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 Resistome size in the reservoir was comparable to that in sewers 

 Microbial assembly process significantly influenced dynamics of resistome 

 Putative resistant bacteria were at the same abundance across the catchment 

 Putative resistant pathogens greatly contributed to the transmission of ARGs 

 Intragenomic ARGs frequently transferred to microbial assembly-dominant taxa 
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Abstract 30 

Antibiotic resistance genes (ARGs) in drinking water sources suggest the possible presence of 31 

resistant microorganisms that jeopardize human health. However, explanations for the presence 32 

of specific ARGs in situ are largely unknown, especially how their prevalence is affected by 33 

local microbial ecology, taxa assembly and community-wide gene transfer. Here, we 34 

characterized resistomes and bacterial communities in the Taipu River catchment, which feeds 35 

a key drinking water reservoir to a global megacity, Shanghai. Overall, ARG abundances 36 

decreased significantly as the river flowed downstream towards the reservoir (P < 0.01), 37 

whereas the waterborne bacteria assembled deterministically (|βNRI| > 2.0) as a function of 38 

temperature and dissolved oxygen conditions with the assembly-dominant taxa (e.g. 39 

Ilumatobacteraceae and Cyanobiaceae) defining local resistomes (P < 0.01, Cohen’s D = 4.22). 40 

Bacterial hosts of intragenomic ARGs stayed at the same level across the catchment (60 ~ 70 41 

genome copies per million reads). Among them, the putative resistant pathogens (e.g. 42 

Burkholderiaceae) carried mixtures of ARGs that exhibited high transmission probability 43 

(transfer counts = 126, P < 0.001), especially with the microbial assembly-dominant taxa. 44 

These putative resistant pathogens had densities ranging form 3.0 to 4.0 × 106 cell/L, which 45 

was more pronouncedly affected by resistome and microbial assembly structures than 46 

environmental factors (SEM, std-coeff β = 0.62 vs. 0.12). This work shows that microbial 47 

assembly and resistant pathogens play predominant roles in prevelance and dissemination of 48 

resistomes in receiving water, which deserves greater attention in devisng control strategies for 49 

reducing in-situ ARGs and resistant strains in a catchment. 50 

Keywords: antibiotic resistance, community-wide gene transfer, putative resistant pathogen, 51 

metagenome binning, microbial assembly, water supply catchment  52 
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Abbreviations 54 

 Antibiotic resistance (AR) 55 

 Aminoglycosides (Agy) 56 
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 Beta(β)-lactams (Bla) 60 

 Chloramphenicol (Cp) 61 

 Horizontal gene transfer (HGT) 62 

 Fecal coliform (FC) 63 

 Fluoroquinolones (Fq) 64 

 Macrolides (Mls) 65 

 Metagenome-assembled genomes (MAGs) 66 

 Mobile genetic elements (MGEs)  67 

 Open reading frames (ORFs) 68 
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 Polymerase chain reaction (PCR) 70 
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 Multidrugs (MDR) 72 

 Rifamycin (Rmc) 73 

 Sulfonamides (Sa) 74 

 Tetracyclines (Tc) 75 
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1. Introduction 77 

Antibiotic resistance (AR) is natural and ancient (D'Costa et al. 2011). As opposed to dogma 78 

that views the presence of antibiotic resistance genes (ARGs) in a place as the consequence of 79 

selective pressures, growing literature suggests that the microbial ecological context and niches 80 

may be more important to local ARG prevalence in natural and anthropogenic settings 81 

(Mahnert et al. 2019, Pehrsson et al. 2016). However, the niche-influenced assembly depend 82 

on various factors, such as microbial phylogenetic and taxonomic structures in human gut 83 

(Smillie et al. 2011), salinity in soil (Tan et al. 2019), microplastics in rivers (Wang et al. 2020), 84 

and partiles in the air (Xie et al. 2019). Strong evidence further suggests that the spread of 85 

ARGs is affected by microbial and environmental variables related to mobile genetic elements 86 

(MGEs) (Quintela-Baluja et al. 2021, Su et al. 2015, Wu et al. 2019).  87 

As such, different studies have broadly applied this ‘microbe-environment-MGE’ triad co-88 

driven theory to explain the dynamics of resistomes in riverine, atmospheric, soil and 89 

wastewater environments (Gibson et al. 2015, Quintela-Baluja et al. 2019, Zhu et al. 2021, 90 

Zhu et al. 2017), and even in pristine Arctic areas (McCann et al. 2019). However, the specific 91 

roles of microbial assembly featured key taxa (Munck et al. 2015), pertinent environmental 92 

conditions (Sun et al. 2020), and MGE-mediated gene transfer (Quintela-Baluja et al. 2021) 93 

playing in local resistomes have yet to be holistically analyzed (Larsson et al. 2018, Winter et 94 

al. 2021). 95 

A flowing water supply catchment contains a series of distinctive microbial structures (Chen 96 

et al. 2020) and spatial ecosystems (Maavara et al. 2017), and is a useful platform for tracking 97 

ARG distribution and analyzing ‘microbe-environment-MGE’ co-driven mechanisms (Amos 98 

et al. 2018). A recent study showed that representative taxa groups in different compartments 99 

of a wastewater network imposed different selection effects on resistomes across a ‘sewer to 100 



river’ continuum (Quintela-Baluja et al. 2019). But notably, to detect and analyze the dynamics 101 

of these niche compartment-specific bacterial taxonomic assemblages, few studies have 102 

included ecological assembly-based models (Ning et al. 2020), nor considered the in-situ 103 

microbial ecology driven environment-filtering effects (Yan et al. 2016). 104 

MGEs can be useful biomarkers for AR in water catchments (Quintela-Baluja et al. 2021). 105 

MGE-laden ARGs, frequently associated with human allochthonous pathogens (Forsberg et al. 106 

2012), often relate greater horizontal gene transfer (HGT) potential (D'Costa et al. 2006). 107 

Therefore, a generally greater prevalence of waterborne ARGs and MGEs exist in places with 108 

greater anthropogenic impact (Elder et al. 2021, Liang et al. 2019). However, clinically 109 

important ARGs (e.g blaCTX-M and mcr-1) hosted by potential pathogens, like Enterobacteria, 110 

Aeromonads, and V. cholera, have also been observed in places where human impacts are less 111 

apparent (Chen et al. 2019, Dang et al. 2020, Rysz et al. 2013, Walsh et al. 2011). This prompts 112 

the speculation of a continuous ARG-transfer between the microbial assembly-dominant taxa, 113 

which constantly exist in the ecosystem at high abundances, and human-associated 114 

microbiomes (Forsberg et al. 2014, Hassan et al. 2021, Ning et al. 2020). However, between 115 

human pathogens and assembly-dominant taxa, the intragenomic transfer of ‘ARG - MGE’ 116 

matching pairs have not been evidenced at the community-wide scale yet, especially in the 117 

water supply catchment. 118 

Here, we study the main drinking water supply catchment of Shanghai, the largest city in China, 119 

to better understand how microbial dynamics and environmental drivers impact in-situ 120 

resistomes across a catchment. Using high throughput metagenomic sequencing, microbial 121 

community assembly modeling, genome binning related bioinformatics and cell quantification 122 

techniques, three goals were achieved: i) detecting and analyzing the hypothesized dominance 123 

of microbial assembly over the dynamics of resistome; ii) elucidating the hypothetical ARG 124 



transfer between the microbial assembly-dominant taxa and putative human allochthonous 125 

pathogens via genome-warranted approaches; and iii) quantifying density of putative 126 

pathogenic ARG-hosts and estimating potential hazards exposed to the catchment users across 127 

seasons and geographic gradients. 128 

2. Materials and methods 129 

2.1 Study areas, sampling, and measurement of physicochemical parameters 130 

There were six sampling sites in the studied watershed (Fig. 1a), including Taihu Lake pumping 131 

station (TP) as the origin; Pingwang Station (PW), Lili Station (LL), and Luxu Station (LX) in 132 

Taipu River; and the inlet (JRi) and outlet of Jinze Reservoir (JRe), which provides drinking 133 

water to 24 million Shanghai citizens. The sampling campaign was commenced in parallel with 134 

Taihu Basin Management Authority’s transboundary water diversion from Taihu Lake in 135 

Jiangsu Province to the downstream Taipu River towards Shanghai, from June to September 136 

2019 (summer) and November 2019 to February 2020 (winter). A total of 180 individual 137 

samples (5 replica×36) were collected along the water catchment. At each sampling site, five 138 

replicas (200mL) within a 3 - 5 km sampling region (0.5 to 1.0m in depth) were collected by 139 

using a Schindler sampler and then were combined to a sterile PE bottle (1L) before being 140 

transferred in the lab for vacuum filtration. Specific information, including sample pretreatment, 141 

sampling date, and exact locations are provided in Supplementary Information (SI-1).  142 

The pretreated water samples (after settling) were used for the measurement of COD, BOD5, 143 

total nitrogen, total phosphorus, and nitrate using an automated discrete analyzer (SmartChem-144 

200, Italy). Handheld instruments were used to detect temperature, pH (PH-Scan, Shanghai), 145 

and dissolved oxygen (DO) (HI9147, Hanna, Italy) on site. Fecal coliform (FC) levels were 146 

measured for pretreated water samples on the sampling day, according to previously published 147 



culturing methods (Lamba et al. 2017). 148 

2.2 DNA extraction, 16S rRNA gene and metagenomic sequencing 149 

DNA was extracted from vacuum-filtered biosolids collected using sterile 0.22-mm membrane 150 

disc filters (Supor® Membrane, Pall Co., USA). Extraction was performed using Power Soil 151 

DNA extraction kits (MOBio, USA) and a Ribolyzer (FastPre-24, MP, US), according to 152 

manufacturers’ suggested protocols. The quality checked samples were sent to Personal 153 

Biotech Company Ltd. (Shanghai, China) for library construction (size = 250 bp) and then were 154 

applied for 16S rRNA gene (V4 region) amplicon and metagenomic sequencing on the platform 155 

of Illumina-NovaSeq (Illumina, USA). The raw sequences were submitted to The National 156 

Center for Biotechnology Information (NCBI). The sequence read archive (SRA) can be 157 

retrieved via the accession numbers PRJNA730720 (metagenomics sequences) and 158 

PRJNA767498 (16S rRNA sequences). Details of primers, library construction and 159 

metagenomic sequencing were provided in Supplementary Information (SI-2) 160 

2.3 Profile of resistome, dynamics of bacterial community and predicted function 161 

Raw data were initially processed using FASTP to remove low-quality (>= Q20, length > 150bp) 162 

sequencing reads, which were analyzed by ARG-oap (v2.3) pipelines to map the mosaic of 163 

resistome (id = 80%, threshold value = 10-e10). The relative abundances of detected ARGs 164 

were normalized to the copy numbers of (per) identified 16S rRNA genes showing the 165 

prevalence of genes (Yang et al. 2016). All samples’ 16S rRNA amplicon sequences were 166 

analyzed by Qiime2-DADA2 (v2020.11) to generate sequence variant (ASV) tables, the 167 

taxonomy of which were assigned by using the closed reference approach, against the trained 168 

SILVA 138 database. The rarefied BIOM table was further processed to remove the ASVs 169 

occurring in less than 10% of the samples (n = 4) with frequencies no less than one. To analyze 170 



the microbial community assembly structures relative to environmental filtering effects, 171 

phylogenetic bin-based null model analysis (iCAMP) was utilized (Ning et al. 2020); the bin 172 

size and ses.cut (βNRI/NTI) thresholds of each season group were set as 24 and 1.96, 173 

respectively. The taxonomic groups mostly contributing to the iCAMP-identified process were 174 

regarded as the assembly-dominant taxa (significant phylogenetic signal < 0.05). The 175 

metabolic functions of the microbial community were predicted by using FAPROTAX 176 

pipelines that were constructed with a database specific to prokaryotic taxa (Louca et al. 2016). 177 

The details of feature table filtering and rarefication and the parameters invoked in iCAMP and 178 

metabolic function prediction pipelines were provided in Supplementary Information SI-3. 179 

2.4 Construction of non-redundant metagenome-assembled genomes (MAGs) 180 

The clean paired-end metagenomics reads (~20 Gb/sample) were grouped by sampling periods 181 

(season-resolved, Table S2) and co-assembled using MEGAHIT v1.13 with default parameters 182 

that merge complex bubbles of length <= l*kmer_size (20) and similarity = 0.95. These co-183 

assembled contigs were clustered to recover draft genomes (v1.3.2, length >= 1500 bp) using 184 

MaxBin and metaBAT (iterations = 50) as suggested by MetaWRAP (Uritskiy et al. 2018). The 185 

generated draft genomes were refined to produce high-quality genomic bins using the built-in 186 

refining module of MetaWRAP (> 55% completeness & < 5% contamination). All bins were 187 

further processed with rapid pairwise genome comparisons at a 95% average nucleotide 188 

identity (ANI) threshold (Olm et al. 2017) to dereplicate the redundant MAGs (alignment 189 

fraction > 10%, greedy algorithms). The obtained non-redundant metagenome-assembled 190 

genomes (MAGs) were annotated for taxonomic classification (alignment > 70%) using 191 

Genome Taxonomy Database (GTDB, v1.4.0) as previously described (Wu et al. 2022).  192 



2.5 Identification of intragenomic ARGs and putative pathogenic hosts 193 

The co-assembled scaffolds of all MAGs were initially processed by Prodigal (v2.6.3; -c -p 194 

meta mode) to predict open reading frames (ORFs), which was processed by CD-HIT (v4.6, id 195 

= 90%, cov = 90%). ABRicate pipelines (v0.9.9; -id 70%, -qcov 75%) were used to detect the 196 

human virulent factors and pathogens (vfdb_setB_nt.fas and PATRIC v3.6.12) and ARG 197 

marker genes (SARG v2.2) (Arango-Argoty et al. 2018, Liu et al. 2019a, Wattam et al. 2014, 198 

Yin et al. 2018). An assembled MAG with queried scaffolds showing the coexistence of 199 

intragenomic ARGs and virulent/pathogenic marker genes was regarded as the putative 200 

resistant pathogen (Liang et al. 2019).   201 

2.6 Estimation of HGT potential and community-wide ARGs transfer  202 

The differences in HGT potentials of intragenomic ARGs between putative resistant pathogens 203 

and other MAGs were analyzed according to previously published methods with a few 204 

modifications (Li et al. 2017). In brief, locations of ARGs and MGEs in scaffolds of MAGs 205 

were retrieved from the DIAMOND blastx-mode output (alignment =1, -id 70%, -qcov 75%), 206 

with respective to the referencing databases of SARG v2.2 and MEGs90 downloaded from the 207 

deepARG-DB (Arango-Argoty et al. 2020, Buchfink et al. 2015). The minimum genetic 208 

distance (minDis) pairs of ‘ARGs – MGEs’ in the target genomes were calculated. After that, 209 

we randomly selected the bacterial MAGs in three groups including putative pathogenic, non-210 

pathogenic, and all MAGs. This random sampling procedure was repeated 100,000 times. The 211 

resulting permutation table of minimum distance pairs with a stepwise increase of genetic 212 

distance intervals (increment = 50 bp) was used to calculate the probability of the selected 213 

ARGs encountering MGEs (Forsberg et al. 2014). 214 

All the generated non-redundant ARG-carrying MAGs were applied to MetaCHIP (Song et al. 215 



2019), which invokes Prodigal generated- ORFs and BLASTx to align and annotate ARGs 216 

(alignment to SARG v2.2) and MGEs as suggested (length > 200bp, -id 90%, -qcov 75%, 217 

threshold value = 10-e7). The HGT of ‘ARG – MGE’ matching pairs disseminated across the 218 

candidate MAGs were predicted via the best-match approach (-BP mode) with taxonomic 219 

hierarchy ranks from genus to phylum (-r pcofg). The details of HGT estimation methods and 220 

calculating pipelines were provided in Supplementary Information (SI - 3). 221 

2.7 Quantification of MAGs and potential hazards 222 

The Quant_bin module (default parameters) in the MetaWRAP was used to calculate the 223 

relative abundances of constructed MAGs, which were presented in genome copies per million 224 

clean sequencing reads (GPMR). The absolute cell counts in the water samples were 225 

determined by using a flow cytometer (CytoFLEX, Beckman Coulter, USA), according to the 226 

optimized protocols (Nescerecka et al. 2016). As suggested by the previous study (Liang et al. 227 

2019), the cell density of the MAGs (copy/mL-water) in each sample was quantified according 228 

to Eq. 1, where Map.r referred to the percentage of reads in a sample successfully mapped onto 229 

the non-redundant MAG reference (BAM files) using Bowtie2 (Langmead and Salzberg 2012); 230 

The portion (and number) of reads in each sample’s sequence files generally ranged from 60% 231 

to 75% (Table S2); Ab.i refers to the relative abundance of a target MAG (GPMR); and i 232 

represented the total number of MAGs.  233 

𝑀𝐴𝐺. 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
Absolute cell counts×Map.r×𝐴𝑏.𝑖

∑ 𝐴𝑏.𝑖𝑛=𝑖
1

  Eq. 1 234 

The relative abundance (coverages in the host MAGs) of intragenomic ARGs (ARG-cov/ppm) 235 

were calculated according to Eq. 2, where Ab.mag referred to the relative abundance of the MAG 236 

quantified by Quant_bin module (GPMR) and Cov.g denoted the mean coverage of target ARG 237 

located on the identified MAGs’ scaffolds; and the mean coverage values of the ARG-238 



associated scaffolds were calculated via built-in pipelines (pileup.sh) of BBmap (v38.87). 239 

𝐼𝑛𝑡𝑟𝑎. 𝐴𝑅𝐺 =  Ab. mag × Cov. g Eq. 2 240 

The comparison of overall potential AR risks (a relative-risk index generated) of the resistome 241 

among the samples was initially assessed using MetaCompare (Oh et al. 2018). The FASTP-242 

filtered clean metagenomic sequences were processed to calculate the abundance and mobility 243 

of environmental resistomes and their hosts’ pathogenicity with default parameters (10e−10, 244 

id >60%, length >150 bp). The details of calculation of MAGs’ relative abundances, reads 245 

mapping and waterborne cell quantification were provided in Supplementary Information (SI 246 

– 2 & SI – 3). 247 

2.8 Data processing and statistics  248 

The data were log-transformed or scaled to improve sample normality or fitness to specific 249 

methods, such as the pairwise t-test and ANOVA test. For datasets that did not fit normal 250 

distributions, non-parametric methods were used like Wilcoxon rank-sum test and Kruskal-251 

Wallis rank-sum test. Descriptive analyses of the collected data were performed in Excel 2010 252 

(Microsoft Corp. USA), while the advanced statistical analyses (e.g. Mantel test, Procrustes 253 

analysis, partitioning of variations, iCAMP-modeling) were performed using R 4.0.2 254 

(https://cran.r-project.org/). The statistical significance was defined at a 95% confidence 255 

interval, with a P-value of < 0.05 (two-tailed), unless stated otherwise. The details of used 256 

statistical methods and installed packages in R were explained in detail in Supplementary 257 

Information (SI - 3). 258 

https://cran.r-project.org/


3. Results and discussion 259 

3.1 Profile and prevalence of the resistomes across the catchment 260 

The Taipu River originates from Taihu Lake in Jiangsu Province and flows to the Jinze 261 

Reservoir in Shanghai (Fig. 1a). Along this path, normalized ARG levels in bacterial 262 

communities decrease significantly (Fig. 1b) from -1.09 ± 0.17 to -1.41 ± 0.08 263 

(log10(ARGs/16S rRNA gene) based on all samples collected over the study (Two-way 264 

ANOVA, F = 12.1, Psite < 0.01; Pseason = 0.12). This decreasing trend from upstream to 265 

downstream is probably related to the reservoir resettlement (Chen et al. 2019) and strict 266 

management of the neighboring watershed, where no sewage outfalls and substantially fewer 267 

factories are located (Fig. 1a). Nevertheless, the mean relative ARG abundances in the Jinze 268 

Reservior resistome was -1.30 ± 0.15 log10(ARGs/16S rRNA gene), which is in the same 269 

proportional range as municipal wastewater or activated sludge (Fig. S1). Futhermore, the 270 

prevalence of specific ARGs is particularly concerning (Fig. S2), which encoded resistances to 271 

medical antiseptics (quaE, -2.70 ± 0.18 log10(ARGs/16S rRNA gene)) and frontline antibiotics 272 

used in clinical settings (Buffet-Bataillon et al. 2012, Petrovich et al. 2020), such as 273 

carbapenem (blaOXA; -3.05 ± 0.50 log10(ARGs/16S rRNA gene)), rifamycin (Arr; -3.55 ± 0.22 274 

log10(ARGs/16S rRNA gene)), vancomycin (vanR/S; -3.49 ± 0.30 log10(ARGs/16S rRNA 275 

gene)), and polymyxin (mcr-1/5; -4.41 ± 0.38 log10(ARGs/16S rRNA gene)). These ARGs may 276 

stem from the Taipu River’s upstream quayside aquaculture farms (Fig. 1a), which often  277 

misuse antimicrobials and discharge their wastewater along with the water diversion process 278 

(Hong et al. 2018, Jiang et al. 2013, Perry et al. 2019, Su and Chen 2020).  279 

3.2 Resistomes determined by microbial assembly and environmental filtering  280 

Resistomes across the catchment were comprised of 103 types of ARGs (Fig. S2), which were 281 



relatively consistent at our sites during summer and winter smapling (Adonis2, P > 0.05, Fig. 282 

S3). The microbial community also exhibited few variations as the Taipu River flowed 283 

downstream (Adonis2, Psite = 0.44). The observed consistency of site-specific resistomes and 284 

microbiomes suggested a close association between ARGs and resident bacteria in the 285 

catchment (Procrustes tests, M2 = 0.78, R = 0.46, P = 0.002, Fig. S4).  286 

To investigate this relationship from a microbial ecological perspective (Ning et al. 2020), 287 

season-differentiated microbial assembly processes were simulated (Adonis2, Pseason = 0.01). 288 

As shown in Fig. 1c, bacteria in the studied catchment appeared to assemble in a homogeneous 289 

selection-dominated approach (HoS, 48% ~ 53%) in both summer and winter samples (ses.cut 290 

= 1.96, iCAMP), irrespective of variations in geographic locations (One-way ANOVA, P = 291 

0.17). Among the identified microbial assemblages (Table S3 & Table S4), Microcystis (26.4% 292 

in abundance), Cyanobiaceae (10.6%), Ilumatobacteraceae (8.9%), and Burkholderiales sp. 293 

(0.75%) mostly contributed to the HoS process in summer (~ 85%n, βNRI = -2.5) and winter 294 

(~ 90%, βNRI = -2.2, Fig. 1c). Notably, these assembly-dominant taxa not only exhibited 295 

significant correlations to the resistome (Bray-Curtis dissimilarity indices distance, P < 0.001, 296 

Fig. 2a), but also imposed greater impact on ARGs compared with whole microbial taxa 297 

(Cohen’s D = 4.22 vs.3.39, P < 0.001, Fig.2a).  298 

The observed high importance (~ 50%) of HoS in the bacterial assembly process (|βNRI| > 2.0, 299 

Fig. 1c) suggests substantial environmental filtering effects on microbial assemblages (Xu et 300 

al. 2020, Yan et al. 2016). Here, the forward-selected environmental factors (rda, AIC = 278.5, 301 

P < 0.05, Table 1), including temperature and DO, significantly related to the deterministic 302 

assembly of the microbial community (P < 0.05, Fig.2b). Decreases in temperature and DO 303 

levels (Table 1) mirroed microbial responses, especially photoautotrophic processes, such as 304 

the oxygenic and photosynthetic pathways of Cyanobacteria (LEfSe, LDA = 3.0, P < 0.01, Fig. 305 



2c & Table S6). Negative effects of low temperature and DO have been shown for the 306 

planktobacteria, including Microcystis and Ilumatobacteraceae (Mo et al. 2018, Zakharova et 307 

al. 2021), which also appear to be resistome-determining taxa in our systems (Cohen’s D = 308 

4.22, P < 0.01, Fig. 2a). Environmental filtering and related microbial metabolic responses had 309 

a comparable infulence to that of assembly-dominant taxa on ARG demongraphics in the 310 

studied catchment (VPA, 12 - 15%, Table S5).  311 

3.3 Seasonally distributed putative resistant pathogens and intragenomic ARGs 312 

There were 266 and 289 non-redundant MAGs obtained from summer and winter samples, 313 

respectively, around 20% of which were identified as ARG-hosting bacteria (Fig. 3). Overall, 314 

these ARG hosts were significantly more abundant across the catchment in summer than in 315 

winter (76.8 ± 9.08 vs. 59.0 ± 5.69 GPMR, Pair-wise t-test, P < 0.01) and generally belonged 316 

to the phyla of Proteobacteria, Bacteroidota and Actinobacteria. Among them, most putative 317 

pathogens were Mycobacteriaceae (6.83 ± 0.54 GPMR) and Burkholderiaceae (19.7 ± 6.51 318 

GPMR), of which the distribution and concentrations did not significantly vary across sampling 319 

sites (One-way ANOVA, P > 0.05; ADONIS, P = 0.1, Fig. S5). The predominant subtaxon 320 

species, such as M. mycobacterium spp., and B. ramibacter spp. and Limnohabitans spp. (Fig. 321 

3a), are frequently associated with human AR infections (Fang et al. 2015, Fang et al. 2019). 322 

In winter samples (Fig. 3b), MAGs of putative resistant pathogens were more dispersed across 323 

Actinobacteria phylum, including Aeromicrobium, Nocardioides, and Phycicoccus. These taxa 324 

are known to have ill effects on human dermal and intestine health (Singleton et al. 2022, Zhang 325 

et al. 2022). However, the predominant putative resistant pathogens still primarily belonged to 326 

Burkholderiaceae (12.9 ± 3.83 GPMR) and were evenly distributed across the river (One-way 327 

ANOVA, P > 0.05).  328 

Intragenomic ARGs of putative pathogens were detected with significantly higher diversity 329 



and abundance than their counterparts located in other MAGs during the whole period of study 330 

(Kruskal-Wallis test, χ2 = 10.6, P < 0.01). In summer samples (Fig. 3a), Burkholderiaceae and 331 

Mycobacteriaceae MAGs hosted more than eight types of ARGs, encoding resistance to 332 

aminoglycosides, rifamycin, extended-spectrum β-lactams and macrolides (1.5 – 2.5 333 

log10(ARG-cov/ppm)). In contrast, in winter samples, the predominant constituents of 334 

intragenomic resistome were bacitracin (~ 2.5 log10(ARG-cov/ppm)), rifamycin (~ 1.5 335 

log10(ARG-cov/ppm)), and aminoglycoside (~ 1.0 log10(ARG-cov/ppm)) ARGs (Fig 3b), most 336 

of which were associated with Burkholderiaceae spp., such as B. limnohabitans and 337 

Rhizobacter spp.  338 

3.4 Importance of putative pathogens to community-wide HGT of ARG 339 

The observed larger and diverse intragenomic ARGs in putative pathogenic bacteria may result 340 

from frequent HGT of ARGs (Zhu et al. 2013). As shown in Fig. 4a, the normalized 341 

intragenomic MGE levels, often an approximation of HGT potential (Lamba et al. 2017), were 342 

significantly correlated with intragenomic ARGs across all samples (Pearson, P < 0.05). 343 

Importantly, MGEs with apparent links to putative pathogenic MAGs exhibited stronger linear 344 

correlations with intragenomic ARGs, suggesting that HGT of ARGs within in situ river 345 

microbial communities might be more likely to proceed via resistant pathogenic bacteria 346 

(Cohen’s D effect size = 0.84 vs. 0.41, P < 0.001, Fig. 4a). This high HGT potential of ARGs 347 

in putative pathogens was seen in both summer and winter samples (Cohen’s D effect size > 348 

0.6, P < 0.001, Fig. 4a). Moreover, as shown in Fig. 4b, ARGs associated with pathogens had 349 

relatively short genetic distancesto MGEs on their genetic context contigs (e.g. < 3.5 kb), which 350 

is consistent with the previous work that showed greater HGT potential of ARGs in human 351 

pathogens compared with overall MAG assemblages (Forsberg et al. 2014).  352 

The importance of pathogens to dissemination of ARGs was further suggested by a community-353 



wide HGT analysis of all ARG hosting MAGs using the MetaCHIP (Song et al. 2019). Fig 5a 354 

shows that HGT of ARGs more frequently associated with the putative resistant pathogens, 355 

irrespective of their roles (i.e. donor vs. recipients) in the HGT processes (Kruskal-Wallis test, 356 

χ2 = 17.5, Ppath < 0.001, Prole = 0.31). Notably, HGT-involved MAGs primarily belonged to the 357 

subtaxa of Proteobacteria and Actinobacteria (Fig 5a), including Burkholderiaceae (count = 358 

126.8 ± 78.4), Ilumatobacteraceae (count = 12.4 ± 6.1) and Microbacteriaceae (count = 7.25 359 

± 5.6). These MAGs not only exhibited more frequent ARG transmission (Kruskal-Wallis test, 360 

χ2 = 96.3, P < 0.001), but also were identified as the microbial assembly-dominant taxa that 361 

shaped the resistomes (Fig. 2a & Table S4).  362 

Although Cyanobacteria dominated microbial assembly and resistome variations, evidence 363 

suggests they were not closely invovled in the community-wide ARG HGT (count < 3.0, Fig 364 

5a) and their acquired intragenomic ARGs all originated from putative pathogenic MAGs of 365 

Burkholderiaceae sp. (Fig. S7 & Fig. S8) with high HGT potentials (Fig. 5a). From the 366 

microbial synergistic perspective, Burkholderiaceae can utilize algal excremets (e.g. 367 

microcystin) as major metabolic substrates (Salter et al. 2021), therefore the cyanobacterial 368 

aggragates tend to closely structure with Burkholderiaceae in lake-river ecosystems (Eiler and 369 

Bertilsson 2004) . As reported by Guo et al. (2018), waterborne ARGs and their hosting 370 

bacteria were abundantly observed in the bacterioplanktonic aggregates. In the homogeneous 371 

selection dominated community (Fig. 1), Cyanobacteria exhibit high resilliance to 372 

environmental variations (Liu et al. 2019b, Mo et al. 2018), which could be beneficial to 373 

preserve their associated ARGs (Fig. 5). The predominant intragenomic ARGs, including β-374 

lactam resistant (e.g. blaOXA) and MLS resistant genes (macB), appeared to be disseminated 375 

between microbial assembly-dominant taxa and putative resistant pathogens (Fig. 5b), which 376 

explains the high prevalence and the spread of ARGs across the catchment during the period 377 

of water diversion. 378 



3.5 Implications of potential AR hazards and influencing factors 379 

The prevalence of ARGs with potential clinical importance (Fig. 1c & Fig. S2) and putative 380 

resistant pathogens (Fig. 3) may suggest higher AR risks (Martinez et al. 2015), especially if 381 

they are found in drinking water sources (Dang et al. 2020, Walsh et al. 2011). Overall, summer 382 

samples showed higher potential AR hazards using MetaCompare (index values = 19.3 vs. 383 

19.0). The potential exposure risks were significantly lower in the reservoir vs. upstream (Two-384 

way ANOVA, P < 0.05, Fig. S8). This trend was mirrored by lower density of putative resistant 385 

pathogens in the reservoir water samples, i.e. 3.79 ± 2.5 × 106 cell/L on average (One-way 386 

ANOVA, F = 31.4, P < 0.001, Fig. 6a). This value corresponds to a total amount of 13.3 ± 0.89 387 

× 1015 cells of putative resistant pathogens that are transferred daily to Shanghai’s water supply 388 

system during the water diversion process (3.5 million m3/day). However, it should be noted 389 

that this study was confined to just one catchment. For better generalization of at-tap drinking 390 

water source-specific AR, a combination of metagenomics and culture-based studies that 391 

comprehensively encompass water sources, distribution networks and household tap water at 392 

a national or continental scale is needed. 393 

A more in-depth analysis using structural equation modelling (SEM) revealed direct effects 394 

concerning the distribution of resistome (std-coeff β = 0.69, P < 0.05) and microbial assembly-395 

dominant bacteria (std-coeff β = 0.15, P < 0.05) on the absolute concentration of waterborne 396 

putative resistant pathogens across the studied catchment (Fig. 6b). Nevertheless, the 397 

environmental filtering factors including temperature and DO values (SEM, std-coeff |β| >=0.8, 398 

P < 0.05), only showed indirect effects via their influence on the microbial assembly-dominant 399 

bacterial taxa (SEM, std-coeff β = -0.45, P < 0.05). This suggests that improvement of water 400 

quality may have a limited effect on reducing in-situ resistome transmission and resistant 401 

pathogens (P > 0.05, Fig. 6b), whereas the holistic management of wastewater inputs 402 



containing pathogens (Jiang et al. 2013, Quintela-Baluja et al. 2019) and control of microbial 403 

assembly-dominant bacterial taxa, such as curbing algal (e.g. Cyanobacteria) blooms are 404 

critically needed (Guo et al. 2018, Mo et al. 2018, Xue et al. 2018).  405 

4. Conclusions  406 

Here, we show that microbial deterministic assembly process is critical to the resulting 407 

environmental antibiotic resistomes in the Taipu River catchment. The seasonal variations of 408 

ARGs, including the ones of particular importance to human health, were frequently hosted by 409 

putative pathogenic bacteria, which greatly contributed to the community-wide HGT of ARGs, 410 

especially with the assembly-dominant taxa.  411 

The pipelines constructed to estimate ARGs’ HGT potentials can be applied more generally in 412 

a wide range of environmental settings, for quantitative comparison and analysis of resistome 413 

mobility and potential AR risks. Importantly, in the annually operated water diversion process 414 

in the Taihu Basin, the waterborne ARGs released from upstream sources are ‘well-preserved’ 415 

in the niched bacterial community and transferred to the downstream drinking water reservoir, 416 

which presumably contains 3.0 ~ 4.0 × 106 cell/L of the putative resistant pathogens. Although 417 

our data are from samples prior to water treatment, there is an implicit concern about AR spread 418 

through the local water supply, possibly impacting 24 million Shanghai citizens. However, the 419 

work also shows importance of environmental factors and microbial spatial ecology on ARG 420 

fate, which provides a useful starting point for developing strategies to curb the AR 421 

transmission in the Shanghai or other water supply catchments.  422 
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Table 1 Measurement and forward-selection of physiochemical parameters of water samples in Taipu Catchment  

#Forward-selected 

factors  

TP1 

(Summer|Winter) 

PW2 

(Summer|Winter) 

LL2 

(Summer|Winter) 

LX2 

(Summer|Winter) 

JZi3 

(Summer|Winter) 

JZe3 

(Summer|Winter) 

TN (sd) 1.56 1.55 1.81 1.39 1.66 1.37 1.71 1.37 1.17 0.80 1.01 1.36 

0.1> P > 0.05 (0.03) (0.20) (1.01) (0.15) (0.21) (0.29) (0.16) (0.3) (0.28) (0.17) (0.16) (0.11) 

Nitrate-N (sd) 0.67 0.63 0.73 0.62 0.57 0.50 0.75 0.62 0.58 0.22 0.25 0.12 

0.1 > P > 0.05 (0.11) (0.06) (0.60) (0.08) (0.09) (0.14) (0.19) (0.11) (0.27) (0.15) (0.15) (0.08) 

Ammonium-N (sd) 1.01 0.98 1.10 0.89 0.87 0.91 1.11 0.58 0.51 0.77 0.71 1.21 

0.1> P > 0.05 (0.13) (0.10) (0.71) (0.25) (0.11) (0.21) (0.06) (0.18) (0.31) (0.23) (0.14) (0.10) 

DO (sd) 6.3 5.5 7.2 4.81 6.21 5.03 5.40 4.03 6.41 5.05 6.30 5.82 

P = 0.01; AIC = 201.6 (0.90) (0.70) (1.82) (1.59) (2.03) (1.06) (0.55) (1.85) (1.83) (0.44) (1.09) (1.17) 

Temperature (sd) 22.5 14.6 21.4 13.3 21.8 12.6 23.3 11.6 20.7 10.8 21.7 11.7 

P = 0.04; AIC = 201.7 (5.20) (2.47) (1.82) (5.68) (1.78) (5.73) (2.02) (5.89) (1.50) (5.53) (1.71) (5.97) 

*FCs (sd) 6.23 5.20 2.05 7.12 2.57 2.07 2.36 10.0 5.00 6.35 5.70 6.25 

0.1> P > 0.05 (4.43) (3.56) (1.71) (7.05) (1.97) (1.48) (1.87) (8.52) (2.49) (1.71) (3.76) (2.55) 

Flowrate (sd) 112.85 81.80 154.28 149.06 236.20 230.33 289.73 280.58 123.97 148.36 216.92 158.61 

P = 0.05; AIC = 204.5 (18.7) (1.70) (35.1) (22.7) (58.6) (13.1) (13.3) (47.6) (61.2) (26.5) (33.6) (64.4) 
1 TP water was sampled from the effluents from Taihu Lake pumping stations; 2 PW, LL, and LX river were sampled from the middle of Taipu River; 
3 JZ water were sampled from Jinze Reservoir; *FCs were presented in the unit of colony forming unit (CFU)/mL-water. 
†pH of Taipu River samples kept at 6.95 – 7.03 during the whole period of study.  
#Parameters having a P value lower than 0.1 in the rda forward section to explain the variations of resistome were listed, and the AIC index were provided along the with significant variables 
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The flow rates of the catchment were managed by the pumping stations on the Taipu River. (b) Samples were collected from 
six regions along the catchment (in green shades) including Taihu Lake pumping stations (TP), Pingwang Station (PW), Lili 
Station (LL), Luxu Station (LX), Jinze Reservoir influent (JRi), and Jinze Reservoir effluent (JRe). The relative abundance 
of resistome in each site was averaged during the whole period of study, and the boxplots denoted in the same color were 
statistically the same. (c) the iCAMP-estimated relative importance of different microbial ecological assembly processes and 
the homogeneous selection (HoS) had predominant influences over heterogeneous selection (HeS), dispersal limitation (DL), 
homogenizing dispersal (HD) and drifting (DR), which suggested strong environmental filtering effects on the deterministic 
bacterial assembly process (|βNRI| > 2.0).
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Fig. 2 (a) Correlations between bacterial community structures (assembly - dominant taxa vs. others) and compositions of antibiotic resistomes in each sampling site along the catchment 
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Fig. 3 Distribution and phylogenic trees of the assembled ARGs-hosting metagenome-assembled genomes (MAGs) in summer (a) and winter (b). The MAGs of taxa belonging to 
the same phylum were denoted in the same color. Among them, genomes that were identified as putative resistant pathogens were depicted in grey shades. The relative abundances 
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Fig. 5 (a) Community-wide horizontal gene transfer (HGT) of ARGs was analyzed using MetaCHIP. Metagenome-assembled genomes (MAGs) functioning as donors and recipients of 
the disseminated ARGs were identified and their corresponding count numbers of HGTs were provided. The putative pathogens were highlighted in red and the MAGs belonging to the 
identified microbial assembly-dominant taxa were depicted in squares. (b) The representative contexts of the genetic structure concerning the intragenomic ‘ARG - MGE’ matching pairs 
were observed in both summer and winter samples. The identity of matching fragments and gene ID were annotated. The genetic open reading frames (ORFs) segments identified as ARGs
 (red) and  MGEs (yellow) were highlighted, while the other genes located in the forward and reverse strands were colored in blue and green, respectively. 
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Fig. 6 (a) Mean of cell densities of putative resistant pathogens in the upstream and drinking water reservoir samples collected from the 
Taipu River Catchment. (b) Structural equation modeling (SEM) analysis of the impacts of forward-selected environmental factors (Env), 
structure (Bray-Curtis multidimensional scaling components) of microbial assembly - dominant taxa (Bac.MDS) and antibiotic resistome 
(Res.MDS) on the variations of cell densities of waterborne putative resistant pathogens (Dens.AR.Path) in catchment. In the constructed 
SEM, the co-variances among Env, predicted microbial metabolic functions (Fun.MDS), Bca.MDS and Res.MDS were considered. The 
relationships fitting a significant correlation (P < 0.05) either in positive (green) or negative (red) is depicted using a solid line. The width 
of lines are in proportion to the standard path coefficients (std-coeff β).
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