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Abstract 

The integrated exploitation of different energy infrastructures in the form of multi-energy systems 

(MESs) and the transformation of traditional prosumers into smart prosumers are two effective pathways 

to achieve net-zero emission energy systems in the near future. Managing different energy markets is 

one of the biggest challenges for the operators of MESs, since different carriers are traded in them 

simultaneously. Hence, this paper presents a hierarchical decentralized framework for the simultaneous 

management of electricity, heat and hydrogen markets among multi-energy microgrids (MEMGs) 

integrated with smart prosumers. The market strategy of MEMGs is deployed using a hierarchical 

framework and considering the programs requested by smart prosumers. A deep learning-based 

forecaster is utilized to predict uncertain parameters while a risk-averse information gap decision theory 

(IGDT)-based strategy controls the scheduling risk. A new prediction-based mechanism for designing 

dynamic demand response (DR) schemes compatible with smart prosumers’ behavior is introduced, and 

the results illustrate that this mechanism reduces the electricity and heat clearing prices in peak hours by 

17.5% and 8.78%, respectively.  Moreover, the results reveal that the introduced structure for hydrogen 

exchange through the transportation system has the ability to be implemented in competitive markets. 

 
* Corresponding Author: Amir.mansouri24@gmail.com  



Overall, the simulation results confirm that the proposed hierarchical model is able to optimally manage 

the competitive markets of electricity, heat and hydrogen by taking advantage of the potential of smart 

prosumers. 

Keywords: Multi-Energy Systems; Smart Prosumers; Machine Learning; Internet of Things; Power-to-

Hydrogen Technologies; Electric and Fuel Cell Vehicles. 

Nomenclature 

Abbreviations  
ADMM Alternating direction method of multipliers 
AI Artificial intelligence 
CHP Combined heat and power 
CNN Convolutional neural network 
CVaR Conditional value at risk 
DR Demand response 
EV Electric vehicle 
FCV Fuel cell vehicle 
HEMS Home energy management system 
HVAC Heating, ventilation and air conditioning 
IGDT Information gap decision theory 
IoT Internet-of-things 
LSTM Long short-term memory 
MEMG Multi-energy microgrid 
MES Multi-energy system 
MI Mutual information 
MILP Mixed-integer linear programming 
MINLP Mixed-integer non-linear programming 
ML Machine learning 
P2G Power-to-gas 
P2H Power-to-hydrogen 
P2X Power-to-x 
PAR Peak-to-average ratio 
RG Renewable generation 
RReliefF Regression ReliefF 
UB Uncertainty budget 
V2I Vehicle-to-infrastructure 
Sets  
t Time step index 
r Hydrogen refueling station index 
c Charging station index 
u Consumer index 
i,j Node index 
e Electric vehicle index 
f Fuel cell vehicle index 
k/o Buy / Sell bid index 
n Power-to-hydrogen unit index 
m Multi-energy microgrid index 
v Hydrogen transfer truck index 
ss Sub-station index 
h Combined heat and power unit index 



b Boiler index 
g Gas turbine index 
w Wind turbine index 
s Solar panel index 
es/hs/gs Electrical / Thermal / Gas storage devices 
d1,d2 Type A/B appliances index 
* Predicted parameter index 
^ Fixed schedule index 
it Iteration index 
Scalars  

R  Share of EV / FCV users from DR bonus (%) 
Transfer / Transfer  Hydrogen market starting/ending time (h) 
Comp  Compressor coefficient 

pC  Specific heat capacity of hot water [J/(g.Co)] 
t  Time step (h) 
P / H  Maximum deviation of electrical/thermal load from its predicted value (%) 
loss  Loss coefficient of storage devices (%) 
Ch / Dch  Charge / Discharge efficiency of storage devices (%) 
El  Electrolyzer Efficiency (%) 
Solar  Solar panel efficiency (%) 
GT  Gas turbine efficiency (%) 
,P CHP / ,H CHP  Power / Heat efficiency of CHP (%) 
ST DG  Standard solar radiation (W/m2) 

,Ch ConnectorH2 / ,Ch ConnectorH2  Min / Max transfer rate of hydrogen refueling station (kg/h) 
M a xi t  Max iteration number 

delayK  Thermal delay coefficient 

  Deviation damping factor 
H2LHV  Low heat value of hydrogen (kWh/kg) 
GL H V  Low heat value of gas (MJ/kg) 

M  Big positive number 
H2M  Molar mass of hydrogen (kg/mol) 

GM  Volume mass of gas (kg/m3) 
HS
qm / HE

qm  Mass flow rate of heat source / heat exchanger (kg/s) 
,Ch ConnectorP  Maximum charge rate of charging station (kW) 

xP / xH  Power / Heat operating point of the CHP unit (kW) 
, ,A vg x M arket  Average cost of electricity / heat / hydrogen market ($/kWh – $/kWh – $/kg) 

H2R  Hydrogen constant [J/(mol.K)] 
H2T  Internal temperature of the hydrogen tank (K) 

0V  Base voltage of electricity network (V) 

v Velocity of water (m/s) 

civ / rv / cov  Cut-in/Rated/Cut-out wind speed (m/s) 
Pw / Hw  Weight coefficient indicating the electrical/thermal load importance 

Marketx / Marketx  Min / Max level of electricity / heat / hydrogen Market participation (kW – kW – kg) 

Parameters  

,
A

u d1E / ,
B
u d2E  Energy consumption of type A / B appliances (kWh)  

Initial
xE  Initial energy of storage devices (kW – kW – m3) 



xE / xE  Min / Max energy limit of storage devices (kWh – kWh – m3) 
,H2 Initial

xE  Initial pressure of hydrogen tank (Pa) 
H2
xE / H2

xE  Min / Max pressure limit of hydrogen tank (Pa) 
,Ch Require

eE  Energy required by EVs (kW) 

tG  Solar radiation (W/m2) 

,
Load
i tG  Gas load (m3) 

,
Load
x tH  Heating load (kW) 

,
Load
x tH2  Hydrogen load (kg) 

,Avg Load
uH  Average heating load (kW) 

,Avg Load
rH2  Average hydrogen load (kg) 

,
DR
u tH  / ,

DR
u tH   Maximum up / down of heating loads by DR scheme (kW) 

,
DR
r tH2  / ,

DR
r tH2   Maximum up / down of hydrogen loads by DR scheme (kg) 

,Ch Require
fH2  Hydrogen required by FCVs (kg) 

,Ch Tank
xH2 / ,Dch Tank

nH2  Inflow / Outflow limit of hydrogen tank (kg/h) 
,Ch Truck

vH2 / ,Dch Truck
vH2  Inflow / Outflow limit of hydrogen transfer truck (kg/h) 

,Cap Truck
vH2  Hydrogen truck capacity (kg) 

Pipe
lK  Pack constant of the pipeline 
,
,

x Grid
ss i  Sub-station mapping 

,
,
x Line
l i  Line mapping 

lL  Length of the pipeline (m) 
,

,
Fix Load

u tP  Fixed part of the electrical demand of smart homes (kW) 

 
A
d1P / A

d1P  Min / Max power of type A appliances (kW) 
,B Fix

d2P  Load demand of type B appliances (kW) 

,
Line

l tP / ,
Line
l tQ  Maximum active/reactive power flow (kW/kVAr) 

,Avg Load
xP  Average electrical load (kW) 

,
DR

x tP  / ,
DR

x tP   Maximum up / down of electrical loads by DR scheme (kW) 

 
Ch
xP  Maximum charge limit of electrical / thermal / gas storage devices (kW – kW – m3/h) 

 
Dch
xP  Maximum discharge limit of electrical / thermal / gas storage devices (kW – kW – m3/h) 

 
GT
gP /  

GT
gP  Min / Max power limit of gas turbine (kW) 

Wind
wP  Wind turbine capacity (kW) 
Solar

sP  Solar panel capacity (kW) 

 iPr /  iPr  Min / Max gas pressure (Pa) 
Pen
t  Penalty for residents' dissatisfaction ($/kW2) 
,
,

x MC
m t  Marginal cost of MEMGs ($/kWh) 

,
R
x t  Base reward for DR participation ($/kWh – $/kWh – $/kg) 
,
,

P DR
x t / ,

,
P DR
x t   Hourly reward for participating in the electrical DR scheme ($/kWh) 



,
,

H DR
u t  / ,

,
H DR
u t   Hourly reward for participating in the heating DR scheme ($/kWh) 

,
,

H2 DR
r t  / ,

,
H2 DR
r t   Hourly reward for participating in the hydrogen DR scheme ($/kg) 

,x Market
t  Market price ($/kWh – $/kWh – $/kg) 
G
t  Gas price ($/m3) 
Solar
s  Generation cost of solar panel ($/kWh) 
Wind
w  Generation cost of wind turbine ($/kWh) 

,
, ,

x Buy
m k t / ,

, ,
x Sell
m o t  The price of buy / sell bids of MEMGs for electricity / heating / hydrogen ($/kWh – 

$/kWh – $/kg) 
Storage
x  Operation cost of electrical / thermal / gas storage devices ($/kWh – $/kWh – $/m3) 

lR / lX  Resistance / Reactance of electrical Line (ohm) 
,s min

tT / ,s max
tT  Min / Max temperature of supply pipelines (Co) 

,r min
iT / ,r max

iT  Min / Max temperature of return pipelines (Co) 
Fill

vT  Require time for filling hydrogen truck (h) 

,
Travel

n xT  Traveling time of hydrogen trucks (h) 
Empty

vT  Require time for emptying hydrogen truck (h) 
H2
xU  Hydrogen tank capacity (m3) 

tv  Wind speed (m/s) 

, ,
Buy
m k tx


/ , ,
Sell
m o tx


 Buy / Sell bids created by MEMGs for electricity / heating / hydrogen ($/kWh – $/kWh – 
$/kg) 

Variables  

,
SH
u tC  Operation cost of smart home ($) 

,
SCS
c tC  Operation cost of smart charging station ($) 

,
SRS
r tC  Operation cost of smart hydrogen refueling station ($) 

,
GT
g tC  Operation cost of gas turbine ($) 

2
,

P H
n tC  Operation cost of power-to-hydrogen unit ($) 

,
Boiler
b tC  Operation cost of boiler ($) 

,
CHP
h tC  Operation cost of CHP ($) 

,
Wind
w tC  Operation cost of wind turbine ($) 

,
Solar
s tC  Operation cost of solar panel ($) 

,
Storage
x tC  Operation cost of storage devices ($) 

,
IL
m tC  Operation cost of industrial load ($) 

mDF  Dissatisfaction factor (%) 

,x tE  Stored energy in electrical / thermal / gas storage devices (kW – kW – m3) 

,
H2
n tE  Hydrogen tank pressure (Pa) 

,
Line
l tG  Gas flow (m3/h) 

,
GT
g tG  Gas turbine gas consumption (m3) 

,
CHP
h tG  CHP gas consumption (m3) 

,
Boiler
b tG  Boiler gas consumption (m3) 



,
Boiler
b tH  Boiler heat generation (kW) 

,
CHP
h tH  CHP heat generation (kW) 

,
Ch
f tH2  Hydrogen usage of FCV (kg) 

,2DR
f tH  / ,2DR

f tH   Upward / Downward level of hydrogen loads by DR scheme (kg) 

,
Sell
n tH2  P2H hydrogen generation (kg) 

,
Buy
r tH2 / ,

Buy
m tH2  Refueling station / Industrial load hydrogen Consumption (kg) 

, ,
Sell
n v tH2 / , ,

Buy
x v tH2  Inflow / Outflow of hydrogen truck (kg) 

,
El
n tH2  Electrolyzer hydrogen generation (kg) 

,
Load

x tP / ,
Load
x tQ  Active / Reactive electrical load (kW/kVAr) 

,
DR

x tP  / ,
DR

x tP   Upward / Downward level of electrical loads by DR scheme (kW) 
,
,

P Grid
ss tP / ,

,
P Grid
ss tQ  Active / Reactive power exchange with the main grid (kW/kVAr) 

,
Loss

l tP  Power loss (kW) 

, ,
A

u d1 tP / , ,
B

u d2 tP  Power consumption of Type A / B appliances (kW) 

,
Line

l tP / ,
Line
l tQ  Active / Reactive power flow (kW/kVAr) 

, ,/Ch Dch
x t x tP P  Charge / Discharge value of storage devices (kW – kW – m3/h) 

,
GT

g tP / ,
GT
g tQ  Active / Reactive power generation by gas turbine (kW/kVAr) 

,
Wind
w tP  Wind power generation (kW) 

,
Solar

s tP  Solar power generation (kW) 

,
Sell

r tP / ,
Sell

n tP  Surplus power of hydrogen refueling station / P2H unit (kW) 

,
Exchange

c tP  Power exchange of smart charging station (kW) 

,
El

n tP  Electrolyzer power consumption (kg) 

,i tPr  Gas pressure (Pa) 

,
s

i tT / ,
r

i tT  Temperature of supply / return pipelines (Co) 
,

,
s out

l tT / ,
,
r out

l tT  Outlet temperature of supply / return pipeline (Co) 

,i tV  Voltage magnitude (V) 

, ,
Market
m t itx  The amount of power / heating / hydrogen exchange of MEMGs (kW – kW – kg) 

, ,
Buy
m k tx / , ,

Sell
m o tx  Buy / Sell power by MEMGs for electricity / heating / hydrogen ($/kWh – $/kWh – $/kg) 

Binary Variables  

,
arrival
x tI / ,

departure
x tI  Arrival / Departure status of EV and FCV 

,
, ,

x Sell
m o tI / ,

, ,
x Buy
m k tI  Sell / Buy status of market bids 

, ,
Start
n v tI / , ,

End
x v tI  Start / End work time of trucks 

,
Ch
x tI / ,

Dch
x tI  Charge / Discharge status of storage devices 

,
GT
g tI  Gas turbine activity status 

,
CHP
h tI  CHP unit activity status 

, ,
A
u d1 tI / , ,

B
u d2 tI  Activity status of appliances type A / B 

,
, ,

A Start
u d1 tI / ,

, ,
B Start
u d2 tI  Starting flag status of type A / B appliances  



,
, ,

A End
u d1 tI / ,

, ,
B End
u d2 tI  Ending flag status of type A / B appliances 

 

1. Introduction 

1.1. Background and Motivation 

The high speed of climate change and the increasing emission of greenhouse gases in recent decades 

have transformed energy supply policies, so that new policies have focused on replacing all fossil fuel 

sources with renewable generations (RGs). Despite the many environmental and economic advantages, 

these new policies have serious technical challenges [1]. Their main technical challenge is related to the 

intermittent output of RGs, which poses many threats to the stability and continuity of energy supply. 

Multi-energy systems are a very effective solution to deal with technical challenges, as energy 

conversion technologies have advanced significantly in recent years [2]. 

In multi-energy systems, the excess power of RGs can be converted to other forms of energy using 

advanced converters. With the progress of water electrolysis and fuel cell technologies, power-to-x 

(P2X) converters are an effective solution to convert the excess power of RGs to other forms of energy. 

Depending on their internal structure, P2X converters can convert the excess power of RGs into 

hydrogen, methanol, methane, and ammonia, which are used in transportation, aircraft, and heavy 

industries [3].  

The management of energy markets in modern multi-energy systems consisting of several MEMGs is 

one of the main challenges for the operators of these systems. Note that in modern multi-energy systems, 

different carriers such as electricity, gas, heat, hydrogen, etc. are simultaneously exchanged between 

MEMGs. Energy markets in modern multi-energy systems, on the one hand, must guarantee the privacy 

of MEMGs, and on the other hand, must provide a fully competitive environment for the exchange of 

different forms of energy [4]. Moreover, maintaining energy balance in multi-energy systems is one of 

the important points that directly affects the price of different energy carriers [5]. DR schemes are a key 

way to control the energy balance in the network. In multi-energy systems, these schemes can be applied 



to different loads and significantly improve the operational flexibility. It should be mentioned that DR 

schemes that are applied simultaneously to different loads are called integrated DR schemes [6,7]. 

Over the past years, Internet-of-things (IoT) technologies have been integrated with the home energy 

management system (HEMS) and play an important role in smart controlling and managing the end users 

of the system [8]. It should be stated that IoT-based HEMS is the basis of forming smart homes. In 

addition, modern smart homes are equipped with advanced artificial intelligence (AI) and machine 

learning (ML) technologies that can be trained and predict the near future [9]. The movement of ordinary 

buildings towards such an intelligent concept is an important pathway to achieve fully active and 

intelligent energy systems. In general, the optimal and intelligent energy management of buildings is 

essential since they account for more than 40% of energy consumption and carbon emissions in the 

world. This high share of energy consumption in buildings has led to their high impact on energy 

markets, so that MEMGs market strategies are designed based on their behavior. Therefore, any positive 

change in the behavior of buildings can lead to achieving more optimal market strategies for MEMGs. 

1.2. Literature Review 

During the last decade, several studies have proven that the successful participation of stakeholders in 

energy markets requires the design of an optimal market strategy [10,11]. In this regard, in [12] an 

optimal strategy for the participation of aggregators in electricity, heat and carbon markets in multi-

energy systems under the high penetration of RGs has been introduced. To guarantee the least sharing of 

information, the problem is formulated using the alternating direction method of multipliers (ADMM) 

and the results reflect that the simultaneous participation in multi-energy markets significantly reduces 

the costs of aggregators compared to participation in the single-energy market. In [13] a new strategy for 

pricing different carriers in multi-energy systems is introduced. In this study, the price correlation 

between different carriers has been evaluated in detail and guidelines have been provided to reduce this 

correlation. In [14], a new strategy for the participation of stakeholders in electricity and heat markets is 

introduced, taking into account power-to-gas (P2G) technologies, in which the uncertainty budget (UB) 



method is adopted to increase planning robustness against price uncertainties. The simulation results 

show that the use of P2G and power-to-hydrogen (P2H) technologies has created a proper linkage 

between the electricity and gas networks, resulting in 2.13% reduction in total costs. The authors in [15] 

have introduced a hybrid conditional value at risk (CVaR)-robust based strategy for the participants of 

an energy hub in day-ahead energy and reserve markets. The Monte Carlo method is utilized to model 

the uncertainties, whereas the planning risk is controlled by the CVaR method. The proposed strategy is 

formulated as mixed-integer non-linear programming (MINLP) and its goal is to minimize both 

operation costs and CO2 emissions. The simulation results validate the optimality of the proposed 

strategy in this study. 

Several researchers have studied the impact of implementing DR schemes on the management of energy 

markets in multi-energy systems. For instance, the authors in [16] presented a new strategy for managing 

day-ahead energy markets in regional multi-energy systems. This strategy is formulated in a bi-level 

format, where the profit of energy suppliers is maximized in the upper level and the cost of consumers 

is minimized in the lower level. An integrated DR scheme is applied to different loads and the simulation 

results prove its effect on improving the economic and environmental indicators of the system. In [17], 

a two-stage model for the management of energy markets in a multi-energy system is presented, which 

uses the conditional value-at-risk-based method to model the uncertainties associated with RGs output, 

EVs’ behavior, and the load demand. Besides, the risk of uncertainties is controlled by the IGDT method 

in this study. The results reflect that a 2% increase in operating costs lowers planning risk by 1.3%. Also, 

the results demonstrate that the simultaneous consideration of storage devices, EVs and the integrated 

DR scheme reduced operating costs by 17.5%. In [18], the authors have used P2H technologies to reduce 

operating costs and CO2 emissions in MEMGs. Integrated DR schemes and hydrogen storage devices 

have also been used to neutralize the effects of RGs output power uncertainties. The simulation results 

show that the proposed strategy not only makes more use of the capacity of RGs, but also reduces the 

consumption of fossil fuels in the network. 



Smart buildings have a very high potential for improving energy efficiency due to the automatic control 

of their components. In recent years, many studies have been conducted with the aim of improving 

energy management models in smart buildings, while only a small number of studies have evaluated 

their effects on the technical and economic indicators of the system. In this regard, [19] introduces a 

multi-objective HEMS architecture for smart home scheduling, which goals are to reduce the electricity 

bill, increase the comfort level of residents and reduce peak-to-average ratio (PAR). The proposed HEMS 

is solved by multi-objective arithmetic optimization algorithm and the results prove its effect on reducing 

electricity cost and PAR. In [20], the authors presented an IoT-based HEMS for smart homes scheduling, 

which is programmed based on the non-intrusive load monitoring technique. The proposed system sends 

the real-time data of the appliances to the users through the ThingSpeak platform to remotely control the 

consumption of their appliances. The simulation results reveal that the proposed system improves the 

flexibility of energy management in smart homes. In [21], the authors discuss the importance of 

managing heating, ventilation and air conditioning (HVAC) systems in smart buildings and show that 

with the optimal management of these systems, energy consumption costs can be reduced in smart 

buildings, while the thermal comfort index is maintained in a proper range. [22] presents an optimal 

system for energy management in smart buildings in which an inverter-based air conditioner is used to 

control the temperature of the home. In the proposed concept, electrical storage devices are installed next 

to solar panels to reduce their output fluctuations. Also, an indoor-outdoor temperature model is 

introduced, which leads to more optimal operation of the air conditioner system. In [23], the impact of 

smart homes’ program on the economic indicators of microgrids has been investigated. To this end, a 

centralized three-objective model is presented, where operating cost, emission and PAR are the objective 

functions. The problem is solved by the fuzzy method and the results reveal the high impact of smart 

consumers on modifying the system demand curve and also reducing the costs of microgrids. Contrary 

to [23], the authors in [24] introduced a decentralized model for the operation of microgrids, in which 

the effect of the comfort index of smart homes on the technical and economic indicators of the network 



is investigated. The proposed concept is modeled in the form of mixed-integer linear programming 

(MILP), and the operating cost and the customers’ comfort index are the optimization goals. The 

simulation results reflect that the relative reduction of comfort level leads to considerable improvement 

of technical and economic indicators. 

The spread of RGs and demand side management technologies in recent years has turned a large number 

of traditional consumers into prosumers. Despite the many technical, economic and environmental 

advantages, these technologies have made it difficult to predict the behavior of end-users and have 

increased the number of operational uncertainties [25]. This problem has attracted the attention of 

researchers towards forecasting techniques. In this regard, the authors in [26] have introduced a new 

model based on the deep multi-task learning and ensemble method to predict the load demand of a multi-

energy system. In this model, three different gated recurrent units are considered, which have high 

adaptability to different fluctuations of the load curve. The analysis of the simulation results shows that 

the proposed model can accurately predict the temporal and spatial correlation between different energy 

networks. In [27], the authors presented a method based on deep belief network for forecasting electrical, 

heating and gas demands in multi-energy systems. In order to facilitate prediction, first, different loads 

are numerically analyzed and then they are categorized into different groups. In order to identify hidden 

features of time series of energy systems, the deep belief network technique is utilized and the simulation 

results prove the high accuracy of the proposed technique to predict the behavior of systems with 

different prosumers. In [28], the authors have evaluated the effects of accurate forecasting of uncertain 

parameters such as the output power of RGs and load demand on the optimal operation of multi-energy 

systems. To this end, a model based on the multi-task learning method has been introduced and its impact 

on economic and reliability indicators has been analyzed. In the proposed technique, convolutional 

neural network (CNN) is used to identify useful aspects of the input data and the simulation results reveal 

the high accuracy of this model for short-term prediction of different loads in multi-energy systems. 



The advancement of P2X converters in recent years has led to a significant increase in their influence in 

multi-energy systems. Many studies have shown that these converters lead to increased efficiency and 

flexibility of multi-energy systems while reducing operating costs. In [29], an optimal model for 

scheduling a distribution system in the presence of a hydrogen-based energy hub is introduced. The hub 

under study is equipped with a hydrogen storage device and P2H and H2P units. The harmony search 

algorithm is utilized to solve the model and the results illustrate that P2H and H2P units prevent the 

elimination of excess production of RGs and subsequently reduce the operating costs significantly. Also, 

the results reflect that the implementation of the integrated DR scheme leads to the modification of the 

consumption pattern of electrical and thermal loads. In [30], a multi-objective dynamic method is 

presented to investigate the short- and long-term effects of installing P2G technology in the energy hub 

from technical, economic and environmental perspectives. The results reveal that the installation of P2G 

in the hub consumes a significant part of the CO2 released by the CHP and boiler units, and thus reduces 

the emissions of the hub by about 10%. In addition, the results substantiate that P2G installation reduces 

losses and operating costs perfectly. In [31], the authors have planned the operation of a multi-energy 

system in the presence of hydrogen storage devices and FCVs. Uncertainties related to production and 

demand are modeled in a stochastic format and the results reflect that the proposed model reduces 

operating costs while maintaining energy balance in the system. In addition, the results prove that the 

simultaneous consideration of hydrogen storage devices and FCVs leads to a significant reduction in 

system costs. In [32], a bi-objective framework for scheduling the day-ahead energy market of 

microgrids equipped with P2H units, hydrogen storage devices, fuel cells and EVs is presented. The 

goals of this model are cost and emission minimization, and the operational uncertainties are modeled 

by the hybrid robust-stochastic method. The simulation results reflect the high impact of hydrogen-based 

technologies on reducing costs and emissions. Also, the results reveal that the simultaneous consideration 

of hydrogen-based technologies and the DR scheme significantly increases the operational flexibility. In 

[33], the problem of optimal scheduling of MEMGs consisting of electricity, heating and hydrogen 



carriers in the presence of EVs, solar panels and P2H and H2P units has been investigated. In this study, 

the hydrogen produced by the P2H unit is sold to industrial loads. The problem is modeled in MILP form 

and CVaR method is used to manage the risk arising from the uncertainties of solar panels, load and EVs’ 

behavior. The simulation results confirm the effect of hydrogen-based converters on reducing the 

operating costs of MEMGs by 9.28%. The authors in [34] presented a multi-objective method for day-

ahead scheduling of an integrated electricity-gas-hydrogen system consisting of P2G units and FCVs. In 

the proposed model, P2G units convert the excess power of RGs into hydrogen and natural-gas to supply 

the hydrogen needed by FCVs. The operating cost and CO2 emission are the optimization goals, and the 

weighted sum method is adopted to solve the model. The results reflect that the presence of P2G and 

fuel cell vehicle (FCV) units has lowered the operation and emission costs by 8.04% and 9.8%, 

respectively. 

Many researches have substantiated that dynamic thermal rating (DTR) systems lead to the improvement 

of the economic, reliability and security factors of the power transmission systems. It has been confirmed 

in [35] that DTR systems are necessary to achieve stable electrical networks. In [36] and [37], the authors 

have shown the effect of DTR and storage devices on improving the reliability of electrical networks. It 

has been shown in [38] that deep learning is an effective method for predicting DTR. [39–41] show the 

significant impact of DTR and information and communication technologies on improving the reliability 

of cyber-physical systems. 

1.3. Research Gap and Contribution 

The above literature review reflects that only a few studies have investigated the effects of smart 

prosumers’ behavior at the system level. It can also be seen that there is a lack of a comprehensive model 

for managing electricity, heat and hydrogen markets among MEMGs in the presence of smart homes, 

smart electric vehicle (EV) charging stations and smart hydrogen refueling stations. Therefore, the 

authors of this paper present a hierarchical model consisting of six layers to bridge the above gap. In the 

proposed model, a fully competitive structure is designed for the simultaneous management of 



electricity, heat and hydrogen markets among MEMGs. Also, in order to take advantage of the potential 

of smart prosumers including smart homes and smart charging and hydrogen refueling stations, incentive 

DR schemes compatible with their behavior are designed in the proposed model. The main innovations 

of this work are listed below: 

 Presenting a six-layer hierarchical framework for managing energy markets of modern MESs, 

taking into account energy flow constraints of electricity, gas and heating networks 

 Presenting a structure for the hydrogen exchange among MEMGs through the transportation 

system 

 Introducing a novel deep learning-based mechanism for designing dynamic DR schemes with 

different rewards for smart prosumers 

 Utilizing a deep learning-based forecaster and a risk-averse IGDT-based strategy, respectively, 

for predicting uncertain parameters and managing scheduling risk  

 Accurate modeling of indoor consumption of IoT-based smart homes and evaluating the impact 

of comfortable lifestyle of their residents on energy markets 

 Enhancing technical and economic aspects of the MES through modifying the behavior of 

smart prosumers, EVs, and FCVs 

2. System Description 

Figure 1 provides an overview of the structure of the studied MES. According to the figure, this system 

consists of a modified 118-bus electric network [42], a 20-node heating network [43], and a 20-node gas 

network [44]. It should be mentioned that in this system, hydrogen is delivered to consumption points 

through the transportation system. The proposed MES consists of 6 MEMGs that are operated in a 

decentralized framework. As can be seen, renewable and non-renewable generation sources as well as 

different storage devices are installed on electricity, heating and gas networks. In addition, P2H units, 

combined heat and power (CHP) units, boilers, and compressors are also considered in the system. It 



should be noted that all MEMGs are equipped with smart charging stations and smart hydrogen refueling 

stations since the system is designed considering the high penetration of EVs and FCVs. Besides, it is 

assumed that smart stations and EVs /FCVs communicate through the vehicle-to-infrastructure (V2I) 

system. Therefore, using this system, smart stations send incentive programs to EVs / FCVs and receive 

their feedback. The locations of smart homes on the electricity grid are marked with green. These homes 

are connected to electricity and heating networks to supply their electrical and thermal loads, 

respectively. Therefore, they can change the pattern of their electricity and heat consumption by 

participating in electrical and thermal DR schemes. Note that smart homes have solar panels and 

electrical storage devices and supply a significant part of their loads by them. 

Studied hydrogen refueling stations in this paper, provide hydrogen through their small-scale P2H units 

and also purchase from the hydrogen market. It is noteworthy that small-scale P2H units placed in 

hydrogen refueling stations receive their required power from solar panels. Moreover, it can be observed 

that P2H units are also considered in the proposed MES, which are powered by their adjacent RGs.  Note 

that electrolyzer and hydrogen tank are the main components of P2H units. The hydrogen produced by 

these units is exchanged between MEMGs and subsequently delivered to consumption points through 

the transportation system. It should be stated that in the studied MES, hydrogen-consuming loads are 

hydrogen refueling stations and industrial loads, and the hydrogen market is held only between 6 am and 

8 pm. 



 

 

Fig. 1. The overview of the studied multi-energy system 



 

3. Mathematical Modelling 

The formulation of the proposed six-layer hierarchical model is introduced in this section. The first layer, 

which is related to prediction, is modeled in MATLAB, while layers 2 to 6 are formulated in a MILP 

form so that they can be solved by the powerful CPLEX solver in GAMS. It should be mentioned that 

the proposed model is designed for the simultaneous management of electricity, heat and hydrogen 

markets in a competitive and intelligent environment.  

 Layer 1 

In the first layer of the proposed hierarchical framework, a prediction technique based on deep learning 

is utilized to predict the price of different energy carriers, the demand of different loads, wind speed and 

solar irradiance. The details of this model are shown in Fig. 2. According to the figure, this technique 

completes the prediction process in three levels: data preprocessing, hybrid feature selection and 

prediction [45]. 

In the first level, data preprocessing is carried out in two steps. In the first step, all historical data related 

to prices, demands, wind speed and irradiance are merged in the form of a single dataset. Then, in the 

second step, the merged data is cleaned and normalized to prepare for advanced processing. 

In the second level, hybrid feature selection is done in five steps. In the first step, normalized data are 

clustered where dissimilar samples are removed from them. In the second step, regression Relieff 

(RReliefF) instance-based filter feature selection and information theoretic-based mutual information 

(MI) filter feature selection processes are performed with the aim of finding relevant features [45]. Note 

that RReliefF is an advanced version of the Relief family algorithms that has the ability to estimate the 

quality of features in regression problems. In the third step, mutual information and RReliefF selected 

in the previous step are merged with the aim of identifying maximal relevant features. It is worth stating 

that the RReliefF and mutual information filter feature selection defines the relevant features by 

removing the irrelevant and noninformative features via statistical characteristics. In the fourth step, 



 

wrapper feature selection is performed with the aim of tuning the selected features. Finally, In the fifth 

step, features optimum subset is generated. 

In the third level, prediction is done in two steps. In the first step, the long short-term memory (LSTM) 

deep prediction model is constructed and trained by the features obtained from the previous steps. 

Ultimately, in the second step, the constructed model is tuned through rolling-based time series cross-

validation. 

The structure of LSTM cell is depicted in Fig. 2. According to the figure, this cell consists of three gates 

named forget gate, input gate and output gate. The forget gate specifies the information to be deleted. 

The input gate determines the information that should be used from the input to update the old cell state 

to the new cell state. The output gate specifies the information to be included in the output. Equations 

(a1)-(a6) model the LSTM cell. To this end, forget gate, input gate and output gate are calculated 

respectively by Eqs. (a1)-(a3). fW , iW  and oW  denote the weight matrix associated with forget gate, input 

gate and output gate, respectively. Equations (a4) and (a5) determine the new cell state and candidate, 

respectively. 1tc   denotes the previous cell state. Lastly, hidden state is calculated via Eq. (a6). 



 

 

Fig. 2. Details of the deep learning-based forecaster 
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 Layer 2 

In the second layer of the proposed model, using the prediction results, different DR schemes are 

designed for smart prosumers, including smart homes, smart charging stations, and smart hydrogen 

refueling stations. In this regard, the functions presented in Eqs. (b1)-(b3) respectively determine the 

hourly rewards for participation in electrical, heating and hydrogen DR schemes. These functions state 

that prosumers are rewarded for load reduction in periods above the average load level, and for load 

increase in periods below the average load level. The amount of reward is determined by an exponential 

function based on the difference between the average price and the predicted hourly price. Therefore, 

the amount of reward will be different for each customer and each hour. 
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 Layer 3 

In this layer, smart charging / hydrogen refueling stations send incentive schemes to EVs / FCVs to 

motivate them to change their schedules. Note that these smart stations give a percentage of the reward 

received from the operator ( R ) to EVs / FCVs to encourage them for charging their schedules. Equation 

(c1) models the objective function of third layer. This objective function is the minimization of EVs / 

FCVs costs, which is the difference between their charging costs and the rewards received for 

participating in incentive schemes. The load curve of charging / hydrogen refueling stations after EVs / 

FCVs participation in incentive programs is obtained through Eq. (c2). Constraint (c3) confines the 

minimum and maximum hourly charging / filling of each EV / FCV. Equation (c4) expresses that the 

power / hydrogen injected into each EV / FCV should be equal to its required value. Equation (c5) 

determines the arrival and departure flags of each EV / FCV. Constraint (c6) is provided to guarantee the 

continuity of the charging period. Note that the output of the layer three is new charging schedule for 

EVs / FCVs. Constraints (c7) and (c8) limit the participation of EVs / FCVs in DR schemes. 
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 Layer 4 

In the fourth layer, smart homes, smart charging stations and smart hydrogen refueling stations do their 

scheduling with the aim of minimizing daily costs and taking into account the DR schemes provided by 

the MEMG operator (in layer 2). It should be mentioned that EVs / FCVs charge schedule obtained in 

the third layer is given as input parameters to this layer so that stations can be planned based on them. 

In Eqs. (d1)-(d3), the objective functions of smart homes, smart charging stations and smart hydrogen 

refueling stations are given. As it can be observed, the objective functions of these prosumers consist of 

their operating cost and the reward received for participating in DR schemes. Note that at the end of the 

fourth layer and after determining the values of the variables related to the power exchange of smart 

homes, charging stations and hydrogen refueling stations, their hourly energy shortage / surplus values 

are sent to the MEMG operator. 
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 Layer 5 

In the fifth layer, MEMGs make their market strategies according to the programs received from the 

fourth layer. To this end, each MEMG minimizes the daily costs of its service area through Eq. (e1). It 

should be stated that each MEMG only has access to the information of its area and this objective 



 

function is solved separately for each MEMG in to guarantee the decentralization of scheduling. 

Equations (e2)-(e4) ensure the balance of electrical, heating and hydrogen consumption within the 

service area of each MEMG. The marginal price of each carrier (electricity, heating, hydrogen) is equal 

to the shadow price of its balance equation (e2-e4). Equation (e5) is used to calculate the amount of 

power, heating and hydrogen exchanges in each MEMG. This equation is solved in 10 repetitions for 

each hour, which results in obtaining 10 different values for the exchange variable related to each carrier 

in that hour. Note that putting each of these values in the power balance equations leads to obtaining a 

different marginal price. The functions presented in Eqs. (e6) and (e7) store the values obtained for the 

exchange variables and the marginal prices related to them in new parameters and form the bids. At the 

end of the fifth layer, each MEMG makes a number of buy/sell bids (10 bids per carrier per hour) and 

sends them to the pool market. 
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 Layer 6 

In the sixth layer, the clearing of electricity, heat and hydrogen markets is done by the market manager. 

Equation (f1) shows that the goal of this layer is to maximize the social welfare. Equation (f2) calculates 



 

the amount of power / heating / hydrogen exchange of MEMGs according to the approved bids. 

Equations (f3)-(f5) are provided to model power, heating and hydrogen limitations, respectively. 
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q i t i tC m T T  calculate the injected and consumed heating power in each node, 

respectively. ,
Line

l tP  is the power flow in MEMG boundary lines; , ,
Sell
n v tH  and , ,

Buy
x v tH  are the exported and 

imported hydrogens from / to MEMG, respectively. Constraints (f6) and (f7) limit market transactions 

to bids sent by MEMGs. Finally, constraint (f8) only allows one bid to be accepted for each MEMG at 

time t.  
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 Electricity Network Constraints 

A linear power flow problem is presented in (g1)-(g7) to model the electricity network restrictions [46]. 

In (g1), the voltage magnitude at the end of the line l ( ,j tV ) is calculated, which is a function of the 

voltage magnitude at the beginning of this line ( ,i tV ) and the voltage drop along the line. ,
Line

l tP  and ,
Line
l tQ  

are active and reactive power flows; 0V  is the base voltage of the 118-bus distribution network. 

Constraints (g2) and (g3) are provided to confine the flow of active and reactive powers, respectively. 

Similarly, the upper and lower limits of the voltage are confined by the constraint (g4). The power loss 

is calculated via Eq. (g5) and based on the flow of active and reactive powers. Finally, Eqs. (g6) and (g7) 

respectively guarantee the nodal balance of active and reactive powers. ,
PGrid

ss tP  and ,
Line

l tP  respectively 



 

represent the power purchased from the upstream grid and the power flow of the line l. ,
PGrid
ss i  is a binary 

variable whose value is 1 only for the bus connected to the upstream grid. ,
Line
l i  is the binary variable 

related to the power passing through the line l, whose value can be 1 or -1 according to the flow direction 

[47]. 
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 Heating Network Constraints 

The necessary relations for modeling the heating network are provided in (h1)-(h9) [43]. Note that this 

heating network has supply and return pipes for transferring hot water. The amount of heating power 

injected to each node is calculated by Eq. (h1). CHP, boiler and thermal storage device are components 

that inject heating power into the heating network. ,
s

i tT  and ,
r

i tT  are the temperature of the supply and return 

networks, respectively; HS
qm  and pC  denote the mass flow rate of the pipeline heat medium and specific 

heat capacity of the medium, respectively. Temperature changes in nodes with heating load are 

determined through Eq. (h2). Equations (h3) and (h4) show how to calculate the temperature of the 

supply and return networks, respectively. Constraints (h5) and (h6) are provided to confine the nodal 

supply and return temperatures, respectively. Equation (h7) denotes that the delay time of temperature 

change is a function of flow speed, pipe length and its thermal delay coefficient. delayK , lL  and v  denote 

thermal delay coefficient, pipe length and water velocity, respectively. Finally, Eq. (h8) is provided to 



 

calculate the temperature at the outlet of each pipe. This equation expresses that the outlet temperature 

of each pipe is a function of its inlet temperature, delay time, heating losses. a
tT  represents the ambient 

temperature. 
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 Gas Network Constraints 

Gas network operational restrictions are modeled by (i1)-(i3) [44]. In this regard, constraint (i1) is 

presented to confine the nodal gas pressure. Equation (i2) is provided to calculate the gas flow in each 

pipe. Note that to simplify the simulation, this equation is linearized by the piecewise method. ,i tPr  and 

,j tPr  respectively indicate the pressures at the beginning and end of the pipe; Pipe
lK  is the constant 

coefficient of the pipe, which depends on its physical characteristics. Finally, the nodal balance of the 

gas network is ensured through Eq. (i3). 
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 Hydrogen Transfer Constraints 



 

In Eqs. (j1)-(j11) a linear model for hydrogen transport by truck is introduced. Equation (j1) is the 

limitation of hydrogen extraction from the P2H tank. , ,
Sell
n v tH2  and ,Dch Tank

nH2  are the output hydrogen from 

the P2H tank at time t and the outflow limit of the tank, respectively. , ,
Start
n v tI  is a binary variable that shows 

the time flag when the tanker truck starts to fill. This restriction is also implemented in the case of 

simultaneous injection of hydrogen to several trucks, as shown in (j2). Constraints (j3) and (j4) model 

the restrictions of hydrogen injection from the truck to the P2H tank. , ,
End
x v tI  is a binary variable that 

indicates the flag of the loading completion time. Constraints (j5) and (j6) state that each truck can only 

connect to one source or sink at time t. Since the time of holding the hydrogen market is between 6 am 

and 8 pm, the start and end time of the trucks is limited via constraints (j7) and (j8). Equation (j9) 

determines the completion time of hydrogen injection from the truck to the sink. , , ( )End
x v tI ord t  is the end 

time of hydrogen injection into the sink. , , ( )Start
n v tI ord t  is the starting time of loading the truck tank. Fill

vT , 

,
Travel

n xT  and Empty
vT  are the times required for loading, reaching the destination, and unloading, respectively. 

Note that travel times between different production and consumption points are considered different. 

The times required for loading and unloading the truck tank are calculated by Eqs. (j10) and (j11). 

Constraint (j12) expresses that the amount of hydrogen injected into the truck tank must be less than its 

capacity. Finally, constraint (j13) expresses that total loading and total unloading by trucks during the 

operation period should be equal. 
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 Electrical, Thermal and Gas Storage Devices 

In (k1)-(k6) a formulation for modeling electrical, thermal and gas storage devices is presented [44]. In 

Eqs. (k1) and (k2), respectively, the variables related to the injection and extraction of power / heating / 

gas to / from the storage devices are limited. In order to determine the injection and extraction status, 

,
Ch
x tI  and ,

Dch
x tI  decision variables are used. Equation (k3) denotes how to calculate the energy level of the 

storage at time t. The energy stored in storage devices is confined by constraint (k4). Constraint (k5) 

expresses that injection and extraction operations cannot be performed simultaneously. Equation (k6) 

models the equality of the energy level at the beginning and end of operation. Finally, equation (k7) is 

provided to calculate the operating cost of the storage device. 
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 Distributed Energy Resources 

The operation of distributed energy resources is modeled according to Eqs. (l1)-(l17) . In this regard, gas 

turbines are formulated through the Eqs. (l1)-(l3) [44]. The active power produced by gas turbine g at 

time t is calculated via Eq. (l1). Besides, constraints (l2) and (l3) maintain the active and reactive output 



 

powers of gas turbines in a predetermined range. The function presented in (l4) shows that the wind 

speed determines the output power of wind turbines. Moreover, Eq. (l5) illustrates the direct effect of 

radiation on the output power of solar panels. Figure 4 denotes the feasible operating region of CHP 

units used in this study. Constraints (l6)-(l10) are provided to keep the operating point of CHP within 

this region. In this regard, constraint (l6) keeps the operating point of CHP below the line AB while 

constraint (l7) keeps this operating point above the line BC. Besides, constraint (l8) keeps the CHP 

operating point above the line CD. ,
CHP
h tI  is a binary variable that determines whether CHP is on / off. 

Finally, constraints (l9) and (l10) limit the boundaries of heat and power production in CHP [48]. 

Equations (l11) and (l12), respectively, calculate the gas consumed by the gas turbine and boiler. 

Equation 13 models the relationship between the inlet and outlet of compressors placed on the gas 

network. According to this equation, the compressor receives the gas at its inlet and injects it into the 

network at a higher pressure. Ultimately, Eqs. (l14) - (l18) calculate the operating cost of different 

network components. 
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Fig. 3. Feasible operation area of CHP unit [48] 

 

 P2H Units 

In order to model P2H units, Eqs. (m1)-(m10) are presented. It is noteworthy to state that these units are 

integrated with wind and solar units to get their required power from them. Hydrogen produced in P2H 

units is calculated through Eq. (m1) [49]. H2LHV , ,
El

n tP and El are the lower heat value, the electricity 

consumed by the electrolyzer and its efficiency, respectively. Constraint (m2) imposes a limit on the 

electrolyzer power consumption. Equation (m3) expresses that the level of hydrogen in the current hour 

depends on the injection and extraction of hydrogen to / from the tank, as well as the level of hydrogen 

in the previous hour. Constraint (m4) confines the hydrogen level during operation. Constraint (m5) sets 

the hydrogen level at a fixed value in the first and last hours of the operation. The power balance of P2H 
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units is modeled through Eq. (m6). This equation expresses that the total power produced by wind and 

solar units should be equal to the total power consumed in the electrolyzer and sold to the grid. It should 

be noted that only the surplus power of the mentioned renewable units is sold to the grid. It should be 

stated that only the surplus generation of these renewable units is sold to the grid. Finally, Eq. (m7) 

expresses that the hourly costs of P2H units includes the operating costs of their RGs, and the profit from 

selling hydrogen and power to the grid. 
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 Smart Hydrogen Refueling Stations  

Hydrogen refueling stations are operated according to Eqs. (n1)-(n6). Note that smart hydrogen refueling 

stations do their scheduling with the aim of minimizing daily costs and taking into account the schedule 

of FCVs (obtained from the third layer). These stations supply hydrogen through their small-scale P2H 

units and also purchase from the hydrogen market. Small-scale P2H units located in hydrogen refueling 

stations supply their required power through PV panels and also purchase from the electricity network. 

Equation (n1) calculates the hydrogen produced by small-scale P2H units, whereas constraint (n2) limits 

the power consumption of the electrolyzer. Eq. (n3) determines the hydrogen level of the tank in the 

current hour according to its level in the previous hour ( , 1
H2
r tE  ) and the amount of hydrogen injection and 

extraction to / from it. H2R  and H2T  represent hydrogen constant and internal temperature of the hydrogen 

tank, respectively; H2
rU  and H2M  represent tank capacity and molar mass of hydrogen, respectively. 



 

Constraints (n4) and (n5) confine the hydrogen level during the operation. Equation (n6) expresses that 

the power generated by solar panels can be injected into the electrolyzer or sold to the grid. Finally, Eq. 

(n7) calculates the hourly costs of hydrogen refueling stations. 

,
,

El El
r tEl

r t H2

P
H2

LHV


  (n1) 

 r ,
El El El

r t rP P P   (n2) 

, , 1 , , , , ,
f
r

H2 H2
H2 H2 El Buy Ch DR DR
r t r t r t r t f t r t r tH2 H2

fr

R T
E E H2 H2 H2 H2 H2

U M
 




 
       

 



 (n3) 

,
, 24 , 0 ,

H2 H2 H2 Initial
r t r t r tE E E    (n4) 

,
H2 H2 H2
r r t rE E E   (n5) 

, , ,
s
r

Solar El Sell
s t r t r t

s

P P P


   (n6) 
* , * , * ,

, , , , ,
s f
r r

SRS Solar H2 Market Buy P Market Sell H2 Market Ch
r t s t t r t t r t t f t

s f

C C H2 P H2  
 

    


 (n7) 

 

 Industrial Hydrogen Loads 

Industrial hydrogen loads are modeled by Eqs. (o1)-(o5). It should be noted that every hydrogen 

industrial load is equipped with a hydrogen tank. The level of available hydrogen in the tank is calculated 

via Eq. (o1). ,
Buy
m tH2  and ,

Load
m tH2  are hydrogen injected and extracted to / from the tank, respectively. The 

equality of the level of hydrogen stored in the tank during the first and last hours of operation is 

guaranteed by (o2). The upper and lower limits of the hydrogen stored in the tank are confined by 

constraint (o3). Equation (o4) states that the total amount of hydrogen purchased from trucks must be 

equal to the amount of hydrogen injected into the tank ( ,
Buy
m tH2 ). Finally, the cost of hydrogen purchased 

by the industrial hydrogen load is calculated in Eq. (o5). 
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 Smart Charging Stations  

The relations needed for modeling charging stations are presented in Eqs. (p1) and (p2). These stations 

receive the schedule of EVs as input data and perform their scheduling according to them with the aim 

of minimizing daily costs. Note that charging stations are equipped with PV panels and electrical storage 

devices. Equation (p1) ensures power balance in charging stations. The daily cost of charging stations is 

calculated according to the Eq. (p2), which is the difference between their income and expenses. 
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 Smart Homes 

IoT-based smart homes are modeled according to Eqs. (q1)-(q12). In the proposed model, two types of 

appliances are considered for these houses; Type A and type B. In type A appliances, both operating time 

and load consumption can be controlled, while in type B appliances, only operating time can be 

controlled. , ,
A

u d1 tP  and , ,
B

u d2 tP  denote the load consumption of type A and type B appliances, respectively. 

Equation (q1) states that the load of each smart home consists of a fixed amount ( ,
,
Fix Load

u tP ), the load of 

type A appliances ( , ,
A

u d1 tP ), the load of type B appliances ( , ,
B

u d2 tP ) and the amount of participation in DR 

programs. Constraints (q2) and (q3) ensure the complete operation of these appliances. Constraint (q4) 

is provided to confine the upper and lower borders of the power consumption in the type A appliances. 

Constraint (q5) expresses that if type B appliances are active, their power consumption will be equal to 

a fixed value. The activation of appliances types A and B is determined by the binary variables , ,
A
u d1 tI  and 

, ,
B
u d2 tI , respectively. Constraint (q6) does not allow appliances to be operated outside the allowed range. 

The flags of start and stop times of appliances are determined by Eqs. (q7) and (q8). Constraint (q9) 

prohibits simultaneous start and stop of an appliance. Constraint (q10) prevents interrupting the 

operation of appliances. Equation (q11) is introduced to make sure of the electricity balance in the smart 



 

home. Equation 12 enables the participation of smart homes in thermal DR schemes. Equation (q13) 

calculates the hourly cost of the smart home, which consists of power and heat exchange with the 

networks, the penalty for residents' dissatisfaction (due to deviation from the preferred electrical and 

heating demands), the operating costs associated with the solar panel and the electrical storage device. 

The restrictions presented in (q14) limit the range of changes in electrical and heating loads of smart 

homes. P  and H  are the values of the maximum changes of electrical and heating loads, respectively, 

and their value is equal to 15%. Ultimately, the dissatisfaction factor is calculated through Eq. (q15). Pw  

and Hw  are weight coefficients to determine the importance of electrical and thermal loads and their 

values are assumed to be 1 and 0.9, respectively. 
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 Risk Management Constraints 

In the proposed model, an IGDT-based risk-averse strategy has been used to manage the scheduling risk 

of MEMGs [50]. Equation (r1) specifies the permissible range of fluctuations of the uncertain parameters 

from the prediction value. This range is different for each parameter. In (r2)-(r6) the relationships 

required for risk-averse scheduling of MEMGs (in fifth layer) are presented. As can be seen from these 

equations, in the risk-averse strategy, the operator spends more money to make MEMG scheduling robust 

against uncertainties. To investigate the effect of the risk management technique in the worst-case 

condition, underestimated load and price and overestimated generation are considered. 
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4. Methodology 

Figure 4 provides the details required to implement the proposed six-layer hierarchical model. First, it 

should be noted that the first layer of the proposed model is modeled in MATLAB, while the second to 

sixth layers are modeled in GAMS. The optimization problem is solved in all six layers for the day-

ahead horizon (24 hours) and the time sequence is 1 hour. According to the figure, in the first layer, the 

operator of each MEMG predicts the price of different energies, the load demands, wind speed and solar 

irradiance by a deep learning-based forecaster. The operator makes these predictions based on the 



 

historical data of the last month. In the second layer, the operator designs incentive-based DR schemes 

according to the prediction results and sends them to smart prosumers including smart homes and smart 

charging / hydrogen refueling stations. In the third layer, smart charging / hydrogen refueling stations 

design their own incentive programs based on the DR schemes received from the operator and send them 

to EVs / FCVs. Subsequently, EVs / FCVs determine their new charging schedules according to the 

received incentive programs from stations. In the fourth layer, smart homes and smart charging / 

hydrogen refueling stations perform their scheduling in a decentralized environment and according to 

the designed DR schemes in layer 2. The outcome of the fourth layer is the energy shortage / surplus 

values of smart prosumers, which are sent to the MEMG operator. In the fifth layer, the MEMG operator 

plans its area according to the schedules received from smart prosumers, and subsequently makes buy / 

sell bids to participate in energy markets. Ultimately, in the sixth layer, the operators of MEMGs put 

their bids in pool markets, where the system operator calculates the clearing prices for different markets 

with the aim of maximizing social welfare. Table 1 presents the pseudocode to facilitate the simulation 

of the proposed hierarchical model. 



 

 
Fig. 4. Details of the proposed hierarchical framework 

 

 



 

Table 1. Pseudocode to illustrate the implementation details of the proposed model 

L
ay

er
 1

 

Data Preprocessing 

01. Input all historical data for uncertain parameters. 
      (Energy prices, demands, wind speed and irradiance) 
02. Make single dataset based on input parameters. 
03. Clean dataset and do normalization process. 

Hybrid Feature 
Selection 

04. Removing dissimilar samples and clustering the dataset. 
05. Find relevant features using RReliefF by distance function. 
06. Calculate weight matrix for forget gate, input gate and output gate [Eqs. (a1)-(a3)]. 
07. Calculates the correlation exist between features by mutual information filter. 
08. Find maximal relevant features by merging selected features. 
09. Tune selected features using wrapper feature selection. 
10. Make optimum subset of features. 

Prediction 
11. Determine useful information to update old cells. 
12. Determine information should be included in the output. 
13. Calculate hidden state [Eqs. (a4)-(a6)]. 

L
ay

er
 2

 

Incentive-Based 
DR Schemes 

14. For each prosumer p, do: 
15.    Design DR schemes for applying on electrical, heating and hydrogen 
         networks [Eqs. (b1)-(b3)]. 
16. end 
17. Inform optimal DR schemes to smart prosumers.  

L
ay

er
 3

 

Vehicles 
Participation 

18. For each charging station c, do: 
19.    Design incentive programs to motivate EV users to change their charging schedule. 
20.    Inform incentive programs to EV users through V2I technology. 
21.    Find participation rate of EVs in DR scheme [Eqs. (c1)-(c8)]. 
22.    Save schedules of EVs. 
23. end 
24. For each refueling station r, do: 
25.    Design incentive programs to motivate FCV users to change their charging schedule. 
26.    Inform incentive programs to FCV users through V2I technology. 
27.    Find participation rate of FCVs in DR scheme [Eqs. (c1)-(c8)]. 
28.    Save schedules of FCVs. 
29. end 

L
ay

er
 4

 

Smart Prosumers 

30. For each smart prosumer p, do: 
31.    If, prosumer p is a smart home, do: 
32.       Consider DR schemes provided by the MEMG operator (designed in layer 2). 
33.       Solve scheduling problem of smart prosumer p [Eq. (d1)]. 
34.    else 
35.       load EV’s / FCV’s saved schedules (in layer 3). 
36.       Solve scheduling problem of smart prosumer p [Eqs. (d2)-(d3)].  
37.    end 
38.       Save obtained schedule for smart prosumer p. 
39. end 



 

L
ay
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MEMG Scheduling 

40. For each MEMG m, do: 
41.    Load obtained schedules for smart prosumers. 
42.    For each hour t, do: 
43.       For each buy/sell bid it, do: 
44.          Set exchange variables related to each carrier [Eq. (e5)]. 
45.          Solve scheduling problem of MEMG m with the aim of minimizing daily cost 
               [Eqs. (e1)-(e4)]. 
46.          Find marginal prices of electricity, heating and hydrogen carriers [Eqs. (e6)-(e7)]. 
47.          Define buy/sell bids for hour t based on exchange variables and marginal prices. 
48.       end 
49.    end 
50.end 

L
ay

er
 6

 

Market Clearing 

51. Add all buy/sell bids for each carrier to pool markets. 
52. Find suitable buy/sell bids for each hour to maximize social welfare. 
53. Limit exchange variables of each carrier to accepted offers. 
54. Calculate clearing prices for each market [Eqs. (f1)-(f8)]. 

 

5. Simulation Results 

5.1. Initializing 

The six-layer hierarchical concept proposed in this study is tested in five different case studies (CSs) to 

be validated. Table 2 illustrates the assumptions of these CS. The data of the last months related to wind 

speed, radiation, price and different loads are provided in Figs. 5a-5l, since these data are needed to 

predict uncertain parameters. Fig. 5i shows that the industrial hydrogen load is considered deterministic 

as its behavior is assumed to be constant in all days. Therefore, there is no need to predict the day-ahead 

behavior of industrial hydrogen loads. It can also be seen from Figs. 5d-5f that three different demand 

curves are considered for the charging stations (Types A, B and C). Table 3 provides information 

regarding the location and specifications of the system components. Information on smart charging and 

hydrogen refueling stations are provided in Table 4. Besides, details about the location of smart homes 

and P2H units are presented in Table 5. The information on IoT-based appliances of smart homes is 

tabulated in Table 6. Lastly, the values of other input parameters are also presented in Table 7. 

Table 2. Assumptions of studied cases 

Case 
Studies 

Risk-Neutral 
Strategy 

Risk-Averse 
Strategy 

Applying Integrated 
DR Schemes 

Incentive Schemes 
for EVs / FCVs 

Residents’ 
Comfortable Lifestyle  

1      
2      
3      



 

4      
5      

 
Table 3. Information on location and specifications of system components 

Gas Turbines 

Number 
Connection Points 

Capacity (kW) Owner Electricity 
Grid 

Gas 
Network 

1 18 2 400 MEMG 1 
2 49 12 300 MEMG 2 
3 31 10 350 MEMG 3 
4 55 9 300 MEMG 3 
5 67 8 300 MEMG 4 
6 84 13 400 MEMG 4 
7 90 7 350 MEMG 5 
8 110 15 350 MEMG 6 
9 118 16 300 MEMG 6 

Wind Turbines  

Number Connection Point Capacity (kW) 
Generation Bid 

($/kW$) 
Owner 

1 23 500 0.016 MEMG 1 
2 16 550 0.015 MEMG 2 
3 39 500 0.012 MEMG 3 
4 45 550 0.015 MEMG 3 
5 71 600 0.013 MEMG 4 
6 91 500 0.013 MEMG 5 
7 106 700 0.017 MEMG 6 

Solar Panels  

Number Connection Point Capacity (kW) 
Generation Bid 

($/kW$) 
Owner 

1 5 150 0.018 MEMG 2 
2 35 200 0.021 MEMG 3 
3 83 250 0.019 MEMG 4 
4 97 150 0.015 MEMG 5 
5 114 150 0.018 MEMG 6 

 
Table 4. Information on charging and hydrogen refueling stations 

Smart Charging Stations 

Number 
Connection Point 

(Type) 
Number of EVs 

Components Capacity 
Owner 

Solar Panels (kW) Storage device (kWh) 
1 10 (A) 95 170 60 MEMG1 
2 21 (B) 45 100 50 MEMG1 
3 24 (C) 130 250 80 MEMG1 
4 7 (A) 100 200 60 MEMG2 
5 14 (B) 55 100 50 MEMG2 
6 47 (C) 100 200 60 MEMG2 
7 52 (C) 150 300 100 MEMG2 
8 33 (A) 130 250 85 MEMG3 
9 37 (B) 85 150 50 MEMG3 

10 58 (C) 120 220 70 MEMG3 
11 60 (C) 170 320 100 MEMG3 
12 64 (A) 125 250 80 MEMG4 
13 68 (B) 80 150 50 MEMG4 
14 75 (C) 110 200 60 MEMG4 



 

15 78 (C) 160 310 100 MEMG4 
16 89 (A) 100 200 60 MEMG5 
17 93 (B) 40 80 50 MEMG5 
18 99 (C) 110 210 60 MEMG5 
19 102 (A) 110 200 60 MEMG6 
20 104 (B) 70 140 50 MEMG6 
21 108 (C) 125 250 80 MEMG6 
22 114 (C) 155 300 100 MEMG6 

Smart Hydrogen Refueling Stations 

Number Connection Point Number of FCVs 
Components Capacity 

Owner 
Solar Panels (kW) Hydrogen Tank (m3) 

1 26 125 100 5500 MEMG1 
2 17 70 70 2700 MEMG2 
3 51 130 100 4500 MEMG2 
4 42 135 150 4700 MEMG3 
5 62 90 100 3000 MEMG3 
6 72 90 100 3000 MEMG4 
7 87 80 70 2900 MEMG4 
8 95 125 100 4500 MEMG5 
9 111 100 150 3500 MEMG6 

10 113 110 100 4500 MEMG6 

 
Table 5. Information of P2H units and smart homes 

P2H Units 

Number Connection Point 
Components Capacity 

Owner 
Wind Turbine (kW) Solar Panels (kW) Hydrogen Tank (m3) 

1 27 3200 1500 16000 MEMG1 
2 112 4000 2000 20000 MEMG6 

Smart Homes 

Number 
Connection Point 

Number of Consumers Owner 
Electricity Grid Heating Network 

1 10 – 19 – 20  3 40 – 37 – 109  MEMG1 
2 22 – 25  2 35 – 47  MEMG1 
3 5 – 12  7 32 – 55  MEMG2 
4 8 – 15 – 50 – 52  5 21 – 17 – 184 – 22  MEMG2 
5 46 – 48  4 44 – 72  MEMG2 
6 32 – 34 – 57  9 95 – 47 – 22  MEMG3 
7 37 – 40 – 59 – 61  10 88 – 79 – 18 – 49  MEMG3 
8 44 – 54  8 37 – 87  MEMG3 
9 66 - 78 13 78 – 53  MEMG4 

10 68 – 70 – 79 – 85  11 21 – 94 – 59 – 22  MEMG4 
11 73 – 76 – 86  12 22 – 45 – 77  MEMG4 
12 89 14 54 MEMG5 
13 91 – 92 – 98  15 25 – 61 – 20  MEMG5 
14 94 – 96  20 43 – 29  MEMG5 
15 101 – 103 – 115  17 91 – 82 – 26  MEMG6 
16 105 – 107 – 117  16 33 – 99 – 27  MEMG6 
17 109 – 111  18 102 – 184  MEMG6 

 
 

Table 6. Details required for the operation of smart home appliances 

Appliances Power Usage (kW) Time Window (h) 
Duration (h) 

Min Nominal Max Start End 
Washing Machine 0.6 2.5 3.9 1 11 2 



 

Clothes Dryer 0.2 2.2 3 1 19 1 
Dishwasher 0.1 1.5 3.1 12 19 2 
Refrigerator 0.01 0.1 0.1 1 24 24 
Television 0.1 0.2 0.4 17 24 4 

Lights 0.17 0.17 0.17 5 24 16 
Rice Cooker 0.02 0.02 0.02 10 15 1 

Kettle 0.95 1.89 0.95 5 10 2 
Toaster 0.65 2.6 0.65 6 10 1 

Microwave 0.45 2.7 0.45 11 20 2 
Iron 1.1 1.1 1.1 1 10 1 

 
Table 7. Values of input parameters required for simulation 

Parameter Value Parameter Value Parameter Value 
H2LHV  39.72 (kWh/kg) civ / rv / cov  2 / 10 / 20 (m/s) R  90% 
GLHV  50 (MJ/kg) El  80% Comp  1.2 

H2M  0.002 (kg/mol) Solar  95% pC  4.186 [J/(g.Co)] 
GM  0.829 (kg/m3) STDG  1000 (W/m2) t  1 (h) 

H2R  8.314 [J/(mol.K)] Transfer  6:00 (h) loss  1% 
H2T  313 (K) TransferB  23:00 (h) Ch / Dch  95% 

 
 

 
(a) Wind speed 

 
(b) Solar irradiance 



 

 
(c) Electricity load (Smart Homes)  

(d) Electricity load of the charging station type A 

 
(e) Electricity load of the charging station type B 

 
(f) Electricity load of the charging station type C 

 
(g) Heating load 

 
(h) Hydrogen load (Refueling Stations) 



 

 
(i) Hydrogen load (Industrial Usage) 

 
(j) Electricity market settlement price 

 
(k) Heating market settlement price 

 
(l) Hydrogen market clearing price 

Fig. 5. Historical data associated with uncertain parameters 

5.2. Results for Cases Studies 1 and 2  

In this subsection, the proposed concept is tested in CS1 and CS2. In these CSs, DR schemes, residents' 

comfortable lifestyles, and EVs/ FCVs incentive schemes are not considered in the model, and their 

difference is in the modeling of risk of MEMGs’ scheduling. In CS1, MEMGs do their scheduling 

through the risk-neutral strategy, while in CS2, they use a risk-averse strategy for scheduling. Tables 8 

and 9 respectively tabulate the scheduling results in CS1 and CS2. Examining these tables reveals that 

the operators of MEMGs in CS2 have paid more money to increase scheduling robustness against 



 

uncertainties by adopting the risk-averse strategy. The analysis of the numerical results reflects the 

impact of the risk-averse strategy on the 11.95% increase in the daily costs of MEMGs in CS2. Figures 

6a-6h show the permissible ranges of deviation of uncertain parameters in the MEMG 6 from the 

predicted curves in risk-averse scheduling (CS2). It can be observed from these figures that despite the 

11.95% cost increase in risk-averse scheduling, the uncertain parameters can fluctuate in a safe range 

without imposing more costs on the system. In Figs. 7a-7h, the operating point of the gas turbines placed 

in MEMGs is shown. As can be seen in risk-averse scheduling, gas turbines have a higher operating 

point and have produced more power, which is to increase the robustness of the scheduling against 

uncertainties caused by RGs and demands. 

Table 8. Scheduling results for CS1 

MEMGs 
Daily Costs ($/day) 

Components 
Energy Transactions Smart 

Homes 
Ch. / Ref. 
Stations 

Sum 
Electricity Heating Hydrogen 

MEMG 1 399.59 2962.59 -15000.59 -1310.73 3281.88 3085.38 -6581.88 
MEMG 2 664.63 4269.85 36185.86 4829.2 4241.25 4140.11 54330.9 
MEMG 3 1704.06 9292.97 84866.92 5064.94 9947.04 4557.73 115433.66 
MEMG 4 1190.4 10144.53 -22985.17 4216.27 10898.56 3653.26 7117.85 
MEMG 5 422.16 2541.44 24272.41 3556.19 2844.91 2575.71 36212.82 
MEMG 6 1729.64 8900.66 -40205.59 -1562.22 9400.7 4619.39 -17117.42 

Total 6110.48 38112.04 67133.84 14793.65 40614.34 22631.58 189395.93 

 
 
 
 

Table 9. Scheduling results for CS2 

MEMGs 
Daily Costs ($/day) 

Components 
Energy Transactions Smart 

Homes 
Ch. / Ref. 
Stations 

Sum 
Electricity Heating Hydrogen 

MEMG 1 399.59 3301.08 -13870.38 -1216.29 3281.88 3085.38 -5018.74 
MEMG 2 664.63 4743.23 41513.86 5467.82 4241.25 4140.11 60770.9 
MEMG 3 1704.06 10505.49 93560.65 5719.96 9947.04 4557.73 125994.93 
MEMG 4 1190.4 11642.83 -21401.21 4723.51 10898.56 3653.26 10707.35 
MEMG 5 422.16 2800.42 27085.55 4078.57 2844.91 2575.71 39807.32 
MEMG 6 1729.64 10097.21 -38021.36 -1418.74 9400.7 4619.39 -13593.16 

Total 6110.48 43090.26 88867.11 17354.83 40614.34 22631.58 218668.6 

 
 



 

 
(a) Wind speed 

 
(b) Solar radiation 

 
(c) Electricity load 

 
(d) Heating load 

 
(e) Hydrogen load 

 
(f) Electricity market clearing price 



 

 
(g) Heating market clearing price  

(h) Hydrogen market clearing price 
Fig. 6. The permissible range of deviation from the predicted curves in risk-averse scheduling 

 
 

 
(a) Gas turbines of MEMG 1 

 
(b) Gas turbines of MEMG 2 



 

 
(c) Gas turbines of MEMG 3 

 
(d) Gas turbines of MEMG 4 

 
(e) Gas turbines of MEMG 5 

 
(f) Gas turbines of MEMG 6 

Fig. 7. The operating point of gas turbines: CS1 and CS2 

 

5.3. Results for Case Study 3  

The third case is the same as the second case except that electrical and thermal DR schemes are 

considered in the model. It should be noted that these schemes are designed by the operator of MEMGs 

and according to the behavior of customers, so that different rewards are assigned to them per hour. Table 

10 is provided to show the scheduling results of CS3. According to these results, participation in DR 

schemes has reduced the daily costs of smart homes and MEMGs by 12.35% and 12.20%, respectively, 

which is due to the change in consumption behavior of smart customers. Figures8-8c are presented to 



 

evaluate the consumption behavior of customers in CS2 and CS3. These figures reveal that electrical and 

heating consumptions have decreased in peak periods and moved to valley periods. Figure 8c shows that 

despite the non-implementation of the DR scheme on the gas network, the consumption pattern of this 

network has also improved, which is due to the modification of electrical and heating consumption 

patterns. This point reveals the mutual effects of different networks.  

Figures 9a-9b depict the amount of hydrogen production of P2H units placed in MEMGs. According to 

these figures, P2H units are at their maximum operating point between 10:00 and 17:00, which is due to 

the high production of solar panels connected to them during this period. It can also be seen that the 

operating point of P2H units between 18:00 and 09:00 has dropped significantly, which is due to the 

decrease in the production level of solar panels during this period. Note that P2H units are also connected 

to wind turbines in addition to solar panels to ensure the continuity of their production throughout the 

day and night. Table 11 presents the schedules obtained for hydrogen trucks in CS3. These results 

illustrate that the loading, traveling and unloading times of trucks are different and depend on hydrogen 

exchange contracts. It should be noted that the time required to travel between the hydrogen production 

and consumption points is assumed to be 1 hour while the time required for loading / unloading is 

considered 30 minutes. Moreover, the results of Table 10 reveal that the most trips were made between 

10:00 and 16:00, as the hydrogen level of the hydrogen tanks placed in the consumption points must be 

at a high level to meet the peak demand (between 17:00 and 19:00). 

Figures 10 and 11 compare the marginal prices obtained for electricity and heat in each MEMG in CS2 

and CS3, which reveal that these prices are much lower during peak periods in CS3. Figures 12a and 

12b depict the clearing prices of electricity and heat markets, respectively. These figures reflect that the 

lower marginal prices of MEMGs have led to lower clearing prices in markets. Figures 13a and 13b are 

provided to compare the voltage and gas pressure of MES in CS2 and CS3. These curves are related to 

the peak hour and confirm that the decrease in the demand level in this hour has led to the improvement 

of the voltage and pressure levels in the electricity and gas networks, respectively. Overall, the results 



 

obtained in the third case confirm the significant impact of the implementation of DR schemes on 

improving the technical and economic indicators of MES. 

Table 10. Scheduling results for CS3 

MEMGs 
Daily Costs ($/day) 

Components 
Energy Transactions Smart 

Homes 
Ch. / Ref. 
Stations 

Sum 
Electricity Heating Hydrogen 

MEMG 1 434.41 2835.24 -15133.61 -1416.29 2940.22 3085.38 -7254.65 
MEMG 2 750.36 4207.63 36887.39 5467.82 3776.69 4140.11 55230 
MEMG 3 1848.92 9276.38 84177.29 5719.96 8731.94 4557.73 114312.22 
MEMG 4 1344.09 10387.61 -22788.97 4723.51 9298.57 3653.26 6618.07 
MEMG 5 472.34 2411.31 23393.65 4078.57 2421.25 2575.71 35352.83 
MEMG 6 1927.38 8624.96 -40071.75 -1618.74 8429.78 4619.39 -18088.98 

Total 6777.5 37743.13 66464 16954.83 35598.45 22631.58 186169.49 

 
 

Table 11. Obtained schedules for hydrogen transport trucks 

Origin (Bus) 
Destination (Bus) 

Operation Time 
MEMG 1 (27) MEMG 6 (112) Start of Loading (h) End of Unloading (h) 

  MEMG 1 (16) 9:00 10:00 
  MEMG 2 (17) 15:00 17:00 
  MEMG 2 (51) 16:00 18:00 
  MEMG 3 (42) 12:00 14:00 
  MEMG 3 (62) 15:00 17:00 
  MEMG 4 (72) 11:00 13:00 
  MEMG 4 (87) 16:00 18:00 
  MEMG 5 (95) 12:00 14:00 
  MEMG 6 (111) 8:00 9:00 
  MEMG 6 (113) 11:00 12:00 

 

 
(a) Electricity demand 



 

 

(b) Heating demand 

 

(c) Gas demand 

Fig. 8. Consumption pattern of different carriers: CS2 and CS3 

 



 

 
(a) P2H unit located in MEMG 1 

 
(b) P2H unit located in MEMG 6 

Fig. 9. Hydrogen production rate of P2H units 

 

 
(a) MEMG 1 

 
(b) MEMG 2 

  



 

(c) MEMG 3 (d) MEMG 4 

 
(e) MEMG 5 

 
(f) MEMG 6 

Fig. 10. Marginal prices of electricity in MEMGs: CS2 and CS3 

 
(a) MEMG 1 

 
(b) MEMG 2 

 
(c) MEMG 3 

 
(d) MEMG 4 



 

 
(e) MEMG 5 

 
(f) MEMG 6 

Fig. 11. Marginal prices of heat in MEMGs: CS2 and CS3 

 

 
(a) Electricity market 

 

(b) Heat market 



 

Fig. 12. Clearing prices in different markets: CS2 and CS3 

 

 

(a) Voltage magnitude at 21:00 

 

(b) Gas pressure at 22:00 

Fig. 13. Voltage magnitude and gas pressure in electricity and gas networks: CS2 and CS3 

 

5.4. Results for Case Study 4 

In the fourth case, smart charging and hydrogen refueling stations also participate in DR schemes in 

addition to other customers. To this end, smart stations receive DR schemes from MEMGs operators and 

send incentive schemes to the EV/ FCV users based on them. The results of this case are tabulated in 

Table 12, the analysis of which illustrates a reduction in the daily costs of MEMGs. In addition, the 

results reveal that the daily costs of the stations are also lower in CS4 compared to CS3, which is due to 

the change in the behavior of their EV / FCV users and also receiving rewards from MEMGs operators. 

Figures 14 and 15 depict the programs of smart charging and hydrogen refueling stations in CS3 and 

CS4. As can be seen, providing incentive schemes in CS4 changed the behavior of EV / FCV users, so 

that much fewer vehicles were charged during peak period. Note that the peak demands of hydrogen and 

electricity are at 18:00 and 20:00, respectively. Figures 16a and 16b are provided to analyze the impact 

of changing the behavior of EVs / FCVs on the clearing prices of the electricity and hydrogen markets. 

These figures reveal that the change in the EVs /FCVs charging schedule has led to a reduction in clearing 



 

prices in the electricity and hydrogen markets during the peak period. In addition, Figs. 17a and 17b 

reveal that changing EVs / FCVs schedules has led to improved voltage and gas pressure levels in 

electricity and gas networks, respectively. The increase in the voltage level is due to the decrease in the 

power demand of the smart charging stations during the peak period, while the increase in the gas 

pressure level is due to the decrease in the gas demand of the gas turbines during this period. 

Table 12. Scheduling results for CS4 

MEMGs 
Daily Costs ($/day) 

Components 
Energy Transactions Smart 

Homes 
Ch. / Ref. 
Stations 

Sum 
Electricity Heating Hydrogen 

MEMG 1 429.33 2434.52 -15133.61 -1405.19 2940.22 2594.5 -8140.23 
MEMG 2 739.83 3681.37 36887.39 4191.82 3776.69 3730.37 53007.47 
MEMG 3 1829.31 7904.29 84177.29 4400.66 8731.94 4160.33 111203.82 
MEMG 4 1323.51 8834.5 -22788.97 3557.72 9298.57 3527.6 3752.93 
MEMG 5 465.47 2134.12 23393.65 3142.54 2421.25 2502.13 34059.16 
MEMG 6 1898.29 7669.31 -40071.75 -1668.4 8429.78 4133.36 -19609.41 

Total 6685.74 32658.11 66464 12219.15 35598.45 20648.29 174273.74 

 

 
(a) MEMG 1 

 
(b) MEMG 2 



 

 
(c) MEMG 3 

 
(d) MEMG 4 

 
(e) MEMG 5 

 
(f) MEMG 6 

Fig. 14. The operating point of the charging stations: CS3 and CS4 

 

  



 

(a) MEMG 1 (b) MEMG 2 

 
(c) MEMG 3 

 
(d) MEMG 4 

 
(e) MEMG 5 

 
(f) MEMG 6 

Fig. 15. The operating point of the hydrogen refueling stations: CS3 and CS4 



 

 

(a) Clearing price in the electricity market 

 

(b) Clearing price in the hydrogen market 

Fig. 16. Market-clearing prices in electricity and hydrogen markets: CS3 and CS4 

 

 

(a) Voltage magnitude at 21:00 
 

(b) Gas pressure at 22:00 

Fig. 17. Voltage magnitude and gas pressure in electricity and gas networks: CS3 and CS4 

 

5.5. Results for Case Study 5 

In CS5, smart home scheduling is done considering the residents’ comfortable lifestyle. To this end, the 

upper limit of the residents’ dissatisfaction index is set at 15%. The results of this case are presented in 

Table 13, the evaluation of which shows the increase in the daily costs of smart homes and MEMGs. 



 

Numerical results reveal that the total daily costs of smart homes in CS5 have increased by 6.43% 

compared to CS4, which is due to the reduction of the participation of these customers in DR schemes. 

In other words, limiting the residents' dissatisfaction index does not allow smart homes to deviate much 

from their preferred schedules. Figure 18 compares the residents' dissatisfaction index in Case studies 4 

and 5, which confirms the decrease of this index in CS5. Figures 19a and 19b depict the clearing prices 

of electricity and heat markets in Cases 4 and 5. Analysis of these figures confirms that the comfortable 

lifestyle of smart homes in CS5 has led to increased clearing prices in the abovementioned markets. 

Table 13 presents the schedules obtained for IoT-based appliances of a smart home placed in MEMG 6. 

According to this table, the schedules obtained for this customer in CS1 and CS2 are the same, which is 

due to the absence of DR schemes in these cases. It should be stated that due to the absence of DR 

schemes in these cases, smart homes did not change the operation time of their appliances, and therefore 

all appliances were activated in their preferred time range. The results of Table 14 also reveal that the 

participation of smart homes in DR schemes in CS3 and CS4 has led to the activation of seven appliances 

outside of their preferred time range. Note that the activation of these appliances outside the preferred 

time range of residents leads to an increase in the dissatisfaction index. Lastly, it can be observed from 

Table 13 that in CS5, where residents’ comfortable lifestyle is considered in the model, more appliances 

are activated within the preferred time range of customers compared to CS3 and CS4, and subsequently, 

their dissatisfaction index has decreased. In other words, the results reflect that considering the residents’ 

comfortable lifestyle in CS5, has led to lower participation of smart houses in DR schemes than in CS3 

and CS4. 

Table 13. Scheduling results for CS5 

MEMGs 
Daily Costs ($/day) 

Components 
Energy Transactions Smart 

Homes 
Ch. / Ref. 
Stations 

Sum 
Electricity Heating Hydrogen 

MEMG 1 441.2 2677.4 -13925.46 -1405.19 3147.27 2594.5 -6470.28 
MEMG 2 759.42 3882.79 39069.77 4191.82 4074.78 3730.37 55708.95 
MEMG 3 1885.63 8379.18 90103.17 4400.66 9286.32 4160.33 118215.29 
MEMG 4 1360.27 9510.9 -20749.51 3557.72 9952.07 3527.6 7159.05 
MEMG 5 480.66 2334 25624.39 3142.54 2560.62 2502.13 36644.34 



 

MEMG 6 1960.17 8358.81 -36315.95 -1668.4 8866.91 4133.36 -14665.1 
Total 6887.35 35143.08 83806.41 12219.15 37887.97 20648.29 196592.25 

 

 
Fig. 18. Dissatisfaction level of smart homes residents: CS4 and CS5 

 
(a) Electricity market 

 
(b) Heating market 

Fig. 19. Clearing prices in different markets: CS4 and CS5 



 

Table 14. The programs obtained for the appliances of a smart home in the MEMG 5 

Appliances 
Preferred Time (h) 

CS1 CS2 CS3 CS4 CS5 
Start End 

Washing Machine 10 11 10-11 10-11 1-2 1-2 10-11 
Clothes Dryer 12 13 12 12 3-4 3-4 13 
Dishwasher 15 16 15-16 15-16 16-17 16-17 11-12 
Refrigerator 1 24 1-24 1-24 1-24 1-24 1-24 
Television 18 22 17-20 17-20 17-20 17-20 17-20 

Lights 8 24 8-23 8-23 8-23 8-23 8-23 
Rice Cooker 12 13 13 13 14 14 12 

Kettle 7 8 7-8 7-8 6-7 6-7 7-8 
Toaster 7 7 7 7 7 7 8 

Microwave 11 13 12-13 12-13 21-22 21-22 20-21 
Iron 6 6 1 1 1 1 8 

 

6. Conclusion 

A hierarchical framework for simultaneous management of fully competitive electricity, heat and 

hydrogen markets considering smart prosumers was introduced in this work. In the proposed model, 

MEMGs made their market strategy in a decentralized framework and according to the schedules of 

smart prosumers including smart homes, smart charging stations and smart hydrogen refueling stations. 

The proposed MILP model was tested under several case studies, and its noticeable results are 

summarized as follows: 

 An IGDT risk-averse strategy was utilized to manage the scheduling risk of MEMGs, and the 

simulation results revealed that this strategy secured the scheduling against uncertainties despite 

increasing the daily costs by 11.95%. The results mirrored that in the risk-averse scheduling, 

uncertain parameters can fluctuate in a safe area without imposing more costs on the system. 

 A novel prediction-based mechanism for designing DR schemes adapted to prosumers behavior 

was presented, which implementation on electrical and heating loads reduced the clearing prices 

of electricity and heat markets by 17.5% and 8.78% during peak hours, respectively. The results 

also confirmed that modifying the behavior of EVs / FCVs through incentive schemes improved 

the technical and economic indicators of MES. 



 

 The results revealed that smart homes can provide significant flexibility for MES by controlling 

their IoT-based appliances. Although the results showed that providing a comfortable lifestyle 

for these customers caused a relative increase in the clearing prices of electricity and heat 

markets. 

 A transport system-based structure for hydrogen exchange between MEMGs was introduced, and 

simulation results proved its ability to be implemented in modern competitive markets. Analysis 

of the results also illustrated that this system handled all hydrogen exchanges during the peak 

period. 

Overall, the results substantiated that the proposed hierarchical concept, by taking advantage of the 

potential of smart prosumers, has high flexibility for optimal and sustainable management of the 

competitive markets of electricity, heat, and hydrogen. 
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