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A B S T R A C T   

Today, light-weighting for energy efficiency without sacrificing safety and performance attributes has become a 
primary focus in the automotive industry. In the field of modelling graphene nanocomposites’ structural ap
plications under severe loading conditions, literature is limited. In addition, the existing work only employs the 
so-called one-site (OS) modelling. This study develops an approach to study 3-phases hierarchical fibres/gra
phene nanoplatelets (GNPs)-reinforced polymer matrix composites utilising OS modelling and what is known as 
multi-site (MS) modelling. The MS modelling accounts for material anisotropy considering the interaction be
tween neighbouring inclusions. Applicability of both models is then assessed for automotive components’ 
crashworthiness response under combined mechanical and rate-dependent plasticity or viscoplasticity behav
iours. A coherent micromechanical design is employed with elastic platelets and elasto-viscoplastic matrix as
sumptions. The micromechanics modelling combines rate-dependent constitutive laws and thermomechanical 
properties for the nonlinear response of composite materials. The heterogeneous material problem is resolved in 
the first instance for a thermoelastic case. The thermomechanical kinematic integral equation is used to derive 
the strain concentration tensor. Using the generalised Mori–Tanaka (GMT) homogenisation scheme, effective 
thermomechanical properties are obtained. For the nonlinear behaviour, a linearisation of the classical J2 rate- 
dependent model is considered with an isotropic hardening. Based on an implicit integration scheme, a consistent 
tangent modulus is obtained and serves as a uniform modulus for homogenisation of the rate-dependent ther
momechanical composite material. An application is therefore performed on a short glass -fibres/graphene 
nanoplatelet/ Polyamide-Nylon 6 (GNP/PA6) composite. The current study’s archival value is to provide an 
auspicious approach for a consistent design and application of this category of materials for automotive struc
tural components.   

1. Introduction 

Improving fuel efficiency and vehicle performance lies with 
decreasing the weight of vehicle components while at the same time 
maintaining safety [1,2,3]. Reinforced polymer composites are among 
widely preferred form of composite that has been used for light- 
weighting in the automotive industry. They offer superior properties 
such as impact strength, easy moldability, improved aesthetics, and 
reduced weight compared to conventional automotive components 
[4,5,6,7]. However, polymer composites are susceptible to environ
mental factors such as temperature, time, exposure to liquids, gases, 

electrical fields, and radiation, which cause polymer composites’ prop
erties degradation and consequently decrease their performance [8,9]. 

In the realm of nanotechnology and two-dimensional materials, 
graphene continues to thrive on the horizon of materials science. With 
theoretical and experimental results on individual graphene nanosheets 
exhibit incredibly high values of Young’s modulus (~1000 GPa) 
[10,11,12], adding graphene at lower volume fractions as a reinforce
ment to polymers or fibre-reinforced composites offers substantial 
property enhancements for lightweight components including 
enhancing strength, durability, flexibility, thermal and electrical con
ductivity [13,14,15]. Thus, the study of graphene-based composites is a 
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strategic objective for developing new lightweight and multifunctional 
structures for the automotive sector [16,17,18] with huge potentials for 
structural applications in the automotive industry. However, imple
menting graphene composites on commercial high-performance struc
tural applications under severe loading conditions, such as automotive 
structural components, has been in immature stages requiring further 
investigation. 

Modelling materials, predicting their behaviour under different 
conditions, and developing/designing cost-effective materials with 
improved or required properties are prime objectives in materials 
research and industry. Today, computational materials science has 
progressed to be realistic and become an essential paramount predictive 
tool for exploring materials’ properties and behaviour and understand
ing complex physical phenomena observed in materials [19,20,21,22]. 
Moreover, the mechanical behaviour of real materials is, essentially, 
rate- or time-dependent plasticity (or viscoplasticity). For example, the 
strain increase with increasing time under constant load, i.e. creep 
phenomenon. In general, viscoplasticity or creep importance in mate
rials escalates with increasing temperature. Thus, comprehensive 
analytical methods are required to accurately predict this nonlinear, 
time-dependent behaviour. 

In addition, composite materials exhibit anisotropy resulting from 
their microstructure. The anisotropy of mechanical properties relies on 
topological texture, i.e. the orientation and spatial distribution of the 
reinforcement. Besides, the morphological texture, referred to as the 
aspect ratio also plays an important role in the response of the com
posite. The accuracy of predictive models resides in accounting for the 
interaction between inclusions and their surrounding neighbourhood. 
This approach, called the multi-site (MS) modelling [23,24], was first 
developed by Fassi-Ferhi [25] for local fields of pairwise heterogeneous 
and plastic inclusions embedded in an anisotropic matrix. 

However, most existing work only employs a simpler approach 
called one-site (OS) modelling, which ignores particle interactions. 
Other research works dealing with the pairwise particle-interaction 
through micromechanics formulation have been done by Ju and Chen 
[26,27] for spherical inclusions, by Ju and Tseng [28] for randomly 
dispersed elastoplastic phases and by Ju and Sun [29], and Sun and Ju 
[30] for randomly located and aligned spheroidal inclusions. 

The MS modelling was used more recently by Kpobie et al. [31] to 
derive the thermoelastic properties of anisotropic cubic composites. The 
framework of the MS modelling is used by Azoti et al. [32] to derive the 
macroscopic response of elastoplastic composites with ordered 
microstructures. 

Several multiscale modelling methods exist to derive the effective 
properties of a heterogeneous medium utilising homogenisation [33] of 
the fundamental physical properties of its constituents or vice versa 
[24,34]. For example, Pineda et al. [35] utilised the “generalized 
method of cells” model to capture progressive failure within the con
stituents of a unidirectional fibre-reinforced composite material. Kaleel 
et al. [36] proposed a simplified version of the classical FE2 concurrent 
multiscale method for composite materials to save computational costs. 
Sun et al. [37] presented a micromechanical interphase model to 
investigate the influence of interface effects on the elastoplastic 
behaviour of graphene-reinforced nanocomposites. 

In view of the importance of having a thermal effect in the effective 
behaviour properties; Tsiamaki et al. [38] and Tsiamaki and Anifantis 
[39] numerically investigated the thermomechanical properties of gra
phene nanocomposites and reported that the temperature increase and 
the multiplicity of graphene layers lead to a decrease of the mechanical 
properties. Sandu [40] and Yang et al. [41] investigated the thermal 
conductivity of graphene-based nanocomposites and reported higher 
results than that of the matrix material. Rahman et al. [42], Zhao et al. 
[43], Zhou et al. [44], Pinto et al. [45], Wang et al. [46], and Tarawneh 
et al. [47] experimented with graphene to enhance the thermo- 
mechanical properties of composite materials and reported improve
ment over the matrix material. Georgantzinos et al. [48] utilised a 

spring-based finite element (FE) approach to predict the thermo
mechanical behaviour of graphene. Li et al. [49] studied the nonlinear 
thermal performance of the functionally graded porous cylinder with the 
graphene nanofillers embedded in elastic matrix. 

Our current work accounts for composite viscoplasticity using a rate- 
dependent thermomechanical model considering polymeric matrix. In 
the case of thermoplastic matrix, the stress–strain response depends on 
the strain rate both below and above the yield stress, i.e. viscoplastic 
constitutive models [50]. The material anisotropy is accounted for by 
the interaction of the inclusion and a defined neighbourhood using the 
MS modelling. Using the generalised Mori–Tanaka (GMT) homogeni
sation scheme, effective thermomechanical properties are obtained. The 
non-linear behavioural response is established in the framework of the 
J2 flow rule model is considered with an isotropic hardening. Numerical 
characterisations involving tensile and compression tests of short glass 
fibres/graphene nanoplatelet/ Polyamide-Nylon 6 (E-Glass/GNP/PA6) 
composite enable the determination of damage and failure thresholds 
for crashworthiness applications. Modelling of symmetric crush tube of 
an automotive crash-box demonstrates the crash performance charac
terised by the peak crash force, absorbed energy and specific energy 
absorption (SEA) [51]. The current research provides a promising 
straightforward approach to a consistent material design for graphene 
nanoplatelets (GNPs)-reinforced polymer matrix composites for auto
motive applications. 

2. Strategy formulation and analytical framework 

2.1. Fundamentals of kinematics and micromechanical analysis 

2.1.1. Local constitutive equations 
Let us consider a micro-heterogeneous and macro-homogeneous 

material of volume V subjected to a thermomechanical loading 
defined by stress and temperature state. Thus, at a point r of the material 
at the local scale, different physical mechanisms contribute to the total 
strain ε(r) yielding: 

ε(r) = εe(r)+ εθ(r)+ εp(r) (1) 

where εe(r) represents the elastic strain, while εθ(r) states for the 
thermal strain and εp(r) denoting the inelastic strain that can be related 
to plastic deformation, diffusion phenomena, phase transformation etc. 
The expressions of these strain fields are given such as: 

εe(r) = se(r) : σ(r) ,
εθ(r) = α(r)Δθ ,

εp(r) = sp(r) : σ(r)
(2) 

with se(r) representing the elastic compliance, α(r) denoting the 
thermal expansion tensor, whereas Δθ is the change in temperature with 
respect to a reference temperature θ and corresponding rate Δθ̇ assumed 
to be homogeneous for the considered material volume. In Eq. (2), sp 

states for the tangent plastic compliance tensor and σ(r) is the local stress 
field. By accounting for the strain tensors in Eq. (2), the local constitu
tive equation can be written like: 

ε(r) = s(r) : σ(r)+α(r)Δθ (3) 

where s(r) = se(r) + sp(r). The global thermomechanical constitutive 
behaviour of the micro-heterogeneous and macro-homogeneous linking 
the macro strain E to the macro stress Σ through the increment of 
temperature Δθ takes the form: 

E = Seff : Σ + αeff Δθ , or
Eij = Seff

ijkl Σkl + αeff
ij Δθ

(4) 

In Eq. (4), the macro strain E and the macro stress Σ are obtained 
using the average equation (⋅)eff

= (⋅) = 1
V

∫

V(⋅)dV over the local strain 
ε(r) and local stress σ(r) such as: 
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E = ε(r) = 1
V

∫

V
ε(r)dV ,

Σ = σ(r) = 1
V

∫

V
σ(r)dV

(5) 

The dual form of the Eq. (3) takes the following form: 

σ(r) = c(r) : ε(r) − β(r)Δθ (6) 

with c(r) denoting the stiffness tensor embedding the inelastic 
behaviour of the material and thermal stress tensor β(r) stating for the: 

c(r) = s− 1(r) , or cijkl(r) = s− 1
ijkl(r)

β(r) = c(r) : α(r) , or βij(r) = cijkl(r)αkl(r)
(7) 

Thus, 

Σ = Ceff : E − βeff Δθ , or Σij = Ceff
ijklEkl − βeff

ij Δθ (8) 

where, 

Ceff =
[
Seff ]− 1

, or Ceff
ijkl =

[
Seff ]− 1

ijkl

βeff = Ceff : αeff , or βeff
ij = Ceff

ijklα
eff
kl

(9)  

2.1.2. Local and global concentration tensors 
For a homogeneous medium, the decomposition of local tensors c(r)

and β(r) can be split into uniform cR and βR and fluctuation δc and δβ 
parts following the expressions below: 

cijkl(r) = cR
ijkl + δcijkl(r), βij(r) = βR

ij + δβij(r) (10) 

Considering that the inhomogeneous microstructure would satisfy 
behavioural relation of Eq. (6) along with the deformation’s compati
bility equation: 

εij(r) =
1
2
[
ui,j(r)+ uj,i(r)

]
= ui,j(r) (11) 

and the equilibrium equation: 

σij,j(r) = 0 (12) 

Equations (10), (11) and (12) could be written in the form: 

cR
ijkluk,lj(r)+

[
δcijkl(r)uk,l − δβij(r)Δθ

]

,j = 0 (13) 

The classic concept of Green’s function [52,53] is one of the most 
powerful means for solving boundary value problems in linear elasticity 
based on the superposition principle (i.e. the sum of solutions to a given 
problem is a solution). The nonlinear constitutive behaviour of com
posites with a periodic microstructure can also be treated with a Green’s 
function approach as shown in the expositions by Eshelby [54] Korringa 
[55], Zeller and Dederichs [56]. Using the Green tensor technique, Eq. 
(13) may be transformed into an integral equation (Green’s displace
ment function, see Appendix A): 

um(r) = UR
m +

∫

V
Gmi(r − r

′

)
[
δcijkl(r

′

)uk,l(r
′

) − δβij(r
′

)Δθ
]

,jdV
′ (14) 

or 

um,n(r) = UR
m,n +

∫

V
Gmi,n(r − r

′

)
[
δcijkl(r

′

)uk,l(r
′

) − δβij(r
′

)Δθ
]

,jdV ′ (15) 

Thus using Eqs. (11) and (15): 

εmn(r) = ER
mn −

∫

V
Γmnij(r − r

′

)
[
δcijkl(r

′

)εkl(r
′

) − δβij(r
′

)Δθ
]
dV

′ (16) 

where ER is the total strain of the reference homogeneous medium 
subjected to the same boundary conditions as the effective medium: 

ER
mn =

1
2

(
UR

m,n + UR
n,m

)
,

Γmnij(r − r
′

) = −
1
2
[
Gmi,jn(r − r

′

) + Gni,jm(r − r
′

)
]

(17) 

Under the assumption of Eshelby inclusion [54] and assuming that cR 

and βR are piecewise constant, we can write: 
⎧
⎪⎪⎨

⎪⎪⎩

δc(r) =
∑N

I=0

(
cI − cR)ℵI(r) =

∑N

I=0
ΔcIℵI(r)

δβ(r) =
∑N

I=0

(
βI − βR)ℵI(r) =

∑N

I=0
ΔβIℵI(r)

(18) 

where Δc = cI − cR,Δβ = βI − βR and indicator function ℵI(r) =
{

1 ∀r ∈ VI

0 ∀r ∕∈ VI associated with the phase I constituent. 

The average strain εI inside material of phase I can therefore be 
calculated: 

εI =
1
VI

∫

VI
ε(r)dV (19) 

Thus from Eq. (16) in (19): 

εI = ER −
1
VI

∑N

J=1

[∫∫

VI VJ
Γ(r − r′

) :
[
ΔcJ : εJ − ΔβJΔθ

]
dVdV ′

]

(20) 

Leading to presenting the unknown total strain of each constituent as 
(see Appendix A): 
{

εI = ER −
∑N

J=1
TIJ :

[
ΔcJ : εJ − ΔβJΔθ

]

I = 0, 1, 2,⋯⋯,N
(21) 

where, 

TII =
1
VI

∫

VI

∫

VI
Γ(r − r′

)dVdV
′

,

TIJ =
1
VI

∫

VI

∫

VJ
Γ(r − r′

)dVdV ′

(22) 

The solution of Eq. (21) can be written in the form of localisation 
expression relating to the strain of reference medium ER and the tem
perature increment Δθ as: 

εI = RI : ER + rIΔθ (23) 

where RI and rI are concentration tensors of the inclusion for dilute 
or local mechanical and thermal strain localisation or, respectively, 
relative to the reference medium. Substituting Eq. (23) into Eq.(21) and 
solving for RI and rI yields: 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
RI)

i+1 =
(
I+TII :ΔcI)− 1

:

(

I −
∑N

J=0
J∕=I

TIJ :ΔcJ :
(
RJ)

i

)

(
rI)

i+1 =
(
I+TII :ΔcI)− 1

:

(

TII :ΔβI + I −
∑N

J=0
J∕=I

TIJ :
[
ΔβJ − ΔcJ :

(
rJ)

i

]
)

I = 0,1,2,3,⋯.,N
(24) 

Expression in Eq. (24) are written in their implicit form to be solved 
iteratively, where subscripts (i) et (i+1) are the iteration step numbers, I 
is the fourth-order symmetric identity tensor Iijkl =

1
2

(
δikδjl+δilδjk

)
, 

whereas N+1 denotes the number of phases considered in a composite 
material (matrix phase (o)). To start this iterative process, initial 
approximation values of RI

(0) =
(
I+TII : (cI − cR)

)− 1 and rI
(0) =RI

(0) :TII :

ΔβI leading to converging, are obtained by neglecting the influence of all 
constituents on relative concentration tensors of I th element [57,58]. TII 

and TIJ are the interaction tensors for One-site (OS) and Multi-site (MS) 
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modelling, respectively. General expressions for TII and TIJ as well as 
their numerical implementation are provided in Appendix A. The global 
fourth-order mechanical AI and second-order thermal aI strain concen
tration tensors can next be deduced from tensors RI and rI. Volume 
averaging of Eq. (23) leads to the following relations: 
{

εI = RI : ER + rIΔθ = E
ER =

(
RI)− 1

:
(
E − rIΔθ

) (25) 

Substituting Eq.(25) into Eq. (23): 

εI =
[
RI :

(
RI)− 1

]
: E +

[
rI − RI :

(
RI)− 1

: rI
]
Δθ (26) 

Global localisation tensors, therefore: 
{

AI = RI :
(
RI)− 1

aI = rI − RI :
(
RI)− 1

: rI
(27)  

2.2. Mori-Tanaka (MT) scheme formulation 

Mori–Tanaka (MT) formulation [59] is a homogenisation model built 
on the concept of Eshelby’s dilute model [54]. The MT scheme considers 
the matrix phase-(o) in a composite material to be the reference medium 
(co = cR) and the average strain field inside the matrix is approximated 
by the strain within the reference medium (εo ≅ ER). The MT scheme 
allows us to introduce kinematic equation without the unknown tensors 
Too and TIo. This leads to εo ≅ Eo, with Eo being the local strain of the 
considered volume V having the matrix properties, thus, R0 = I, r0 = 0. 
Therefore, one gets: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0 = R0 :
(
RI)− 1

=

[

I −
∑N

I=1
fI
(
I − RI)

]− 1

a0 = r0 − A0 : rI = − A0 :
∑N

I=1
fIrI

AI = RI :
(
RI)− 1

= RI : A0

aI = rI − AI : rI = rI + RI : a0

(28) 

where, fI is volume fraction. Finally, the effective properties of a 
heterogeneous or composite material are then deduced from the 
following relations: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ceff = c0 +
∑N

I=1
fI
(
cI − c0) : AI

βeff = β0 +
∑N

I=1
fI
[(

βI − β0) −
(
cI − c0) : aI ]

Σ = Ceff : E − βeff Δθ

(29)  

2.3. Rate dependent behaviour 

2.3.1. Viscoplastic response (VP) 
Miled et al. [60] used the classic J2 plasticity model with isotropic 

hardening to represent the viscoplastic effects of a composite material. 
As a result, the plastic flow criterion based on the J2 theory is given by: 
⎧
⎪⎨

⎪⎩

f
(
σeq, p, ε̇

)
= σeq −

[
σy(ε̇) + R(p)

]

σeq =

̅̅̅̅̅̅̅̅̅̅̅
3
2

s : s
√ (30) 

Where σeq is the equivalent stress of von Mises, σy is the yield stress 
indicating the elasticity limit (which may depend on the strain rate 
deformation) and R(p) is the hardening function. The accumulative 
plastic deformation p is an internal variable that preserves the history of 
viscoplastic deformation. It is given such as: 

⎧
⎪⎨

⎪⎩

p(t) =
∫ t

0
ṗ(τ)dτ

ṗ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
3
ε̇νp

: ε̇vp

√ (31) 

The viscoplastic strain rate follows a plastic flow rule: 

ε̇vp
= ṗ

∂f
∂σ = ṗN (32) 

where the tensor N is given by: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N =
3
2

s
σeq

N : N =
3
2

(33) 

and the viscoplastic multiplier ṗ is defined by a viscoplastic function 
gv such as: 
{

ṗ = 0 if f ≤ 0
ṗ = gv

(
σeq, p, ε̇

)
if f > 0 (34)  

2.3.2. Computing algorithm 
Considering finite stress and strain increments, an algorithmic 

tangent operator can Calg be derived from a coherent linearization of the 
constitutive equations that are integrated over time tn+1 around the 
solution such as: 

δσ(tn+1) = Calg : δε(tn+1) (35) 

where δ means a total variation at tn+1 The use of a radial return 
mapping algorithm in elasto-viscoplastics allows the algorithmic 
tangent operator to be obtained by [50]: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Calg = Cel −
(2G)

2

hv
N ⊗ N − (2G)

2 σeqΔp
σeq + 3GΔp

∂N
∂σ −

2G
hvg,σ

N ⊗ g,ε

hv =
1

(Δt)g,σ
+ 3G −

g,p

g,σ

g,σ =
∂gv

∂σeq
; g,p =

∂gv

∂p
; g,ε =

1
Δt

∂gv

∂ε̇

(36) 

When the elasticity limit σy is constant, then g,ε = 0 and the algo
rithmic tangent operator becomes symmetric as an expression identical 
to that obtained in Doghri [61]. The expressions of σy and g,p depend on 
the viscoplastic (VP) function gv that would be taken under consider
ation, e.g. Norton’s law [62]. Odqvist [63,64] generalized the classical 
uniaxial stress Norton’s law of ε̇ = Aσm where A and m are material 
constants. In the general multiaxial stress state Norton’s power law 
(initial yield Norton law) would be [65]: 

gv(σeq ,p) =

⎧
⎪⎨

⎪⎩

σy

η

(
f
σy

)m

if f > 0

0 else
(37) 

where η [Pa s] and m are the viscoplastic modulus and the exponent, 
respectively. One can calculate: 

g,σ =
m
η

(
f
σy

)m− 1

,

g,p

g,σ
= −

dR
dp

,

hv =
η

m(Δt)

(
f
σy

)1− m

+ 3G +
dR
dp

(38) 

The notion of excessive stress can also be accounted for by using 
another VP power law function (current yield Norton law) [66] ac
cording to Perzyna’s approach [67,68,69] with two parameters: the 
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viscoplastic modulus (κ[1/s]) and the exponent (m) that appear as 
follows: 

gv(σeq ,p) =

⎧
⎪⎨

⎪⎩

κ
(

f
σy + R(p)

)m

if f > 0

0 else
(39) 

In this case: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g,σ = m
gv

f

g,p = − mgv
dR
dp

(
1
f
+

1
σy + R(p)

)

hv =
f

mgv(Δt)
+ 3G +

dR
dp

σeq

σy + R(p)

(40) 

In Eq. (37), the initial yield stress σy is considered constant. However, 
in Eq. (39) version of Norton law, the yield stress σy and the hardening 
stress R(p) are considered, i.e. the viscoplastic stress is being updated as 
the hardening stress increases resulting in more accurate results than the 
first one, and hence it is utilised in our model. 

From the algorithmic tangent operator Calg given by Eq. (36) and 
using the hypothesis g,ε = 0, one gets: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Calg = Cel −
(2G)

2

hv
N ⊗ N − (2G)

2 σeqΔp
σeq + 3GΔp

∂N
∂σ

Cel = 2GIdev + 3KIvol

hv =
1

(Δt)g,σ
+ 3G −

g,p

g,σ

(41)  

2.3.3. Regulation of the algorithmic tangent operator 
From Eq. (36) it can be shown that hv→∞ for very small increments 

of time i.e. when Δt→0, a fact which is unacceptable (because Calg then 
approaches Cel although ε̇vp

∕= 0). To solve the problem, Doghri et al. 
[70] have developed a method of regulation in elasto-viscoplastic from a 
1D analytical tangent expression valid for the simplest case (uniaxial- 
monotonous tension, constant deformation velocity, linear isotropic 
hardening and linear viscous stress). 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Creg (tn+1)=Cep (tn+1)+ [Creg (tn) − Cep (tn+1) ]exp
(

−
hep

hv − hep

)

Cep =Cel −
(2G)

2

hep
N⊗N

hep = 3G −
g,p

g,σ

(42) 

The algorithmic tangent operator obtained from the Eq. (42) will 
serve as properties of the nonlinear phase in the homogenisation process 
obtained by Eq. (29). From this model, validations and numerical ap
plications will be carried out on data from the literature and composites 
with particles and fibres. 

3. Algorithms for solving the effective properties 

3.1. Analytical procedure 

Considering the 3-phases hierarchical graphene-reinforced polymer 
nanocomposite (HGPNC), the total volume fraction is given such as ϕ =

ϕF + ϕG + ϕo = 1, where ϕF , ϕG, ϕo represent the volume fraction of the 
fibres, the GNPs, and the polymer matrix, respectively. As within the 2- 
phases graphene-based polymer nanocomposite (GPNC), the volume 
fractions of GNP and the polymer matrix are, 

vG =
ϕG

ϕG + ϕo
, vo =

ϕo

ϕG + ϕo
= 1 − vG (43) 

respectively. If the manufacturing or design process requires vG and 
vo to be determined first as 2-phase composite then afterwards a third 
phase of ϕF is to be added, the volume fractions would be calculated as, 

ϕG = vG(1 − ϕF) (44) 

with the required value of ϕF, ϕG is calculated and, ϕo = 1 − ϕG − ϕF. 
The algorithm starts with the strain increment Δε, time step, tempera
ture increment and thermal expansion coefficient (CTE) as the input. Δε 
is then split between the phases of the 3-phases HGPNC composite. 
Considering multiscale modelling with two- sequential levels, at the first 
level, Voigt assumption 

(
AOld

F = I
)

states the strain increment in the fi
bres while strain averaging represents the strain increment in the 2- 
phases GPNC composite considered as a matrix. Within the 2-phases 
GPNC composite, the strain increment is once more divided between 
the graphene inclusions and the polymer matrix. After a convergence 
check, the modified Mori–Tanaka scheme for imperfect interfaces 
computes the effective properties of the 2-phases GPNC composite. At 
the second level, the effective properties for the 2-phases GPNC com
posite are used conjunctly with the algorithmic tangent modulus of the 
fibres to provide the whole 3-phases HGPNC composite with effective 
tangent modului through a convergence checking. Considering a time 
interval [tn, tn+1], strain increment Δε and thermal instantaneous Δεθ 

such as εn+1 = εn + Δε + Δεθ input for the algorithm. The below steps 
summarise numerical implementation of the incremental algorithm in 
Fig. 1.  

i. Initialization of the strain increment in the fibre phase ΔεF←Δε+
Δεθ, where ΔεF = AF : Δε such as AF = I.  

ii. Update the stress and compute the algorithmic moduli Creg
F in 

fibre phase using Eqs. (42).  
iii. Apply the mid-point rule at time tn+α to the algorithmic moduli of 

the fibres Creg
F using Creg

r(n+α)
= (1 − αx)Creg

rn
+ αxCreg

rn+1
, r =

F;αx ∈ [0, 1]
iv. Compute the average strain increment in the 2-phases GPNC 

composite phase ΔεGo =
Δε− ϕFΔεF

1− ϕF  

v. Initialization of the strain increment in the graphene phase 
ΔεG←ΔεGo, where ΔεG = AG : ΔεGo such as AG = I.  

vi. Update the stress and compute the algorithmic moduli Creg
G in 

graphene phase using Eqs. (42).  
vii. Apply the mid-point rule at time tn+α to the algorithmic moduli of 

the graphene Creg
G using Creg

r(n+α)
= (1 − αx)Creg

rn
+ αxCreg

rn+1
, r =

G;αx ∈ [0, 1]
viii. Initialization of the strain increment in the polymer matrix 

Δεo←ΔεGo, where ΔεG = ΔεGo − vGΔεG

1− vG 
such as Ao = I.  

ix. Update the stress and compute the algorithmic moduli Creg
o in 

polymer matrix using Eqs. (42).  
x. Apply the mid-point rule at time tn+α to the algorithmic moduli of 

the polymer matrix Creg
o using Creg

r(n+α)
= (1 − αx)Creg

rn
+ αxCreg

rn+1
,r =

o;αx ∈ [0,1]
xi. Compute the global strain concentration tensors of graphene AG 

and polymer matrix Ao using Eqs. (28).  
xii. Calculate the residual to check the compatibility of average strain 

in graphene phase R = AG : ΔεGo − ΔεG  

xiii. If |R| ≤ TOL = 10− 8, then continue to the next step, else go to 
step v using the computed value of strain concentration tensor AG  

xiv. Compute the effective tangent modulus Ceff
Go of the 2-phases GPNC 

composite using Eq. (29).  
xv. Apply the mid-point rule at time tn+α to the algorithmic moduli of 

the 2-phases GPNC composite Ceff
Go using Creg

r(n+α)
= (1 − α)Creg

rn
+

αCreg
rn+1

, r = Go;α ∈ [0,1]

xvi. Compute thermal effective tangent modulus βeff
Go of the 2-phases 

GPNC composite using Eq. (29). 
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xvii. Using Creg
Go(n+α)

and βeff
Go as a matrix phase, compute global strain 

concentration tensors AF of the fibres using Eq. (28).  
xviii. Calculate the residual to check the compatibility of average strain 

in graphene phase R = AF : Δε − ΔεF  

xix. If |R| ≤ TOL = 10− 8, then continue to the next step, else to the 
step i using the computed value of strain concentration tensor AF.  

xx. Finally, compute the effective tangent modului Ceff
FGo and βeff

FGo of 
the 3-phases HGPNC composite using Eq. (29). 

3.2. Numerical modelling 

For the numerical modelling, LS-DYNA finite element (FE) solver 
[71] is employed as a user-defined material (UMAT). The UMAT is 
developed in a FORTRAN subroutine using the algorithm shown in 
Fig. 2. The strain increments Δε and time steps input for the numerical 
modelling come from LS-DYNA FE code. 

The subroutine reads the material constants, such as the stiffness and 
strength, from the LS-DYNA input file. Then, using the history variables, 
material constants, and strain increments, the subroutine follows the 
same approach as the previous algorithm shown in Fig. 1 to calculate the 

Fig. 1. Algorithm for analytical solution of the 3-phases composite.  
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HGPNC properties at the end of the time step by using the constitutive 
equations. The subroutine then updates and saves the history variables 
to the current time step and outputs calculated properties. A flag for 
failure was set for each integration point; if it were true, the integration 
point fails; if not, the calculations proceed to the next time step. It should 
be noted that the failure flag value needs to be as accurate as possible 
otherwise would result in earlier failure of the integration point. 

4. Results and discussions 

4.1. Validation 

The ability of the present model to reproduce results is examined 
from the open literature out herein. The model predictions are compared 
with several earlier works in literature. Li et al. [15] experimented on 

Fig. 2. Algorithm for FE solver of the 3-phases composite nonlinear response.  
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carbon nanotubes (CNTs) – Graphene nanoplatelets (GNPs) / epoxy 
composite. CNTs were considered discontinuous fibres, and GNPs were 
assumed to be effective rectangular solid fibres. The material properties 
used for this analysis are presented in Table 1. 

Material constants yield strength σo, strength coefficient k and strain 
hardening exponent ɱ were determined based on a comparison between 
experimental results and theoretical power-law model using Ludwik 
equation [77]: 

σ = σ0 + kεɱ (45) 

True strains and stresses were converted to their engineering coun
terparts e and s, respectively, as shown in Fig. 3 using [77]: 

e = exp(ε) − 1 , s = σ/(e + 1) (46) 

Conversion of mass fraction to volume fraction for a 2-phases com
posite can be calculated using the density of the constituents [74,43,78]. 
Thus for a 3-phases composite: 

ϕCNT =
WCNT/ρCNT

WGNP/ρGNP + WCNT/ρCNT + Wo/ρo

=
WCNT

WCNT + (ρCNT/ρGNP)WGNP + (ρCNT/ρo)(1 − WGNP − WCNT)

(47)  

ϕGNP =
WGNP/ρGNP

WGNP/ρGNP + WCNT/ρCNT + Wo/ρo

=
WGNP

WGNP + (ρGNP/ρCNT)WCNT + (ρGNP/ρo)(1 − WGNP − WCNT)

(48) 

where ϕCNT, ϕGNP, WCNT and WGNP are the volume and weight fraction 
of CNT and GNP, respectively, ϕo and Wo are the volume fraction and 
weight fraction of the matrix, ρCNT and ρGNP are the density of CNT and 
GNP, respectively, and ρo is the matrix density. The macro stress–strain 
response under uniaxial loading is given by a macro strain increment 
such as with = e3 ⊗ e3 −

1
2 [e1 ⊗ e1 +e2 ⊗ e2], where e1 = [1,0,0], 

e2 = [0, 1,0] and e3 = [0, 0,1] are unit vectors. 
Fig. 4 illustrates the predicted results of the multi-site model versus 

the experimental work of Li et al. [15]. Considering the total results, 
Fig. 4(a) combines overall comparisons. Fig. 4(b) specifies epoxy matrix 
and GNP/epoxy composite, indicating a good trend except that experi
mental values suffer from ductile damage starting at about 4% strain. 
Fig. 4(c) indicates no match between the predicted CNT/epoxy com
posite and the experimental values. This is attributed to the waviness of 
pristine CNTs, which interfere with predicting the composite behaviour 
and causes the aspect ratio for CNTs to be meaningless. Thus, the hybrid 
CNT– GNP reinforced composite, with which the CNTs were grown on 

GNPs, rendered uniform dispersion and maintained their aspect ratio 
and shape, resulting in the acceptable prediction of the hybrid CNT–GNP 
composite behaviour shown in Fig. 4(d). As for the one-site model, re
sults follow the same behaviour predicted for the multi-site model as 
there is no significant difference between the multi-site and one-site 
model results for the current composite, as shown in Fig. 5. This 
outcome was expected because the interactions between reinforcements 
are negligible due to their small mass fractions within the composite 
material. 

4.2. Fibre-glass/graphene-reinforced 3-phases composite 

4.2.1. Material characteristics 
The matrix considered is polyamide PA6-B3K with an isotropic 

hardening power-law, whereas the graphene nanoplatelets (GNP) and 
short glass fibres considered elastic are reported in Table 2. 

It should be mentioned that the thermal expansion coefficient (CTE) 
of single-layer graphene has a negative value and is estimated to be − 8.0 
× 10-6 /oC at room temperature [83]. However, graphene CTE is very 
sensitive to the substrate. A very weak substrate interaction can largely 
affect the negative CTE value. The CTE will be positive if the substrate 
interaction is strong enough and the value reaches 20.0 x10-6 / oC 
[82,84]. 

Fig. 6 compares the one-site model with the multi-site considering 
the evolution of the effective stress versus the equivalent strain under 

Table 1 
Material properties of CNT, GNP and epoxy constituents used for validation against Li et al. [15].  

Epoxy matrix 
Eo νo σo k ɱ κ [1/s] m CTEo (10-6/K) ρo 

2.2a GPa 0.3b 2 MPa 140 MPa 0.33 150 10 81c 1.1a g/cm3 

Graphene nanoplatelets (GNPs) 
EGNP νGNP aspect ratio (AR) CTEGNP (10-6/K) ρGNP 

1000a,d GPa 0.22 0.01e 7.83c 2.25a g/cm3 

Carbon nanotubes (CNT) 
ECNT νCNT aspect ratio (AR) CTECNT (10-6/K) ρCNT 

450a,f GPa 0.22g 1000e 0.2h 1.78a g/cm3  

a According to Li et al. [15]. 
b According to Chandra et al. [72]. 
c According to Shi et al. [73]. 
d According to Zhao et al. [43]. 
e According to our calculations based on Li et al. [15] inclusion morphology. 
f According to Rafiee et al. [74]. 
g According to Zeng et al. [75]. 
h According to Deng et al. [76]. 

Fig. 3. Experimental values versus power-law flow function.  
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different volume fractions ϕF of short glass fibres. The analyses have 
been conducted for two sets of volume fraction ϕF, low and increased 
volume fractions. As expected, in both cases, the effective behaviour is 
enhanced with the increase of ϕF. The higher the volume fraction ϕF, the 
better the equivalent stress of the 3-phases HGPNC composite material. 
As seen in Fig. 6, it is apparent that the one-site model exaggerates the 
enhanced behaviour compared with the multi-site model considering 
particle interactions. In addition, the higher the volume fraction, the 
stronger the interactions between reinforcements and the more signifi
cant the gap between the two prediction models. 

Fig. 7 depicts the effect of graphene on the evolution of the effective 
stress–strain response of the 3-phases HGPNC composite. As anticipated, 
results appear to shift towards high stress with increased GNPs volume 
fraction resulting in increased composite stiffness in terms of Young 
modulus, initial yield strength and plastic hardening modulus. Fig. 8 
indicates the overestimation of the one-site model results against the 
multi-site model, especially with increasing the volume fraction. 

Fig. 9 illustrates the composite behaviour as a function of the strain 
rate ε̇ and the temperature increment Δθ̇ design parameters of one-site 
model. Fig. 9(a) shows the influence of the strain rate ε̇. This results in 
a loss of ductility of the composite with increasing ε̇. The influence of the 
temperature increment Δθ̇ has been analyzed in Fig. 9(b). It shows that 
the more Δθ̇ increases, the stress–strain response of the composite 
slightly deteriorates. The increase in temperature, therefore, exerts a 
slight decreasing effect on the mechanical performance of the 

Fig. 4. Tensile stress–strain curves of epoxy matrix and the epoxy composites with 0.5 wt% reinforcements validation for multi-site model at strain rate (ε̇) = 10-4 

against Li et al. [15]: (a) Combined results (b) GNP composite, (c) CNT composite, and (d) CNT–GNP hybrids with CNTs (0.24 wt%) and GNPs (0.26 wt%). 

Fig. 5. Tensile stress–strain curves of epoxy matrix and the epoxy composites 
with 0.5 wt% reinforcements validation for one-site versus multi-site model at 
strain rate (ε̇) = 10-4 against Li et al. [15]. 

A. Elmasry et al.                                                                                                                                                                                                                                



Composite Structures 310 (2023) 116705

10

composite. Indeed variations in the strain rate ε̇ and temperature Δθ̇ 
have a similar effect on the multi-site model as shown in Fig. 10 however 
at a less composite stiffness due to the considered interactions of 
neighbouring inclusions. 

4.2.2. Numerical modelling and characterisation 
The developed constitutive equations are implemented through a 

multiscale simulation. Mechanical characterisations based on the ASTM 
standards are performed on tensile and compression [27]. Tensile 
specimen geometry recommendations of ASTM-E8M [85] are consid
ered, which are comparable to tensile test specimen dimensions for 
reinforced composites conforming to the dimensions of the Type I 
specimen of ASTM D638 [86] and also comparable to ASTM D3039/ 
D3039M [87]. At the same time, compression specimens were based on 

Fig. 6. Comparing one-site model versus multi-site model: (a) low volume fraction, and (b) increasing volume fraction.  

Fig. 7. Effect of graphene constituent on 3-phases E-Glass/G2NAN/PA6-B3K composite under uniaxial loading at strain rate (ε̇) = 10-4: (a) one-site, and (b) 
multi-site. 

Table 2 
Material properties for E-Glass/G2NAN/PA6-B3K constituent materials [79,80,81].  

Polyamide PA6-B3K polymer matrix 
Eo νo σo k ɱ κ [1/s] m CTEo (x10-6/ oC) ρo 

2.0 GPa 0.39 60.5 MPa 63 MPa 0.4 150 5 95.0 1.13 g/cm3 

Graphene G2NAN 
EG νG aspect ratio (AR) CTEG (x10-6/ oC) ρG 

700 GPa 0.22 10-3 20.0m,n,p 2.2 g/cm3 

Short E-Glass fibres 
EF νF aspect ratio (AR) CTEF (x10-6/ oC) ρF 

85 GPa 0.23 10 5.0 2.49 g/cm3  

m According to Jiang et al. [82]. 
n According to Shi et al. [73]. 
p According to Yoon et al. [83]. 
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ASTM D695 [88]. Fig. 11 compares analytical and FE tensile testing. 
Low volume fractions were used to diminish the effect of anisotropy. 
Overall good agreement is shown between both sets of results using one- 
site and multi-site models. 

Fig. 12 illustrates the development of the effective stress and strain 
response of the 3-phases HGPNC composite under the tensile test. As 
obtained previously, the gap between responses is sensitive to the GNP 
volume fraction. The higher the volume fraction, the higher the gap. The 
composite stiffness increases as the results shift in the direction of high 
stress with the increase of the GNP volume fraction. For the compres
sion, similar trends are also observed in terms of increased Young 
modulus, initial yield strength and plastic hardening modulus, as shown 
in Fig. 13. However, the composite behaviour under the compression is 
different. No softening trend is observed due to the densification 
resulting from material crushing together, leading to an increasing 
stiffer response. Both tests enable the characterisation of the damage 
beginning and failure threshold for the ultimate tensile and compression 
strengths. Additionally, it can be seen that, unlike the multi-site model, 
the one-site model amplifies the enhancement of composite behaviour. 

Fig. 9. Effective response of 3-phases composite under uniaxial loading using one-site model: (a) influence strain rate (ε̇), and (b) influence of the temperature 
increment at ε̇ = 10-4. 

Fig. 10. Effective response of 3-phases composite under uniaxial loading using multi-site model: (a) influence strain rate (ε̇), and (b) influence of the temperature 
increment at ε̇ = 10-4. 

Fig. 8. Comparing one-site versus multi-site considering effect of graphene on 
3-phases E-Glass/G2NAN/PA6-B3K composite under uniaxial loading at strain 
rate (ε̇̇) = 10-4. 
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4.2.3. Crashworthiness and energy absorption application 
A quarter of a symmetric crush tube of an automotive crash box is 

modelled to examine the crash performance. The geometry of the 
symmetric short crush tube depicted in Fig. 14 is created under LS-DYNA 
FE software [89,90]. The standard library 8-node solid elements are 
used for meshing purposes. The crushing load is applied on one side 

(upper) of the tube through a rigid wall moving at an initial impact 
velocity of 20 mph. The other (lower) side of the box is fully constrained. 
For symmetry constraints *BOUNDARY_SPC_SET command is used. 
Contact capabilities in LS-DYNA/EXPLICIT mainly*CONTACT AUTO
MATIC SINGLE SURFACE are used to define the contact interactions 
between different parts of the model. The constitutive mechanical law 

Fig. 12. Stress–strain behaviour of the 3-phases composite under tensile test: (a) one-site-model, and (b) multi-site model.  

Fig. 11. Numerical versus analytical stress–strain behaviour of the 3-phases composite (ϕG = 0.0005, ϕF = 0.01) under tensile test: (a) one-site-model, and (b) 
multi-site model. 

A. Elmasry et al.                                                                                                                                                                                                                                



Composite Structures 310 (2023) 116705

13

implemented in the crash box results from a user subroutine *MAT USER 
DEFINED MATERIAL MODELS. Failed continuum elements are removed 
using a damage-based element deletion. 

Energy absorption is computed to determine the energy dissipation 
capability due to composite crushing. Energy absorption on the total 
work done is equal to the area under the force–displacement curve and 
evaluated as, 

Eabs =

∫

Fds (49) 

where F is the corresponding force on the structure and s is the 
impact distance. Energy absorption capability is also evaluated as per 
unit mass absorbed, i.e. specific energy absorption (SEA) and evaluated 
as, 

SEA =
Eabs

M
=

Eabs

ρV
(50) 

where M is crushed mass, ρ is the composite material density, and V 
is the volume of the crush component. 

The evolution of force–displacement and energy-displacement pro
files obtained by the crushing of the tube specimens are depicted in the 
four diagrams of Fig. 15 grouped per modelling approach. At the 
beginning of crushing, the force–displacement curves in Fig. 15(a) and 
(b) show a linear segment of the loading controlled by the tube’s elastic 
deformation. A considerable drop in the load is recorded after the peak 

force, indicating the starting of a post-crushing stage. Throughout this 
stage, most well-known damage mechanisms (e.g. matrix cracking, 
debonding, fibre micro buckling, delaminations, and fibre failure) 
interact, forming the load–displacement profile. Eventually, the com
posite tube reaches a densification stage, where the specimens cannot 
carry extra load, and the fixed boundary constraints contribute to the 
load-carrying capacity. For easy comparison, the data used are limited to 
134 mm displacement before the densification stage. The energy 
absorbed profiles shown in Fig. 15(c) and (d) indicate a considerable 
enhancement in the composite energy absorption capability as the 
graphene volume fraction increases. 

Fig. 16 compares steel versus 3-phases HGPNC composite responses. 
The peak crush force and the SEA obtained from a steel specimen are 
plotted against the 3-phases HGPNC composite. It can be seen that the 
respective peak crush force of both composite materials is much lower 
compared to that predicted by the steel. For the OS model, reduction 
percentages of ϕG = 0.0, 0.01 and 0.05 are 80.9%, 80.6% and 78%, 
respectively, whereas for MS model considering the same GNP volume 
fractions are 85.7%, 81.4% and 80.9%, respectively. However, the 
contribution of GNP is significant in terms of specific energy absorption 
SEA. Even in cases of the multi-site model, the higher the GNP volume 
fraction, the higher the SEA showing the contribution of the GNP in the 
enhancement of the energy absorption considering the strength-to- 
weight ratio. 

Fig. 13. Stress–strain behaviour of the 3-phases composite under compressive test: (a) one-site-model, and (b) multi-site model.  
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5. Conclusion 

Multi-site (MS) modelling of the nonlinear elasto-viscoplastic 
response of 3-phases hierarchical fibres/graphene nanoplatelets- 
reinforced polymer matrix (HGPNC) composites has been analysed. 
Furthermore, the analysis of MS was compared with the traditional OS 
modelling. Generally, the analysis consists of modelling the 2-phases 
GPNC composite, whose effective properties are obtained from micro
mechanics formalism. Next, short glass fibres are embedded in the 2- 
phases composite to obtain the HGPNC 3-phases composite. Finally, 
different design parameters are analysed, including volume fraction, 
temperature, and strain rate. 

Models have been validated and implemented as a UMAT subroutine 
in LS-DYNA®. Before utilising the models for crashworthiness applica
tion, numerical characterisation-based ASTM standard tests are per
formed in tensile and compression to determine material damage 
thresholds needed to indicate the failure onset of the simulated 
component. The comparison between analytical and FE tensile testing 
indicates good agreement between the results, revealing that imple
menting the stress integration algorithm developed and used for the 
UMAT is successful. 

The crashworthiness of both models is then assessed for automotive 
components’ response in a multiscale crashworthiness simulation. Re
sults highlight the disparity between MS and OS approaches. When MS is 
considered, the simulation results for the FE macro-model indicate a 

reduction of the peak crush force (with percentages of 4.1% and 13% at 
ϕG = 0.01 and 0.05, respectively) and energy absorption (37.2 % and 
44.4% at ϕG = 0.01 and 0.05, respectively) compared to the OS results, 
as the GNP volume fraction increases. In general, the volume fraction of 
GNP seems to significantly improve the specific energy absorption of the 
structure compared to the steel counterpart considering strength to 
weight ratio. Contrasting the OS model, the MS model results showed 
more discretion (decrease versus the OS) regarding material responses 
due to the interaction between neighbouring inclusions. Design-wise, 
MS modelling can be considered a safer approach to follow. 

The current method is a coupling between fast and cheap analytical 
techniques and the computationally expensive numerical FE method. It 
represents a computational homogenisation model of two-scale ho
mogenisation for the 3-phases composite and can be easily generalized 
to a multiscale homogenisation method applicable to a multi-phase 
polymeric matrix composite system of elastic or inelastic re
inforcements. However, some limitations should be taken into consid
eration: the reinforced inclusions would be of the same shape and 
alignment, and convergence problems may be encountered. Although 
the MS approach has the advantage of dealing with the material’s 
anisotropy through the morphological and topological textures of the 
microstructure, more computing time may be required over the OS 
approach to obtain results. 

Future research may address conducting investigations and pursuing 
a suitable model for failure and fragmentation behaviour, e.g. mesh 

Fig. 14. Numerical model of symmetric crush tube of an automotive crash-box.  
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splitting or user-defined element interface to define structural solid/ 
shell elements. This model would be incorporated with the current 
UMAT model instead of elements just being distorted, overlapped, fol
ded or deleted under large deformations when reaching a failure crite
rion. Furthermore, not only individual components and structures can 
be simulated but also as part of whole-vehicle models. For example, a 
whole-vehicle simulation model can be used to virtually “crash” the 
vehicle into a barrier and carry out crashing analyses. Finally, The use of 
artificial intelligence (AI) and machine learning (ML)-based approaches 
such as artificial neural networks (ANNs) could be employed in future 
work. Although applying such techniques for constitutive material 
modelling is recent and not fully explored, they could potentially 
overcome the computational time constraints. 
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Appendix A 

To establish the integral relation of Eq. (15) between the local velocity gradient of the inhomogeneous medium and the kinematic 
boundary conditions: 

Eq. (13) may be rewritten in another form, 

Λjlul(r)+ fj(r) = 0 (A1) 

where 

Λjl = cR
ijkl∂k∂l

fj =
[
δcijkl(r)ul,k(r) − δβij(r)Δθ

]

,i

(A2) 

are, respectively, the Lame’s operator and volume force. Equation (13) can be transformed into the integral equation by means of the Green tensor 
Gkm(r − r′

) for the infinite medium characterized by cR. This Green tensor couples velocity components ul(r) at r with a rate of force ṫ applied in the 
direction m at the position r′ . 

cR
ijklGlm,ki(r − r

′

) + δjmδ(r − r′

) = 0 (A3) 

including the requirement: Glm→0 when r→∞. The properties of the Dirac distribution δ(r − r′ ) and the Kronecker symbol δjm imply 

um(r) =
∫

V ′
δmjδ(r − r′

)uj(r
′

)dV
′ (A4) 

and taking Eq. (A2) into account results in: 

um(r) = −

∫

V ′
cR

ijklGlm,ki(r − r
′

)uj(r
′

)dV
′ (A5) 

Using the property: 

Glm,k =
∂Glm

∂rk
= −

∂Glm

∂r′

k
= − Glm,k (A6) 

Fig. 16. Symmetric crush tube of steel versus 3-phases composite: (a) & (b) force versus displacement, and (c) & (d) specific energy absorption versus displacement.  
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and, after integration by parts, integral (A5) becomes: 

um(r) = −

∫

V ′
cR

ijkl

[
Glm,k′ uj(r

′

)
]

i′ dV ′

+

∫

V ′
cR

ijkl

[
Glm(r − r

′

)uj,i(r
′

)
]

,k′ dV ′

−

∫

V ′
cR

ijklGlm(r − r
′

)uj,ik(r
′

)dV
′ (A7) 

Making use of the divergence theorem, the first two volume integrals are transformed into surface integrals: 

um(r) = −

∫

S′
cR

ijklGlm,k′ uj(r
′

)dS
′

i +

∫

S′
cR

ijklGlm(r − r
′

)uj,i(r
′

)dS
′

k −

∫

V ′
cR

ijklGlm(r − r
′

)uj,ik(r
′

)dV
′ (A8) 

Considering the symmetry property: 

cR
ijklGlm(r − r′

)uj,ik(r
′

) = cR
ijklGmj(r − r′

)ul,ik(r
′

) (A9) 

Now, using Eq. (13) yields: 

cR
ijklGlm(r − r′

)uj,ik(r
′

) = − Gmj(r − r′

)
[
δcijkl(r

′

)ul,k(r
′

) − δβij(r
′

)Δθ
]

,i (A10) 

thus, Eq. (A8). 

um(r) = −

∫

S′
cR

ijklGlm,k′ uj(r
′

)dS
′

i +

∫

S′
cR

ijklGlm(r − r
′

)uj,i(r
′

)dS
′

k +

∫

V ′
Gmj(r − r

′

)
[
δcijkl(r

′

)ul,k(r
′

) − δβij(r
′

)Δθ
]

,i dV ′ (A11) 

After an integration by parts, the last integral may be changed to a volume and a surface. 
integrals and Eq. (A11) is replaced by. 

um(r)=−
∫

S′
cR

ijklGlm,k′ (r− r
′

)uj(r
′

)dS
′

i+

∫

S′
cR

ijklGlm(r− r
′

)uj,i(r
′

)dS
′

k+

∫

S′
Gmj(r− r

′

)
[
δcijkl(r

′

)ul,k(r
′

)− δβij(r
′

)Δθ
]
dS′

i−

∫

V ′
Gmj,i(r− r

′

)
[
δcijkl(r

′

)ul,k(r
′

)− δβij(r
′

)Δθ
]
dV ′

(A12) 

The second and third surface integrals disappear because of Green’s tensor property for r→∞. The first surface integral presents the solution to the 
homogeneous problem (homogeneous material of cR

ijkl instantaneous tangent moduli which is submitted to the real boundary conditions). Defining this 
solution as UR

m=uR
m(r) one may write: 

um(r) = UR
m +

∫

V ′
Gmj,i(r − r

′

)
[
δcijkl(r

′

)ul,k(r
′

) − δβij(r
′

)Δθ
]
dV ′ (A13) 

The velocity gradient may now be calculated as, 

Gmn(x) = um,n(r) = UR
m,n +

∫

V ′
Gmj,in(r − r′

)
[
δcijkl(r

′

)ul,k(r
′

) − δβij(r
′

)Δθ
]
dV ′ (A14) 

Solution of the general equation of heterogeneous inclusions to obtain Eq. (21): 
Generally, the field ε(r) inside inclusions of any shape is not uniform. In that case, the exact solution of Eq. (16) requires numerical methods or 

approximation of ε(r) using a polynomial form [91]. In most real situations, it is reasonable to assume that ε(r) is quasi uniform inside the inclusions, 
so that the average value εI, εJ, … etc of ε(r) inside the inclusions I , J, …etc may be obtained as follows: 

From Eq. (16) in (19): 

εI
mn = ER

mn −
1
VI

∫

VI

∫

V
Γmnij(r − r

′

)
[
ΔCI

ijklℵ
I(r)εkl(r

′

) − ΔβI
ijℵ

I(r)Δθ
]

dV dV ′

−
1
VI

∫

VI

∫

V
Γmnij(r − r

′

)
[
ΔCJ

ijklℵ
J(r)εkl(r

′

) − ΔβJ
ijℵ

J(r)Δθ
]

dV dV ′

− ⋯etc

(A15) 

To obtain εJ, from an analogous formula: 

εJ =
1

VJ

∫

VJ
εJ

mn(r)dV (A16)  

εJ
mn = ER

mn −
1
VJ

∫

VJ

∫

V
Γmnij(r − r′

)
[
ΔCJ

ijklℵ
J(r)εkl(r

′

) − ΔβJ
ijℵ

J(r)Δθ
]
dV dV ′

−
1
VJ

∫

VJ

∫

V
Γmnij(r − r′

)
[
ΔCI

ijklℵ
I(r)εkl(r

′

) − ΔβI
ijℵ

I(r)Δθ
]

dV dV ′

− ⋯etc

(A17) 

The exact solution of these equations is still very complex and difficult to deduce in general; an approximate solution can be obtained by replacing 
the deformations ε(r) integrals in Eq. (A15) and Eq. (A17) by their average value εI, εJ, …etc in the inclusions I, J, …etc. 

Thus Eq. (A15) becomes, 

εI
mn = ER

mn −
1
VI

∫

VI

∫

VI

Γmnij(r − r
′

)
[
ΔCI

ijklεI
kl(r

′

) − ΔβI
ijΔθ

]
dV dV ′

−
1
VI

∫

VI

∫

VJ

Γmnij(r − r
′

)
[
ΔCJ

ijklεJ
kl(r

′

) − ΔβJ
ijΔθ

]
dV dV ′

− ⋯etc (A18) 

and a similar expression for εJ can be established. 
By setting TII

mnij =
1
VI

∫

VI

∫

VI Γmnij(r − r′

)dVdV′ and TIJ
mnij = 1

VI

∫

VJ

∫

VJ Γmnij(r − r′ )dVdV′ , the following linear system is obtained: 
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εI
mn = ER

mn − TII
mnij

[
ΔCI

ijklεI
kl − ΔβI

ijΔθ
]
− TIJ

mnij

[
ΔCJ

ijklεJ
kl − ΔβJ

ijΔθ
]

dV dV ′

− ⋯etc

or

εI = ER −
∑

J
TIJ :

[
ΔcJ : εJ − ΔβJΔθ

]
(A19) 

Similarly by setting TJJ
mnij =

1
VJ

∫

VJ

∫

VJ Γmnij(r − r′

)dVdV′ and TIJ
mnij = 1

VJ

∫

VJ

∫

VJ Γmnij(r − r′ )dVdV′ , results in: 

εJ
mn = ER

mn − TJJ
mnij

[
ΔCJ

ijklεJ
kl − ΔβJ

ijΔθ
]
− TIJ

mnij

[
ΔCI

ijklεI
kl − ΔβI

ijΔθ
]

dV dV
′

− ⋯etc

or

εJ = ER −
∑

I
TIJ :

[
ΔcI : εI − ΔβIΔθ

]
(A20) 

General expressions and numerical quadrature for approximate computation of TII and TIJ: 
Considering ellipsoidal-shaped inclusion with semi-axis (a, b, c), the following expressions based on the Fourier transform G of the Green tensor G 

could be provided [32]: 

TII
mnij =

1
4π

∫ π

0− 0

∫ 2π

φ− 0
χnχjκ2Gmi(ξ)sinθdφdθ (A21) 

and, 

TIJ
mnij =

9
8π3VJ

∫ π

θ=0

∫ 2π

φ=0
wnwjκ2Gmj(ξ)sinθF(θ,φ)dφdθ (A22) 

where χ =
[
sinθcosφ, a

b sinθsinφ, a
c cosθ

]
and W = [sinθcosφ, sinθsinφ, cosθ] in Eqs. (A21) and (A22), respectively. Variables θ and φ are the directional 

cosines while ξ is defined by ξi = κχi, κ2Gjk(ξ) =
(

cR
ijklχiχl

)− 1 
and F(θ,φ) is a function of the inclusions’ morphological and topological textures. 
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