher AC voltages, while main-

taining accurate predictions at smaller oscillation

amplitudes. To this end, first a procedure similar to

the previous case is followed by only considering c
ð1Þ
d

and c
ð2Þ
d (i.e. a quadratic model), using the curves for

VAC ¼ 0:4 and 5:5, which leads to optimum values of

0:074 and 0:100 for c
ð1Þ
d and c

ð2Þ
d , respectively. We also

know from the previous case that the optimum values

for a cubic model are 0:100 and 0:038 for c
ð1Þ
d and c

ð3Þ
d ,

respectively. Hence, it is assumed that the optimised

case for the general quadratic–cubic model is a linear

combination of these two cases. Therefore, a weight

factor l in the range [0 1] is considered and the

damping coefficients are defined as: c
ð1Þ
d ¼ l�

0:100þ ð1� lÞ � 0:074, c
ð2Þ
d ¼ ð1� lÞ � 0:100,

and c
ð3Þ
d ¼ l� 0:038. Knowing that the cubic model

already provided good results, it is expected that a l
closer to 1 (than 0) would be ideal as it slightly reduces

the effect of the cubic term and introduces a quadratic

term which has less damping effect at larger ampli-

tudes (since it grows at a quadratic rate rather a cubic

one). Hence, different values of l are tested to see

which value gives best fit for all three frequency

responses. Following this procedure leads to l ¼
0:765 as the optimum value, which results in the

following damping coefficient values for the general

quadratic–cubic damping model: c
ð1Þ
d ¼ 0:094,

c
ð2Þ
d ¼ 0:024, and c

ð3Þ
d ¼ 0:029. Similar to the previous

case, the damping coefficients are kept fixed and the

frequency responses at other AC/DC voltage levels are

constructed and compared to the experimental results,

as illustrated in Fig. 7 through (a) for the set of results

at VDC ¼ 5 V and (b) that at VDC ¼ 30 V.

Starting with Fig. 7a, it is seen that the general

quadratic–cubic damping model does an excellent job

at predicting correct peak amplitudes at various AC

voltage levels. Furthermore, the model also works

well for the set of results at an increased DC voltage

level, as seen in Fig. 7b. In fact, for the case of Fig. 7b,

the maximum error in estimating the peak amplitude is

less than 6% and the average error is 3.3%, both of

which are less than those of the other nonlinear

damping models examined in this study.

Hence, it is shown that once calibrated, the general

quadratic–cubic damping model works best in pre-

dicting the primary resonance response amplitudes at

various AC and DC voltages. However, compared to

the cubic model and the modified Kelvin–Voigt

(a)

(b)

Fig. 7 Frequency responses of the MEMS resonator at a VDC ¼
5 V and b VDC ¼ 30 V, and various AC voltages (denoted on the

curves). Circles: experimental data; lines: theoretical predic-

tions using the general quadratic-cubic damping model with the

three damping coefficients calibrated based on the experimental

data for VAC ¼ 0:4, 5:5, and 10 V (sub-figure (a))
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model, it requires more experimental frequency

responses for optimal calibration.

5 Conclusions

This study conducted a thorough theoretical–experi-

mental investigation on the nonlinear damping in in-

plane MEMS resonators. Precise experimental mea-

surements were conducted to examine the primary

resonance response of an in-plane electrically actuated

clamped–clamped microbeam for various AC and DC

voltages. More specifically, the frequency responses

of the system were constructed at various AC voltage

levels for two different statically deflected configura-

tions (i.e. DC voltage levels). For the theoretical part, a

nonlinear model was developed for the microbeam

taking into account nonlinearities associated with

midplane stretching, electrostatic load, and damping.

In particular, two different damping mechanisms were

considered: the general quadratic–cubic nonlinear

damping model and the Kelvin–Voigt model. The

nonlinear continuous model of the MEMS resonator

was discretised utilising the Galerkin method while

retaining 10 modes and while ensuring that the

electrostatic load term with nonlinearities in the

denominator and the damping term in the absolute

function are kept intact in the discretisation procedure.

Various damping models were examined and com-

pared to experimental data including the linear damp-

ing model, the Kelvin–Voigt model, the modified

Kelvin–Voigt model with two damping coefficients,

the cubicmodel (including linear and cubic terms), and

the general quadratic–cubic damping model. It should

be highlighted that the goal was to investigate whether

a damping model is capable of capturing correct

resonance amplitudes at various excitation levels with

fixed damping coefficients without focusing on the

nonlinear damping sources. Thorough investigations

were conducted, and it was found that:

• The linear damping model significantly overesti-

mates the peak amplitude at higher excitation

levels when it is calibrated using the experimental

data at a lower excitation level.

• The Kelvin–Voigt model works better than the

linear damping model, but still overestimates the

response at higher excitation levels.

• The modified Kelvin–Voigt model with two

damping coefficients (one for linear and one for

nonlinear terms) does an excellent job at capturing

the correct peak resonance amplitudes at various

AC voltages when calibrated using the two lowest

amplitude experimental data. When the DC volt-

age is increased, this model tends to slightly

underestimate the peak amplitude.

• The cubic model works well, but it slightly under-

estimates the peak amplitude as theACvoltage level

is increased (at different DC voltage levels)

• The general quadratic–cubic model works better

than the other nonlinear models and captures the

peak amplitude at various AC and DC voltage

levels with a minimum error.

Hence, this study clearly shows the presence of a

strong nonlinear damping in in-plane clamped–clamped

silicon MEMS resonators and proposes suitable nonlin-

ear damping models (along with robust calibration

procedures) to capture such a nonlinear behaviour. In

summary, both quadratic–cubic and modified Kelvin–

Voigt models work really well, noting that the former is

more complicated to calibrate as it requires three

experimental frequency responses for optimal calibra-

tion, while the modified Kelvin–Voigt model has two

coefficients and can be calibrated using only two

experimental frequency responses.
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