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Abstract
Highly accurate machine learning (ML) approaches rely heavily on the quality of data and the 

design features that are used as inputs to the model. The applicability of these methods for 

phase formation predictions is questionable when it comes to the design of thermally sprayed 

high entropy alloy (HEA) coatings using gas or water atomized powders as feedstock material. 

Phase formation from liquid state depends on the cooling rate during atomization which is 

several orders of magnitude higher when compared to arc melted as-cast HEAs.  In addition, 

during plasma spray the powder melts in the flame and re-solidifies under different cooling 

rates during deposition. To our knowledge, almost all ML algorithms are based on available 

datasets constructed from relatively low cooling rate processes such as arc melting and suction 

casting. A new approach is needed to broaden the applicability of ML algorithms to rapid 

solidification manufacturing processes similar to gas and water atomization by making use of 

existing data and theoretical models. In this study the authors introduce a cooling rate 

dependent design feature that can lead to accurate predictions of the HEA powder phase 

formation and the subsequent phases found in the spray coated materials. The model is 

validated experimentally and also by comparing the predictions with existing coating related 

data in the literature.  

Keywords: High Entropy Alloys, Machine Learning, Cooling Rate, Thermal Spray
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1. Introduction

Traditional alloying strategies are based on the use of a principal element to satisfy the 

need for primary properties and the inclusion of secondary elements in small amounts to 

enhance other properties. However, back in 2004, two different groups working in parallel 

published works on the development of a different approach creating single phase materials by 

using multiple different elements leading to the creation of high-entropy alloys (HEAs) (Ref 

1,2) and multicomponent alloys (Ref 3) . HEAs are defined as systems composed of 5 or more 

elements with concentrations for each element between 5-35 at.% and exhibit four core effects: 

high entropy, lattice distortion, sluggish diffusion and the cocktail effects (Ref 4,5).  

HEAs have received significant attention for their superior mechanical properties such 

as hardness, ductility, and corrosion resistance over those of conventional alloys (Ref 6-11) 

and recently, the concept of HEAs has extended into functional materials, such as catalytic 

materials for hydrogen production, thermoelectric materials, and coating materials (Ref 12-24). 

In the field of surface engineering and advanced coatings, HEAs provide a transformative 

opportunity to design surfaces that are custom tailored to the distinct needs of a given 

application. HEAs deliver new options to manufacturers to produce alternatives to materials 

that are rare, hazardous, expensive, subject to international restrictions and are designed around 

the limitations of current materials that form part of a 30-year-old legacy.  

 Multicomponent and HEA materials offer a pluralism in terms of physical, chemical, 

and mechanical properties, making them promising for a variety of applications. However, the 

large composition space introduces new challenges for designing novel HEAs with tailored 

properties or functionalities. The typical trial-and-error approach cannot be applied due to the 

considerable time and cost for the investigation of the vast amount of possible compositions.
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 Throughout the years, parametric and computational approaches have been used 

extensively for the design of HEAs. The parametric approach is based on empirical rules 

established from the analysis of theoretical models and design parameters known so far, e.g., 

atomic size difference δ, mixing entropy ΔSmix, mixing enthalpy ΔHmix, valence electron 

concentration (VEC), electronegativity difference Δχ and itinerant electron concentration (e/a) 

(Ref 25-30). Maps based on these parameters were built to single out regions in the parameter 

space corresponding to alloys which were known experimentally to be single phased. The maps 

proved useful in rationalizing the findings on HEA systems known at the time and have become 

a tool for predicting the phases occurring in new systems. There are obvious exceptions in the 

maps, as shown in the next section, which suggests further analyses and research that could 

potentially lead to better predictive models, especially when powder atomisation is used 

implying rather fast solidification which may lead to non-equilibrium microstructural 

outcomes. 

 In this direction, computational approaches, e.g., Calculation of Phase Diagrams 

(CALPHAD), molecular dynamics simulation, and first-principles density functional theory 

calculations, have been utilized to estimate under what conditions a specific phase is formed 

and to predict structural and electronic properties of HEAs based on previous experimental 

data (Ref 31). Those conventional approaches, however, have limitations due to excessive 

computational costs and high uncertainties (Ref 32). In the CALPHAD technique for example, 

Gibbs energy models with parameters describing each phase in a multicomponent system are 

obtained based on experimental and first principles information. On the contrary, HEAs are 

positioned in the central regions of multidimensional phase diagrams, well outside the limits 

usually used to construct energy model parameters through databases. As a result, calculations 

in large composition spaces require large extrapolations from the classical thermodynamic 

models which may lead to inaccurate evaluations of the Gibbs energies and phase equilibria. 
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Reliability and accuracy of the predictions can thus become questionable when obtained from 

incomplete thermodynamic descriptions(Ref 33).

To address the aforementioned limitations, over the recent years, machine learning 

(ML) has been applied in the field of HEAs as a data-driven approach. Machine learning 

methods are known for their feature learning ability from data representation using complex 

neural network architectures towards a global approximation of nonlinearity. With the recent 

HEA data accumulation, several works have shown promising results for estimating phases 

and mechanical properties of such complex systems (Ref 34-38). Current limitations of ML 

methods include pure regularisation and overfitting, the generalisation ability of most models 

is questionable due to the lack of powerful feature descriptors (i.e., meaningful thermodynamic 

inputs), and the poor interpretation of neural network target outcomes. Another critical 

limitation that renders ML approaches less effective for thermal spray feedstock HEA material 

design is the lack of information in most datasets regarding the manufacturing process and the 

critical cooling rates. It is also important to note that phase formation from liquid state depends 

on the cooling rate during solidification and approaches involving phase transformation of 

alloys that depend on the cooling rate are rare in the literature (Ref 39). In the field of thermal 

spray, it is important to develop a model which can predict whether a given elemental 

combination in equiatomic or near equiatomic proportion will form a particular solid solution 

(SS) phase depending on the cooling rate during solidification of liquid in gas or water 

atomisers and the subsequent re-melting and solidification during the spray coating deposition. 

In this work the authors present a Random forest ML approach (Ref 40). Random 

forests are composed of an ensemble of decision trees. Decision trees are simple models that 

recursively partition the input space and define a piece-wise function, typically constant, on 

the partitions. Single decision trees often have poor predictive power for non-linear relations 

or noisy data sets. In random forests, these weaknesses are overcome by using an ensemble of 
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decision trees, each one fit to a different random draw, with replacement, of the training data 

set. For a given test point, the predictions of all the trees in the forest are aggregated, usually 

by taking the mean. The Random Forest model has been selected because of its robustness 

when dealing with high dimensional data and its ability to handle effectively unbalanced data. 

Random forest tries to minimize the overall error rate, so in the presence of an unbalance data 

set, the larger class will get a low error rate while the smaller class will have a larger error rate. 

Finally, each decision tree has a high variance, but low bias.  The random forest classifier was 

implemented with Scikit-learn (Ref 41). Its superior performance in other materials science 

studies, where data is often limited, has been demonstrated in previous studies (Ref 42,43). 

This work builds on previous ML approaches while introducing a critical new feature 

descriptor that enables the prediction of phase formation in atomised powder feedstock 

materials and coatings. The cooling rates during powder manufacturing can be as high as 1010 

K/s  (Ref 44) and the rapid particle re-solidification upon impact on the substrate during spray 

can reach cooling rates up to 108 K/s (Ref 45).     

2. Dataset, Features and Model Description

2.1 Dataset Analysis

The datasets were constructed from several previous works (Ref 5,35,43) and used to 

develop the present Random Forest based phase prediction model. After minor data cleaning 

for the elimination of redundant samples, the dataset was finalised with a total of 133 samples 

classified into phases including FCC, BCC and HCP as found in the dataset that was 

constructed from the information provided in (Ref 39). The total number of equiatomic 

compositions is 45 with each one associated to experimentally observed phase formation under 

three different cooling rates. 
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 Besides the design parameters based on empirical rules, i.e., δ, ΔSmix, ΔHmix, VEC, and 

Δχ (Ref 25,36,39), the authors capitalize on the work by Chattopadhyay et.al. (Ref 39), where 

phase formation predictions are obtained from temperature-time-transformation (TTT) 

diagrams for different alloy cooling rates. 

To explore and assess the feature distribution of the dataset, visualization of the feature 

representation of all samples in two dimensions is achieved using the t-stochastic neighbour 

embedding (t-SNE) method (Ref 46). A total of 13 design parameters indicate 13 dimensions 

of the feature space that are fed into the model. In Figure 1, the high-dimensional data are 

embedded into the low-dimensional space. The data maintain their original characteristics of 

distance similarities among data points with the two-axis having no physical meaning. The 

embedded distributions of a multiphase system, FCC+BCC for example, appears to be 

significantly entangled, as shown in Figure 1a, when the cooling rate information are 

incorporated without further feature engineering. This implies that similar feature 

representations co-exist in the original feature space making it difficult to distinguish between 

them for the cooling rate dependent phase predictions as opposed to datasets constructed 

without significant cooling rate variations (Figure 1b).

As it is further demonstrated in Figure 2, there are samples in the dataset that share very 

similar individual or combinatorial principles that stem from thermodynamic empirical rules 

but exhibit different phase formations. This is an expected behaviour since the empirical rule 

descriptors are de-coupled from the solidification mechanisms and their effect on phase 

formation. Figure 2, shows a scatter plot between the mixing-rule calculated Ionisation Energy 

and the mixing-rule calculated Latent Heat for the alloys in the dataset for the existing 

FCC+BCC and Other cases. The pair-plot visualisation of all features against all samples 

suggest that the feature representation is ambiguous when cooling rates are employed leading 

to significant number of misclassification cases particularly in multi-phase systems. 
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Accordingly, our goal is to succeed in nonlinear mapping that differentiates those feature 

distributions of all phases via a new cooling rate related design feature. 

2.2 Feature Construction  

It has been demonstrated by several works (Ref 47-50) that the phases formed in HEAs 

are in several cases the outcome of phase separation, leading to an inherited from lower order 

alloy phase formation. It is also important to note that phase formation from liquid state 

depends on the cooling rate during solidification. Therefore, it is of immense importance to 

develop a new design feature that would be fed into Neural Networks, Decision Trees and 

Random Forest models. The new design feature should consider thermodynamic and crystal 

structure information coupled with solidification kinetics of a given composition.   

The temperature dependence of the viscosity   of the ΗΕΑ melt ZrTiCuNiBe has been 𝑛

provided in (Ref 39) and fits the experimental   relationship in the form:ln𝑛~
1
𝑇

(1)ln𝑛 = 𝐴 + 𝐵(𝑇𝑚
𝑇 )𝑎

where  and  are constants, with  being a material composition dependent parameter and 𝐴, 𝐵 𝑎 𝑎

 the alloy melting point. It has been obtained experimentally by (Ref 51) that the cooling 𝑇𝑚

rate  relationship , in a wide range of cooling rates (K/s) , is fitted by the equation:(𝑞𝑐)
1
𝑞𝑐

~
𝑇𝑚
𝑇

 (2)ln ( 1
𝑞𝑐) = 𝐴′ + 𝐵(𝑇𝑚

𝑇 )𝑎

where  and  are also shown in Eq. 1 and  is a fitting adjusting parameter.  Subtracting 𝐵 𝑎 𝐴′

Eq. 1 from Eq. 2 we get:

(3)ln𝑞𝑐 = ln𝑆𝑘 ― ln𝑛

(4)𝑞𝑐 =
𝑆𝑘

𝑛
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The  ( is the new design feature introduced in this study which is a shift factor making 𝑆𝑘 MPa K) 

the equivalent Eq.1 and Eq.2 to overlap. It is expected all phases to have different temperature 

dependent viscosity behaviour due to their different packing fractions. Feeding the  values 𝑆𝑘

into the ML algorithm, new similarity pattern exploration is possible by creating dissimilar 

feature representations for phase formation under different solidification rates. 

The viscosity of an alloy can be estimated using classic Grunberg-Nissan (Ref 52) mixing 

rule for liquid mixture (Eq. 5): 

 (5)ln𝑛 = ∑𝑁
𝑖 = 1𝑥𝑖ln𝑛𝑖

or more complex expressions (Eq. 6) such as the Budai et al. (Ref 53)

 (6)𝑛 =
ℎ ∙ 𝑁𝐴

∑𝑥𝑖 ∙ 𝑉𝑖
𝑚 + ∆𝑉𝐸

𝑚
∙ 𝑒𝑥𝑝⌊(∑𝑥𝑖 ∙ ∆𝐺 ∗

𝑖 ) ― 0.155 ∙ ∆𝐻

𝑅 ∙ 𝑇 ⌋

where  is the Planck constant,   is the Avogadro number,   the molar volume of the ℎ 𝑁𝐴 𝑉𝑚

element ,  is the excess molar volume upon alloy formation and is set to zero in the absence 𝑖 ∆𝑉𝐸
𝑚

of data,  is the mixing enthalpy calculated by  using Miedema's model (Ref 54) and   is ∆𝐻 ∆𝐺 ∗
𝑖

the Gibbs energy of activation of the viscous flow in pure component  and can be expressed 𝑖

as:

 (7)∆𝐺 ∗
𝑖 = 𝑅 ∙ 𝑇 ∙ 𝑙𝑛( 𝑛𝑖 ∙ 𝑀𝑖

ℎ ∙ 𝑁𝐴 ∙ 𝜌𝑖)

where,  is the density of the element ,  is the atomic weight of the element  and is the 𝜌𝑖 𝑖 𝑀𝑖 𝑖 𝑛𝑖

individual element viscosity. Substituting Eq.7 into Eq.6 we get the final viscosity expression 

that contains crystal structure information in the density term that theoretically is expressed as:  
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, where  and  are the effective number of atoms per unit cell and volume of unit 𝜌 =
𝑁𝐶𝛭
𝑉𝑐𝑁𝐴

𝑁𝐶 𝑉𝑐

cell of the material. The elemental viscosities can be calculated from (Ref 55-57). 

The new feature finally takes the following form using Eq. 4:

 (8)𝑆𝑘 = 𝑞𝑐
ℎ𝑁𝐴

𝑉𝑎𝑙𝑙𝑜𝑦
𝑒𝑥𝑝⌊∆𝐺𝑎𝑙𝑙𝑜𝑦 ― 0.155 ∙ ∆𝐻𝑚𝑖𝑥

𝑅𝑇𝑚 ⌋

The model is based on the assumption that similar temperature dependent viscosity and cooling 

rate behaviours govern the majority of equiatomic HEA systems, regardless of their 

composition and number of individual elements. 

3. New Feature Evaluation 

For the random forest classifier implemented with Scikit-learn, model hyper-parameters 

are selected via an exhaustive 3-fold cross-validated grid search using the following 

parameters: number of tree predictors in range 11 to 111 in steps of 10, the number of features 

considered at each split, and scoring based on gini (a measure of impurity) as model 

performance criterion. To avoid the effects of collinearity (highly correlated features) and 

dimensionality, 3-fold cross validated recursive feature elimination (RFECV) is performed 

before the grid search through the hyperparameters. The best performing hyper parameters 

were selected to fit a model using the entire training set, with bootstrap aggregation applying 

each decision tree a random subset containing approximately 2/3 of the data, to maximize the 

amount of information available for making future predictions. 

The feature importance (Table 1) was extracted for the model using the Citrination 

platform (available at http://www.citrination.com  last access: 07 March 2022). The feature 
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importance was ranked by observing the effect on model accuracy by randomly permuting the 

values of each feature. This is done to measure the impact of swapping the value of a selected 

feature from one composition with the value from a different composition. It is evidently shown 

that the newly constructed Sk feature (Eq.8) is ranked first among several standard ML HEA 

predictors found in the literature. 

The model accuracy presented in Table 2 is estimated by tallying and reporting the 

percentage of predictor trees that “vote” for each of the output phases (none/neither, face-

centered cubic, or body-centered cubic) for each input composition. The model achieves an 

accuracy of 81%. The same accuracy is observed from the Receiver Operator Characteristic 

(ROC) curve in Figure 3. The ROC curve is a graphical plot used to show the diagnostic ability 

of binary classifiers. It shows the trade-off between sensitivity (or TPR) and specificity (1 – 

FPR). Classifiers that give curves closer to the top-left corner indicate a better performance. 

As a baseline, a random classifier is expected to give points lying along the diagonal (FPR = 

TPR). The closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate 

the test.

Figure 4 graphically defines the input space (VEC and Sk), decision regions (1 = FCC, 

0 = BCC), and decision boundaries for a two-dimensional binary classification problem. 

Interpreting the decision map, one can conclude that FCC phase formation is expected for Sk 

values between 0 and 1 and for VEC values larger than 7. Increased probability of a BCC phase 

formation for  Sk  > 1 in the 8  > VEC  > 7 range is observed while for VEC > 8 the FCC phase 

suppression due to rapid solidification is less likely to occur. 

The new feature from this work was implemented alongside 13 thermodynamic parameters 

as model inputs in a larger dataset including 511 compositions where the cooling rates were 

approximated based on the production method. The model achieves the same accuracy of 81% 
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and the confusion matrix (Figure 5) shows very good diagonal distribution of correctly 

classified phases. The confusion or error matrix is a specific table layout that allows 

visualization of the performance of an algorithm. Each row of the matrix represents the 

instances in an actual class while each column represents the instances in a predicted class.   In 

Table 3, the model predictions are compared to as-cast materials, atomized powders and the 

resulting coatings. The final phase formation depends on several other parameters and the new 

Sk feature should be used alongside other empirical rules as listed in Table 1. This is because 

the final phase formation predictions depend on the trained model input weights.  

4. Experimental Validation & Discussions

This work suggests that kinetics is an important consideration that may affect the 

microstructure and the properties of HEAs in line with previous observations in the literature. 

Lobel et al. (Ref 58) reported that AlCoCrFeNiTi0.5 fabricated by gas atomisation consisted 

of two BCC phases. The fast-cooling rate suppressed the segregation of the melt and led to the 

suppression of the FCC phase. Subsequent Spark plasma sintering of the gas atomised powder 

led to the formation of additional phases, sigma and FCC. Chen et al. (Ref 59) studied the effect 

of the cooling rate on the microstructure and mechanical properties of a vacuum arc melted 

CrFeCoNiAl0.6 that was subsequently remelted in copper molds of various diameters. 

According to the results, the cooling rate can control the fraction of BCC phase and the 

refinement of FCC allowing to tune the mechanical properties. He et al. (Ref 60) investigated 

the kinetic effect on the phase transformation and selection of a CoCrFeNiTi0.4 HEA. Under 

low cooling rate the microstructure consists of FCC, sigma, R and γ΄. However, extremely 

rapid solidification led to the suppression of the formation of sigma, R and γ΄. It was deducted 

that solidification rate and solid-state transformation kinetics could be used to control the phase 

selection of HEAs for improved performance.
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Taking into account the Sk and VEC pair rules shown in Fig. 4 the modified 

CoCrFeMnNi0.8V Cantor alloy (CantorV) with VEC = 7.4 was selected for validation purposes 

and compared alongside the original Cantor CoCrFeMnNi system (VEC=8).  Both the Cantor 

and CantorV bulk samples were fabricated with the use of pieces of elements of high purity 

(99.9 wt.%) with the employment of an Edmund Buhler MAM-1 compact arc-melter. Proper 

quantities of the raw materials were measured with the use of a Fisherbrand analytical balance 

and then ultrasonically cleaned. Afterwards, they were inserted in the chamber and melted 

under Ar to acquire the master alloy. The master alloy was suction casted into a water-cooled 

Cu mold with diameter of 8 mm and length of 30 mm. The cylindrical samples were cut in 

smaller pieces and were subject to standard metallographic procedures in order to study the 

microstructure. The mixing rule viscosities for the two alloys were calculated using Eq.5. The 

equivalent Sk values for the bulk arc-melted alloys based on Eq. 4 are Sk =   0.000045 for the 

CantorV and Sk = 0.000047 for the original Cantor alloy for a cooling rate equal to 1000K/s. 

To test the response of the two alloys under very rapid solidification atomized powders 

were produced and analyzed. The calculated Sk value is 1.13 for the CantorV alloy (atomization 

cooling rate ≈ 2.5 x 108) and Sk = 0.93x108 for the original Cantor alloy (atomization cooling 

rate ≈ 2 x 108). The cooling rates were estimated based on the atomization process parameters 

and established break-up and solidification models (Ref 39,61,62). Based on the VEC and Sk 

values, this study suggests and confirms that the CantorV alloy will not retain the FCC structure 

during atomization since the Sk value is higher than 1 and the material VEC is below 8. On the 

contrary, the original Cantor alloy is expected to sustain the FCC structure (Sk < 1, VEC=8)) 

after atomization. 

The produced powders were then used as feedstock material for typical atmospheric 

plasma spray (APS) and High Velocity Oxy-Fuel (HVOF) thermal spray. The HVOF spray 

system is designed by Castolin Eutectic-Monitor Coatings Ltd. (North Shields, UK), utilizing 
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both air and oxygen alongside the fuel for combustion. The plasma coatings were applied using 

the 3MB torch by Oerlikon Metco in a dedicated NADCAP certified aerospace booth at 

Monitor Coatings Ltd in the UK. The torch delivers up to 50KW of power and plasma 

temperatures up to 16,000 ºC, gas velocities up to 3,000m/s and particle acceleration up to 

600m/s. The torch was mounted on a robotic arm and the samples were sprayed using a raster 

scan program. 

The coatings were deposited on S275 steel plates (nominal composition: C< 0.25 wt.%, 

Mn< 1.6 wt.%, S< 0.05 wt. %, P< 0.04 wt.%, Si< 0.05 wt.%) of 50x50 mm and 6 mm thickness 

traversing the gun linearly (raster scan pattern) using a robotic arm. The spray angle was fixed 

at 90 degrees and the gas flow rates were controlled using a digital console. The suction casted 

samples, the gas atomized powder and the coatings were studied with the employment of a 

Rigaku Smartlab SE X-ray diffractometer (CuKa radiation, standard split) and a Tescan Mira 

3 scanning electron microscope equipped with an Oxford Instruments EDS analyser. X-ray 

diffractograms were acquired with a step size of 0.01 ⸰/s. 

Figure 6 presents the X-ray diffractograms of the suction cast bulk CoCrFeMnNi and 

CoCrFeMnNi0.8V and corresponding elemental maps. According to the results, the 

CoCrFeMnNi0.8V fabricated by suction casting consists of two phases as opposed to the 

CoCrFeMnNi that shows a single FCC structure (Fig.6a). The sigma phase (Light grey phase) 

and an FCC solid solution (Dark grey phase) are shown in Figure 6b. Sigma is enriched in Cr, 

V and depleted in Mn, Ni. On the other hand, the FCC solid solution is enriched in Mn, Ni and 

depleted from Cr, V. The chemical composition and phase formation of the bulk as-cast, 

powder and coating materials are summarized in Table 4. 

The gas atomized CoCrFeMnNi0.8V particles consist of a single BCC solid solution 

(Fig. 7a), as opposed to the as-cast FCC + sigma phases, with an average size of 20-50 μm 
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while the CoCrFeMnNi particles retain the FCC structure as observed in the as-cast material 

(Fig. 6a). The particles have a spherical and dense structured with no porosity or other defects 

such as satellite droplets, agglomeration and hollow structures (Fig.7b). The chemical 

composition of the powders is close to the nominal composition (Table 4) of the as-cast 

systems. The powder exhibits good distribution of the elements as shown in Fig.7c. 

The CoCrFeMnNi and CoCrFeMnNi0.8V coatings were sprayed using the produced 

HEA powders on carbon steel substrates with the employment of two different techniques. 

During HVOF application the temperature for the 45μm average particle is approximately 1127 

C and 1429 C respectively (Ref 12), lower than the melting point of the material (1584 C). On 

the other hand, the temperature for the average particle during atmospheric plasma spraying is 

well above the melting point of the material resulting in fully molten particle impingement and 

re-solidification as demonstrated in Figure 8a,b. The HVOF sprayed original Cantor alloy 

exhibits the same crystal structure in all production stages from bulk as-cast to powder and 

coating formation in line with the model predictions. The inconsistency of the microstructure 

between the bulk CoCrFeMnNi0.8V, the gas atomized equivalent and the resulting Plasma 

coating as predicted by the model can be explained by analyzing the solidification and cooling 

rate sequences in conjunction with the Sk values and the VEC number of the alloy. 

During atomization the Sk value is higher than 1 at VEC=7.4 and suppression of the 

FCC and sigma phases is expected. The BCC CantorV powder when sprayed under HVOF 

process temperatures does not undergo significant in-flight melting and thus no significant 

deviations from the feedstock composition is expected (Figure 9 a, b and Figures 6, 7). On the 

contrary, during plasma spray, the particles impact on the substrate at fully molten state and 

solidify rapidly to form the lamella structure shown in Figure 8 a,b. The re-solidification occurs 

at different speeds depending on the particle size. For this reason, several particles solidify 

faster than others resulting in different Sk values ranging from 0.1 to 1.2 . According to MPa K
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this study and as shown in Figure 8a both FCC and BCC phases are predicted and 

experimentally verified in the coating. Larger particles are cooled down at lower rate delivering 

the same crystal structure as the feedstock material. The original Cantor alloy with a higher 

VEC number appears to be less prone to metastable phase formation and thus the FCC is 

retained regardless of the Sk value as suggested by the decision plot in Figure 4 and shown in 

Figure 8b.  

5. Conclusions

In the field of thermal spray, it is important to develop a model which can predict 

whether a given multicomponent elemental combination will form a particular solid solution 

phase depending on the cooling rate during solidification of liquid metal in gas or water 

atomisers and the subsequent re-melting and solidification of the powder during the spray 

coating deposition. For this purpose, in this study a new design feature has been constructed 

and used as input to a random forest ML model to predict the phase formation of High Entropy 

Alloys under rapid solidification conditions. This approach is based on the viscosity of alloys 

as a function of temperature, utilising the viscosities of its constituting elements, and suitably 

incorporating the cooling rate information. The most important part of the present work is that 

it offers an additional design tool for thermal spray processes and the route that should be used 

to form an intended phase in a particular alloy via the critical Sk value. The phase formation in 

most of the coated alloys and their atomised feedstock material has been predicted correctly by 

the model. Higher cooling rates as denoted by Sk >1 values in the composition range of 8 > 

VEC > 7 may lead to the suppression of the FCC phase and the formation of a more open space 

BCC structure instead. Similarly, as shown in Table 3 and validated in Section 4 secondary 

phases are supressed when specific VEC and Sk conditions are satisfied after gas atomisation 

leading to the formation of single-phase powders as opposed to multi-phase as-cast materials.
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Figure Captions

Figure 1. a) t-SNE projection of cooling dataset without new feature construction, b) Original 
dataset without cooling rate entries.

Figure 2. Pair-plot of two model features, the Ionisation Energy and the Latent Heat. The 
population is a univariate distribution plot drawn to show the marginal distribution of the 
data.

Figure 3. ROC Curve of the model including the new Sk feature.

Figure 4. Random Forest model decision plot showing the Sk and VEC pair rules for phase 
formation under different cooling rates expressed through the new Sk feature.

Figure 5. Confusion matrix of the Random Forest multiple phase formation classification

Figure 6. As Cast High Entropy alloys (a) XRDs of the Cantor Alloy showing single phase 
FCC structure and modified Cantor with the addition of Vanadium showing FCC plus 
secondary phases, (b) EDS showing uniform distribution of elements in the Vanadium 
containing alloy, (c) EDS showing the distribution of elements in the original Cantor Alloy.

Figure 7. Atomised CoCrFeMnNi0.8V alloy powder. (a) XRDs showing a single BCC phase 
as opposed to FCC+Sec in the as cast material. (b) Powder morphology, (c) EDS.

Figure 8. Thermal Spray via Atmospheric Plasma Spray (APS). (a) XRDs showing FCC and 
BCC for the APS sprayed CantorV (CoCrFeMnNi0.8V) alloy and lamella coating 
microstructure with oxide formation, (b) XRDs showing primary FCC formation with oxides 
for the APS sprayed original Cantor alloy (CoCrFeMnNi) and lamella coating microstructure 
with oxide formation.

Figure 9. Thermal Spray via High Velocity Oxy-Fuel (HVOF). (a) XRDs showing single 
BCC phase for the HVOF sprayed CantorV and coating microstructure. (b) XRDs showing 
single FCC phase for the HVOF sprayed original Cantor Alloy and coating microstructure.
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Table 1. A list of first ten features used to train the model ranked by importance scores. 
Importance scores are representative of a given feature's contribution to the model's 
performance. 

Feature Importance

Sk (New Feature from this work) 9%
Mean of Number of d valence electrons for formula (Citrination Generated) 4%
Mean of Conduction ionization energy for formula (Citrination Generated) 4%
Mean of Radius of d orbitals for formula (Citrination Generated) 4%
Mean of Elemental work function for formula (Citrination Generated) 3%
Mean of Elemental atomic volume for formula (Citrination Generated) 3%
Mean of Packing density for formula (Citrination Generated) 3%
Mean of Total number of unfilled valence electrons for formula (Citrination Generated) 3%
Mean of Elemental density for formula (Citrination Generated) 2%
Mean of Valence electron density for formula (Citrination Generated) 2%
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Table 2. Model Accuracy (81%) for the binary FCC/BCC phase classification for a given HEA 

composition under different cooling rates.   

Precision Recall F1-Score
Accuracy - - 0.81
Macro Avg. 0.84 0.84 0.81
Weighted Avg. 0.87 0.81 0.81
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Table 3. Phase formation model predictions during gas atomization and coating 
deposition and comparisons with experimental findings.  

Oxide formation is excluded from Model Predictions, Arc-Melting Cooling Rate = 100-1000K/s, APS 
Deposition Re-Solidifcaiton Cooling Rate Up to 108  K/s, Atromisation Cooling Rate Up to 107 K/s
Material Predicte

d as Cast
Exp. 
Feedstock

Predicted 
Feedstock

Predicted 
Coating 
Phases

Exp. Coating 
Phases

Ref.

AlSiTiCrFeCoNiMo0.5 BCC+Sec 
(Arc-
Melting)

BCC+FCC 
(Arc-
Melting+Ball 
Milling)

BCC+Sec 
(Arc-
Melting)

BCC (APS) BCC (APS) [58]

AlSiTiCrFeNiMo0.5 BCC+Sec 
(Arc-
Melting)

BCC+FCC 
(Arc-
Melting+Ball 
Milling)

BBC (Arc-
Melting)

BCC (APS) BCC (APS) [58]

AlSiTi0.2Cr1.5Fe0.2Co0.6
Ni

BCC+Sec 
(Arc-
Melting)

BCC+Sec (Arc-
Melting+Ball 
Milling)

BCC+Sec 
(Arc-
Melting)

BCC+B2 
(APS)

BCC+Sec (APS) [59]

CoCrFeMnNi FCC (Arc-
Melting)

FCC 
(Atomisation)

FCC 
(Atomisatio
n)

FCC (APS) FCC (APS) This 
wor
k

CoCrFeMnNi FCC (Arc-
Melting)

FCC+minorBC
C 
(Mechanical 
Alloying)

FCC (Arc-
Melting)

FCC (APS) FCC(APS) [17]

AlTiCrFeCoNi BCC (Arc-
Melting)

BCC 
(Mechanical 
Alloying)

BCC (Arc-
Melting)

BCC (APS) BCC+minor 
FCC (APS)

[60]

AlTiCrFeCoNi BCC (Arc-
Melting)

BCC 
(Atomisation)

BCC 
(Atomisatio
n)

BCC (APS) BCC+BCC (APS) [61]

CrFeCoNiMo0.2 FCC (Arc-
Melting)

FCC 
(Atomisation)

FCC 
(Atomisatio
n)

FCC (APS) FCC (APS) [62]

AlSiTi0.2Cr1.5Fe0.2Co0.6
Ni

BCC (Arc-
Melting)

BCC+FCC 
(Atomisation)

BCC 
(Atomisatio
n)

BCC+B2 
(APS)

BCC+FCC+Oth
er

[63]

AlSiCr1.3Fe0.2Co0.6Ni BCC+B2 
(Arc-
Melting)

BCC+FCC 
(Atomisation)

BCC 
(Atomisatio
n)

BCC (APS) BCC+FCC+Oth
er

[63]

AlCrFeCoNi BCC+B2 
(Arc-
Melting)

BCC+B2 
(Atomisation)

BCC+B2 
(Atomisatio
n)

BCC+B2 
(APS)

BCC+B2+FCC [14]

CoCrFeMnNi0.8V FCC+Sec 
(Arc-
Melting) 

BCC 
(Atomisation 

BCC 
(Atomisatio
n)

FCC+BCC 
(APS), 
BCC 
(HVOF)

FCC+BCC 
(APS), BCC 
(HVOF)

This 
wor
k
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Table 4. The chemical composition and phase formation of the bulk as-cast, powder and 

coating materials.
Sample Co at% Cr at% Fe at% Mn at% Ni at% V at% Structure

Cantor Nominal 20 20 20 20 20 0 -

As-Cast Cantor Measured 21.4 ± 1.2 17.2 ± 0.6 20.4 ± 1.1 20.6 ± 0.7 20.4 ±1.2 0 FCC

CantorV Nominal 17.2 17.2 17.2 17.2 13.8 17.2 -

As-Cast CantorV Measured 16.6 ± 0.8 19.1 ± 3.5 18.2 ± 1.8 15.7 ± 1.3 17.4 ± 2.1 13.1 ± 1.2 FCC+σ

Powder Cantor Measured 18.9 ± 0.7 21.3 ± 0.4 20 ± 0.4 21.9 ± 1.1 17.9 ± 0.5 0 FCC

Powder CantorV Measured 17.3 ± 0.4 18.1 ± 0.3 17.1 ± 0.1 17.9 ± 0.5 13.8 ± 0.2 15.9 ± 0.3 BCC

HVOF Coating Cantor Measured 20.9 ± 0.5 18.6 ± 0.6 20 ± 0.9 19.5 ± 0.8 21± 1.1 0 FCC

Plasma Coating Cantor Measured 20.2 ± 0.6 21.5 ± 0.5 21.8 ± 1.5 13.8 ± 0.7 20.8 ± 0.2 0 FCC

HVOF Coating CantorV Measured 17.4 ± 0.1 18.3 ± 0.2 17.1 ± 0.3 17.6 ± 0.1 13.8 ± 0.1 15.9 ± 0.3 BCC

Plasma Coating CantorV Measured 18.8 ± 1.1 19.5 ± 1.2 18.4 ± 0.1 10.9 ± 0.4 14.4 ± 0.3 18.1 ± 0.4 FCC+BCC
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Figure 1. a) t-SNE projection of cooling dataset without new feature construction, b) Original dataset without 
cooling rate entries.   
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Figure 2. Pair-plot of two model features, the Ionisation Energy and the Latent Heat. The population is a 
univariate distribution plot drawn to show the marginal distribution of the data. 
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Figure 3. ROC Curve of the model including the new Sk feature. 
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Figure 4. Random Forest model decision plot showing the Sk and VEC pair rules for phase formation under 
different cooling rates expressed through the new Sk feature. 
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Figure 5. Confusion matrix of the Random Forest multiple phase formation classification 
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Figure 6. As Cast High Entropy alloys (a) XRDs of the Cantor Alloy showing single phase FCC structure and 
modified Cantor with the addition of Vanadium showing FCC plus secondary phases, (b) EDS showing 
uniform distribution of elements in the Vanadium containing alloy, (c) EDS showing the distribution of 

elements in the original Cantor Alloy. 
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Figure 7. Atomised CoCrFeMnNi0.8V alloy powder. (a) XRDs showing a single BCC phase as opposed to 
FCC+Sec in the as cast material. (b) Powder morphology, (c) EDS. 
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Figure 8. Thermal Spray via Atmospheric Plasma Spray (APS). (a) XRDs showing FCC and BCC for the APS 
sprayed CantorV (CoCrFeMnNi0.8V) alloy and lamella coating microstructure with oxide formation, (b) XRDs 

showing primary FCC formation with oxides for the APS sprayed original Cantor alloy (CoCrFeMnNi) and 
lamella coating microstructure with oxide formation. 
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Figure 9. Thermal Spray via High Velocity Oxy-Fuel (HVOF).  (a) XRDs showing single BCC phase for the 
HVOF sprayed CantorV and coating microstructure. (b) XRDs showing single FCC phase for the HVOF 

sprayed original Cantor Alloy and coating microstructure. 
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