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ABSTRACT

Thin film-based surface acoustic wave (SAW) technology has been extensively explored for physical, chemical, and biological sensors.
However, these sensors often show inferior performance for a specific sensing in complex environments, as they are affected by multiple
influencing parameters and their coupling interferences. To solve these critical issues, we propose a methodology to extract critical informa-
tion from the scattering parameter and combine the machine learning method to achieve multi-parameter decoupling. We used the AlScN
film-based SAW device as an example in which the highly c-axis orientated and low stress AlScN film was deposited on silicon substrate.
The AlScN/Si SAW device showed a Bode quality factor value of 228 and an electromechanical coupling coefficient of �2.3%. Two sensing
parameters (i.e., ultraviolet or UV and temperature) were chosen for demonstration, and the proposed machine learning method was used to
distinguish their influences. Highly precision UV sensing and temperature sensing were independently achieved without their mutual inter-
ferences. This work provides an effective solution for decoupling of multi-parameter influences and achieving anti-interference effects in thin
film-based SAW sensing.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0131779

Surface acoustic wave (SAW) devices have been widely used for
sensors, such as mass,1,2 temperature,3,4 humidity,5–7 UV,8–10 gas mol-
ecules,11,12 and biomolecules.12,13 Conventional SAW devices are fab-
ricated on bulk piezoelectric materials (such as LiNbO3 and quartz)
because of their low cost, smooth surface, stable material parameters,
and high acoustic-electric conversion efficiency.2,11 However, these
conventional bulk piezoelectric materials have issues such as limited
SAW propagation velocities and/or poor capabilities to be integrated
into processes for silicon-based integrated circuits (ICs). To overcome
these limitations, thin film acoustic wave devices based on piezoelectric
thin film materials, such as zinc oxide (ZnO) and aluminum nitride
(AlN), have been developed, as these piezoelectric films can be depos-
ited onto non-piezoelectric substrates such as silicon with the advan-
tage of IC process compatibility. Compared to ZnO films, AlN films
show a much higher SAW velocity,14 which is suitable for high fre-
quency (thus high sensitivity) sensing, and have advantages of better
mechanical properties,15 better chemical stability in acid/alkali, and
higher operating temperatures.9,16 However, AlN films have low elec-
tromechanical coupling coefficients (K2), such as �0.5%, which is

much lower than those of other piezoelectric materials (LiNbO3, 7%)
or thin films (ZnO, 2%).17 This severely limits its application in sen-
sors. To solve this engineering challenge, researchers have developed
the AlScN film in which an appropriate concentration of scandium
(Sc) doped in AlN films can significantly improve the piezoelectric
properties of AlN. For example, K2 value of AlScN based SAW devices
can be increased up to 4%,18 which is suitable for high performance
sensors and integrated lab-on-chips.19

Although there are rapid developments with thin film-based
SAW technology, severe challenges are still remained for their applica-
tions. For example, one of the key challenges to develop highly sensi-
tive SAW sensors is that it is simultaneously sensitive to multiple
parameters or factors (e.g., temperature, UV, humidity, vibration, or
electromagnetic noise, etc.), apart from the real and targeted parame-
ters. One commonly applied solution is to use a differential circuit to
eliminate the interferences of other parameters;15 however, this often
leads to complicated signal processing circuit and test equipment.
Another commonly used method is to find the differences based on
different wave modes of the same SAW device.20,21 However, this
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method has some limitations; for example, it cannot be applied to vari-
ous types of SAW devices. Therefore, great challenges are still
remained to decouple multi-sensitive parameters of thin film-based
SAW sensors.

In this study, we proposed to extract multiple features from scat-
tering parameters of SAW device and then use machine learning
methods [i.e., using support vector machine (SVM)22,23 and random
forest regression (RFR)24–26] for training models to distinguish multi-
ple sensitive signals and achieve multi-parameter decoupling. In this
study, we will take the AlScN film SAW device as an example. The
highly c-axis orientated and low stressed AlScN (with Sc concentration
of �9%) film was deposited on silicon, and AlScN film-based SAW
devices were fabricated [Figs. 1(a) and 1(b)]. Its Bode Q value is up to
228, and its K2 value is �2.3%. We selected two sensitive parameters
of UV and temperature as demonstration examples [Figs. 1(a) and
1(b)]. The information extracted from the SAW’s transmission param-
eters (e.g., S21) was used as features, sensitive parameters (e.g., ambient
temperature and UV intensity) were set as labels into the model for
training, and then the relationship between the features and the labels
using the machine learning methods was fit to obtain a trained model,
which predicted the corresponding sensitive parameters [see Fig. 1(c)].
Both high-precision UV sensing and temperature sensing were inde-
pendently achieved without the interferences by each other for these
AlScN film-based SAW devices.

AlScN films were deposited on silicon using a magnetron sputter-
ing system. Crystal orientation, surface morphology, cross-sectional
morphology, element composition, and molecular structure of the
AlScN film were characterized, and detailed procedures were shown in

the supplementary material. Standard UV photolithography and liftoff
processes were used to fabricate two-port SAW resonators on the
AlScN/Si layered structure with different wavelengths (k) of 16, 20,
and 24lm, with their detailed information shown in supplementary
material. The transmission (S21) and reflection (S11) spectra of the
SAW devices were obtained using a vector network analyzer (Ceyear
3656D, China). We selected two SAW sensitive parameters as demon-
strators, i.e., UV and temperature. The UV and temperature testing
procedures are shown in the supplementary material. We conducted
16 groups of UV response experiments at 16 different temperature
points (from 30 to 50 �C), as listed in Table S1.

Figure 2(a) shows a single and sharp peak at two theta angle of
35.9� in the x-ray diffractometer (XRD) spectrum, indicating that the
deposited AlScN film has a preferred (0002) crystal orientation.
The full width at half-maximum of the (0002) crystal orientation for
the XRD curve is 0.0498�, corresponding to an estimated mean grain
size of about 43.39 nm based on Scherrer’s equation.5 The axial stress
was estimated to be �25.53MPa, showing that the deposited film has
a low residual stress on the Si substrate. Inset in Fig. 2(a) shows surface
morphology and roughness of the film, and the root-mean square
roughness (RMS) was measured to be �1.17 nm over an area of
10� 10 lm2, which is much smoother than that reported in a previ-
ous study.27 Figure 2(b) shows a scanning electron microscope (SEM)
image of the AlScN film, revealing the columnar structures of AlScN
nanocrystals, perpendicular to the substrate with an average thickness
of �2lm. Results show that a high-quality AlScN piezoelectric film
with c-axis preferred orientation, low stress, and low surface roughness
has been deposited on the Si substrate.

FIG. 1. (a) Schematic structure of AlScN film-based SAW devices and schematic sensing diagram of temperature and UV sensing; (b) schematic view of the testing system
used for temperature and UV sensing of AlScN film-based SAW; (c) model of machine learning for AlScN film-based SAW sensors.
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From the x-ray photoelectron microscope (XPS) analysis, two
binding energy components of N 1s were obtained after peak deconvo-
lution using a curve-fitting program, and those at binding energies of
397.25 and 400.20 eV are corresponding to Al–N and Sc–N bonds, as
shown in Fig. 2(c). Energy dispersive spectroscopy (EDS) in Fig. 2(d)
indicates that the Al, Sc, and N elements in the AlScN thin films have
uniform distributions, and the obtained percentages of N, Al, and Sc
elements are 35.91wt.%, 55.25wt.%, and 8.84wt.% corresponding to
53.33 at.%, 42.59 at.%, and 4.09 at.%, respectively.

Figures 2(e)–2(g) show electrical performance of AlScN/Si SAW
devices, showing clear generations of Rayleigh resonance peaks with
resonant frequencies of 309.61, 250.25, and 209.16MHz for the k of
16, 20, and 24lm. We have fabricated four batches of SAW devices,
and their resonant frequencies with the same wavelength are very close
(with relative deviation less than 0.05%). The phase velocities (vp) of
these SAW devices, vp¼ kf0, were calculated to be 4953.76, 5005.00,
and 5019.84 m s�1, which are increased gradually with an increase in
wavelength from 16 to 24lm. High performance SAW devices and
high-precision SAW sensors should have both the high Q value and
K2. We have obtained the Q value of 228 and K2 of 2.3% for the device

with a k of 24lm, showing much better performance than that of the
AlScN/Si SAW device reported in Ref. 28.

Figures 3(a) and S1 show the changes of resonant frequency,
phase angle, and insertion loss of the SAW device (k of 24lm) under
different UV intensities and various temperatures (testing conditions
are listed in Table S1). When the testing temperature is 30.4 �C, the
frequency shifts of the resonance increase with the increase in UV light
intensity, as shown in Fig. 3(a). In addition, the phase angles and inser-
tion loss of the resonant mode are observed to increase simultaneously
with the increase in UV intensity, as shown in Fig. 3(a). As it is well-
known, UV responses of SAW devices are mainly based on acousto-
electric effects. The generated free carriers (electron–hole pairs)
induced by the UV irradiations interact with the acoustic waves field,
resulting in the changes of transmission characteristics including
acoustic wave velocity, attenuation of wave amplitude, and phase
angle. These changes of the SAW properties can be written using the
following equation:29

Dv
v
¼ v � vsc

voc
� k2

2
1

1þ rd=rMð Þ2
; (1)

FIG. 2. Characterization of the AlScN thin film deposited on the silicon wafer substrate: (a) XRD pattern of the AlScN film, showing strong (0002) orientation, and AFM image
of the AlScN film, showing the smooth surface; (b) SEM image of the cross section of the AlScN film; (c) XPS high-resolution spectra of Al 2p and N 1s of the AIScN films. (d)
The element distribution in the AlScN/Si layered structure obtained using an EDS; (e)–(g) the transmission and reflection spectra of AlScN/Si SAW devices.
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C ¼ k2

2
p
k

r=rM

1þ r=rMð Þ2
; (2)

Du ¼ 2p
L
k

Dv
v
; (3)

where voc is the SAW velocity on a free surface, Dv is the velocity shift,
k2 is the effective electromechanical coupling coefficient, r is the sheet

conductivity, rM is a material constant, C is the attenuation, k is the
SAW wavelength, Du is the phase angle, and L is the acoustic path
length.

When the SAW device is at a higher temperature (e.g., 35.2 �C),
UV responses of the SAW device show similar trends. However, the
change of temperature (e.g., from 30.4 to 35.2 �C) will also change the
resonant frequency, phase, insertion loss, and other characteristics of
SAW devices [Fig. 3(a)]. These results demonstrated that both the UV

FIG. 3. (a) Frequency, insertion loss, and phase responses of SAW devices under different UV light intensity and temperatures; (b) different features correlation coefficient
matrix; (c) importance of each feature; (d) the performance of three algorithms (MLR, RFR, and SVM) on temperature prediction; (e) the metrics of MAE, root-mean-square-
error (RMSE), and R2 for temperature prediction results using different number of features (3, 5, 7, 9, and 11); (f) the performance of three algorithms (MLR, RFR, and SVM)
on UV intensity prediction; (g) the metrics of MAE, RMSE, and R2 for UV light intensity prediction results using different number of features (3, 5, 7, 9, and 11).
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and temperature will affect the characteristics of SAW devices and
would interfere with each other.

We selected two sensitive parameters, i.e., UV and temperature,
as examples and apply machine learning algorithms to distinguish
these two sensitive parameters. In order to improve the accuracy of
machine learning algorithms, we need to maximize the extracted use-
ful information from the original data as features and then use these
features as the inputs of machine learning algorithms. The frequency
responses within the frequency band (205–210MHz, near the reso-
nant frequency) of S21 spectra were chosen as the original data.
Frequency–amplitude responses of S21 in this band were composed of
201 points and regarded as a 201-dimensional vector. Each original
vector was assumed to reduce dimension by a nonlinear mapping to
obtain 11 features, including Frequency (F), Amplitude (A), Band
width (BW), Center frequency (CF), Insertion Loss (IL), Phase (P), Q
value (Q), Hausdorff distance (HD), Edit distance on real sequence
(EDR), Maximum value (MAX), and Dynamic time warping (DTW).
These features include the intrinsic physical variation characteristics of
the SAW responses (e.g., F, A, BW, CF, IL, P, and Q) and the variation
characteristics for the S21 curves of the SAW device (e.g., HD, EDR,
DTW, and MAX).30–32 Reducing dimension using a nonlinear map-
ping is beneficial for simplifying calculations and preventing the over-
fitting. The calculation methods for these 11 features are shown in the
supplementary material for more details. These eleven features are
changed with the changes of UV intensity from 0.033 to 0.403mw/cm2,
at the temperature of 31.7 �C as shown in Fig. S2.

We used three metrics, including mean absolute error (MAE),
root-mean square error (RMSE), and R2 values to evaluate the perfor-
mance of the model.33 The MAE is defined as follows:

MAE ¼ 1
n

Xn

i¼1jyi � ŷ ij; (4)

where n represents the number of observations, yi represents the
experimental values, and ŷ i represents the predicted values. This met-
ric calculates the mean of the absolute sum of the errors of the pre-
dicted and true values and is used to evaluate how close the predicted
results are to the real data. A smaller MAE value indicates a higher
accuracy of the prediction results, whereas RMSE is frequently used to
measure the differences between values predicted by the model and
the observed experimental values. The RMSE should be as small as
possible, which is defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1 yi � ŷ ið Þ2

n

s
; (5)

where R2 is another indicator that indicates how closely the predicted
values from a model matched with the observed values and is defined
as

R2 ¼ 1�

Xn

i¼1 yi � ŷ ið Þ2Xn

i¼1 yi � yið Þ2
: (6)

The ideal R2 value for a model should be 1. The closer it is to 1, the
stronger the model’s ability to interpret the predicted value, and the
better the model fits the data.

We have compared the performance of three different machine
learning regression algorithms, i.e., multiple linear regression

(MLR), support vector machine (SVM), and random forest regres-
sion (RFR), for the temperature and UV light intensity predictions
[Figs. 3(d) and 3(f)]. Results show that the SVM model shows the
best performance for temperature prediction, which generates the
smallest prediction error (using the MAE and RMSE) and the largest
R2. The RFR model has the best performance in UV light intensity
prediction. Accordingly, we chose to use the SVM model to predict
temperature and use the RFR model to predict UV light intensity.
The feature data of the training set were put into these two models
with temperature labels and UV intensity labels, respectively, for
training processes. The testing sets were then used to evaluate the
model’s performance. By comparing the actual temperatures and
UV light intensities from the experiments with the predicted ones,
the prediction accuracy of the model was evaluated.

It is well-known that different features do not contribute equally
to model, and some features may be highly correlated with each other,
which can result in redundant features.34 Too many or invalid features
will lead to performance degradation of the proposed model. The cor-
relation coefficient matrix [Fig. 3(b)], together with the estimated
importance of each feature obtained using a random forest algo-
rithm,33 was used to determine the priority of features [Fig. 3(c)]. The
top 3, 5, 7, 9, and 11 features with the highest importance were selected
to construct the model, and their performance on temperature and
UV intensity predictions was compared. The results are shown in Figs.
3(e) and 3(g). When the number of input features is 5, the model has
the best temperature prediction effect with the smallest error
(MAE¼ 0.25, RMSE¼ 0.34), and also the largest R2 of 0.996. For UV
light intensity predictions, the optimal number of input features is 9
(with values of MAE¼ 0.011, RMSE¼ 0.0136, and R2¼ 0.959).
Therefore, in the follow-up studies, the SVM model with five features
was used to predict temperature, and the RFR model with nine fea-
tures was used for UV light intensity prediction. Both these two mod-
els include five features, i.e., phase, Q value, band width, center
frequency, and amplitude. Compared with those temperature predic-
tions, UV intensity predictions require extra four features (e.g.,
Hausdorff distance, maximum value, dynamic time warping, and
insertion loss).

After optimizing the model algorithm, we further did UV test
using the fabricated SAW devices to verify the proposed model, by
varying temperatures from 50 �C to 31 �C. Figure 4(a) shows the
obtained resonant frequency responses of the SAW device under
dynamically changed temperatures and ultraviolet environments.

In order to show the temperature prediction results of the model,
we used the traditional linear regression and our model after training
based on SVM to predict the temperature value of the test data, and
their results were then compared with the actual values. The obtained
results are shown in Fig. 4(b), which indicates that due to the interfer-
ence of ultraviolet environment, the traditional linear regression (i.e.,
using a linear function fitting based on the relationship between fre-
quency and temperature) has a larger deviation in temperature predic-
tion. Whereas our proposed training model has shown a better
prediction effect, proving the validity of our proposed SVM in SAW
temperature prediction.

Similarly, the prediction results of UV intensity are shown in Fig.
4(c). When using the traditionally linear regression for UV analysis,
the analysis results are deviated significantly from the actual UV inten-
sity data. This is because the frequency changes caused by the
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temperature changes were also treated as the influences of UV
changes. However, when the results of SAW devices were compared to
those obtained from our proposed machine learning method (RFR),
the predicted results agreed well with the actual UV intensities.

We further did multiple UV sensing tests with temperatures
varied from 32 to 38 �C for the SAW devices with wavelengths of 20
and 16lm, and the obtained results are shown in Figs. S3 and S4.
Results demonstrate that the proposed machine learning algorithm
effectively achieve decoupling of multiple parameters, and our model
is applicable to the different SAW devices with different wave-
lengths. All these results clearly demonstrate the potentials using the
proposed machine learning method to enable the SAW device realiz-
ing accurate measurement of multiple physical quantities at the
same time.

In brief, highly c-axis orientation and low-stressed AlScN film
was deposited on the silicon substrate in this study. The AlScN film-
based SAW devices showed a Q value up to 228, and K2 of 2.3%. We
then proposed a strategy by extracting more information from the
scattering parameter and combined the machine learning method
(e.g., SVM and RFR) to train a model to achieve multi-parameter
decoupling for the AlScN film-based SAW device. As proof-of-concept
demonstrations, we took UV and temperature sensing as examples,

and we have demonstrated the effective decoupling of these two
parameters, simultaneously and accurately. This work provides an
effective solution for multi-parameter decoupling of the film-based
SAW sensor and realizing high-precision anti-interference sensing.

See the supplementary material for the detailed calculation meth-
ods about 11 features of SAW and all experimental data used for
model training and model prediction results of SAW devices based on
different wavelengths.
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FIG. 4. (a) Resonant frequency of SAW devices under different UV light intensity and temperatures (test experiment). (b) Comparison of the temperature predicted results by
the traditional linear regression and the SVM model. (c) Comparison of the UV intensity predicted results by the traditional linear regression and the RFR model.
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