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ABSTRACT：Machine-learning assisted handwriting recognition is crucial for 

development of next-generation biometric technologies. However, most of currently 

reported handwriting recognition systems are lacked in flexible sensing and machine 

learning capabilities, both of which are essential for implementations of intelligent systems. 

Herein, assisted by machine learning, we develop a new handwriting recognition system, 

which can be applied as both a recognizer for written texts and an encryptor for confidential 

information. This flexible and intelligent handwriting recognition system is composed of a 

graphene oxide-based hydrogel sensor and a printed circuit board, and offers a high 

sensitivity and a fast response time, allowing high-precision recognitions of handwritten 

contents from a single letter to words and signatures. By analyzing 690 acquired 

handwritten signatures obtained from 7 participants, we successfully demonstrate a 

recognition rate up to 91.30% and a recognition time of less than 1 s. Our developed 

handwriting recognition system has great potentials in advanced human-machine 
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interactions, wearable communication devices, soft robotics manipulators, and augmented 

virtual reality. 

Keywords: handwriting recognition, hydrogel sensor, machine learning 

1. INTRODUCTION 

Handwriting recognition, which combines mathematical algorithms with advanced 

sensors to interpret handwritten contents, is crucial for the development of next-generation 

recognizers for written texts and encryptors for confidential information. Numerous studies 

have shown that the quality of data used in mathematical algorithms is one of the critical 

factors affecting the accuracy of intelligent recognition systems. 1-5 Recently, new types of 

flexible sensing techniques (e.g., stretchable sensors) have shown advanced applications in 

the field of intelligent recognition systems, which can overcome the shortcomings of rigid 

sensors and provide high-fidelity data acquisition.6-11 Conducive hydrogels, which are 

crosslinked polymer networks infiltrated with water,12 have recently emerged as promising 

materials for the fabrication of stretchable sensors due to their excellent electronic 

properties, tunable mechanical properties and remarkable biological characteristics.13-16 

In recent years, many researchers have demonstrated that the conductive hydrogels 

can be applied as the sensing films for handwriting monitoring.17-20 These conductive 

hydrogels can generate different voltage, current or resistance signals according to the 

differences in the forces, speeds, and sequences of the writing styles.21-23 Based on these 

different signal characteristics, various handwriting contents can be distinguished for 

handwriting recognition. For example, Pan et al. fabricated an ionic-polyvinyl alcohol-

tannic acid@talc supramolecular organohydrogel as a flexible keyboard for signature 

identification.24 However, their hydrogels exhibit relatively low stretchability (with a 

maximum strain of 800%), thus limiting their application fields, especially those required 

for the hydrogels to tolerate mechanical deformations such as large stretching. Wang et al. 

proposed a crosslinked chitosan quaternary ammonium salt and liquid metal composite 



hydrogel for handwriting detection.25 However, the hydrogels show relatively low 

sensitivities (with a gauge factor of 1.6), which cannot accurately capture subtle 

movements during handwriting. Therefore, it remains a great challenge to develop a single 

hydrogel system that simultaneously integrates superior stretchability, high sensitivity and 

stability. 

Stretchable sensing and machine learning technologies, two of the basic elements of 

an intelligent system,26-30 can be effectively applied for the development of handwriting 

recognition system. However, the aforementioned studies were mainly focused on the 

acquisition of handwriting signals using hydrogel sensors, lacking the subsequent data 

analysis. As far as we have searched, there are two similar studies integrating machine 

learning technologies with hydrogel sensors to distinguish handwriting signals. Huang et 

al. proposed an integrated sensing system involving a hydrogel strain sensor for the 

handwriting recognition.31 With the help of machine-learning algorithms, it could classify 

the finger joint’s motion signals during the writing process. However, the accuracy of the 

machine learning model they adopted was only 75%. Similarly, Wu et al. integrated a 

machine learning module with the hydrogel strain sensor to achieve handwriting 

recognition by detecting finger movements.32 However, their system has issues  of low 

accuracy when used to recognize words with a high similarity. Instead of using hydrogels 

as the writing pads, the above studies achieved handwriting recognition by detecting finger 

movements during writing, but were limited in human-machine interface applications (e.g., 

drawing and playing electronic games). Therefore, it remains a great challenge to construct 

handwriting recognition system with a high recognition rate for various practical 

applications. 

Herein, we develop a flexible handwriting recognition system using machine-learning 

assisted graphene oxide (GO) hydrogel sensor for high-precision signature recognition, in 



which the GO hydrogel was reported in our previous study.33 Multiple interpenetrating 

network architectures of GO hydrogels and strong interactions among components provide 

the sensing devices with excellent stretchability, high sensitivity and repeatability, thus 

enabling the acquisition of high-quality data. The resistance signals with different 

waveforms generated by the hydrogel sensors are converted into digital domains using the 

handwriting recognition system and machine learning technology. Our system offers fast 

recognitions of numbers, letters and words, owing to the powerful data analysis capability 

of the Bi-directional Long Short-Term Memory (BiLSTM) algorithm. To further illustrate 

the capability of signature recognition, a total of 690 handwritten signatures were acquired 

from 7 participants and successfully analyzed with the assistance of a machine-learning 

algorithm, demonstrating a high recognition rate of 91.30% and a short recognition time of 

less than 1 s. To demonstrate the prospects of the system in constructing human-machine 

interfaces, we successfully applied it to play the corresponding keys on a piano to generate 

different sounds.    

2. HYDROGEL-BASED HANDWRITING RECOGNITION SYSTEM 

The proposed intelligent handwriting recognition system consists of a GO hydrogel 

sensor and a printed circuit board (PCB).  The fabrication of GO hydrogel was reported in 

our previous work.33 The high sensitivity and good adhesiveness of the GO hydrogel sensor 

enable it to be conformably attached onto arbitrary and complex surfaces to accurately 

capture the information during the handwriting process, resulting in high-fidelity data 

acquisition. The PCB connected with the hydrogel integrates multiple functions, such as 



signal conditioning and processing, using the available integrated circuit components. 

Figure 1a provides an overview of the process flow of the handwriting recognition system, 

including analog signal acquisition, conditioning and processing, all of which are 

integrated with a machine-learning algorithm for high-precision written recognition. 

Figure 1b illustrates the working principle of the BiLSTM model, demonstrating that the 

model is capable of processing and analyzing sequential data to improve the accuracy and 

efficiency of handwriting recognition system. The BiLSTM model is a combination of 

forward Long Short-Term Memory (LSTM) and backward LSTM models, which can 

assess information more accurately. The LSTM model can avoid long-term dependences, 

and its core idea is to add or remove information to the cell state through the designed “gate” 

structure. 

The GO hydrogels were fabricated using the procedures reported in our previous 

paper.33 In brief, GO, calcium chloride (CaCl2), sodium casein (SC), and polydopamine 

(PDA) were integrated into a covalently crosslinked polyacrylamide (PAM) network, and 

multiple interpenetrating networks with multi-crosslinking of covalent bonds and non-

covalent bonds were formed (Figure 1ai). The morphologies of the GO nanosheets that 

were utilized for the construction of electronic conductive pathways are shown in Figures 

1c and 1d, in which transmission electron microscope (TEM) and atomic force microscope 

(AFM) images indicate that the GO nanosheets were well exfoliated into 2D structures 

with an ultrathin thickness of ~1 nm. This paves the way for the efficient formation of 

conductive network in the hydrogel. Figure 1e shows the microstructural characterization 

of the freeze-dried hydrogel, which demonstrates an interconnected 3D porous network 

structure with a hierarchical pore size distribution.  

Owing to the synergetic effects of multiple-network architectures and interactions, the 

resultant hydrogel reveals an excellent stretchability (Figure S1), which effectively 

extends the application range of our handwriting recognition system. The conductive 



reduced GO (rGO) obtained from the partially converted GO through a PDA reduction 

process significantly enhances the electrical conductivity, resulting in an electronic-ionic 

hybrid conductive hydrogel with a high strain sensitivity.33 This high sensitivity is crucial 

for the precise capture of subtle movements during the handwriting. The strain sensitivity 

of the hydrogel was determined by calculating the gauge factor (GF, where high value 

means higher sensitivity) from the slope of the relative resistance change ((R − R0)/R0) 

versus strain curve. Figure 1f shows that the relative resistance changes of the hydrogel 

sensor are increased with the tensile strains and can be split into two linear responsive 

regions, e.g., 0–1000% with a GF of 4.58 (R2 =0.9787) and 1000–2000% with a GF of 9.98 

(R2 =0.99468). The response mechanism can be summarized as the 3D network structure 

transformation of the rGO nanosheets embedded within the hydrogel matrix. Within a 

narrow strain range and at an early stage, relative displacements occur among the rGO 

nanosheets, but free electrons are still able to pass through the breakpoints of conductive 

networks according to the tunneling effect, thus leading to a small resistance change and a 

low value of GF. With the increase of strains, the entire conductive network can be 

disintegrated as a result of the continuous expansion of rGO nanosheets’ spacings, thus 

resulting in significant blocking of electron transmissions. A sharp rise of the resistance 

and an increased GF can thus be achieved. Compared with other material systems, the GO 

hydrogel sensor not only exhibits a high sensitivity in a large strain range (e.g., 2,000%), 

but also performs well in a narrow strain range (Figure S2).  The mechanical durability is 

an important characteristic of the GO hydrogel sensor for long-term usages in practical 

applications. We investigated the cyclic stability of the hydrogel sensor, which was 

subjected to 1200 stretching-releasing cycles (100% strain, 200 mm/s). The obtained signal 

outputs are shown in Figure 1g, which reveals a reliable cyclic stability with a slight 

increase of resistance. The unique structural design ensures that the hydrogel maintains 

high sensitivity, excellent stretchability and robustness when used as a sensing film for 



handwriting recognition. 

 

Figure 1. Schematic illustrations of the handwriting recognition system, together with 

the characterization and performance of the GO hydrogel. (a) Schematic illustrations 

of the handwriting recognition system; (b) Schematic diagram of BiLSTM model; (c) 

Transmission electron microscopy (TEM) image and (d) atomic force microscope (AFM) 

image of GO nanosheets; (e) Scanning electron microscope (SEM) morphology of the GO 



hydrogel; (f) ΔR/R0 value of the GO hydrogel sensor versus the applied strain; (g) 

Durability test of the GO hydrogel sensor over 1200 cycles (100% strain). 

3. DATA COLLECTION AND CLASSIFICATION PERFORMANCE 

Owing to the high sensitivity, excellent stretchability and self-adhesiveness of the 

conductive hydrogels, the assembled system can be comfortably attached to various 

surfaces for high-precision written stroke recognition. In this work, to demonstrate the 

capability of hydrogel-based handwriting signal acquisition, the performance of the 

hydrogel in response to the pressing force of the pen tips was firstly evaluated. The GO 

hydrogel was sandwiched between an Ecoflex frame and a polyethylene terephthalate (PET) 

film, which can protect the hydrogels from mechanical failure and reducing friction of the 

pencil during writing. 

A flow diagram of the machine-learning process using the conductive GO hydrogel 

sensor is shown in Figure 2a. During the training process, the resistance data generated by 

the hydrogel sensor are input into a matrix as the source of BiLSTM model, which is used 

to classify the handwriting signals. The machine learning algorithm sets each class of the 

acquired handwriting content as a classifier sample, and realizes the handwriting 

recognition by training the created classifier. During the signature recognition, a similar 

flow diagram is applied. The difference is that the datasets used for training and recognition 

are different, i.e., different handwriting contents.  

To implement a recognition task on the hydrogel system, 36 common words were 

written on the hydrogel to represent the fundamental elements of the handwriting 

recognition categories—26 letters and 10 numbers. We built a custom letter-dataset 

containing 2,600 handwriting samples distributed into 26 categories of English letters from 

“A” to “Z”, and a custom number-dataset containing 955 handwriting samples distributed 

into 10 categories of numbers from “0” to “9”. Figure 2b shows the resistance signals 

obtained from the hydrogel sensor corresponding to handwritten letters, during which 



pressure amplitude, writing speed, and motion tracking all show influences on the 

intensities and patterns of output signals. In general, writing pressure/amplitude and writing 

speed affect intensity and density of the output signals, respectively, while motion tracking 

affects patterns of the output signals. Figure S3 shows effects of these parameters on the 

intensities and patterns of output signals. The output reliability of the hydrogel sensor was 

ensured by a continuous repetition of each handwriting—at least 55 times for each status 

(Figure S4). Similarly, the resistance data curves corresponding to handwritten numbers 

are shown in Figure 2f. Thus, each motion status of the handwritten contents can be 

reliably expressed as electrical signals from the hydrogel sensor.  

To verify the performance of handwriting recognition system, different machine 

learning methods have been used to analyze the collected handwriting signals after 

preprocessing. These include the Logistic Regression (LR), Decision Tree (DT), Support 

Vector Machine (SVM) and K-Nearest Neighbors (KNN) classifiers, as well as deep 

convolutional neural networks (CNN). By employing different convolution kernels, CNN 

can automatically derive the correlation features and reduce the data complexity for 

handwriting classification. Sparse categorical accuracy is used to evaluate the performance 

of different algorithms in handwriting recognition system. The recognition accuracy rate 

of the CNN model is as high as 94.66%, which is similar to the KNN model (85.77%) but 

superior to the SVM model (67.50%), indicating that CNN model performs better in 

analyzing data from hydrogel sensors (Figure S5).  

We further implemented four common neural network structure models for 

handwriting recognitions. Table 1 lists the comparison of various parameters for the 

operation results of the four neural network models (i.e., LeNet-5, AlexNet, VGG16 and 

ResNet) and the CNN model (Figure S6). Experimental platforms and hyperparameters of 

different models are provided in the supporting information (Table S1-S5 includes all these 

data). The accuracy (ACC) and loss curves were obtained to compare the recognition 



abilities of these approaches. The training time was used to evaluate the responsiveness of 

these methods. Our results clearly show that compared to the results of several machine 

learning and common neural network models, the proposed CNN model offers the best 

performance in terms of accuracy, loss value and training time.  

Considering that the obtained data are sequential data, we further explored the 

performance of our dataset in some typical recurrent neural networks, including Recurrent 

Neural Network (RNN), LSTM, gated recurrent unit (GRU) and BiLSTM. Table 1 shows 

the comparison results of various parameters (e.g., Accuracy, Loss, Val_accuracy, Val_loss 

and Time/sample) of different models for recognizing 26 letters. In order to obtain the 

optimal model, apart from comparing the values of each parameter listed above, we also 

compared their training processes (e.g., trend of parameter curve, convergence speed and 

generalization performance of the model). The obtained results are presented in Figure S7. 

The results clearly show that the BiLSTM model outperforms the CNN model in all the 

dimensions, therefore, we finally adopted the BiLSTM model instead of the CNN model 

for the hydrogel handwriting recognition system. The high classification accuracy is 

attributed to the high-quality data collected by the GO hydrogel sensor and the usage of 

improved algorithm (i.e., BiLSTM).  

Our applied custom letter dataset include 26 categories of letters, each of which 

contains 100 samples. The dimensions of each sample are different, with a maximum value 

of 106 and a minimum one of 10. In order to facilitate operations such as feature extraction, 

the dimensions of all samples are unified to 64, and the empty part is filled with the last 

value of each sample. Meanwhile, to make the model easier to converge and shorten the 

training time, it is necessary to normalize the samples of the dataset. We used the 

maximum-minimum normalization method to linearly transform the data and mapped the 

data to the [0,1] interval in this study, as shown in Equation 1. 

𝑥′ =
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
                    (1) 



 Three-quarters of the processed data were then randomly selected from the acquired 

signals as the training set, and the rest of the signals were applied as the test set. The 

obtained accuracy and loss curves for recognizing 26 letters and 10 numbers are shown in 

Figure 2c and 2g, and the recognition accuracy values of the BiLSTM model reach 96.97% 

and 92.80%, respectively. The confusion matrices of these two classification results are 

presented in Figures 2d and 2h, respectively. Each row of the matrix represents the test 

samples in an actual class, while each column represents a predicted class. Additionally, as 

shown in Figures 2e and 2i, we used t-distributed stochastic neighbor embedding (t-SNE, 

a dimensionality reduction technique) to visualize the information within each sample 

group for the custom 26 letter-dataset and the 10 number-dataset, respectively. Each point 

on the plot represents the information of one handwriting projected from the 64-

dimensional data to two-dimensional one. The points of the same letter or number category 

(or the same color) are clustered together, forming roughly 26 categories of letters and 10 

categories of numbers (Figure S8). These results suggest that handwriting information on 

the hydrogel sensor can be served as valuable information for handwriting recognition 

system, which can be completely distinguished using machine-learning mechanisms.  

Table 1 Comparisons of 26 letters recognized by different convolutional neural 

network and some typical recurrent neural network models 

Model Loss Accuracy Val_loss Val_accuracy Time/sample  

LeNet-5 1.04908 0.59519 1.09341 0.58269 243us  

AlexNet 0.26879 0.91875 0.69495 0.77308 4ms  

VGG16 0.3713 0.85192 0.21716 0.90769 20ms  

ResNet 0.07819 0.98462 0.12907 0.97308 14ms  

CNN 0.13444 0.94664 0.15653 0.95962 107us  

RNN 0.277201 0.885096 0.118656 0.957692 43us  

LSTM 0.141603 0.945673 0.106445 0.95 80us  

GRU 0.218448 0.921154 0.076037 0.959615 67us  

BiLSTM  0.081692 0.969712 0.050336 0.980769 85us  



 

Figure 2. Recognition of letters and numbers. (a) The data process flow of the hydrogel 

handwriting recognition system, including a training process and an actual recognition 

process. (b) Resistance changes in response to handwriting 26 letters (c) Accuracy and loss 

curves for recognizing 26 letters. (d) Confusion matrix for recognizing 26 letters. (e) 

Visualizing the information within the 2,600 samples in the dataset using t-SNE 

dimensionality reduction. (f) Resistance changes in response to handwriting 10 numbers. 

(g) Accuracy and loss curves for recognizing 10 numbers. (h) Confusion matrix for 

recognizing 10 numbers. (i) Visualizing the information within the 955 samples in the 



dataset using t-SNE dimensionality reduction.  

4. DEMONSTRATION OF THE HANDWRITING RECOGNITION SYSTEM 

To further optimize the performance of the hydrogel-based handwriting recognition 

system, we input a series of slightly different words into the system to verify the recognition 

effect, and the results are presented in Figure 3. These slightly different words can be 

divided into three categories: (1) the words with a sequential transformation; (2) the words 

with a letter addition; and (3) the words with a letter replacement. We conducted these 

experiments to demonstrate its ability to distinguish subtle differences among similar 

words. Taking the groups of “bare” and “bear”, “forth” and “fourth”, “altar” and “alter” as 

typical examples, we customized 100 sets of data for each group of words. After a series 

of processing and parameter adjustment, the accuracy and loss curves achieved the desired 

prediction results with an accuracy of approach 90%, as shown in the Figures 3a-c. Such 

a high accuracy provides a great potential for recognizing similar words using the machine 

learning algorithms. Figures 3e-g show the confusion matrixes, demonstrating the good 

performance of the handwriting recognition system for recognizing each type of word 

group. 

In addition, it's common to replace one letter in a word to change into totally different 

words. For recognizing these similar words, we took examples and wrote “file”, “nile”, 

“mile” and “rile” on the hydrogel to collect the corresponding data. After processing the 

signals, we divided the training set and the test set with a ratio of 4:1, and then performed 

the training process. The obtained results in Figure 3d show that the accuracy reaches 90%, 

which is an ideal result for the recognition of similar words in multiple classifications. 

Figure 3h shows the confusion matrix with extremely high values on the diagonal, 

indicating that our handwriting recognition system has a high accuracy in recognizing 

similar word groups. The above experimental results show that the developed handwriting 

recognition system performed well in distinguishing the subtle differences among similar 



words. 

  

Figure 3. Recognition results of a series of slightly different words processed by 

handwriting recognition system. (a-d) Accuracy and loss curves for (a) identifying 

“bare” and “bear”, (b) identifying “forth” and “fourth”, (c) identifying “altar” and “alter”, 

and (d) identifying “file”, “mile”, “nile” and “rile”. (e-h) Confusion matrix to (e) identify 

“bare” and “bear”, (f) identify “forth” and “fourth”, (g) identify “altar” and “alter” and (h) 



identify “file”, “mile”, “nile” and “rile”. 

Our flexible handwriting recognition system can provide promising insights in the 

fields of human-machine interaction, for examples, playing electronic games, touching 

computer handwriting screen, and playing music (Figure 4b). To further demonstrate the 

potential application of the handwriting recognition system in constructing human-

machine communication interfaces, we applied this system to play a piano. As shown in 

Figure S9 and Movie S1, we demonstrated the process of playing the piano using the 

corresponding music through the system. Specifically, through the recognition of 

handwriting contents by the handwriting recognition system, and with the assistance of a 

clicker, the corresponding keys on the piano can be played to generate sounds. This can 

facilitate those music creators, who can detect the quality of music simply by writing the 

corresponding music scores. Similarly, various applications could be explored using the 

hydrogel handwriting recognition system, including playing electronic games and 

customizing routes for robots.  

Furthermore, in this work, we applied the system for signature recognition. The 

components of the signature recognition system are shown in Figure 4a. A total of 690 

handwritten signatures (e.g., OK) were acquired from 7 participants, as shown in Figure 

S10. After subsequent processing, the acquired signals were put into the BiLSTM model, 

as shown in Figure 4c. Figures 4d shows the performance of the system for signature 

recognition, with a recognition accuracy of 91.03% and a recognition time of less than 1s. 

The confusion matrix shown in Figure 4e demonstrates the high recognition accuracy of 

the constructed BiLSTM learning architecture for the custom signature dataset. The above 

result clearly demonstrates the prospect of our hydrogel handwriting recognition system 

for signature recognition. More applications can be extended to the encryptors, which 

utilize the ability of BiLSTM model to process and analyze sequential data, and thus realize 

the functions of information reading and writing, as well as further information encryption. 



We believe that our handwriting system is a breakthrough for the application of hydrogel 

sensor. 

 

Figure 4. Demonstration of the flexible handwriting recognition system. (a-b) 

Schematic diagram of the composition of the hydrogel handwriting recognition system and 

its potential applications. (c) The process of signature recognition. (d) Accuracy and loss 

curves and (e) Confusion matrix for recognizing signature recognition of seven individuals.  

5. CONCLUSIONS 



In conclusion, we have developed a machine-learning assisted handwriting 

recognition using GO-based hydrogel for high-accuracy handwriting recognition. Our 

system offers a number of attractive features including high sensitivity, high stretchability, 

low weight, and low cost. The signals were collected through the GO hydrogel sensors, 

post-processed and then sent to the BiLSTM model for training. The system accurately 

recognized 26 letters and 10 number, with a high accuracy rate of over 90%. Additionally, 

we demonstrated that the system achieved a high accuracy for the recognition of similar 

words. Furthermore, we applied our handwriting recognition system for signature 

recognition, showing an accuracy rate of 91.30% and a recognition time of less than 1s. In 

particular, we also demonstrated playing music through hydrogel handwriting recognition 

system, proving its potential in constructing human-machine communication interfaces. 

We believe that this work not only proposes a practical strategy to construct machine-

learning-assisted handwriting recognition system with a high accuracy, but also provides a 

new methodology for designing promising materials for flexible electronics.  

6. METHODS 

Materials. All chemical regents employed in this research were obtained 

commercially and used as received without further purification. Acrylamide (AAm, 99.0%), 

Dopamine hydrochloride (DA, 98%), ethanol (C2H5OH, ≥99.7%), calcium chloride (CaCl2, 

96.0%), N,N'-methylenebis-acrylamide (MBA, ≥99.0%), potassium persulfate (KPS, 

99.5%), and N,N,N',N'-tetramethylethylenediamine (TEMED, ≥99.5%) were purchased 

from Aladdin Ltd (Shanghai, China). Graphite oxide powders (0.5-5μm) was purchased 

from XFNANO Ltd (Nanjing, China). Ammonia hydroxide solution (NH3·H2O, 

25.0~28.0%) was purchased from Macklin Ltd (Shanghai, China). Sodium casein (SC, 

≥90%) was obtained from Zhejiang Yinuo Biological Technology Co., Ltd. Deionized 

water was used to prepare aqueous solutions.  

Preparation of hydrogels. The conductive GO hydrogels were fabricated according 



to our previous study.33 Typically, certain amounts of AAm monomer, CaCl2, SC, and PDA 

solution were firstly dissolved into deionized water, and then magnetically stirred for 20 

min at 40 °C. The weight ratio of AAm, CaCl2, SC, and PDA was 4:0.35:1:3. Then, the 

MBA crosslinker and GO dispersion were added into the mixed solution under N2 

atmosphere. The weight ratios of MBA/AAm and GO/AAm were set to be 0.001:2 and 

0.001:1, respectively. After stirred for 30 min at room temperature, KPS (0.05 g) and 

TMEDA (50 μL) initiators were added to the mixture and stirred for 2 min at room 

temperature. Finally, the mixed solution was gently injected into a rectangular plastic mold 

and preserved at 40 ℃ for 2 h to achieve a gelation.  

Characterization. The morphology of the GO nanosheets was examined using a 

transmission electron microscope (TEM, TF 20). Thickness of the GO nanosheets was 

measured using an atomic force microscope (AFM, Bruker Dimension ICON). 

Microstructures of the hydrogel samples after removal of solvent were obtained using a 

scanning electron microscope (SEM, TESCAN Company). The uniaxial tensile tests of the 

hydrogel samples (with a dimension of a length of 40 mm, a width of 20 mm, and a 

thickness of 5 mm) were performed using a mechanical testing machine (ZQ-990LB, 500 

N, China) with a speed of 100 mm/min, and the clamping distance was set to be 5 mm.  A 

source meter (Keithley 2611B) was used to measure the electrical signals of hydrogel stain 

sensors. 

Data composition. For the specific composition of the data, our custom datasets were 

divided into different categories, including 26 categories of letters, 10 categories of 

numbers, 4 categories of similar words, and 7 categories of signatures. Each category 

contained about 100 samples. 

Machine-learning algorithm. The principle of BiLSTM was utilized in this work.  

The BiLSTM model is a combination of forward LSTM and backward LSTM. The 

LSTM model consists of input word (X), cell state (Ct), temporary cell state (C), hidden 



layer state (h), forgetting gate (f), memory gate (it) and output gate (ot). The calculation 

process of LSTM is following the selective filtering of the information through a well-

designed “gate” structure. The hidden layer state (h) will be the output at each time step, in 

which forgetting gate (f), memory gate (it) and output gate (ot) are controlled by the last 

hidden layer state (ht-1) and the current input (Xt). 

The forgetting gate (f), memory gate (it), current cell state (Ct), output gate (ot) and 

current hidden layer state (ht) are calculated using the following formulas, respectively.  

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓); 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), 𝐶𝑡̃ = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶); 

𝐶𝑡 =  𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̃; 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜), ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) 

For the BiLSTM model, in the forward layer, the forward calculation was performed 

from time 1 to time t, and the output of the forward hidden layer at each time was obtained 

and saved. Similarly, in the backward layer, the backward calculation was performed from 

time t to time 1, and the output of the backward hidden layer at each time was obtained and 

saved. Finally, the final output was obtained by combining the output results of the forward 

layer and the backward layer at the corresponding time. The mathematical expressions are 

as follows: 

ℎ𝑡 = 𝑓(𝑤1𝑥𝑡 + 𝑤2ℎ𝑡−1); 

ℎ𝑡
′ = 𝑓(𝑤3𝑥𝑡 + 𝑤5ℎ𝑡+1

′ ); 

𝑜𝑡 = 𝑔(𝑤4ℎ𝑡 + 𝑤6ℎ𝑡
′ ) 
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