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ABSTRACT: Thermosetting epoxy polymers can be designed with recycling, 

remodeling, and repairing properties owing to the special bond exchange reactions 

(BERs) in their covalent adaptable networks (CANs). However, the mechanisms 

behind their complex coupling of hydrodynamic diffusion, molecular reactions, and 

topological network structure changes have not been fully understood. In this paper, a 

hydro-chemo-mechanical coupling model is developed to describe self-toughening 

mechanisms of thermosetting epoxy polymers, wherein the CANs cooperatively 

undergo the combined processes of hydrodynamic diffusion, chemical BERs, and 

mechanical topology entanglements. Based on free volume theory and rubber 

elasticity theory, an extended phantom network model is developed to investigate the 

synergistic effects of hydrodynamics, BERs, and mechanical topology on interfacial 
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welding and self-toughening behaviors of the CANs. A constitutive stress-strain 

relationship is further developed to understand the self-toughening mechanisms of 

CANs undergoing the hydro-chemo-mechanical coupling. Finally, effectiveness of the 

proposed model is verified using the results obtained from the experiments and finite 

element analysis.  

1. INTRODUCTION 

Covalent adaptable networks (CANs) enable thermosetting polymers to exhibit 

multiple capabilities of malleability,1 self-healing,2-4 reprocessing, and recycling,5,6 by 

utilizing bond exchange reactions (BERs) under external stimuli, including heat and 

light.1-6 Various covalent bonds have been employed to trigger reversible BERs and 

molecular rearrangements, including nitroxides,7-9 acyl hydrazone bonds,10 disulfide-

bonds,11-13 hemiaminal linkages14 and transesterification reactions.15 These BERs 

provide the thermosetting polymers with interfacial welding and self-healing 

capabilities, thus significantly extending their practical applications in aerospace,16-18 

manufacturing industry19 and soft robotics.20 Here, self-healing of a polymer is 

defined as the recovery process after its mechanical damage, including the 

accompanying chemical reconnection of polymer networks. Interfacial welding is 

defined as the self-healing behavior which occurs at the interface of CANs.  

Epoxy polymers are one of the most commonly used materials for high-

performance engineering applications.21-23 However, most of them are chemically 

crosslinked and can not be easily recycled using conventional techniques, leading to 

severe environmental pollution and resource wastage.24,25 CANs have recently been 



incorporated into the thermosetting epoxy polymers to achieve their self-healing and 

recycling capabilities using BERs,26 and form new generations of green materials, 

which can be fully recycled and reprocessed without causing environmental 

pollution.27 

The interfacial welding behaviors of epoxy polymers have been widely investigated 

previously.28-31 For example, Yu et al. studied the welding of the epoxy polymer, 

which showed recoverable mechanical strength by applying a pressure of 40 kPa at 

140oC.27,32 Their results also revealed that the welding strength of the epoxy polymer 

became quite poor at a temperature of 22oC and atmospheric pressure due to the high 

residual stress in the epoxy polymer. Shi et al. developed swelling-assisted interfacial 

welding approach for epoxy polymers by using the solvent at 100oC.33 However, self-

toughening occurring at room temperature has never been reported so far, and the 

mechanical strength of interfacial welding is often below 80% of the original 

strength.32,33 As will be introduced in detail in the following section, the self-

toughening refers to the enhancement in the mechanical properties of epoxy, in which 

the CANs cooperatively undergo combined processes of hydrodynamic diffusion, 

chemical BERs, and mechanical topology entanglements. At the interface, BER gives 

additional mechanical entanglement, of which the topology rearrangement is able to 

change the microscale network structures and serves as additional crosslinking sites to 

enhance the stiffness. Therefore, further studies should be thoroughly carried out to 

fully understand the working mechanisms and optimize the processing conditions of 

epoxy polymers to enhance their interfacial welding and self-toughening capabilities.  



Based on the free volume theory34 and rubber elasticity theory,28,35 this study 

proposes a free-energy equation to understand the cooperatively hydrodynamic 

BERs36 and topology entanglements37-40 of CANs in thermosetting epoxy polymers. 

Furthermore, an extended phantom network model is formulated to investigate the 

synergistic effects of diffusion, BERs, and mechanical topology on interfacial welding 

and self-toughening behaviors associated with the CANs. A constitutive stress-strain 

relationship is further developed to understand the self-toughening mechanism of 

epoxy polymers undergoing hydro-chemo-mechanical coupling. Effects of diffusion 

coefficient, free volume, catalyst concentration, welding time, and activation energy 

on functional degrees of CANs have been investigated and discussed. Finally, the 

effectiveness of the proposed model is verified using the results from both the 

experiments and finite element analysis (FEA).  

2. EXPERIMENTAL DETAILS 

2.1 Material 

The epoxy polymers were synthesized using diglycidyl-ether bisphenol A 

(DGEBA) as the epoxy monomer and glutaric anhydride as the cross-linker. The 

stoichiometric ratio between the epoxy and glutaric anhydride was 1 : 0.5. 

Crosslinking agent was initially mixed with the DGEBA in a beaker and stirred at 

80°C for 45 min. Then the mixture was poured into a mold and cured in the oven at 

160°C for 24 h. Figure 1(a) shows the reaction between the DGEBA and glutaric 

anhydride. The synthesized network contains ester bonds on the chain backbone, 

which can participate in transesterification of BERs with the solvent molecules during 



the self-healing process. The DGEBA monomer opens both sides of its loop structure 

and is polymerized by the crosslinker to form a chain. Figure 1(b) shows that a CAN 

has a crosslinking point linked with three chains. Figure 1(c) presents a hexagonal 

structure of the CAN. 

 

Figure 1. (a) Schematic diagram of the transesterification reactions and BERs in CANs. (b) 

Schematic diagram of the functional degree of 3 in CANs. (c) Schematic diagram of the effect of 

glutaric anhydride on CANs.  

2.2 Mechanical tests 

Mechanical tests were conducted using an electronic universal stretching machine 

(AGXplus, Shimadzu, Japan) based on the GB/T1040.2 standard. Figure 2(a) shows 

the dimensions of the prepared sample. Figure 2(b) presents the interfacial welding 

process of the tested sample after fracture. Schematic illustrations of breaking, 

welding, and self-toughening in CANs are illustrated in Figure 2(c). There are three 

steps in the interfacial welding process. (1) Curing of CANs from a mixture of 

DGEBA and crosslinker to form the epoxy polymer, which is broken owing to the 

externally applied stress. (2) Solvent-assisted interfacial welding of CANs via BER. 

(3) Topology entanglement of CANs via BER. Here the topology entanglement 



process is slightly different from the commonly reported interfacial welding approach, 

which is the main reason why it can result in the self-toughening of CANs. 

Lap-shear tests were adopted to examine the shear bonding strength of welded 

epoxy samples. According to the GB/T33334 standard, the strain rate was 0.14 min-1 

at the room temperature of 22oC. The tested sample was firstly cut into two parts with 

a dimension of 100×25×2 mm3, and then soaked in 60oC tetrahydrofuran (THF) 

solution containing 1% 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) catalyst for 45 min. 

After taken out, the chemical residuals on the sample surface were cleaned, and two 

cut samples with an overlapping interface of 12.5×25 mm2 were pressed together at 

room temperature according to the lap-shear test standard. They were clamped for the 

interfacial welding and cured in the oven for 45 min. The clips were used to enable a 

full interfacial welding process.  

 

Figure 2. Mechanical measurement and interfacial welding of the tested sample. (a) Tensile test. 

(b) Interfacial welding. (c) Schematic diagram of break, self-healing, and self-toughening in 

CANs. 



According to the phantom network theory,41 elastic free energy (ΔFel) of the CANs 

is expressed as follows: 
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where ϕ=3 is the functional degree in the phantom network, as revealed in Figure 

1(b). E=NkBT is the Young’s modulus, λ is the elongation ratio, N is the number of 

cross-linker, kB the Boltzmann’s constant and σxx is the stress in uniaxial tension. 

Figure 3(a) presents the mechanical properties of the anhydride-cured epoxy 

polymer, of which the stress-elongation ratio curves were obtained from uniaxial 

tensile tests and the Young’s modulus was obtained as 1.13 GPa. Based on the 

phantom network theory, the analytical results obtained using the proposed equation 

(2) have been plotted and compared with the experimental ones as shown in Figure 

3(b). These analytical results fit well with the experimental data, where the analytical 

results show that the Young’s modulus is 1.07 GPa with an error |ΔE|≤0.06 GPa.  

 

Figure 3. Mechanical properties of anhydride-cured epoxy polymer. (a) The stress-elongation 

ratio curves. (b) Divergences of analytical and experimental results of Young’s moduli. 
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3. THEORETICAL FRAMEWORK OF INTERFACIAL WELDING  

3.1 Diffusion coefficient vs. free volume 

Interfacial welding42-44 is triggered by the catalyst solvent, which diffuses into the 

CANs to promote the BERs.45,46 The Fick’s second law was used to describe the 

diffusion of solvent molecules into polymer networks:33,47,48 
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where C0 is the mole content of molecule, D is the diffusion coefficient, t is the 

diffusion time, and x is distance for diffusion.  

The diffusion coefficient (D) is determined by the activation energy in an Arrhenius 

equation,33  
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where D0 is the referenced diffusion coefficient, Eas is the diffusion activation energy 

with a threshold value of 26.8 kJ/mol,33 R=8.314 J/mol·K is the gas constant, and T is 

the Kelvin temperature.  

Combined with the free volume theory,41,49 the connection of diffusion coefficient 

(Dcoop) to free volume is expressed as, 
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where γ=0.5~1 is a given constant, V0 is the initial volume, V is the final volume after 

diffusion of solvent molecules, kso represents the volatilization coefficient, ΔV is the 

change in volume, t is the diffusion time, and ρ=0.89 g/cm3 is the density of THF.  



 

 

Figure 4. Diffusion behaviors of THF and 1.4-dioxane solvents in the epoxy polymer. (a) Mass 

increment of epoxy polymer in THF solvent as a function of soaking time. (b) Mass increment of 

epoxy polymer in 1.4-dioxane solvent as a function of soaking time. (c) Comparison of diffusion 

coefficients of THF and 1.4-dioxane solvents in the epoxy polymer.  

Figure 4 shows the mass increments of the epoxy polymer, in which the solvent 

molecules have been diffused into the CANs. With an increase in temperature, both 

the analytical and experimental results reveal that the swelling ratio is increased. With 

an increase in the temperature of THF solution, the diffusion coefficients (D) at the 

temperatures of 20°C, 40°C, and 60°C are 4.87×10-7 mm2/s, 7.78×10-7 mm2/s, and 

1.89×10-6 mm2/s, respectively, resulting in the increased mass from 0.032 g, 0.045 g 

to 0.075 g, as shown in Figure 4(a). With the increase of temperature in the 1.4-

dioxane solution, the diffusion coefficients (D) at 20°C, 40°C, and 60°C are 3.39×10-7 

mm2/s, 5.61×10-7 mm2/s, and 1.28×10-6 mm2/s, respectively, resulting in the increased 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0.00

0.02

0.04

0.06

0.08

0.10
    Temperature of THF 

 Experiment  Fitting curve

 60°C       60°C

 40°C       40°C 

 20°C       20°C

 

 

M
a

ss
 i

n
cr

em
en

t 


m
 (

g
)

Soaking time t (s)

(9000,0.032)

(9000,0.045)

(9000,0.075)

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0.00

0.02

0.04

0.06

0.08

 

 

M
a

ss
 i

n
cr

em
en

t 


m
 (

g
)

Soaking time t (s)

  Temperature of 1.4-Dioxane

 Experiment  Fitting curve

 60°C       60°C

 40°C       40°C

 20°C       20°C

(9000,0.021)

(9000,0.031)

(9000,0.072)

(b)

20 40 60

5.61×10-7

1.28×10-6

1.89×10-6

7.78×10-7

3.39×10-7

 

 

D
if

fu
si

o
n

 c
o
ef

fi
ci

en
t 

D
 (

m
m

2
/s

)

Temperature of solution T (°C)

 THF

 1.4-Dioxane

°C 

4.87×10-7

(c)



mass from 0.021 g, 0.031 g to 0.072 g, as shown in Figure 4(b). A comparison of the 

diffusion coefficients between the THF and 1.4-dioxane solutions has been presented 

in Figure 4(c), which reveals that the THF solution enables a high diffusion 

coefficient of catalyst into the CANs for the BERs. 

3.2 Theoretical framework of interfacial welding 

 

Figure 5. The topological structure of CAN. (a) The chemo-mechano-hydrodynamic coupling 

effect in CANs. (b) Topological structures of loop and trapped entanglement in CANs.  

Figure 5(a) shows that the mechanochemical interactions result in four types of 

interfacial welding phenomena during the interfacial welding of CANs. A variety of 

interfacial welding processes have their different elastic free energies, which are 



determined by the free-energy equations. According to the phantom network theory,41 

there are three types of topological structures, i.e., one loop structure and two 

different trapped entanglement structures in the CANs owing to the interfacial 

welding,50 as shown in Figure 5(b). R1, R2 and R3 represent the lengths of three types 

of dangling chains, respectively. l0 is the diffusion distance of the dangling chains, and 

S is the interface distance. Here the elastic free energy can be written as:  
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where N2 is the molar number of dangling chain, N3 is the molar number of 

crosslinking chain, N4 is the molar number of trapped entanglement chain. ϕ2=2, ϕ3=3 

and ϕ4=4 are the functional degrees in the phantom networks for dangling chains, 

crosslinking chains, and trapped entanglement chains, respectively.  

To quantitatively separate the effect of BERs on the elastic free energy of CANs, an 

assumption was made that there are N0 of newly formed chains involved in BERs. 

Therefore, the number of dangling chains is reduced to N2-2N0, because there are two 

dangling chains to form a new chain. The number of crosslinking chains is increased 

to N3+2N0, because there are 2N0 chains involved in the CANs. Meanwhile, the 

number of trapped entanglement chains is increased to N4+
0

3

N
, because there are 

three dangling chains to form a trapped entanglement chain. Therefore, equation (6) 

can be further rewritten for the CANs (after interfacial welding) as follows, 
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We then employed FEA to study the effects of topological structures of the loop 

(for interfacial welding) and entanglement (for self-toughening) on the mechanical 

properties of the CAN. In the FEA, a hexagonal infrastructure with an edge of 10 mm 

and a thickness of 1 mm was used to describe the entire network structure. A 

quadratic tetrahedral element, C3D10, was used, and the number of elements was 

11000. Boundary conditions were applied to fix constraints on the nodes of one side 

and uniform displacement loads on the other side, in order to analyze the differences 

in mechanical properties of the loop and entanglement.  

 

Figure 6. Comparison of mechanical stresses of (a) loop and (b) trapped entanglement topologies. 

(c) Stress-elongation ratio curves. (d) Illustrations of the functional degrees of CANs undergoing 

BER and trapped entanglement, respectively. 

The obtained simulation results are shown in Figures 6(a) and 6(b), which reveal 

that the mechanical stresses are 0.90 MPa and 1.49 MPa for the loop and 

entanglement topology structures, respectively, at the same elongation ratio of 1.005, 

as shown in Figure 6(c). An increment rate of 166% in the mechanical stress has been 

presented in comparison of the trapped entanglement structure (the functional degree 



ϕ=4) with that of the loop structure (ϕ=3). Therefore, the interfacial welding 

mechanical stress of loop structure and self-toughening mechanical stress of trapped 

entanglement structure can be described using the functional degree (ϕ), as illustrated 

in Figure 6(d).  

3.3 Constitutive stress-elongation ratio relationship  

Furthermore, the constitutive relationship between stress and elongation ratio has 

been investigated for the epoxy, which undergoes the BERs and trapped 

entanglements. Based on the rubber elasticity theory,28,35 the modulus of epoxy 

polymer is influenced by the diffusion coefficient of solvent molecules, which is 

determined by the relaxation time. For the CANs, there are two types of relaxation 

times, i.e.,  

s b c  = +                                                           (8) 

where τb and τc represent the BER time and diffusion time, respectively. The chain 

diffusivity is related to its diffusion distance and diffusion time, e.g., 
2

0 ccoopl D = .51 

Based on equation (5), Stukhalin et al. proposed the expression for relaxation time 

(τb) as,52  
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where τ0 is the diffusion time for the monomer and E0 is the energy barrier of BER. 

The exchangeable bonds contained in a unit volume of N0 can be expressed as: 
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where N01 is number of reaction chains per unit volume. 



Combining equations (5), (7), (8), (9) and (10), the constitutive relationship 

between stress and elongation ratio under uniaxial tension is obtained: 
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4. EXPERIMENTAL VERIFICATIONS 

To experimentally verify equation (11), the analytical results are plotted to predict 

the constitutive stress-elongation ratio relationship of the epoxy polymers with 

various soaking times, welding times, and concentrations of catalysts. The obtained 

experimental and analytical results are shown in Figure 7. All the parameters used in 

equation (11) are listed in Table 1.  

Table 1. Parameters used in the model for calculations 

 γ D0c (m2/s) Eas (J/mol) E0 (J/mol) τ0 (s) V (m3) V0 (m3) kso (s-1) 

Value 0.6 9.6×10-11 26.8×103 1.22×103 0.023 1.61×10-9 1.41×10-9 3.98×10-5 

Ref. 34 53 33  

With a catalysts’ concentration of 1%, the mechanical stress is increased from 1.12 

MPa, 1.26 MPa to 1.48 MPa at the same elongation ratio of 1.001, which is mainly 

resulted from the interfacial welding of CANs. With an increase in the welding time 

from 45 min (red dots) to 60 min (black dots), the mechanical stress is significantly 

increased from 1.26 MPa to 1.48 MPa, resulted from the increase in the interfacial 

welding time of CAN in epoxy, as shown in Figure 7(a).  

On the other hand, the analytical results obtained from the proposed model based 

on equation (11) are close to the experimental results of epoxy polymer undergoing 

soaking for 45 min and 60 min, respectively, as revealed in Figure 7(b). Both the 



analytical and experimental results reveal that the interfacial welding stress is 0.17 

MPa for the epoxy polymer with a soaking time of 45 min, while it is 0.27 MPa with a 

soaking time of 60 min. Figure 7(c) illustrates the working principles of the effects of 

catalyst concentration, soaking time and welding time, all of which influence the 

functional degree (ϕ) and mechanical stress of the epoxy polymer.  

 

 

Figure 7. Analytical results from equation (11) and experimental data of mechanical stress-

elongation ratio behaviors of epoxy polymers. (a) Interfacial welding of CAN in epoxy with a 

variety of catalyst concentrations, soaking times and welding times. (b) Analytical results from 

equation (11) and experimental data of mechanical stress-elongation ratio behaviors of epoxy 

polymers undergoing soaking times 45 min and 60 min. (c) Schematic illustrations of the effect of 

functional degree on the phantom networks undergoing interfacial welding. 

Furthermore, it is necessary to explore the dependence of functional degree (ϕ) on 

the topology signatures and their transitions, which are expected to play essential 

roles to determine the mechanical elasticity of the CANs undergoing a variety of 
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soaking and welding times37-40. The self-healing mechanical behavior of the CANs is 

incorporated from two parts, i.e., interfacial welding and self-toughening, which can 

enhance the functional degree (ϕ).  

Figure 8 plots the stress values as functions of diffusion distance and time of the 

dangling chain. The constitutive relationship between the interfacial welding ratio and 

diffusion distance (l0) of the epoxy polymer is plotted in Figure 8(a). The obtained 

analytical results based on equation (11) reveal that the interfacial welding ratio is 

gradually decreased from 112% to 70% with an increase of diffusion distance (l0) 

from 1 nm to 6 nm. In the range of diffusion distance (l0) from 1 nm to 3 nm, the 

CANs show both interfacial welding and self-toughening behaviors. However, the 

CANs only show an interfacial welding behavior, in the diffusion distance (l0) from 3 

nm to 6 nm.  

 

Figure 8. Effects of diffusion distance and diffusion time on the interfacial welding ratio of the 

CAN. (a) Interfacial welding ratio as a function of diffusion distance. (b) The contour chart of the 

stress of CAN as functions of diffusion distance and diffusion time.  

Moreover, a cloud chart of stresses as functions of the diffusion distance and 
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resulted from a smaller diffusion distance and higher diffusion time. There is clearly a 

coupling effect between diffusion distance (l0) and diffusion time (t) on the interfacial 

welding mechanical stress (σ) of the CANs.  

On the other hand, the effects of the energy barrier of BERs (E0) and diffusion 

activation energy (Eas) on the interfacial welding ratio have been investigated based 

on equation (11) and the obtained results are plotted in Figure 9. With an increase in 

the energy barrier of BERs (E0) from 0 kJ/mol to 10 kJ/mol, the interfacial welding 

ratio is gradually decreased from 150% to 0% when the diffusion activation energy 

(Eas) is kept a constant. Within the range of energy barrier of BER (E0) from 0 kJ/mol 

to 1.22 kJ/mol, the CANs show both interfacial welding and self-toughening 

behaviors. Whereas in the range of the energy barrier of BERs (E0) from 1.22 kJ/mol 

to 10 kJ/mol, the CANs only show an interfacial welding behavior, as revealed in 

Figure 9(a).  

 

Figure 9. Effects of energy barrier of BER and diffusion activation energy on interfacial welding 

ratio of the CAN. (a) Interfacial welding ratio as a function of energy barrier of BER. (b) 

Interfacial welding ratio as a function of diffusion activation energy.  
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At a constant energy barrier of BERs (E0), the diffusion activation energy (Eas) 

plays a critical role to determine the interfacial welding ratio of CANs, as presented in 

Figure 9(b). With an increase in diffusion activation energy (Eas) from 5 kJ/mol to 38 

kJ/mol, the interfacial welding ratio is gradually decreased from 115% to 10%. If the 

range of diffusion activation energy (Eas) is changed from 5 kJ/mol to 26.8 kJ/mol, the 

CAN shows both interfacial welding and self-toughening behaviors. While it only 

shows an interfacial welding behavior in the range of diffusion activation energy (Eas) 

from 26.8 kJ/mol to 38 kJ/mol.  

  

Figure 10. (a) Comparisons of analytical results of equation (11) and experimental data of 

anhydride-cured epoxy polymer with different particle sizes.54 (b) Divergences of analytical and 

experimental results of stress. 

Figure 10(a) shows the reported mechanical properties of anhydride-cured epoxy 

polymer with different particle sizes.54 By increasing the particle size from 0.5 mm, 1 

mm to 2 mm, the relaxation time is gradually increased from 0.002 s, 0.0032 s to 

0.010 s. With a smaller size of the particle, higher mechanical stress is therefore 

achieved. Furthermore, the correlation indexes (R2) between the analytical and 

experimental results were calculated based on the data shown in Figure 10(a), and 

they are 99.97%, 99.97%, and 99.85% for the different particle sizes, as shown in 
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Figure 10(b). The obtained R2 data reveals that the analytical results agree well with 

the experimental ones (|Δσ|<0.095 MPa).  

5. CONCLUSION 

In this study, a hydro-chemo-mechanical coupling framework is established to 

investigate the working principles of hydrodynamic diffusion, chemical BERs and 

mechanical topology entanglement in interfacial welding of CANs in the epoxy 

polymer. Topological entanglement has been identified as the key driving force for the 

self-toughening mechanism, while with BER enables the CANs with a self-healing 

behavior. Furthermore, an extended phantom network model is developed based on 

the free volume theory and rubber elasticity theory, to formulate the constitutive 

stress-elongation ratio relationship for the CANs. The hydro-chemo-mechanical 

coupling effect has been investigated using the functional degree (ϕ) in the CANs, in 

terms of diffusion coefficient, free volume, catalyst concentration, welding time and 

activation energy. Finally, the proposed framework is able to predict the mechanical 

behaviors of thermosetting epoxy polymer undergoing interfacial welding, and 

verified using both the FEA simulation and experimental results. This newly 

developed model provides an in-depth insight into the self-toughening mechanism of 

mechanical topology entanglement, which governs the hydro-chemo-mechanical 

coupling effect and self-toughening behavior of the CANs in thermosetting epoxy 

polymer. 
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