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Abstract 6 

Despite the many axial confinement models already proposed for the determination of the peak 7 

compressive strength of Fiber-Reinforced Polymer (FRP) confined concrete columns, they are, 8 

in general, applicable only to concrete columns of circular or square cross-section, with full or 9 

partial confinement arrangements. In this study, by proposing a cross-sectional and confining 10 

system unification approach, a new model is developed and calibrated based on a large test 11 

database. For the generalization of the cross-section and FRP-based confinement arrangement, 12 

the concept of confinement efficiency factor with a unified mathematical framework is 13 

adopted. By simulating experimental tests and comparing to the predictions of existing 14 

confinement models, the developed one demonstrates a very high reliability and suitable for 15 

design purposes by balancing the simplicity of the usage and accuracy.  16 
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1- Introduction 21 

In the past two decades, many studies have been conducted on the behavior of Fiber-22 

Reinforced-Polymer (FRP) confined concrete column under uniaxial compression loadings, 23 

where the column response in terms of load-carrying and deformation capacities and energy 24 

dissipation can be upgraded proficiently, dependent on an adequate design circumstances [1-25 

9]. 26 

For the case of FRP fully confined concrete columns (FFCC as illustrated in Fig. 1), Valdmanis 27 

et al. [1] experimentally evidenced the reliability of full confinement arrangement in the 28 

enhancement of axial and dilation behavior, depending upon FRP volumetric ratio, where 29 

improvements were more pronounced for normal-strength concrete columns than high-strength 30 

concrete ones. It is well-documented from experimental evidence that the application of FRP 31 

wrapping solution for circular cross-section concrete columns (FFCC) is more effective than 32 

its application for the case of square cross-section ones (FFSC in Fig. 1a) due to the detrimental 33 

effect of the corner radius ( r ), which is generally known as shape effect induced by horizontal 34 

arching action phenomenon. Experimental studies (Shan et al. [2]) evidenced that by 35 

decreasing the corner radius ratio ( 2bR r b  where b  is the length of section side) from one 36 

(representing a circular cross-section) to zero (representing a square cross-section with sharp 37 

edge), the efficiency of confinement strategy decreases significantly. On the other hand, since 38 

the usage of fully FRP confining configuration in real cases of strengthening might not be cost 39 

competitive, the application of a partially confining strategy can be regarded as a reliable 40 

alternative under adequate design circumstances. Barros and Ferreira [3] evidenced 41 

experimentally that, although the effectiveness of FRP partial confinement system applied to 42 

circular column (FPCC in Fig. 1b) is smaller than of a full confining system (FFCC) due to 43 

vertical arching action effect, a still significant level of load carrying capacity can be obtained, 44 

depending on the distance between FRP strips ( fs ) and existing steel hoops. For the case of 45 



FRP partially confined square concrete elements (FPSC in Fig. 1b), Guo et al. [4,5] 46 

experimentally demonstrated that FRP thickness-induced enhancements in terms of peak axial 47 

compressive strength are quite marginal for the cases with largely-spaced FRP strips. 48 

In order to predict peak axial compressive strength ( ccf ), a variety of confinement models has 49 

been proposed (i.e. [10-20]). Nonetheless, most of the models are only reliable and applicable 50 

to concrete columns of circular or square cross-section with full or partial confinement 51 

arrangements. Considering circular cross-section as a special case for square column where 52 

1bR  , and full confinement arrangement as a special case of partially confining configuration 53 

where 0fs  , the reliability of these models for various confinement scenarios is, at least, 54 

arguable. Accordingly, a more-reliable model, which is inevitably established by regression 55 

analysis technique, can be calibrated/developed through cross-sectional and confining system 56 

unification. Few models generalized for FFCC, FFSC, FPCC and FPSC have been proposed in 57 

the literature for the calculation of peak axial compressive strength (i.e. CNR DT 200/2004 58 

[12] and fib [13]). In these models, for the purpose of unification, the concept of confinement 59 

efficiency factor is adopted to take into account the effect of vertical and horizontal arching 60 

action. Furthermore, in general, most of the existing models was calibrated by using test 61 

database with limited variables i.e. concrete properties, specimen size, corner radius ratio, FRP 62 

confinement configuration. Consequently, statistical assessment and subsequently 63 

recalibration of these models based on a more comprehensive and larger database would be 64 

necessary for enhancing their predictive performance.  65 

In this study, a new model is developed to predict the peak compressive strength ( ccf ) with a 66 

unified character for FFCC, FFSC, FPCC and FPSC under axial loading. For this purpose, a 67 

comprehensive database was compiled comprising 1528 FFCC, 308 FFSC, 171 FPCC, and 23 68 

FPSC registered experimentally in the literature. This model adopts the concept of confinement 69 

efficiency factor for the generalization of the cross-section and confining system, which is 70 



calibrated based on the collected database. The model validation is demonstrated, and its 71 

predictive performance is compared to the one of other existing models.  72 

2- Test Database  73 

To evaluate the reliability of existing models using statistical analysis, a large test database was 74 

built, including 2031 FRP confined concrete column specimens tested under axial compressive 75 

loading. This database includes 1528 fully confined specimens of circular cross-section 76 

(FFCC), 308 fully confined specimens of square cross-section (FFSC), 171 partially confined 77 

specimens of circular cross-section (FPCC), and 23 partially confined specimens of square 78 

cross-section (FPSC). Specimens in the following conditions were not included in the database: 79 

i) having internal transverse and longitudinal steel reinforcements; ii) having helicoidal FRP 80 

wrapping confinement configurations; iii) with incomplete information, such as mechanical 81 

properties of the intervenient materials; iv) with premature FRP debonding; v) with hybrid 82 

confining systems (application of different FRP sheets) for the confinement; vi) under eccentric 83 

axial loading; vii) with a peak strength less than the one of its unconfined counterpart. 84 

Table 1 presents the details of the assembled database of FFCC, FPCC, FFSC and FPSC with 85 

a wide range of key parameters. As shown, the axial compressive strength of unconfined 86 

concrete ( 0cf ) varies from 6.6 to 240 MPa with the mean and CoV values of 44.1 MPa and 87 

0.69, respectively. The confinement-induced improvement ( 0cc cf f ) is in the range of 1.0 to 88 

6.9 with mean and CoV of 1.9 and 0.424, respectively. The diameter of the circular columns 89 

or cross-section edge width (b) varies from 50 to 400 mm with the mean and CoV values of 90 

149 mm and 0.296, respectively.  The height of the column specimens (L) varies from 100 to 91 

1200 mm with the mean and CoV values of 322 mm and 0.383, respectively. The database 92 

comprises specimens wrapped with carbon (CFRP), basalt (BFRP), aramid (AFRP), glass 93 

(GFRP), polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) fibers. The 94 



elastic modulus of the confining FRP ( fE ) is in the range of 9.5 to 657 GPa with the mean and 95 

CoV values of 177.7 MPa and 0.572, respectively. The ultimate tensile strain ( fu ) varies 96 

between 0.004 to 0.10 with mean and CoV of 0.024 and 0.791, respectively. For the case of 97 

partial confinement configuration, the database covers test specimens with various fR  and 98 

fs b  ranging from 0.05 to 0.75. For the case of square cross-section column specimens, the 99 

corner radius ratio varies from 0.0 to 0.8.  100 

3- Existing Models 101 

Table 2 represents the existing models developed for the prediction of peak axial strength of 102 

FRP confined concrete. These models adopted different methodologies for 103 

developing/calibrating their performance in terms of the normalized peak axial strength (104 

0cc cf f ). The formulations of these models can be generally classified into four categories 105 

based on: i) the relation of 0cc cf f  and the normalized confinement pressure corresponding to 106 

FRP rupture ( , 0l rup cf f ) [13,14]; ii) the relation of 0cc cf f  and the normalized confinement 107 

pressure corresponding to the FRP ultimate tensile strain ( , 0l u cf f ) [15-17]; iii) the 108 

development of a relation in which 0cc cf f  is as a function of the normalized confinement 109 

stiffness ( , 0 0 ,l rup c c h rupK f f    where 0c  is the axial strain corresponding to 0cf ; ,h rup  is 110 

the FRP hoop strain corresponding to rupture) and FRP strain ratio ( , 0h rup c   ) [4,5]; iv) 111 

the development of a regression-based relation in which 0cc cf f  is determined based on the 112 

best-fit with respect to key parameters [18]. Among these models, few ones [4,5,12-14] were 113 

developed with a unified character for all FFCC, FFSC, FPCC and FPSC cases based on the 114 

confinement efficiency factor ( hk  and vk ) reflecting the effect of horizontal and vertical 115 

arching actions. The models developed by [14, 16-18] are applicable to FFCC and FFSC 116 



through cross-section unification i) by using hk  [14] or ii) by empirically modelling the shape 117 

effect according to corner radius ratio (
bR ) [16-18]. 118 

4- Proposed Model 119 

In this section, a new model is proposed for the determination of ccf  based on cross-sectional 120 

and confining system unification approach. The procedure to establish the unified model is 121 

briefly presented as follows: 122 

i) Adopting the concept of equivalent circular cross-section to convert a square into a 123 

circular column’s cross section; 124 

ii) Adopting the concept of confinement efficiency factor to reflect the effect of 125 

arching action phenomenon in both transversal and longitudinal directions of the 126 

column; 127 

iii) Establishment of the relation between normalized peak axial strength ( 0cc cf f ) 128 

with respect to normalized equivalent confinement pressure corresponding to FRP 129 

rupture stage ( , 0l rup cf f ). 130 

In the present study, the diameter of the equivalent circular column ( eqD ) is determined based 131 

on the fib [13]’s recommendation where eqD  is assumed equal to the section dimension b (Fig. 132 

1) for the case of square cross-section ( eqD b ).  133 

4.1- Concept of Confinement Efficiency Factor 134 

For the simulation of the effect of vertical and horizontal arching actions, due to the presence 135 

of ineffective confinement regions, the concept of confinement efficiency factor is followed. 136 

By using this concept, the entire cross-section can be considered as effectively and uniformly 137 

confined at longitudinal and transversal directions. Based on experimental observations and 138 



finite element simulations, Shayanfar et al. [21] proposed a new model to formulate the effect 139 

of horizontal arching action on the determination of the equivalent confinement pressure. As 140 

shown in Fig. 2a, the original square cross-section was assumed to be subjected to three distinct 141 

levels of the confinement pressure: 142 

i) Area III under the lowest confinement level, which was assumed to be marginal (143 

0l

IIIf  ); 144 

ii)  Area II under a moderate level of confinement pressure (
I

l

If ), which was assumed 145 

equal to  0.5 0.5l l

I

l

I I

l

I IIIf f f f   ; 146 

iii) Area I under the highest level of confinement pressure (
I

lf ). 147 

Based on equilibrium of lateral forces in the equivalent circular cross-section, Shayanfar et al. 148 

[21] recommended the highest level of confinement pressure (
I

lf ) as follows: 149 

 
2

f f fI

f h

f f e

l

q

w n t
E

w s D
f 


                     (1) 

where fn  is the number of FRP layers per strip; ft  is the nominal thickness of a FRP layer; 150 

fE  is the FRP modulus of elasticity. In Fig. 2b, ,l efff  defines the effective confinement 151 

pressure uniformly acting on the region out of the parabolas (Area I and Area II), which was 152 

considered proportional to 
I

lf , dependent on the reduction factor ,h effk . Consequently, by using 153 

,h effk , the stress field within the confined Areas I and II is converted to an effective confinement 154 

pressure ( ,l efff ) uniformly distributed in these areas. Assuming ,h effk  on the interval 0.5 and 1 155 

corresponding to the cases of 0bR   and 1bR  , respectively, Shayanfar et al. [21] suggested 156 

this reduction factor as: 157 



 2

, 0.5 1 2h eff b bk R R    (2) 

Fig. 2c shows that using another reduction factor ,h fk , the effective confinement pressure (158 

,l efff ) can be distributed on the entire equivalent circular cross-section, leading to the uniform 159 

confinement pressure ( , , , , ,l i h f l eff

I

h lfh ff ef f kk k f  ). Adopting the concept of the equivalent 160 

circular section to convert Area I and Area II into an equivalent circular core with a diameter 161 

,eq cD , Shayanfar et al. [21] suggested this reduction factor to be dependent on 
bR  as: 162 

, 2

, 1.17 0.46 0.29
eq c

h f b b

eq

D
k R R

D
                              (3) 

Accordingly, by defining the confinement efficiency factor ( hk ) due to horizontal arching 163 

action as , ,h effh f kk , it can be determined as: 164 

  2 2

, , 0.5 1 2 1.17 0.46 0.29h h f h eff b b b bk k k R R R R                                 (4) 

which can be simplified to: 165 

0.15 0.93 1h bk R                             (5) 

without significant loss of accuracy. Accordingly, by using hk , the equivalent uniform 166 

confinement pressure acting on the entire section can be expressed as: 167 

 , 2
f f fI

l i h h f h

f eq

l

f

w n t
f

D
fk k E

w s
 


                     (6) 

On the other hand, for the case of partial confinement, Shayanfar et al. [22] proposed a new 168 

reduction factor, vk , for simulating the effect of vertical arching action due to the non-uniform 169 

distribution of actual confinement pressure imposed to the concrete along the column height as 170 



illustrated in Fig. 3. In this figure, zf  and zd  are the distribution function of the confinement 171 

pressure and the diameter of the effective confinement region at the clear distance of x from 172 

the strip, induced by vertical arching action phenomenon. As shown, owing to vertical arching 173 

action, the strip region was assumed to be subjected to the highest confinement pressure ( ,l if174 

), whereas the concrete at the mid-height of two consecutive strips is subjected to lowest 175 

confinement pressure ( ,l jf ). The average level of confinement pressure uniformly acting along 176 

the column height ( lf ) can be defined as ,l v l if k f , in the compliance with the concept of 177 

confinement efficiency factor [23,24].  178 

Accordingly, based on the equilibrium of confinement forces, Shayanfar et al. [22] determined 179 

vk  as: 180 

 

2 3

2

,
0

,

1 0.43 0.07
2

f

f f f
s f f

l i f eq z z

v

f fl i f f eq

s s s
w s

D D Df w D f d dx
k

w sf s w D

    
              




                           

(7) 

which can be simplified without significant loss of accuracy to: 181 

 exp 0.973
1

f f f

v

f f

w s R
k

w s

 
 


            (8) 

where f f eqR s D . As a result, both components of the confinement efficiency factor, hk  and 182 

vk , can be calculated by using Eq. (5) and Eq. (8), with the design framework. Hence, for the 183 

case of partially FRP confined square concrete column (FPSC), considering ,l v l if k f , the 184 

confinement pressure uniformly imposed to the concrete can be determined using Eq. (6) (Fig. 185 

3b): 186 



 , 2
f f f

l v l i v h f h

f f eq

w n t
f k f k k E

w s D
 


                     (9) 

 187 

4.2- Establishment of peak axial strength 188 

This section addresses the determination of the ccf  corresponding to the equivalent 189 

confinement pressure at the FRP rupture ( ,l rupf ). By defining ,h rup  as FRP rupture strain, the 190 

,l rupf  can be calculated based on Eq. (9) by considering eqD b : 191 

 , ,2
f f f

l rup v h f h rup

f f

w n t
f k k E

w s b



                for 3fn       (10a) 

 

0.85

, ,2
f f f

l rup v h f h rup

f f

w n t
f k k E

w s b



                for 4fn   (10b) 

where hk  and vk  can be calculated by Eq. (5) and Eq. (8), respectively. In Eq. (10b), for the 192 

case with many FRP layers ( 4fn  ), fib [13]’recommendation was followed in order to 193 

consider the decrease of FRP jacket confinement effectiveness with the increase of the FRP 194 

stiffness above a certain limit. By performing regression analysis on a large test database, 195 

Shayanfar et al. [25] improved the formulation suggested by Lam and Teng [20], where the 196 

effects of 0cf  and FRP ultimate tensile strain ( fu ) were considered: 197 

,

0

0.586
0.35

0.82 0.23
h rup fu fu

c fuf
  



 
    

                 (11) 

In the present study, based on the best-fit of the model with the experimental results in the 198 

database, as demonstrated in Table 1, a new relation generalized for FFCC, FFSC, FPCC and 199 



FPSC is proposed to calculate ccf , as a function of the normalized confinement pressure (200 

, 0l rup cf f ): 201 

,

0 0

3.4
1

l rupcc

c r c

ff

f k f

 
   

 
                          for ,

0

0.05
l rup

c

f

f
  (12a) 

0

1cc

c

f

f
                                                for ,

0

0.05
l rup

c

f

f
  (12b) 

In Eq. (12), when , 0l rup cf f  is lower than 0.05, the confinement-induced improvement is 202 

neglected. The reduction factor rk  (larger than 1) is proposed to account the stress 203 

concentration in square cross section column with almost sharp edge as: 204 

2.7 10 1r bk R                              (13) 

As a result, FRP confinement-induced improvement can be calculated through the proposed 205 

model with a unified character for different confining arrangements and cross-section columns 206 

(FFCC, FFSC, FPCC and FPSC). 207 

It should be noted that in a reinforced concrete (RC) column, a certain level of confinement is 208 

provided by steel transverse reinforcements. Accordingly, for the real cases of RC columns 209 

wrapped by FRP jacket, the dual internal steel-FRP confinement is imposed to the concrete 210 

core. Based on Triantafyllou et al. [26] and Lin et al. [27], the peak axial strength of FRP 211 

confined RC columns (
Total

ccf ) can be assumed as 
pFRP

cc c

t ru

c

S irf f   where 
Stirrup

ccf  is the steel 212 

transverse reinforcements’ contribution in the combined steel-FRP confinement and 
FRP

ccf  can 213 

be calculated by the model proposed in the present study. Therefore, by addressing the effect 214 

of steel confinement (
Stirrup

ccf ) based on regression analysis performed on an adequate test 215 

database, the proposed model can be extended for the case of FRP confined RC columns, 216 



having a unified character with FRP confined concrete (where 0Sti r

cc

r upf  ), which will be the 217 

focus of a future research study. 218 

5- Statistical assessments 219 

In the present study, to comprehensively evaluate the reliability and predictive performance of 220 

existing models (as presented in Table 2), the experimental tests of the assembled database 221 

were simulated with these models, and the obtained results were treated by determining the 222 

statistical indicators of Mean Value (MV in Eq. (14)), Coefficient of Variation (CoV in Eq. 223 

(15)), Mean Absolute Percentage Error (MAPE in Eq. (16)), Mean Squared Error (MSE in 224 

Eq. (17)), and R-squared (R2 in Eq. (18)): 225 

1

1 n
i
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T
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n E
                             (14) 
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                            (15) 

1

1
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                             (16) 
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                           (18) 

where iT  and iE  are 0cc cf f  obtained analytically and experimentally, respectively; SD is 226 

standard deviation; n  is the number of data; T  and E  represent the mean values of the 227 

analytical and experimental predictions, respectively. 228 



Fig. 4 and Table 3 compares the predictive performance of existing and proposed model over 229 

1528 experimental data of FFCC. As evidenced, the proposed model provided close and 230 

uniform predictions of experimental counterparts based on the main statistical indicators i.e. 231 

CoV = 0.211, MAPE=0.154, MSE = 0.259 and R2 = 0.864. Even though fib [7] (Fig. 4a) and 232 

ACI 440.2R‐17 [8] (Fig. 4c) provided the best performance among the existing models with 233 

slight conservative results, the proposed model has better predictive performance in estimating 234 

the experimental 0cc cf f . 235 

For the case of fully FRP confined concrete column of square cross section (FFSC), the 236 

predictive performance of proposed and existing models in estimating ccf  is compared in Fig. 237 

5 and Table 4. As shown, the proposed and Cao et al. [18] models demonstrated the best 238 

performance with similar statistical indicator results, and better when compared to the ones of 239 

the other models.  240 

For the case of partially FRP confined concrete columns of circular cross section (FPCC), Fig. 241 

6 and Table 5 evidence that the proposed model is able to accurately and uniformly predict the 242 

experimental ccf . Even though CNR DT 200/2004 [12] also provided a good estimation of 243 

experimental counterparts, the proposed model presented the best predictive performance. 244 

For the case of partially FRP confined concrete columns of square cross section (FPSC), Fig. 245 

7 and Table 6 show that the Guo et al. [4,5] and the proposed models have presented the best 246 

performance with almost identical results of statistical indicators, and better than those of fib 247 

[13] and CNR DT 200/2004 [12]. Nonetheless, the predictive performance of the proposed 248 

model was better than Guo et al. [4,5] in the FFCC, FFSC and FPCC. 249 

The predictive performance of the proposed model is compared in Fig. 8 with the one of the 250 

models that have a unified approach for predicting ccf  of FFCC, FFSC, FPCC and FPSC, 251 



namely fib [13], Guo et al. [4,5] and CNR DT 200/2004 [12]. This comparison shows that the 252 

proposed model has the best predictive performance in estimating the experimental ccf , 253 

confirming its reliability. Among the existing unified models, fib [13] prediction also has a 254 

good agreement with experimental counterparts.  255 

For further evaluation of the proposed model, its predictive performance was assessed with 256 

respect to key parameters, as demonstrated in Fig. 9. As evidenced in Fig. 9a, the model has 257 

relatively uniform performance for different level of , 0l rup cf f . Fig. 9b shows that, even though 258 

the effect of 0cf  was not considered in the establishment of the relation of 0cc cf f  and , 0l rup cf f  259 

in Eq. (12), there is not any significant correlation between the error (
Ana Exp

cc ccf f ) with respect 260 

to 0cf . Fig. 9c also confirms that there is no obvious variation in model prediction with respect 261 

to fu . In Fig. 9d, the model performance can be also considered uniform for the range of 262 

150eqD  of the database. For the case of column of square cross-section (FFSC and FPSC), 263 

Fig. 9e shows that the model reveals slight conservative predictions with uniform performance 264 

for different level of bR , where a larger scatter was observed in columns of circular cross 265 

section ( 1bR  ). For the case of partially confined concrete column (FPCC and FPSC), Fig. 9f 266 

confirms the uniform error distribution with respect to different ranges of fR  even though there 267 

is a larger scatter for full confinement cases with 0fR  . In Figs. 9e and 9f, the reliability of 268 

the adopted concept of confinement efficiency factor ( hk  and vk  presented in Eq. (5) and Eq. 269 

(8), respectively) for the generalization of the cross-section and confining arrangement can also 270 

be confirmed. 271 

 272 

 273 



6- Summary and conclusions 274 

In this study, a new model with a unified approach for being capable of predicting the peak 275 

axial compressive strength ( ccf ) of concrete columns of different confinement arrangements 276 

and of circular or square cross sections (FFCR, FPCR, FFCC and FPCC) was developed, and 277 

its predictive performance was assessed by using a large database of experimental results, and 278 

compared to the one of existing models. For the generalization of the cross-section and 279 

confining arrangement, the concept of confinement efficiency factor with a unified 280 

mathematical framework was adopted. For statistical assessment and the calibration of the 281 

developed model, a comprehensive database comprising 1528 FFCC, 308 FFSC, 171 FPCC, 282 

and 23 FPSC experimental results were collected from the literature. The predictive 283 

performance was assessed in terms of Mean Value (MV), Coefficient of Variation (CoV), Mean 284 

Squared Error (MSE), Mean Absolute Percentage Error (MAPE) and R-squared (R2). For the 285 

data based composed of 2031 experimental results, the developed model has presented the best 286 

statistical predictive indicators amongst the models applicable to FFCR, FPCR, FFCC and 287 

FPCC, namely: MV = 0.969, CoV = 0.196, MAPE = 0.143, MSE = 0.214, R2 = 0.864. 288 

 289 
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Table 1. Summary of the compiled database for FFCC, FPCC, FFSC and FPSC. 



Confinement 

arrangement 

Number 

of 

datasets 

 
0cf

range 

(MPa) 

0

cc

c

f

f

range 

L  

range 

(mm) 

b  

range                      

(mm) 

fE  

range 

(GPa) 

fu  

range 
bR a 

fR b 

FFCC /FFSC 

/FPCC 

/FPSC 

2031 

Min. 6.6 1.0 100 50 9.5 0.004 0.00 0.00 

Max. 204.0 6.9 1200 400 657 0.100 1.00 0.75 

Mean 44.1 1.9 321.8 149.4 177.7 0.024 0.89 0.05 

CoV 0.691 0.424 0.383 0.296 0.572 0.791 0.301 2.663 

 

FFCC 1529 

Min. 6.6 1.0 100 50 9.5 0.004 1 0 

Max. 204.0 6.9 915 305 657 0.100 1 0 

Mean 47.7 2.1 300.1 144.3 173.4 0.024 1 0 

CoV 0.701 0.417 0.352 0.295 0.614 0.801 0.000 0.000 

 

FFSC 308 

Min. 8.7 1.0 280 100 9.5 0.009 0.00 0 

Max. 77.2 4.3 1200 400 259.7 0.093 0.80 0 

Mean 33.3 1.6 394.1 168.9 166.8 0.027 0.31 0 

CoV 0.411 0.353 0.402 0.306 0.571 0.799 0.675 0.000 

 

FPCC 171 

Min. 16.6 1.0 200 100 104.6 0.015 1 0.05 

Max. 101.2 3.1 700 300 259.7 0.019 1 0.75 

Mean 33.5 1.5 353.5 154.9 230.9 0.017 1 0.33 

CoV 0.436 0.284 0.321 0.214 0.153 0.080 0.000 0.542 

 

FPSC 23 

Min. 12.3 1.0 500 150 73.0 0.015 0.13 0.10 

Max. 34.7 1.4 750 200 259.7 0.028 0.33 0.51 

Mean 28.3 1.22 557.4 183.4 215.7 0.020 0.30 0.24 

CoV 0.287 0.092 0.152 0.107 0.264 0.172 0.129 0.434 

a: 2bR r b  where r is the corner radius of the cross-section; b is the cross-section dimension as shown in Fig. 1 

b: 
f fR s b  where sf is the distance between two adjacent strips as shown in Fig. 1 
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Table 2. Existing strength models for FRP confined concrete columns 

ID Model expression  Model parameters Applicability 
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a  = 0.65, 0.75 and 0.85 for the fibre/resin type 

as Glass/Epoxy, Aramid/Epoxy and 

Carbon/Epoxy, respectively. 

f = the partial factor recommended as 1.10. 
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where ccf  = peak axial strength of FRP confined concrete; 0cf = axial strength of unconfined concrete; 
,l rupf = confinement pressure corresponding to FRP 

rupture strain (
,h rup );

,l uf = confinement pressure corresponding to FRP ultimate tensile strain (
fu );

fn = number of FRP layers; 
ft = nominal FRP 

thickness; hk = confinement efficiency factor reflecting the effect of horizontal arching action; vk = confinement efficiency factor reflecting the effect of 

vertical arching action; 
f = FRP reinforcement ratio; 

Ke = FRP confinement stiffness index; 
 = FRP strain ratio; 0c = axial strain corresponding to 

0cf ; 
f = reduction factor recommended as 0.95; 

LK = FRP confinement stiffness per the length of section dimension; 
cE = concrete modulus of 

elasticity; 
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Table 3. Statistical assessment of existing and proposed models for FFCC 

ID Test data MV CoV MAPE MSE R2 

Proposed Model 

1529 

0.977 0.211 0.154 0.259 0.864 

Lin et al. [19] 1.054 0.285 0.180 0.424 0.713 

fib [13] 0.904 0.226 0.182 0.332 0.813 

Guo et al. [4,5] 0.771 0.252 0.264 0.634 0.817 

Fallahpour et al. [15] 1.039 0.290 0.185 0.472 0.722 

ACI 440.2R‐17 [14] 0.948 0.273 0.187 0.364 0.807 

Cao et al. [18] 1.146 0.298 0.213 0.945 0.757 

Nistico and Monti [17] 1.046 0.284 0.188 0.425 0.799 

Wei and Wu  [16] 1.091 0.275 0.197 0.424 0.808 

CNR DT 200/2004 [12] 0.772 0.260 0.261 0.754 0.794 
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 482 

Table 4. Statistical assessment of existing and proposed models for FFSC 

ID Test data MV CoV MAPE MSE R2 

Proposed Model 

308 

0.934 0.153 0.126 0.102 0.816 

fib [13] 0.895 0.172 0.146 0.150 0.795 

Guo et al. [4,5] 0.867 0.225 0.184 0.240 0.632 

ACI 440.2R‐17 [14] 0.917 0.212 0.157 0.158 0.670 

Cao et al. [18] 1.001 0.163 0.125 0.081 0.811 

Nistico and Monti [17] 0.893 0.167 0.147 0.158 0.794 

Wei and Wu  [16] 0.986 0.171 0.128 0.094 0.795 

CNR DT 200/2004 [12] 0.872 0.245 0.196 0.297 0.576 
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Table 5. Statistical assessment of existing and proposed models for FPCC 

ID Test data MV CoV MAPE MSE R2 

Proposed Model 

171 

0.960 0.099 0.083 0.034 0.909 

fib [13] 1.140 0.151 0.169 0.084 0.845 

Guo et al. [4,5] 0.971 0.156 0.107 0.065 0.850 

CNR DT 200/2004 [12] 0.914 0.137 0.127 0.063 0.865 
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Table 6. Statistical assessment of existing and proposed models for FPSC 

ID Test data MV CoV MAPE MSE R2 

Proposed Model 

23 

1.013 0.067 0.053 0.010 0.971 

fib [13] 1.124 0.085 0.140 0.046 0.950 

Guo et al. [4,5] 1.029 0.056 0.048 0.009 0.981 

CNR DT 200/2004 [12] 1.314 0.172 0.359 0.222 0.929 
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                    a)                               b)             c) 

Fig. 1. Concrete columns of a) circular and square cross section (CC, SC) with b) Full confinement 

arrangements (FFCC/FFSC), and c) partial confinement arrangements (FPCC/FPSC) 
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a) b) c) 

Fig. 2. Distribution of confinement pressure within a square cross-section 
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                     a)                           b)                     c) 

Fig. 3. Vertical arching action phenomenon for partially FRP confined concrete 
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Fig. 4. Axial compressive strength of FFCC: test versus predicted results 
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Fig. 5. Axial compressive strength of FFSC: test versus predicted results 
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Fig. 6. Axial compressive strength of FPCC: test versus predicted results 
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Fig. 7. Axial compressive strength of FPSC: test versus predicted results 
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Fig. 8. Axial compressive strength of FFCC/FFSC/FPCC/FPSC: test versus predicted results 
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Fig. 9. Performance of the proposed model with respect to key parameters 
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