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Abstract 
a) Why is the subject of your thesis important?  

Every year more than 1 million people attend Accident and Emergency with mild traumatic brain injuries 

(mTBI), many of which arise from Sports Related Concussion (SRC). Despite the high incidence of such 

injuries, there is still no gold standard method to monitor the wide variety of impairments (cognitive, visual, 

motor symptom) accompanying mTBI. Accordingly, there is concern about the long-term effects of mTBI 

if diagnosis is delayed or missed entirely. Current reliance on subjective techniques such as symptoms are 

non-specific and an unreliable indicator of recovery, making it difficult to know when it is safe for players 

to return to play (RTP). This highlights the need for testing and validating the accuracy and applicability of 

objective tools to aid diagnosis, monitoring, and RTP protocols for individuals exposed to mTBI and SRC.  

b) How have you undertaken the research?  

I have taken a systematic approach to this problem-based research, starting by understanding the clinical 

challenges of mTBI from SRC where amateur rugby union is used as an exemplar for investigation 

throughout the thesis. Both mTBI and SRC is an under-researched area confounded by insufficient medical 

staff available to recognise SRC and monitor players within low resource (community) based settings. This 

may place these individuals at an increased risk of having a delayed diagnosis or it being missed entirely. 

My hypothesis tests if the use of digital technologies may enable affordable mTBI management, ensuring 

continuity and objective personalised assessment to support traditional approaches. Accordingly, my thesis 

broadly comprises of a literature examination and preliminary validation and testing, progressing to an in-

depth exploration involving larger datasets and concluding with recommendations for clinical practice.  

c) What are your main research findings?  

My multidisciplinary approach reveals that focusing on one impairment in mTBI is unlikely to reveal 

meaningful insight to mTBI/SRC and RTP. Instead, multimodal digital technologies could enable affordable 

management, ensuring consistency and continuity (e.g., between assessors) while offering objective 

personalised data to better support traditional approaches. My results provide insight and identify the 

usefulness of instrumented walking (gait) as a digital (bio) marker for mTBI management. Based on receiver 

operating characteristics (ROC) and area under the curve (AUC) analyisis free-living step velocity (i.e., 

walking speed) was the most sensitive (>0.72) at distinguishing healthy from acute SRC and may be useful 

for continuous monitoring and therefore informing SRC RTP. 

In a purely computing science context, my findings have uncovered challenges and opportunities for further 

refinement. For example, there is still room for more ‘no code’ solutions in gait and algorithm analysis. Few 

clinicians would have the technical skillsets for completing free-living gait analysis. Therefore, validated 

algorithms within a "drag and drop", click and collect approach is needed to meet the recommend approach 

of remote, free-living monitoring of habitual behaviours. That is an important next step for the translation of 

academic research grade devices for broader deployment in clinical practice.  

d) Why do your research findings matter 

This thesis generally supports the suggested use of digital technologies as an affordable and objective 

method to support traditional approaches of assessment in mTBI/SRC. Passive and continuous monitoring 

solutions such as wearables are becoming ubiquitous in daily life. Moreover, the use of instrumented (lab) 

and free-living gait may fit that context with evidence of its use as a diagnostic tool. More work is needed 

to strengthen that claim as well as further investigate its use as a responsive tool.   Identifying useful digital 

biomarkers in pathological cohorts such as mTBI may improve the detection of injuries and better inform 

safe (personalised) RTP guidelines. Identifying critical stages of recovery more accurately will also reduce 

the likelihood of premature return to play before full recovery, which is a necessary threshold in offering 

personalised care and rehabilitation. That is an important next step for the translation of academic research 

grade devices for broader deployment in clinical practice.   
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Chapter 1: Understanding the 

challenges within mild traumatic 

brain injury (mTBI) management 
 

This chapter uses text from my previously published online article to fit the context and narrative of 

this thesis. The article: A range of perspectives for concussion management in men’s rugby union, 

was published as part of an invited blog in the British Journal Sports Medicine on 21 January 

2021 (URL: https://blogs.bmj.com/bjsm/2021/01/05/a-range-of-perspectives-for-concussion-

management-in-mens-rugby-union/).  
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1.1 Introduction 

During my clinical training as a physiotherapist the challenges of diagnosing and identifying mild 

traumatic brain injury (mTBI) were very apparent. Often, the traditional tools and techniques used to 

assess my patients lacked the required sensitivity for accurate initial diagnosis or as prognostic 

indicators. Furthermore, although new approaches which could enhance clinical assessment (e.g., 

digital approaches) were being developed, they are often expensive and thus restricted to specific 

clinical settings with high resource allocation. This experience has been a strong motivating factor for 

my decision to pursue a multidisciplinary research-based doctorate/PhD that spans the computing and 

health sciences disciplines. By researching and evaluating modern approaches that integrate sensors, 

computing/data analysis in a health science setting, I hope to identify and integrate contemporary 

methodologies and technologies which could be used to improve mTBI management. My approach 

includes the exploration and investigation of more objective approaches to augment and enhance 

existing clinical techniques. Overall, I aim to contribute and add to the body of knowledge and 

innovation that will ultimately support and improve the quality of care delivered for those with mTBI.  

MTBI (mTBI) is prevalent across a spectrum of cohorts/areas such as older adult fallers, young 

adults in road traffic incidents as well as contact sports such as rugby union [1]. For the purposes of this 

thesis, I have decided to focus on amateur level rugby union. The rationale being it is my passion and 

the area which has provided me with the most clinical exposure, where university rugby players are, at 

an increased risk of sustaining a mTBI [2].Immediate and accurate (on-field) recognition and 

management of mTBI remain difficult even in professional teams/sports that often possess sufficient 

medical staff to monitor for suspicious mechanisms of injury which may lead to a mTBI. Thus, accurate 

recognition of mTBI is particularly challenging in environments with limited medical support such as 

amateur teams/sports, where there may be one coach or first aider only. This rationale is reinforced by 

new evidence highlighting the potential likely causative links of long-term impacts of inappropriate 

mTBI management and increased risk of neurological conditions such as motor neuron disease [3] and 

chronic traumatic encephalopathy (CTE) in retired players [4,5]. The long-term neurological deficits 

associated with head trauma have increased public health concerns (across many sports), driving 

demand for evidence-based monitoring/diagnosis and improved treatment [6]. Often in sport, mTBI is 

often described as sports related concussion (SRC) and terms are often used interchangeably. This 

chapter begins this thesis by highlighting some key challenges and contrasting perspectives across the 

spectrum of mTBI in rugby union.  

1.1.1 mTBI: In sports 

Some understanding surrounding the etiology and frequency of mTBI/SRC has increased in the last 

decade, but there is still a long way to go in providing objectivity in diagnosis and assessment. Timely 

and accurate diagnosis is important to ensure appropriate player management during recovery while 

informing any return to play (RTP) protocol after SRC. The management of mTBI is vastly different 

across sports and level of competition, with some sports having accelerated RTP protocols and different 

rules depending on which country the athlete resides. For example, in Scotland, based on current 

guidelines at time of writing, an adult rugby player may RTP 12 days post mTBI once s/he has passed 

through the graduated RTP [7]. In contrast, a player of the same age and level of competition in England 

would RTP after 19 days [8]. This discrepancy means a lack of agreement in expected recovery 

timelines which can be confusing for coaches, medical professionals and players for deciding when it 

is safe to RTP.  

There are approximately 2 million registered players in England alone participating at an amateur 

level in rugby union [9]. Accordingly, it offers an opportunity to monitor a large pool of athletes who 

are at an elevated risk of sustaining a mTBI compared to the general public [1,10]. Furthermore, and 

importantly, it offers an opportunity to explore mTBI management in low resource settings where there 

may not be routine access to a (knowledgeable/specialised) healthcare professional to recognise mTBI 

signs and symptoms, and/or provide guidance on necessary approval for safe RTP after injury. To 
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explore current mTBI/SRC challenges, I start my thesis by examining contrasting perspectives to 

highlight pragmatic lines of enquiry arising from unmet clinical needs. Subsequently, I derive a suitable 

research hypothesis that will form the foundations of the research undertaken. 

1.1.2 Contrasting perspectives 

Here, a qualitative approach was used to gain insight into mTBI/SRC across a broad spectrum of 

participation. A semi-structured interview approach was adopted using open-ended questions to expose 

points of interest (PoI) that will underpin my research in this thesis. Language/text used here is generally 

representative of personal statements by the individuals providing their lived experience subjective 

thoughts (Figure 1) but tailored with the individuals to suit the requirements of a research thesis. The 

purpose of this undertaking is to highlight some of the current unmet needs pertaining to the challenges 

relating to mTBI management. Some key challenges are highlighted, evidenced by the italics text and 

PoI abbreviation. 

 

 

Figure 1.Contrasting professional experiences across the spectrum. Affiliations of those presented are at the time of 

conducting the work 

1.1.3 A professional rugby player (Will Hooley) 

1.1.3.1 Perspectives within professional levels? 

To date, I think the level of detail surrounding SRC assessment has progressed dramatically and for 

the better. At the beginning of my professional career, it was restricted to basic pitch side or on field 

assessment. Inclusion of the Head Injury Assessment (HIA) protocol with tests such as Sport 

Concussion Assessment Tool (SCAT) and targeted neurocognitive testing has made the diagnosis and 

rehabilitation pathway far clearer for professionals [11]. All players in the top two (English) leagues 

(Premiership and Championship) are now required to study and complete a Rugby Football Union 

(RFU) concussion tutorial which educates players around the whole diagnosis, rehabilitation pathway 

and RTP. I feel players now recognise the seriousness of the injury far more than they did 5-10 years 

ago. 
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1.1.3.2 Can you give a brief outline of the management you received having sustained a SRC? 

I sustained a SRC in the final 3-minutes of a game while representing United States of America 

(USA) against England at the 2019 senior Rugby World Cup. I was knocked out and have no 

recollection of the incident. To my knowledge the game was stopped, two doctors rushed on, and a 

stretcher was brought on after initial checks were done to my neck and head. I was taken off the pitch 

and straight to hospital.  

I was then given a CT (computed tomography) scan to rule out a more severe damage to my head. 

The doctor in charge was a neutral match day doctor who assessed me and was there throughout the 

entire hospital assessment. Fortunately, I was discharged from hospital the same day. After the 

symptoms associated with concussion were resolved (3-days), I was able to complete a low intensity 

cycle on a bike for 20-minutes. After fully completing further SCAT tests, I got back to training. I re-

did the SCAT tests again before being cleared to do controlled contact within training [11]. I missed 

the game against France but within 13 days I was back playing against Argentina. I saw the 

physiotherapist and medical team at least once a day right up until playing again.  

 

1.1.3.3 What can be transferred into the amateur game? 

The problem with the amateur game is lack a of finance (PoI1). What I described previously relies 

on money being spent to source needs. I believe that all clubs should get registered players to complete 

a baseline concussion assessment and there should be a medical professional at all levels of rugby 

matches. As a result of players investing time to complete a concussion assessment, and having a 

medical professional present, amateurs may take concussion more seriously. They will understand what 

they are dealing with and help their teammates to understand. They may then be more rigorous in their 

recovery and will recognise the importance of dealing with concussion. 

 

1.1.3.4 What would you want all medics to know/appreciate for RTP post-concussion? 

Due to a player being in the heat of the moment, it is important for medics to have the ability to 

override the player’s emotion/willingness to stay on the pitch or RTP post-concussion. Due to the 

competitive nature of the player s/he will try and hide symptoms, feelings and even altering body 

language as processes very much rely on how the player feels (PoI2). Sometimes players push 

themselves too hard and lie about their symptoms to enable them to RTP. Alternatively, players can 

also overthink how they are feeling, making them feel worse than they are. Naturally, players want to 

continue playing/training and so medics must see through these. 

 

1.1.4 Elite physiotherapist (Salwa Bowen) 

1.1.4.1 Perspectives within professional levels? 

Regular daily contact with either the doctor or physiotherapist at the professional level aims to 

identify and monitor any ongoing symptoms (or delayed symptoms) of concussion more closely. 

Appropriate action is taken as early as possible to manage the player. Earlier referrals are made to a 

neuroscience department with a consultant neurologist, who has an interest in concussion and is 

affiliated with the professional club. This helps minimize stress/anxiety and the potential psychological 

implications of the inability to compete without a time frame. Low mood and depression associated 

with being removed from play without a time frame, becomes part of the management plan with positive 

coping strategies being introduced much earlier in the management process.  
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1.1.4.2 Perspectives within amateur levels? 

Recognise and remove is the protocol for management and identification of a potential concussion, 

based on a more cautious approach than any suspicion of concussion or identified head injury. The 

landscape in university sport is very different in SRC management from one club/university to another. 

Daily contact (PoI3) with a physio is almost impossible with a student athlete due to their other 

commitments. The player may be managed by different practitioners (PoI4) through the graduated RTP 

process and so there is no consistency within the clinical judgement on cognitive improvement. The 

lack of consistency (PoI5) can make the management of the more complex case concussions very 

difficult. 

1.1.5  Amateur Player and physiotherapist (Dylan Powell) 

1.1.5.1  What is your perspective? 

There is a huge contrast to the professional level. Northumbria Rugby men’s 1st team have had 

many concussions during the 2019-20 playing season, one of which occurred at an away game in Wales 

and required hospital assessment. I think the coach and player were in Accident & Emergency (A&E) 

for 12-hours before being seen on the Thursday morning. The alternative was to return to the northeast 

(7-hr coach trip), making it challenging to monitor the athlete and note potential deterioration. This is 

a common occurrence for players and BUCS staff.  

Players often feel that when they are seen they are given general, non-specific concussion advice 

(PoI6) and discharged home, I think some players recognise concussion is a serious injury. However, 

most do not want to be removed from the play/training and are generally unaware of the potential 

damage they may be doing by playing on. Concussion is a difficult condition to identify and manage 

even in professional environments where there is access to specialised medical professionals or 

processes- highlighting how difficult it is at amateur level or low resource settings. Overall, there is a 

reluctance and barrier in amateur clubs to use the SCAT, as it carries significant administration burden, 

often takes significant time for players to complete which isn’t always achievable, and is subjective in 

nature, which can't be relied on for diagnosis, so there is no incentive for players to take part (PoI7).  

1.1.6 What is there to learn? 

Firstly, the importance of education and communication on the significance of concussion. All elite 

level players are now required to undertake formal mTBI/SRC learning, appearing to be well received 

and respected in the professional game. There is demand for this within the amateur/university game 

and it must be more robustly conveyed to younger amateur athletes the importance of treatment and 

management. 

Secondly, resources (PoI8) and consistency (PoI9) of approaches. Clearly there are differences in 

the availability of resources for professionals and amateurs, Table 1. Yet in terms of participation, 

professional and registered club players only represent a minority of players (6.5%) compared to the 

1.9million amateur rugby players [12]. A rebalancing of resources may therefore be appropriate to 

increase medical provision for the amateur game. Equally, there is a real and pragmatic need to ensure 

there are accessible/affordable (PoI10) approaches for mTBI management. 

BUCS (British Universities and Colleges Sport) Super Rugby is an amateur league, which is 

arguably operating at a semi-professional level as it aims to provide a pathway for aspiring 

professionals. Managing SRC in this competition raises many challenges but may provide opportunities 

to better facilitate our future understanding, diagnosis, and treatment of SRC in amateur and 

professional rugby. Typically, there is little daily or consistent contact (PoI11) with the same physio, 

which negative impacts overall management. In general, there is a need to better understand the 

occurrence and dynamics of SRC because of the lower availability of medical professionals and 
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resources at this level. More emphasis should be given at all levels of competition to increase the 

objectivity in return to play and reduce pressure on returning to play quickly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.7 Defining a research hypothesis 

This introductory chapter has provided a background into some of the common challenges within 

mTBI management from a sporting context. Here, a semi-structured interview approach was taken to 

understand the current unmet needs arising from contrasting perspectives relating to mTBI management 

challenges in rugby union on the pitch and from the sideline across the professional to amateur 

spectrum. Key PoI emerged, some of which were recurrent and had overlap: 1 finance, 2 player feelings 

and confidence, 3 daily or regular contact, 4 different practitioners, 5 consistencies in assessment, 6 

lack of objectivity, 7 lack of participation, 8 resources, 9 consistencies in guidelines, 10 

accessible/affordable and 11 constant contact. Subsequently for ease, those PoI were grouped 

according to three key overarching points for:  

• PoI1: finance and resources,  

• PoI2: access, scalability and consistency (inc. accuracy, subjectivity vs. objectivity) 

• PoI3: personalised assessment and increased patient/player involvement 

I propose that an exploration and a better understanding of those three PoI are necessary to inform 

contemporary mTBI management approaches. Thus, this leads me to my central hypothesis for my 

thesis: 

The use of digital technologies may enable affordable mTBI management, 

ensuring continuity (e.g., between assessors) while offering more objective 

personalised assessment to support traditional approaches. 

 

1.1.8  Thesis overview 

This section provides an overview of my thesis, which is comprised of initial investigations 

(Chapters 2 to 5) and further contemporary mTBI analysis (Chapters 7 to 10). Specifically, Chapters 2 

to 5 address the PoI's identified in Chapter 1, providing a springboard to more in-depth approaches to 

inform mTBI. The thesis builds towards an acceptance or rejection of my research hypothesis, Chapter 

11.  

mTBI arising from SRC in rugby union is used as an exemplar for investigation throughout this 

thesis. That is because amateur level rugby union is a large and under researched area with insufficient 

tools available to recognise SRC within low resource (community) based settings. I propose that a focus 

Table 1. Comparison of typical professional versus typical amateur medical cover 

Match Day team Professional Amateur 

Tournament medical manager ✓ ❌ 

Match day doctor ✓ ❌ 

Immediate care lead ✓ ❌ 

Tournament team doctor ✓ ❌ 

Pitch side ambulance ✓ ❌ 

Teams own medical support  ✓ ✓ 

Lead physiotherapist ✓ ✓ 

1st Team Physiotherapist ✓ ✓ 

Adapted from World Rugby Cup 2019, Minimum Medical Standards [13] 
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on amateur university level rugby union can provide a good test bed to explore how PoI 1-3 can be 

addressed. Often, injury sustained in a community environment may be missed entirely or give rise to 

an increased likelihood of premature RTP before recovery. Accordingly, the thesis broadly comprises 

a literature examination and preliminary testing (chapters 2 to 5, with a recap in chapter 6), progressing 

to an in-depth exploration involving larger datasets (chapters 7 to 10) and concluding with chapter 11. 

1.1.8.1 Chapter 2 

Digital technologies span a plethora of hardware and software modalities. Consequently, there is a 

need to better understand what specific technologies could be of immediate and pragmatic use in mTBI 

management. In this chapter I will provide an in-depth critical analysis of the literature into both the 

traditional and more contemporary methods relating to mTBI/SRC. There will be a focus on assessment 

techniques to better understand the current state of the art, with a goal to harmonise key work within 

the field. That will shed light on research gaps relating to mTBI management and use of digital 

technologies. Some new findings and recommendations that emerge inform later work in this thesis 

e.g., remote monitoring of gait and a need for multimodal assessment. 

1.1.8.2 Chapter 3 

Upon highlighting some technological opportunities for improved mTBI management, this chapter 

investigates one data sensing modality. The work presented here provides an understanding of how a 

wearable approach can be used to offer contemporary data capture pertaining to the domain of motor 

assessment in mTBI. In this chapter, I undertook a wide scoping review to inform key technical details 

and skills utilised later in this thesis. 

1.1.8.3 Chapter 4 

This chapter presents the first of my two feasibility studies to address PoI1 and PoI2. Here, I explore 

the validity, usability and acceptability of an affordable inertial-based wearable to instrument motor-

based tasks during a supervised assessment. This chapter also provides a preliminary exploration of gait 

to distinguish those with recent SRC history versus those without. 

1.1.8.4  Chapter 5 

This chapter presents my second feasibility study, addressing PoI3. Here, this study complements 

chapter 4 by going beyond a supervised assessment and use of the same wearable during remote, 

habitual mTBI assessment. This chapter is a single subject study/report of a player with recent history 

of acute mTBI. The purpose of this case study was to explore the feasibility and potential of the 

wearable to gather useful data remotely to better inform RTP. 

1.1.8.5 Chapter 6 

A recap of chapters 1 to 5, to take note of the acquired knowledge of how digital technologies could 

be used to address PoI’s. From here, I springboard into a novel examination of mTBI assessment by 

undertaking a contemporary free-living approach. 

1.1.8.6 Chapter 7 

After understanding the scope and range of opportunities afforded by wearables and other novel 

findings from chapter 2, it was important to devise a protocol to inform a contemporary approach for 

mTBI assessment. Accordingly, this chapter details a comprehensive process for a more rounded and 

thorough mTBI assessment. The protocol is wide-ranging to generally inform the area of mTBI, but 

some of the suggested methods for analysis are purposefully excluded in later chapters to ensure clarity 

and focus within this thesis.  
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1.1.8.7 Chapter 8 

After defining a multimodal digital assessment protocol, I explore the sensitivity of most approaches 

by comparing those with SRC history, no SRC history and acute SRC, The primary rationale being to 

explore gait as a diagnostic/distinguishing digital (bio) marker. This chapter also explores the 

practicalities and feasibility of conducting large scale multimodal assessment in the same cohort.  

1.1.8.8 Chapter 9  

This chapter explores the effectiveness of free-living instrumented gait as a digital 

diagnostic/discriminative (bio) marker by comparing chronic mTBI compared to healthy controls. This 

adds to the knowledge beyond acute mTBI free-living gait assessment, exploring gait in longer term 

mTBI suffers. 

1.1.8.9 Chapter 10 

Findings from my literature inspire this chapter where I explore the effectiveness of free-living gait 

as an outcome to an intervention in those with chronic mTBI. Here, I explore free-living gait as the 

primary outcome measure of interest from the application of a pilot intervention for chronic mTBI 

rehabilitation. The aim here is to assess instrumented free-living gait as a response digital (bio) marker. 

1.1.8.10 Chapter 11: Discussion, conclusion, and wider impact 

The potential for wearables in healthcare is enormous but challenges remain, of which there are 

many. We detail here in Chapter 10, my conclusions from testing my hypothesis and the usefulness of 

wearables to inform SRC diagnosis. Additionally, I draw attention to sustainability which is often 

overlooked in comparison to the technical, professional, policy and social challenges. I believe that 

opportunities exist to drive sustainable implementation through wearables in clinical practice. I discuss 

sustainability in healthcare and later discuss more broadly how wearables could routinely enable 

(digital) medicine. 

1.1.9 Impact of COVID-19 

COVID-19 significantly affected my PhD topic and ability to conduct participant assessments. As 

there is significant close contact in team sports, amateur sports such as rugby union, was one of the last 

activities that were allowed to resume post COVID-19 social distancing [14]. No contact sport was 

played in Northumbria University until restarting after Summer 2021, which proceeded to impact the 

2021-22 playing season. Additionally, this was confounded by hesitancy from the University to grant a 

formal resumption of my data collection due to definitions of essential research. Accordingly, that 

brought about many challenges and limitations, including a reduced opportunity to collect large data 

sets, outlined in my protocol (Chapter 7) across additional cohorts (e.g., Womens Rugby). To overcome, 

it afforded me an opportunity to adapt by creating new opportunities for data analysis and collaboration 

whilst COVID restrictions limited my primary data collection. This is exemplified by collaborations 

with Oregon Health State University to work collaboratively on equivalent and complementary datasets 

in mTBI. 

1.1.10 Funding declaration 

During my doctoral studies I applied for an A2 research grant (https://ppef.org.uk/grants-awards/) 

to the Private Physiotherapy Education Fund (Minerva House, Tithe Barn Way Swan Valley, 

Northampton, NN4 9BA). I was awarded £24,461 which was used to purchase wearable technologies 

that aided the research conducted as part of this doctoral thesis. The funder played no role in the design, 

conduct, or reporting of any of the work presented within this thesis. 

 

 

https://ppef.org.uk/grants-awards/
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Chapter 2: Digital approaches in 

mTBI assessment and monitoring 
 

This chapter uses text from my previously published online article to fit the context and narrative of 

this thesis. The journal article “Sports related concussion: An emerging era in digital sports 

technology”, was published in the Nature/npj Digital Medicine in 2021 (URL: 

https://doi.org/10.1038/s41746-021-00538-w)  

 

  

https://doi.org/10.1038/s41746-021-00538-w
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2.1 Introduction 

Here, I investigate the current state of the art with digital technologies in mTBI with a focus in sport 

to provide context pertaining to affordable and pragmatic use in low-resource settings (Chapter 1). This 

chapter will begin to explore my hypothesis and is a scoping narrative review where I examine clinical 

assessment methods in four key mTBI components (cognitive, visual, motor, symptom), providing 

some insights to the translational utility of readily attainable digital methods. This chapter will aim to 

shed light on all PoI’s. Accordingly, I examine common benefits and challenges facing those digital 

approaches as they aim to transition from novel technologies to efficient, valid, reliable, and integrated 

clinical tools. Lastly, I highlight future opportunities that attainable digital tools can have in mTBI 

diagnosis and monitoring (within SRC) with a systems science-based management approach including 

digital twinning and the ‘digital athlete’. I support this with recommendations on how this field should 

develop. 

2.2 Background 

Direct impact(s) to the head or neck during sport are major contributors to individuals sustaining a 

SRC [11,14]. The incidence of mTBI/SRC has grown in many contact sports. For example, in rugby 

union the incidence can be as high as one concussion per game [15,16]. Accordingly, SRC presents 

notable health risks to those participating in contact sports where the intensity of e.g., high impact 

collisions are commonplace with considerable challenges in diagnosis and monitoring to inform RTP.  

Timely identification of SRC is of critical importance to SRC management, to avoid adverse 

neurological implications [17]. Appropriate SRC management ensures participants do not RTP 

prematurely as this can lead to a secondary brain injury [15,18,19]. Second impact can have serious 

consequences including increased intracranial pressure and in extreme cases, death [20]. Hence, 

diagnosing SRC through timely and accurate assessment is of crucial importance to minimize short 

term health risks. This is reinforced by evidence highlighting the (potential) long-term impacts of 

inappropriate SRC management and increased risk of neurological conditions such as motor neuron 

disease [3] and CTE in retired players [4,5,21]. Long-term neurological deficits associated with head 

trauma have increased public health concerns (across many sports), driving demand for evidence-based 

monitoring/diagnoses, reduced exposure and subsequently improved treatment [6]. 

Immediate and accurate (on-field) recognition and management of SRC remains difficult. This 

includes professional teams/sports that often possess sufficient medical staff to monitor for suspicious 

mechanisms of injury which may lead to a SRC [22,23]. Thus, accurate recognition of SRC is 

particularly challenging in environments with limited medical support such as amateur teams/sports, 

where there may be one coach or first aider only (as highlighted in chapter 1). In rugby union 

environments with reduced medical provision, the conservative approach of ‘Recognize & Remove and 

if in doubt, sit them out’ is adopted [24]. That involves permanently removing players identified as 

being involved in possible head injury related events (e.g., contact with head or neck) or if they display 

signs and symptoms associated with SRC there is no return to sporting activity until a medical 

assessment is performed. That aims to reduce occurrences of missed or misdiagnosed SRC in low 

resource/amateur environments.  

SRC presentation is heterogeneous with a wide variety of signs and symptoms, some of which are 

subtle/undetectable and easily missed or may only become apparent in the following hours and days 

after injury [25]. Therefore, challenges remain in the subsequent (off-field) monitoring and RTP 

protocols following SRC and during recovery. This is confounded by traditional approaches used to 

diagnose and monitor SRC often occurring during infrequent snap-shot assessments. The most widely 

used approach in SRC assessment is the SCAT which tests aspects of cognition, balance and vision via 

a paper-based questionnaire administered by a health professional [19,26]. The manual but subjective 

nature of tests like SCAT, means formal SRC diagnosis, rehabilitation and RTP is based solely on 

clinical judgement with information gathered from self-reported assessment techniques [27]. This is 

problematic as research shows SRC is a dynamic and complex pathological process with difficulty to 
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measure impairments that can change or deteriorate rapidly without any prior indication [28]. This 

presents challenges for safety, rehabilitation and RTP. 

The Concussion Consensus Statement [25] does not stipulate or provide any differentiation on the 

severity of injuries nor understanding of the intrinsic processes that may be associated with SRC. This 

lack of guidance and direction reinforces a need for more objective approaches through robust 

development and provision of diagnostic and prognostic digital biomarkers to better assess the 

presence/severity and recovery of SRC, respectively. Digital imaging technologies such as functional 

magnetic resonance imaging (fmRI) or pET scanners are (reference standards) already used to assess 

the severity of damage such as skull fractures and bleeding on the brain in more severe traumatic 

injuries. However, their effectiveness and practicality when used in isolation for SRC diagnosis or 

diffuse axonal injury is yet to be proven, with only a minority of mTBI such as SRC displaying 

distinguishable structural changes immediately post-concussion [29]. Additionally, not all players 

suspected of SRC require hospital assessment and of those attending Accident and Emergency (A&E) 

Departments, only those presenting the most severe signs and symptoms will be sent for imaging [30–

32]. Thus, those reference imaging technologies are not typically deployed or offered for routine SRC 

assessment. 

Recently, lower cost (digital) noninvasive technologies have been developed to measure and monitor 

outcomes for more informed assessments [33]. Such approaches could provide scalable robust data for 

more informed and integrated SRC diagnosis to better inform RTP, enhancing the efficiency and 

precision of healthcare assessment [34,35]. In this narrative review, I examine SRC clinical assessment 

methods in four key areas (cognitive, visual, motor, symptom), providing insights into the translational 

utility of readily attainable digital methods. I examine common benefits and challenges facing those 

digital approaches as they aim to transition from novel technologies to efficient, valid, reliable, and 

integrated clinical tools for SRC. From a synthesis of the literature, I highlight future opportunities that 

attainable digital tools can have in SRC diagnosis and monitoring with a systems science-based 

management approach including digital twinning and the ‘digital athlete’. Before concluding, I provide 

recommendations on how this field should develop.  

2.2.1 Sports related concussion assessment  

The rise in mTBI from SRC cases presented at A&E has prompted closer discussion about improved 

assessment and management, including calls for development of national guidelines [30]. Mistry et 

al [32] highlight the main objective of SRC assessment in A&E is to triage the player/patient, 

identifying any readily obvious brain injury symptoms/signs that require e.g., surgical intervention. 

That approach, although it may improve efficiency, omits thorough assessment of many other subtle 

SRC impairments such as cognitive, motor/functional (e.g., balance, gait) and visual deficits [36]. Thus, 

current SRC assessments are often binary snapshots, ignoring the interconnected nature and 

heterogeneity among individuals. Most post discharge management involves information for the player 

regarding red flag signs/symptoms and/or provision of head injury information leaflets. Furthermore, 

outside of professional environments, there is often no enforceable physician assessment or follow-up 

until returning to full contact training [37].  

As such current SRC management and rehabilitation protocols rely on self-reported 

measures/symptoms to determine readiness to play. Therefore, SRC recovery times and prognosis are 

highly variable and varies dramatically across different age groups and gender. Indeed, some 

individuals can take significantly longer than the expected to RTP (3-4 weeks) and experience chronic 

symptoms even after returning to play [38,39] As such reliance on subjective non-specific measures 

such as symptoms make it extremely difficult to confidently know when it is safe for players to RTP. 

This highlights the need for valid, objective tools to aid diagnosis, monitoring, and RTP in SRC [32]. 
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2.2.2 Cognitive assessment  

2.2.2.1 Routine clinical approaches  

Comprehensive assessment of cognitive function outside of sport typically includes detailed 

interviews, exploring the history of a patient’s health, education and social background. In contrast, 

SRC focusses on more specific areas of cognitive functioning only such as short-term memory, working 

memory and executive-level function [40]. Pen-and-paper tests include the Short-Blessed Test, digit 

span (forward and/or reverse) and the Standardised Assessment of Concussion (SAC), now 

incorporated into the fifth version of the SCAT. Despite widespread clinical use, these tests carry 

considerable challenges including manual score calculation hindering automated or immediate 

comparison of scores across different individuals and time points [41]. Fortunately, progression to using 

digital neurocognitive testing has overcome some of these limitations. 

2.2.2.2  Digital approaches: Computerised programs 

The introduction of digital-based cognitive assessments offers several advantages over pen and 

paper methods including objective cognitive metrics (e.g., reaction time calculation), randomization of 

test trials with automation of data collection and analysis [42]. Immediate Post-Concussion Assessment 

and Cognitive Test (ImPACT) is an example of a scalable computerized neurocognitive tool that 

assesses verbal memory, reaction time, visual-motor speed and visual memory [43,44]. ImPACT tests 

are complemented with the integration of demographic data and a post-concussion symptom scale for 

players and staff. Research shows ImPACT is sensitive post-concussion in the acute phase (within the 

first few days) with measurable differences in verbal memory, visual memory and slower reaction times 

[45,46]. However, there is mixed evidence for neurocognitive testing in subacute and chronic 

concussion [16,37,47]. Indeed, the international consensus statement of concussion states that “tests 

should not be seen as the sole basis for the management of decisions” [17].  

Despite the value of digital neurocognitive testing in acute SRC cognitive testing, challenges remain 

for pragmatic deployment in low-resource environments. High cost of initial software licenses or fixed 

yearly subscriptions can be prohibitive to amateur sports teams with limited budgets. Often these 

commercially orientated companies rarely permit independent validation of their technologies or 

algorithms used to interpret raw data or outputs. This lack of open-source or transparent approach makes 

it very difficult for governing bodies to make evidence-based decisions about which test or technology 

to endorse/promote. Another pragmatic limitation on a single approach is the reliance on baseline data, 

where it isn’t always feasible to gather pre-injury data due to e.g., players moving between clubs/teams. 

Without baseline information, it is difficult to ascertain if an athlete's post-concussion neurocognitive 

scores are the result of concussion or individual variability. Consequently, no single cognitive 

test/technology has proven capable for standalone use. This has placed greater responsibility on 

clinicians to have prior experience and use clinical judgement when managing SRC (13,33), which may 

partly explain the reluctance to adopt technology in SRC assessment. 

2.2.3 Visual assessment  

2.2.3.1 Current approaches 

Normal vision correlates with healthy cerebral activity and brain function [48]. SRC can cause 

impairments in visual and oculomotor speed, with research showing oculomotor dysfunction present in 

up to 90% of SRC cases [49]. Traditional subjective visual assessment includes eye-tracking tests e.g., 

Visual Oculo Motor Assessment (VOMS), which assesses impairments via self-report. This test 

includes a baseline measurement where players verbally rate changes in headache, dizziness and nausea 

symptoms compared with their immediate baseline state on a scale from 0 (none) to 10 (severe) to 

determine if each test provokes symptoms [50]. Other visual tests include the King-Devick (K-D), 

which is an indirect measurement of rapid eye movements, language function and attention. The K-D 
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test has demonstrated moderate sensitivity (60%) but poor specificity (39%) in identifying players 

diagnosed with SRC [47]. It is also unclear how training and learning effects can influence participant 

scores, and to date there is an absence in clinically significant change scores/data. Indeed, a recent paper 

outlined that current eye tracking tests (such as K-D) were no better than traditional off-field screening 

alternatives [47]. This is confounded by deficiencies and heterogeneity in current cognitive testing 

protocols and environments, making comparisons between studies and decision on choice of test 

difficult [46,51]. As such the paper advised that current tests should not be routinely incorporated in 

SRC assessment. 

In addition to suboptimal sensitivity, current tests rely heavily on baseline data collection which are 

not feasible to implement in low-resource environments, where there is often insufficient staff/funding 

to perform baseline screening. Hence there is significant demand for more sensitive, objective and 

scalable solutions for visual assessment in the form of wearable digital eye trackers and/or mobile 

technologies. 

2.2.3.2 Wearable digital eye-trackers 

Non-invasive digital technologies such as eye trackers can objectively monitor eye movements 

during laboratory tasks, assessing visual and cognitive processing [48,52] in a variety of research 

paradigms ranging from neuroscience to social science [53]. Despite this rapid rise in availability of 

technologies, there are several barriers to clinical deployment. Stuart et al [54] outlined current state of 

the art and challenges in mTBI visual assessment, finding most studies do not adequately address or 

report validity or reliability of eye-trackers, making comparison or clinical interpretation difficult. To 

translate these technologies into clinical application there is a need for more routine validation, 

standardization in testing paradigms and transparency on their use, including algorithms and data 

analysis methods. [55,56] 

For the few studies with adequately reported information, Khalife et al highlight the benefits of 

investigating rapid, reliable eye movement impairment in SRC assessment with the Tobii eye-tracker 

[57]. The latter shines a light onto the eye causing a reflection, a high-resolution camera then captures 

an image of the eye with reflections which is then used to calculate gaze direction. Research has found 

the accuracy of the Tobii EyeX to offer sufficient accuracy and precision in gaze direction [58]. This is 

consistent with research testing other technologies such as Eye-Sync which offer good-excellent levels 

of sensitivity (88%) and specificity (87%) in smooth pursuit assessment [59,60]. Overall digital 

technologies offer high-resolution quantitative data and value over traditional approaches such as 

VOMS. Despite promising results of accuracy in academic research, there has yet to be clinical research 

investigating thresholds or measures that can be applied into a meaningful change that can be widely 

used for SRC assessment.  

2.2.4 Symptom assessment  

2.2.4.1 Current approaches 

Despite rapid and extensive development in the availability of different tests to assess SRC, the 

symptom checklist and severity indices are retained as the cornerstone for most decisions around 

readiness to return to play. This includes the Post-Concussion Symptom Scale (PCSS), which assesses 

a variety of symptoms (0-6 of increasing severity) to give an overall score and has been adapted and 

abridged into SCAT5 [66,81].  

Although common due to their ease of use, studies have examined the sensitivity of symptom scales 

in SRC and found suboptimal sensitivity and specificity [66,67,81]. Moreover, the severity of 

symptoms/signs reported by players following a SRC varies significantly (immediate or delayed onset) 

which can hinder confidence for clinicians and players/patients when assessing readiness to return to 

play [66,82]. Additionally, some studies report that players can manipulate self-reported baseline 

symptom scores, allowing them to mitigate any poorer performance of scores post-concussion [83]. For 



 26 

example, only 17% of athletes self-reported symptoms of SRC, although nearly half of this cohort 

(48%) sustained a head injury and associated signs of SRC [83]. Relying on self-reported data may be 

particularly challenging in competitive environments where there is societal or financial gain in staying 

injury free. 

Alongside the challenges of subjectivity in self-reported symptomology there are significant 

practical and logistical barriers. Current pen-and-paper based SRC assessment methods can take 10-15 

minutes/player which isn’t always achievable in environments with only one medical practitioner to 

complete player assessment (e.g., at an amateur level) [84]. Therefore, challenges remain in providing 

approaches to more efficiently document SRC injury characteristics across both low- and high- resource 

environments. The growth in usage and availability of smartphones and affiliated commercial digital 

technologies means players and clinicians already have widespread access and familiarity of use. A 

move towards mobile digital applications may serve to overcome some limitations of symptom 

assessment, data storage and analytics compared to self-reported pen and paper methods.  

2.2.4.2 Digitally recorded symptoms  

Several smartphone/mobile digital applications/apps are available to track injuries and monitor SRC 

recovery through symptom reporting. Apps include CSX (used by e.g., World Rugby) and the 

Cleveland Clinic Concussion Application (C3) which records data on reaction time, memory, vision 

and information processing [77]. To my knowledge, CSX has yet to be fully deployed into amateur 

sports. However, C3 has been used to collect some concussion data in college and professional rugby 

[67]. Linder et al found that use of an Electronic Injury Reporting app provides a useful digital platform 

for injury related demographic analysis [67]. App advantages include the capacity for players to 

complete (in their own time) symptom recording as frequently as required with more regularity and 

consistency in the absence of clinicians. 

Current reliance on traditional non-digital approaches such as the SCAT5 and lack of robust 

databases means the progression and recovery of SRC symptoms is unclear [20,48]. Moving towards 

digital symptom recording may allow greater understanding and co-investigation with other SRC 

impairments. 

2.2.5 Motor assessment 

2.2.5.1 Balance and gait under direct observation 

Balance and gait/walking impairments are associated with neurological conditions, including 

concussion and therefore form a key component of clinical assessment [19,61–63]. The Balance Error 

Scoring System (BESS) test is a balance and postural stability assessment that is widely used for 

examining impairments by asking participants to adopt specific stances aimed to challenge their motor 

and vestibular system [64–66]. However, the BESS is assessed subjectively, through manually 

recording errors (e.g., if the participant removes a hand from their waist during a single leg stance) and 

timed using a stopwatch. Consequently, the BESS sensitivity is greatly influenced by assessor 

experience and research suggests only sensitive in the acute phase (within first 2 days of injury) [67]. 

These inherent limitations of subjective assessment make it difficult to apply in sporting environments, 

where there is demand for precise and sensitive clinical measurements. As outlined by Johnson et al, 

traditional balance assessments ‘are subjective in nature, do not adequately challenge high functioning 

athletes and may not be capable of detecting subtle balance disturbances following a concussive event’ 

[68]. This raises questions surrounding the accuracy in diagnosis, RTP protocol and crucially, 

paradigms by which SRC is assessed. Indeed, gait (and other motor tasks) deficits may in fact be 

impaired for long periods beyond typical timeframes of recovery[69,70]. Therefore, traditional 

assessment of motor function carries significant limitations yet remain extremely prevalent across 

clinical practice. Opportunities for improvement may be afforded by adopting digital approaches such 

as inertial sensor-based wearables discussed in the next section. 
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2.2.5.2 Inertial sensor-based wearables 

The development of wearables equipped with inertial sensors (accelerometers and gyroscopes) has 

facilitated pragmatic instrumented testing of traditional approaches such as the Timed-Up-and-Go 

(iTUG) and BESS [62,71,72]. These studies do show attempts to instrument traditional tests and provide 

objective digital SRC biomarkers from a single wearable sensor. Recently, Celik et al [73] adopted a 

multi-wearable approach towards a comprehensive instrumentation of SCAT5. By using eight inertial 

wearables (wrists, legs, lower back) to segment specific components (e.g., tandem walk and static 

balance) a wealth of spatial and temporal data associated with each SCAT5 component with 

excellent/millisecond resolution. Moreover, the study showed how wearables can automatically and 

more accurately calculate, recognize balance and gait errors during tasks compared to clinical 

observation, also highlighted by Johnston et al [70,74]. Beyond instrumentation of traditional 

assessment, research with inertial wearables shows SRC and mTBI impacts balance, gait and turning 

[67,75–78], including under longitudinal assessment [67]. 

 Despite laboratory research showing motor impairments can be strongly associated with SRC, 

it is not yet known exactly what clinical gait (or turning) assessment techniques are sensitive for SRC. 

Therefore, barriers remain in clinical validation and how to translate some novel inertial measures (e.g., 

frequency-based data) into clinical endpoints or biomarkers. Indeed, the episodic nature of current 

laboratory assessments may be supplemented beyond the clinic/hospital during real world/free-living 

remote assessment [79,80]. However, a necessary precursor to longitudinal free-living remote balance 

and gait assessment is verified and validated digital SRC biomarkers enabling trust and better 

understanding by clinicians and patients [55]. 

2.2.6 Towards daily use of digital approaches 

Digital approaches and technologies could provide objective information, generating useful and 

reliable data for improved data presentation, analysis, and insights for SRC management. From this 

narrative review, Figure 2 presents a hypothetical scenario contrasting traditional (2A) to digital (2B) 

approaches for cognitive, motor and visual assessment. Figure 2A alludes to current limitations e.g., 

different clinicians performing assessments in highly controlled and supervised environments, which 

may not be representative of normal behaviour. Figure 2B demonstrates how digital-based assessments 

could facilitate integration from multimodal sources (technologies, inc. wearables). Multimodal 

assessment is not a novel concept in SRC assessment. However, it often still focusses and relies on 

assessment under observation with non-portable technologies such as fMRI and lab based 

neurocognitive assessment [87,88]. Moving to a low-cost and portable multimodal digital approach 

could capture e.g., behavioral trends continuously and remotely in habitual environments without the 

need for a clinician to be present. Figure 2C. By adopting complementary digital approaches, more 

objective comparisons or insights could be made across a range of SRC impairments (cognitive, visual, 

symptom and motor). 
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2.3 Discussion 

Implementing digital approaches in sports medicine and SRC care could transform how player data 

is captured, analysed and communicated. Current SRC approaches are restricted by the reliance of 

subjective self-reported assessment under direct observation of a clinician. Thus, outcomes are often 

reliant on a player informing the clinician and the clinician’s clinical judgement or interpretation. 

Objective approaches in SRC are often confined to bespoke or professional environments, limiting 

deployment and accessibility to amateur or adolescent players. Additionally, there is considerable focus 

on traditional in person assessment at episodic ‘snapshot’ assessments with little to no remote/habitual 

data collected on those who sustain a SRC during contact sports. The addition of digital or remote 

assessment approaches such as wearables may augment, and supplement data gathered in traditional 

assessment visits under supervision of healthcare professionals. 

Presently, digital cognitive testing only offers a snapshot assessment. Yet, testing could be better 

utilized through constant remote evaluation via apps. This would mitigate the need for clinicians to be 

present and would allow higher frequency of testing within the player's routine environment [89]. 

Although testing in the latter would be conducted in less controlled conditions, there is considerable 

value in conducting testing in remote, real-world/free-living as they would be within habitual conditions 

[34,90,91].  

Use of current eye tracking approaches in SRC is not currently supported. However, there are 

opportunities for use of digital eye-tracking outside of the clinic or in static situations. As these methods 

do not require active participation of the wearer, they overcome many potential issues of adherence 

allowing participants to wear these technologies as part of their daily life [34]. However, capturing 

reliable data on impaired eye movement outside of controlled/laboratory conditions generates many 

complications. Thus, challenges remain in the refinement and optimization of eye-tracking as a future 

SRC diagnostic tool. These include minimum and maximum testing times, choice of eye tracking tests, 

lack of standardized protocols to detect SRC eye movement impairments as well as complexity of 

analyzing big data. Overcoming these challenges will require development and refinement of protocols 

and data processing methods/algorithms. 

Figure 2: Contrasting traditional to digital approaches 
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 Symptoms post SRC are thought to be closely linked to improvements in physiological 

recovery and should therefore remain a cornerstone of assessment [92,93]. However, digital monitoring 

may not easily lend itself within free-living due to requirement for players attention. Yet by collecting 

longitudinal (habitual) symptom data, a deeper understanding of the rate of progression of symptoms 

could be determined, supporting the transition and deployment of other digital approaches. Clinicians 

could deploy apps to measure symptoms beyond snapshot testing points but would need to account for 

testing conditions. Adoption of mobile technologies to support symptom documentation would allow 

integration with other digital approaches, providing holistic systems-based approaches to SRC 

management. If used routinely, such approaches may have capacity to provide alert systems to 

healthcare professionals for missed SRC or injuries within squads, which could standardize and 

systematize injury severity through evaluation of red flags via structured and personalised assessment.   

Use of inertial movement unit (IMU) based wearables within mTBI have shown considerable 

promise for measuring balance and gait impairments [73,81,94–96]. Yet the true utility of inertial 

technologies may be their use beyond the clinic with provision of habitual balance and gait data [85]. 

Such wearables should become more accepted and the standard for gathering continuous, high-

resolution free-living data due to their discrete attachment and low wearer burden. Technical validation 

of inertial wearables has led to the development of a conceptual gait model [97], providing a framework 

for clinicians to better utilise gait data to make more informed clinical decisions. For example, a similar 

modelling approach [95] has been applied in chronic (non-sporting) mTBI providing enhanced lab-

based gait analysis, which could be a means to better understand underlying impairments and/or assess 

response to interventions.  

Accordingly, this thesis will apply and evaluate gait in acute and chronic mTBI/SRC from free-

living gait data to provide better insight to habitual player recovery, better informing RTP. 

2.3.1 Towards the digital athlete 

Measuring and monitoring a single impairment is unlikely to reveal meaningful new insights into 

SRC. There is a need for a multidimensional/multimodal approach with digital e.g., diagnostic or 

response models/frameworks to improve outcomes [98,99]. Therefore, step changes to understand, 

diagnose and manage SRC will require multi-scalar approaches which could be built around a systems-

science framework to shift research into practice. Achieving this will require cross-disciplinary 

collaborations and the adoption of novel approaches with shared repositories to facilitate and intensify 

collaboration. 

One emerging concept is digital twinning, a strategic technology made feasible through 

developments in the Internet of Things (IoT) and big data. It has been applied to complex systems and 

in medicine to provide a framework to create a virtual representation of players based on the integration 

of data from digital devices, omics, imaging, and electronic medical records [100]. A digital twin can 

represent a back-up/copy to a person's physical state before an intervention, providing retrospective or 

real-time monitoring of a wide range of parameters [101]. The application of wearables to create a 

digital twin of baseline health information for a player participating in contact sport would provide 

objective data, providing opportunities for remote monitoring and evaluation [102]. This leads to the 

concept of the digital athlete (Figure 3) where an open framework is proposed for the emerging areas 

of digital health [102]. The ubiquitous nature of IoT/digital technologies coupled with digital twinning 

offers the potential for a paradigm change to better understand mTBI and more effective detection, 

prediction, and assessment of SRC. However, digital twinning is not just about collecting data, it is also 

about creating the computing architecture allowing new insights to support decision making, 

synthesizing information, facilitating communication and the development of shared hypotheses [103]. 

Incremental changes in the ability to gather data to generate digital biomarkers related to health would 

enable the creation of player centric protocols and targeted treatments. Central to this development has 

been the recognition that wearables are now part of IoT systems, incorporating sensing with data 
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analytics to create an integrated approach, providing insights into physiological status, health and 

performance [101,104]. Built on the concept of digital twinning, the digital athlete would enable better 

integration of data, simulation of scenarios and predict outcomes more accurately for SRC assessment 

and monitoring.  

 

 

2.3.2 Future considerations for the field 

Digital approaches could have tangible objective improvements in SRC diagnosis and monitoring. 

However, there are notable application and deployment challenges pertaining to sports (individual 

versus team), funding, environments (professional and amateur) and education. This will demand 

different approaches to ensure correct adherence and implementation as well as robust data collection 

protocols to ensure adequate monitoring. Likewise, there are privacy (security), ethical (remote and/or 

continuous monitoring) and trust considerations (effectiveness of digital technologies to augment 

traditional approaches) when collecting SRC data. To better understand these demands, there is a need 

for independent and multidisciplinary research with diverse stakeholders (e.g., athlete/patient, clinician, 

technologist, and sport’s governing bodies) with transparency in findings and conclusions drawn. To 

support behaviour change for routine digital adoption in SRC, there must be development of 

multidisciplinary standardized frameworks and agreement in validated/reliable tools to ensure 

technologies are trustworthy and fit-for-purpose.  

Digital-based approaches coupled with novel concepts/frameworks from other research domains 

(e.g., digital twinning) could provide a persuasive and timely route to addressing ongoing mTBI 

limitations in SRC (and elsewhere). General recommendations provided here could help modernize 

(digitize) mTBI diagnosis and monitoring to e.g., protect athletes and their sport. Accordingly, high 

level recommendations include: 

• Development of multimodal open-source athlete digital monitoring approaches for routine 

integration into low resource settings 

• Transparency of all digital tools in SRC assessment (i.e., no black-box development)  

• Routine engagement with sport specific stakeholders on how digital tools could advance SRC 

diagnosis and monitoring, 

• An expert, multidisciplinary consensus on use of fit-for-purpose digital SRC tools within 

and/or across sports 

Figure 3. Digital technologies can enable the digital athlete.  
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2.4 Conclusions 

This chapter highlighted the increasing incidence of mTBI from SRC and challenges of current 

diagnosis approaches has illuminated the scale of the problem for routine diagnosis and monitoring. 

Shortcomings posed in Chapter 1 are further evidenced here, as although traditional (and subjective) 

approaches will remain a crucial component of SRC assessment, they are unable to reliably provide an 

evidence-based approach to the management of mTBI, certainly within a SRC context to inform RTP 

and supporting PoI3.  

The literature gathered in this chapter offers some credence to my hypothesis (Chapter 1), that digital 

approaches may have the potential to transform the way data can be objectively captured under direct 

observation. That includes the way data is processed and analysed, enhancing current mTBI 

management. Of note there is the greater need for open-source approaches, which could help achieve 

affordable, scalable and objective approaches in mTBI management (PoI1 and PoI2). Progression to 

habitual (e.g., gait) assessment could be a suitable mechanism to develop a personalised approach in 

mTBI management while indirectly increasing assessment participation through passive monitoring 

(PoI3). Moreover, digital technologies could enable multi-modal approaches to enable the gathering 

and analysis of data efficiently through novel engineering and computer science approaches. 

This chapter has found that instrumented free-living gait could be a novel digital (bio) marker with 

diagnostic (i.e., identify mTBI) and response (i.e., establish effectiveness of intervention) capabilities. 

Accordingly, the next chapter will establish a baseline understanding of current approaches in gait 

assessment. Exploration will continue with the focus on inertial wearables for instrumenting gait, 

including technical considerations. There will be a focus on principles relating to inertial technologies 

for use in this under researched but potentially high reward topic which could be used to assess RTP as 

well as inform rehabilitation. (Later chapters will use the knowledge in chapter 3 to instrument gait 

under various conditions.) 
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Chapter 3: Instrumenting motor 

assessment: Gait 
 

This chapter uses text from my previously published online article to fit the context and narrative of 

this thesis. The article appears as a book chapter (Instrumenting traditional approaches to physical 

assessment), appearing in the book Digital Health: Exploring the use and integration of wearables 

published by Elsevier (URL: https://doi.org/10.1016/B978-0-12-818914-6.00005-3). Permission 

granted to freely use the whole chapter with declaration of authorisation included in Appendix 3. 

 

  

https://doi.org/10.1016/B978-0-12-818914-6.00005-3
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3.1 Introduction 

After understanding the current challenges in mTBI management, here I detail how an inertial-based 

wearable technology can be used to instrument one of the four components within mTBI management, 

motor assessment. I suggest that inertial wearable developments (evidenced in other clinical cohorts) 

could be utilised for the purposes of this thesis to improve mTBI assessment. The work presented here 

provides an understanding of how inertial wearables can be applied to capture motor tasks of interest 

to mTBI management e.g., gait. More generally, this chapter showcases how digital-based 

instrumentation could aid clinical deployment with practical steps in wearables, signal processing, 

feature extraction, clinical tasks with reference to the clinical, analytical validation and verification of 

novel approaches. 

3.2  Evolution of physical assessment 

Traditional approaches to movement assessment have involved subjective manual observation in 

controlled clinical environments. Typically, a physiotherapist will use their clinical expertise to 

determine any limitation from the task/test that is being conducted. For example, physiotherapists will 

observe their patients who may have motor limitations due to a neurological disorder (e.g., stroke) as 

they perform a short walking task to get a better understanding of their ability to perform activities of 

daily living (ADL). By studying and understanding ADL motor tasks the health- care professional can 

also extrapolate their opinion to determine the patient’s quality of life which may be impaired due to 

reduced mobility [105]. Subsequently, rehabilitation strategies could be developed with the patient to 

aid their daily activities (e.g., walking), thereby improving their mobility and ability to function 

optimally.  

The benefit afforded to the patient from observational testing is obvious, bespoke feedback from 

one-to-one consultation with a trained healthcare professional. However, there is one obvious 

limitation: the expertise and clinical experience from one healthcare professional to the next can vary 

greatly due to training, longevity in their field or lack of exposure when treating and assessing different 

pathological conditions. Indeed, such variance of expertise could dramatically impact on how the 

patient is assessed leading to different care pathways for treatment and rehabilitation. To overcome 

those shortcomings and to standardize approaches, pen and paper-based approaches were introduced, 

for example, Berg Balance [106]. The rationale being that a specific set of guidelines could direct all 

healthcare professionals in a structured and methodologically robust manner to ensure patients could 

be routinely and appropriately screened/ assessed during specific tasks under observation. This ensured 

a more harmonized approach to patient assessment and meant that data acquired from pen and paper 

assessments could be compared/contrasted within and amongst different patient groups. Moreover, it 

allowed greater insight to pathological subtypes by providing greater granularity of investigations, with 

the application of thresholds to determine if a person aligned to a particular condition (or not) or how 

severe they rated, for example, loss of physical or mental functionality.  

The advent of standardised pen and paper approaches to the assessment process ushered in a new 

wave of cooperation and innovation in medicine. Their formation required groups of individuals or 

teams to formulate collaborations, ensuring the proposed pen and paper guidelines for a particular 

assessment were well informed. Failure to agree a collective professional accreditation may have 

resulted in rejection of the proposed pen and paper method. Moreover, it ensured appropriate scientific 

rigor was applied for valid and reliable scoring criteria within assessment guidelines. However, 

limitations are also found within pen and paper-based approaches to patient assessment. Inter-rater 

reliability is a problem when it comes to how different healthcare professionals or researchers may use 

pen and paper assessments, for example, Unified Parkinson’s Disease Rating Scale motor exam [107]. 

Despite best efforts to harmonize areas of assessment, assessors still use their own (and perhaps biased) 

subjective opinion to score those being examined. Again, this can lead to large discrepancies and result 

in the pen and paper approach being described as a blunt tool, good but not good enough. Moreover, 

data acquired is limited as it is usually based on a Likert scale (e.g., 0-5, or 0-10 score), which can only 
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be analysed within the confines of its intended outcome (more on this later), which can lead to floor or 

ceiling effects of scores. This has implications when trying to detect subtle pathological changes, which 

may be at the very early stages of disease onset. Thus, the need for more accurate and higher resolution 

approaches to patient assessment became evident.  

The story and scale of digital technologies in healthcare goes far beyond the scope of this chapter 

and book, but what is widely known is how the influence of digital approaches have revolutionised 

medicine in the 20
th century and beyond. Use of digital technologies and instrumented approaches to 

acute clinical care range from the development of vital signs monitors (e.g., heart rate, oxygen 

saturation) through to magnetic resonance imaging to create pictures of the anatomy and the 

physiological processes of the body. Yet, these are expensive and large pieces of equipment, which 

require specific expertise for appropriate use and data interpretation. The rise and proliferation of 

integrated microelectromechanical (iMEMS) systems means technology has dramatically reduced in 

size to enable use beyond bespoke facilities to routine/community/low-resource settings. Such systems 

paved the way for digital technologies to be worn on the person for prolonged periods and during 

common ADL. The most evident/common being the 24-hour Holter monitor, an ambulatory 

electrocardiography device. This example allows the patient to wear (relatively discreetly) a clinically 

useful device during habitual activities, affording healthcare professionals a more representative 

method to assess cardiac rhythm during ADL. Thus, use of a wearable digital technology device can 

provide real-world data to better inform patient treatment and management.  

3.2.1 Wearables  

Wearable technologies are multifaceted, they come in many shapes and sizes with a plethora of 

functionality depending on embedded sensors and/or proprietary software used to interpret raw data 

[34]. By far the most common type of digital-based wearables are activity monitors that usually have 

additional sensing capabilities such as heart rate and geo- graphical positioning i.e., global positioning 

systems (GPS). These devices are predominantly commercial and aimed at the health and fitness 

market. Others are for bespoke research devices, which may provide a greater granularity of data to 

tease out any minute changes in behavioural activity in response to an intervention. Generally, the 

greater the sensing capability of the wearable the greater the cost due to additional electronic 

components and complexity of data interpretation. This is particularly evident with inertial sensor-based 

wearables to detect activity and other specific aspects of physical functioning.  

3.2.1.1 Inertial and magnetic sensors  

The most common type of inertial sensor is the accelerometer, a device that measures applied 

acceleration (meters per second squared, m/s2) acting along a sensitive axis. When attached to an 

anatomical segment (e.g., leg, arm) they can be used to measure the rate and intensity of movement in 

up to three axes/planes. These are termed tri-axial devices measuring in the anterior-posterior, medio-

lateral and vertical planes, which can provide comprehensive and extremely insightful data regarding 

quantity and quality of movement. Accelerometers respond to both the frequency and intensity of 

movement making them superior to actometers or pedometers, which are attenuated by impact or tilt 

[108]. Accelerometers have made activity wearables popular due to their ability to gather useful data at 

various sampling resolutions and relatively low current draw (0.180.7 mA). Indeed, their low current 

draw means that they can be deployed (with small batteries) for prolonged periods of many days, weeks 

or even months. When integrated with a real-time clock they also help differentiate activity patterns 

over extended recording periods. They are also highly configurable whereby their bandwidth can be set 

through coupling filter capacitors, and they have high resolution at typical sampling frequencies used 

for the detection of walking (2 mg at 60 Hz). Evidence of their use to assess walking/gait is proliferate 

within the literature where examples include their use to assess those with neurological disorders in 

controlled and habitual environments.  
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While use of accelerometers has been beneficial and insightful to better understand, for example, 

walking, their sole use remains curtailed to a limited set of movement characteristics. Expanding 

sensing capabilities to include other inertial sensors during supervised and habitual testing follows the 

current trend to determine a more rounded picture of the patient’s physical functions. Incorporating 

gyroscopes (angular velocity in degrees per second, /s) or magnetometers (detecting and measuring 

magnetic fields, Gauss, G) facilitates a much greater opportunity to gather a complete representation of 

the wearer’s movements but comes with a memory, battery, and data handling trade-off. Typically, the 

greater the sensing requirements the more data that is gathered which quickly consumes memory 

storage and battery resources. However, it must be noted (not including the technical expertise of the 

research team), that the addition of these extra sensing modalities will depend on the aims of a research 

project, as it may be sufficient to use an accelerometer only. Yet, incorporating gyroscope and/or 

magnetometer sensors with accelerometers can provide a wealth of kinematic data but with notable 

challenges in deriving outcomes of interest that are sensitive to a research hypothesis. What kind of 

data can be acquired with such sensors? Accelerometers have typically been used to quantify postures 

due to orientation of the wearable at wear location, physical activity due to intensity of the signal 

generated, and step detection. Gyroscopes have also been used for step detection but more readily for 

turning characteristics. Magnetometers are perhaps less readily evident in the literature for generic 

movement analysis but have been found in more complex approaches to determine where a body is in 

space and how one body segment moves relative to another [109]. A combination of tri-axial magneto 

and inertial (accelerometer and gyroscope) sensors results in a wearable which is classed as a 

measurement unit with 9-degrees of freedom. That configuration of sensors is adopted with sensor 

fusion algorithms when estimation of the pose/posture in the 3D space is required by combining the 

good dynamic response of the gyroscope, with the drift-free inclination and heading estimates provided 

by the accelerometers and magnetometers in static conditions [110]. Such analysis for each or a 

combination of inertial sensors is complex and important to consider at the outset of data capture. Thus, 

before use of an inertial or magnetic sensing approach to activity or fine motor assessment it is important 

to take time to consider how data should be processed and analysed to generate outcomes that are 

sensitive to the specific research aims [110]. The first technical/engineering step will usually be to con- 

sider the features to be extracted from the high-resolution raw data. The latter specifically refers to the 

unprocessed data created by the sensor(s) and gathered by the hardware components of the wearable.  

3.2.1.2 Feature extraction  

From an engineers or data scientist’s perspective, inertial and magnetic sensors are fascinating 

devices to work with due to their multiple pragmatic sensing capabilities by offering high resolution 

data that can be analysed in time, frequency, and multiresolution domains. This is of paramount interest 

in the healthcare sector as it seeks low-cost, scalable solutions that are sensitive to the individual for 

personalized approaches to diagnosis and treatment. Due to their miniature size, inertial and magnetic-

based wearables can be attached at any anatomical location (e.g., feet, legs, waist, wrists, chest, arms, 

wrists, and head). Obviously, the long-term use of any device at those locations will depend on the form 

factor and how aesthetically pleasing (i.e., fashionable) they are. However, the devices may not “catch 

on” to become fashionable if they provide no meaningful information based on the application/purpose 

they are designed to measure. Specifically, no matter how cool/fashionable the wearable looks, if it 

cannot provide robust and accurate data to quantify a specific activity/task it is a risk when worn. 

Notable examples here include wrist worn step counters that can be manipulated by swinging one’s arm 

even while in a seated/sedentary posture. So how does an engineer ensure the outcome(s) to be 

measured is/are valid and reliable? The first objective is to define appropriate characteristics/features 

from the sensors signal(s), which are used to inform how subsequent algorithms interpret wearable data 

to produce the desired outcome(s). This process may be termed feature extraction and plays a key role 

in the utility and accuracy of wearables. One point to note is that wearable attachment location plays a 

key role in the decision-making process of how the wearable is designed and how its data is analysed. 

For example, an accelerometer-based wearable worn on the lower leg will generate vastly different data 
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to the same wearable worn on the lower back (Figure 4). Thus, interpretation of the data (and the 

algorithm used) will vary greatly with numerous analytical challenges associated with each wear 

location. How one decides to interpret the data to inform the algorithm is the key.  

 

 

3.2.2 Preparation is key  

3.2.2.1 Preliminary wearable configuration  

The focus here won’t be a comprehensive guide to describe how the sensors board is configured in 

hardware as currently there are many commercial options for researchers to acquire technology that 

enables them to jump right to data capture, without having to worry about sourcing sensors and 

associated components. However, it is worth mentioning here briefly to raise awareness that the sensing 

capabilities of inertial and magnetic-based wearables are preconfigured at manufacture due to applied 

functionality and the peripheral components associated with each. Firstly, a magneto-inertial sensor 

may be considered according to different sensing grades or ranges. For example, most wearable 

accelerometers range from 2 to 16 g, the former useful to examine discrete and low intensity movement 

(e.g., postures) while the latter would be useful for high impact and intensive actions (e.g., fall). 

Examining wearable raw data at the time of a fall event captured with a minimal range accelerometer 

(2 g) would see something similar to Figure 4, where a portion of data appears missing. This is often 

referred to as clipping (Figure 5) and is sometimes the first pragmatic problem encountered when 

dealing with free-living data (due to the many unknown activities performed by the individual) and 

choice of wearable device. Secondly, filter capacitors are chosen to configure the hardware at a 

predefined bandwidth, which is usually -3 decibels (dB, or mathematically: √2/2), where that value is 

often known as the half power point and is useful to cut-off half the power at that frequency. This is 

important when considering what movement to measure as choice of filtering capacitor will attenuate 

some signals to ensure the wearable measures what a manufacturer specifies it should, that is, whether 

its fit-for-purpose. Both are important considerations when deciding what to measure and how to 

measure it.  

3.2.2.2 Configuring for data capture  

Depending on how the wearable is configured, magneto-inertial sensor data generates a few to many 

hundred samples (data points) per second. This corresponds to the sampling frequency (fs) of the device 

and will ultimately depend on the outcome(s) of interest. For example, measuring broad trends of 

physical activity for a device worn on the hip may require a low fs (e.g., 5-10 Hz) only as the wearer is 

highly unlikely to perform different categories of physical activity tasks beyond the minimal time period 

of data capture, that is, 0.1 second (where 10 Hz captures data every 0.1 second as defined by Equation 

1). Typically, general trends/behaviours of physical activity (for all ages) are investigated over many 

minutes, hours, or days so a low fs will provide enough resolution to ensure data capture to best represent 

how the wearer moves.  

Figure 4. From left to right various acceleration signals during the same task from an accelerometer-based 

wearable worn on the right wrist, lower back, and right leg. 
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Time = 1/Sampling frequency     (Equation 1)  

 

Alternatively, investigations examining discrete or highly subtle features of movement, such as 

sequences of the gait cycle, hand tremor or transitional changes in posture will require much higher fs 

to ensure the wearable captures enough data during the period of measurement to adequately and 

accurately understand how the movement was performed.  

Typically, gait events occur in the 0.6-5.0 Hz range and so the correct type of wearable must be 

chosen or configured to ensure optimal data capture for events in that range [111]. This isn’t something 

to be chosen likely as this conforms to a certain set of signal processing-based sampling criteria defined 

by the electronic engineer Harry Nyquist (1889-1976) who lent his name to important frequency and 

rate parameters that define the basic properties of magneto-inertial wearables. The Nyquist rate is of 

utmost interest here as the chosen fs (i.e., the discrete sequence of samples) must adequately capture all 

the information from a continuous-time signal within a finite frequency range (i.e., bandwidth). 

Pragmatically, the optimal rate can be set at twice the bandwidth and so for a movement like gait this 

could equal 10 Hz.  

 

That may be optimal for examining general trends in gait patterns (walking/ambulatory activity) and 

has been used successfully in a commercial device often seen within the literature to examine ageing 

and pathological differences between different populations [112]. Although sufficient to examine 

general, high-level patterns of physical activities, the same device could not be used to examine discrete 

components of fine motor movement but again, choice of device/configuration is dependent on 

determining what outcome may be useful within the research aims. Alternative devices for capturing 

high resolution/frequency type data exist that can be worn on various anatomical locations, depending 

on manufacturer’s recommendations. Typically, and briefly, these can be configured with proprietary 

software to set the fs up to 100 Hz or more. Although there are other considerations to consider such as 

oversampling and filtering, they have been extensively detailed elsewhere and the technically orientated 

reader is directed there for further reading. Mainly, the trend for wearables focusing on human 

movement analysis have aligned to use a fs of 100 Hz to account for any anomaly such as slips trips or 

falls which may be useful to capture as gait analysis encapsulates fall prediction as well as 

understanding the influence environment. Where digital filtering is to be used to process raw data, low-

pass or band pass filters are generally the preferred options, which have adjustable parameters called 

cut- off frequencies (fc), attenuating unwanted signals above or below those values. Use of digital filters 

Figure 5.Tri-axial accelerometer signals with grey trace/signal clipped (green circle) and so hasn’t adequately 

captured (gait) task 
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help “clean and smooth” the signal by removing, for example, high frequency components such as 

electrical interference or low frequency components such as drift.  

3.2.2.3 Examining the signal  

Key to any analysis with wearables is the examination of all raw data, where possible. Most 

commercial wearables may not facilitate examination of these data for two basic reasons. First, many 

wearables have raw (acceleration) data immediately processed into an output of some description, 

resulting in a time series of much lower frequency, such as one data point for every 60 seconds. In that 

scenario, raw data is never accessible to the manufacturer or any user, as it is never written to memory. 

Secondly, wearable data may be commercially sensitive for the manufacture. Where raw, unprocessed 

data is available it is important that it is examined to ensure it “makes sense.” While looking and under- 

standing signal traces such as those in Figure 5 may not be for everybody, they help understand the 

obvious: when the device was set to record and was attached to the wearer while he/she was moving, 

something caused the lines/signals to deviate about the horizontal. Ergo, it appears that the wearable 

managed to capture the movement of interest. Conversely, if the wearable didn’t work as expected but 

still captured data, one might expect to see the dreaded flat lines which would resemble if the device 

was recording data while lying motionless on a table. (This simple hack/check is useful to examine if a 

wearer wore the wearable or not during longitudinal testing over many hours or days.)  

3.2.2.4 Basic approaches  

Knowing what to extract from inertial signals and determining how useful they are is an ongoing 

area of research which is sensitive to, for example, where the device is worn and whom it is worn by 

such as a specific patient population, and what might be insightful for those with stroke may not be for 

those with Parkinson’s disease. While the field of feature extraction is complex, here I will present basic 

concepts defined on what can be measured that may be useful for those first-time researchers in the 

field.  

As previously alluded to physical activity and/or general trends in human activity behaviour (such 

as sedentary periods and ambulation, that is, periods of sitting/lying and walking, respectively) require 

examination of the magneto- inertial signal(s) over many samples/seconds. So how does one go from 

raw data to meaningful outcomes such as time spent in moderate to intensive physical activity or time 

spent walking? Translation is achieved by applying mathematical formulae to the processed/filtered 

signal. In the early days of utilizing magneto-inertial sensors some basic methods were used in 

combination with thresholds such as examining the mean (𝑥) and standard deviation (σ) of data samples 

for static postures and dynamic or static activity, respectively [113,114]. But how long should those 

samples be? Deciding how long those samples should be is a key question which will impact the 

accuracy of activities detected but will come with a computation trade-off for the device (if used in-

situ) or computer (post-processing offline): the greater the number of samples chosen the quicker the 

computation but the blunter the analysis. Additionally, choosing too many samples will exclude discrete 

periods of interest such as a physical activity performed in a very short time period. For physical activity 

the sample size is typically described as an epoch or activity counts of 30 or 60seconds duration and is 

chosen when the wearable is programmed. Raw physical activity data may look like that in Figure 4 

but is more often presented as summated counts/epoch (Figure 6). Once thresholds are applied one can 

examine common outcomes such as times spent in sedentary, light, moderate, and vigorous activities 

(Figure 6). Thresholds for the purposes of physical activity analysis are the subject of ongoing research 

to find optimal values for various cohorts examining different health related topics. In short, use of 

simple mathematical operands and application of thresholds are a very useful and perhaps first approach 

to extract features and determine meaning from wearable outcomes.  

For other devices, such as those aiming to quantify walking, it would be inappropriate to group 

predefined samples together as data captured during that task may span several epochs of data and 

subsequently be incorrectly considered in isolation rather than collectively. Instead, more intuitive 
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approaches must be taken. Accelerometer data captured at 10 Hz from a uni-axial worn on the upper 

leg is presented in Figure 6. Here there are three different scenarios based on how the signal could be 

interpreted based on the application of different static (fixed and hard coded, e.g., 125) and dynamic 

(based on σ of the signal) thresholds to extract features of the signal. The features of interest here (based 

on where the wearable is worn and how walking and steps are detected) relies on the identification of 

the trough (or red negative peak) in the first instance (Top). A more intuitive approach considers the 

(positive green) peak immediately before accounting for the natural swing of the leg during walking, to 

better define an actual stepping event, or series of events (Middle). Those methods rely on the correct 

definition of thresholds to the positive and negative axes of the accelerometer data which when used in 

tandem with a peak detection methodology will either include or exclude peaks and ergo, detection of 

walking and steps [115]. A pragmatic example of how predefined thresholds can negatively impact 

accuracy of instrumented walking and step detection is often found when applying wearables, which 

may have been designed for use of young healthy adults, on older adults with reduced clarity of walking. 

The latter’s inability to walk purposefully to generate the clean signals as depicted in Figure 4, will 

mean that signals produced will not exceed any fixed threshold. Static thresholds may be defined by 

examining the 𝑥 of signals gathered on a group of younger adults during pilot testing to best gauge how 

to examine all signals for peak detection. Alternatively, the wearable could adopt a flexible/adaptable 

threshold approach (Figure 4, bottom) by utilizing σ of a wearable signal which could enable a 

personalized threshold for the wearer, adapting to how slow or fast they could walk.  

3.2.2.5 Advanced approaches  

A more computationally intensive but higher analytical resolution technique called a sliding window 

may be used to better interpret wearable data compared to examining predefined block/epochs. As the 

name suggests, this approach slides a predefined window along the data to estimate 𝑥  and σ or other 

features (within that window) to better understand the fluctuations in inertial data on a second-by-

second basis, rather than at millisecond resolution. Although the window is predefined, it is a continuous 

process of signal evaluation where the current window of interests overlaps with the previous and so on 

as it progresses along the entire signal. The greater the overlap the more detailed the analysis but higher 

the computational trade-off.  

Although 𝑥 and σ have been presented here in the first instance, the extent of mathematical 

permutations that could be used to examine a portion or a complete signal are quite extensive. Table 1 

presents an example of an array of features that could find utility when examining movement from 

wearable data. Previously they were used to investigate postural control during standing balance tests 

in those with Parkinson’s disease [116]. Although Table 1 is by no means a comprehensive list, it 

represents many features used to investigate various movement tasks. The referenced study generated 

175 outcomes based on features listed in Table 1 due to the bi-axial approach used. Although the study 

later investigated some machine learning approaches to find the optimal outcomes for their study cohort, 

it showcases the extent to which inertial data can be investigated to extract features of interest within 

their signals. Although the study examined outcomes on the entirety of 30 seconds standing balance 

signals, the feature selection investigation could be taken further. By investigating how those outcomes 

fluctuate based on iterative periods within the standing balance test, one can investigate how postural 

control fluctuates during a more prolonged (120 seconds) test [117].  
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As described the study used to generate the array of features in Table 1 later used and contrasted 

machine learning approaches to find the optimal features to examine postural control in older adults 

with Parkinson’s disease [116]. Often, machine learning is touted as the next great innovation step to 

better understand wearable applications, particularly in healthcare. That may be true, as there is no 

doubt about the power of machine learning to analyse big wearable data. Yet, the power of machine 

learning will only be as good as the features used to train and develop it so the processes and approaches 

described here are of paramount importance to the development of the field.  

Beyond the use of time and frequency-based features, another approach involves the use of 

multiresolution analysis. It has been argued that this approach, which can be loosely described as a 

time-frequency analysis, is more suited for non-stationary signals such as those encountered in human 

motion, where traditional Fourier transforms fall short. Specifically, Fourier transforms are used for 

providing a description of the overall regularity of a signal and are not suited to characterize the 

temporal distribution of singularities and transient events [118]. As its name suggests, multiresolution 

analysis analyses the signal at different frequencies with different resolutions. It is designed to give 

good time resolution and poor frequency resolution at high frequencies but good frequency resolution 

and poor time resolution at low frequencies. Though the full description and explanation of 

multiresolution approaches are beyond this chapter, I draw the reader’s attention to one multiresolution 

approach, the discrete wavelet transform (DWT, which could be likened to filtering depending on 

approach taken). In short, the DWT involves splitting the signal into high scale (low frequency) 

components called the approximation and low scale (high frequency) components called the detail. A 

further reconstruction process is then necessary in order to have the same number of samples as the 

original acceleration signal and is useful to examine nonperiodic and fast transient features, that is, high 

frequency for short durations, of movement signals [119]. The latter used this to good effect to extract 

features akin to localized time and frequency data to examine movement characteristics for different 

patient subtypes. In the next section of this chapter, I will examine further feature extraction techniques 

for specific functional tasks such as balance and gait. The methods included will be founded in 

supervised, clinical testing but with supporting exploration of those techniques to instrument tasks 

during free-living, unsupervised monitoring.  

Figure 6. Physical activity count data subjected to threshold’s 1 and 2 (T1 and T2). No data (13:40 to 13:41) 

equals sedentary, >0 and <T1 = light, >T1 and <T2 = moderate and >T2 = vigorous. 
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Table 2. A toolbox of time and frequency-based feature extraction options to investigate raw data, adapted from [120] 

Figure 7.Uni-axial accelerometer data from a thigh worn wearable. Top: different static thresholds applied to negative axis (eight 

steps, red dots/troughs) with some troughs missed. Middle: Static thresholds to positive and negative axes (eight steps, 

combination of green peaks with red troughs), some troughs missed. Bottom: Dynamic thresholds (based on σ) to account for 

differences between individuals, more troughs included (16 steps). 

  

Domain Domain- Measure, description and unit  

Frequency  Power HF—Fraction of power of the signal for high frequencies (4-7 Hz)—%  

Frequency  Peak HF—Frequency of the maximum of the power spectral density (PSD) for high frequencies ( > 4 Hz)—Hz  

Frequency  RHL—Power ratio of the high (3.5- 15 Hz) to low (0.15-3.5 Hz) frequency components—unit less  

Frequency  F50—50% power frequency: frequency containing 50% of the total power—Hz  

Frequency  F95—95% power frequency: frequency containing 50% of the total power—Hz  

Frequency  CF—Centroidal frequency, the frequency at which spectral mass is concentrated—Hz  

Frequency FD—Frequency dispersion, a measure of the variability of the PSD frequency content (zero for pure sinusoid, increases with 

spectral bandwidth to one) —unit less  

Frequency Entropy—Power spectrum entropy of acceleration—unit less  

Time JI—Jerk Index, a function of the time derivative of the acceleration, which is commonly viewed as an index of smoothness—

mm
2
/s

5 
 

Time NJI—Normalized JI, normalized by dividing it by SP
2
—1/s

5 
 

Time  MD—Mean distance from center of Center of Mass (CoM) trajectory—mm  

Time  RMS—Root mean square, distance from center of CoM trajectory—mm  

Time  SP—Sway path, total CoM trajectory length—mm  

Time  MV—Mean velocity of the CoM, computed as the median value of the absolute value of the time series obtained through the 

derivative of the displacement—mm/s  

Time  SA—Sway area, area included in CoM displacement per unit of time—mm
2
/s  

Time  CEA—Confidence ellipse area, area of 95% confidence ellipse—mm
2 

 

Time  mSCEA—Minor semi-axis of CEA—mm  

Time  MSCEA—Major semi axis of CEA—mm  

Time  |90-Mdirl|—Angular deviation from anterior-posterior sway of the maximum variance direction—degrees ()  
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3.2.3 Instrumenting motor tasks  

As described magneto-inertial wearables can be attached to various anatomical locations to quantify 

a range of different movements, where physical activity is the most common with devices typically 

attached to the wrist. Here, I focus on specific motor aspects of human movement and how they have 

traditionally been assessed within a closed/supervised environment. I examine how those traditional 

approaches to motor assessment have now been instrumented with magneto-inertial wearables, for more 

in depth and objective assessment. Some data is presented along with methodologies to instrument 

specific movement characteristics. Here, I focus on gait instrumentation only. Although many 

components of human movement can be quantified by wearables, mTBI gait is a novel proposal of this 

thesis whereas another motor task (turning) has been previously examined [86]. (The online published 

version of this chapter details additional instrumented tasks e.g., postural transitions.)  

3.2.3.1  Posture 

After the suggested use of magneto-inertial-based wearables to capture static and dynamic time 

series data when attached to various anatomical segments [114], postural assessment is perhaps the next 

obvious step in instrumenting human-based functional tasks. Therefore, we know accelerometers are 

sensitive to movement, but one should also be aware that they are also sensitive to the acceleration 

acting on a stationary object, which is equal to about one time the force of gravity (1 g or ~ 9.8 m/s
2

) in 

the upwards direction (from the ground). If a wearable has tri-axial sensing capabilities one can examine 

the effect of gravity on each axis of the accelerometer as it changes orientation, to infer how a person 

adapts and changes their posture. No force on the sensitive axis generates an acceleration of 0 g (0 m/s
2

) 

but if the wearable is rotated through 90º, static acceleration approaches ±1 g. Later work investigated 

the orientation of accelerometers when attached to the person, chest and upper thighs for whole body 

assessment, to understand how they were lying (chest and legs both 0g), sitting (-1g chest, 0g leg) and 

standing (chest and legs both -1g) [113]. Subsequently, the same authors examine various thresholds 

applied to the time series accelerometer data when the wearer was at rest (static) for a tailored 

assessment of the individual’s posture in clinical settings [121]. When assessed over many hours or 

days, one can then build a picture to better understand the sedentary behaviours of individuals with 

reduced mobility. Such an approach showed pragmatic utility for objective patient management to 

prevent pressure sores [122].  

Clinical assessment of balance is often used to understand postural control of an individual, which 

if poor may allude to an underlying vestibular and/or neurological health condition. One of the early 

investigations showed the robustness of using wearable sensors for balance assessment compared to 

higher cost, fixed location laboratory-based equipment (e.g., force plates) [123]. Stratified work in the 

field to harmonize how postural control could/should be assessed with a wearable across the ageing 

spectrum was later developed and disseminated by the National Institutes of Health (NIH) Toolbox 

initiative [124]. Specifically, recommendations point to use of an accelerometer-based wearable on the 

lower back to capture insight and objective high-resolution data from a test where it appears nothing 

may be happening [125,126]. What I mean is that for most participants who perform a balance test their 

vestibular system will keep them rigid, but for those with a postural control impairment, then very subtle 

changes in how one keeps themselves rigid and balanced will be detected by the wearable which may 

go unnoticed by the assessor’s eye. Of course, there are many variations in how the standing balance 

test is performed (e.g., feet together/apart/tandem, eyes open/closed, stand on ground/foam) to stress 

test the participants system and use of an accelerometer to instrument the process provides a wealth of 

information.  

Many of the features investigated for instrumented postural control are represented in Table 1. 

Studies have utilized those features and some others to test them in various populations to assess their 

reliability and validity in different technologies [127] as well as their ability to discriminate between 

different cohorts [117,128,129]. More longitudinally they have also been investigated to examine the 
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relationship to cognitive impairment and motor scores in those with Parkinson’s disease [130]. As a 

result, we can see the use of inertial wearables to instrument a simple test like standing balance to 

provide many more options to assess an individual, compared to simple observation and trying to 

determine how good their postural control is. By understanding the fundamentals of how the inertial 

sensing technology works from basic postural tasks I can springboard to instrument a dynamic task i.e., 

gait.  

3.2.3.2 Gait  

Interest in instrumented gait assessment has risen sharply in recent years due to the aligning of 

multidisciplinary teams. More translational research is now evident between engineers, computer and 

clinical scientists. The latter needing better approaches to assess their patients, the former willing and 

able to provide more sophisticated technology to do so. But why gait specifically? Laboratory-based 

work using instrumented walkways has shown evidence to suggest that gait can be a useful prognostic 

and diagnostic (surrogate or bio) marker [131]. This has implications for how people may be diagnosed 

and treated as use of a simple walking test could provide pragmatic and more importantly, low-cost 

approaches to improve care. Yet, instrumented walkways are expensive and bulky but more importantly 

they only capture a limited proportion (i.e., snapshot) of a gait test in a closed/supervised environment, 

where the latter is known to influence habitual walking performance [85,132]. Thus, use of wearables 

became quite apparent as suitable tools to capture prolonged periods of gait in more natural settings. It 

is hypothesized that application of wearables on the person in their usual surroundings of their home 

and community would paint a better picture of how they walk on a day-to-day basis compared to the 

optimal testing conditions within a clinic, that is, no clutter, level ground, good lighting, etc.  

Research in this area is awash with many studies and reviews of how to capture gait and theoretical 

models associated with different gait parameters, here are a few [133–136]. Here, I will provide a brief 

summary of how the field has evolved through the use of inertial wearables to capture gait beyond the 

clinic. Given the increased interest in gait analysis, many algorithms and approaches have been 

proposed on how to best capture it. These range from tri-axial accelerometer to tri-axial gyroscope or 

combinations worn either on the feet, lower legs or somewhere around the waist area. As previously 

mentioned, multiple wearable attachment beyond the clinic is not very practical so generally the field 

has aligned to use of a single wearable worn on the lower back, predominately on the fifth lumbar 

vertebrae (L5). Why here? It is quite a discrete location as many current devices can be worn directly 

on the skin under clothing for many days. True, current devices may be 4-5 mm thick but as previously 

detailed current studies report no issues with patient compliance [137]. More importantly it ties in with 

the biomechanical quirk detailed in the previous sectio close to the CoM. Zijlstra and Hoff put this to 

good use in 1997 by modelling the CoM trajectory during gait which was used to pre- dict amplitude 

and timing of pelvic displacement [138]. By considering the biomechanical sequence of the pelvis as it 

travels through space during gait, the authors utilized the now famous (to those in the field) inverted 

pendulum model (where it is assumed the body rotates over the foot in contact with the ground [139] 

to infer that stride length influences amplitude of pelvic displacement in the vertical direction. Later, 

Zijlstra and Hoff derived a more user friendly approach (Equation 5) to show the relationship between 

CoM and stride length through use of known variables: llength of pendulum (i.e., measured height of 

wearable from the ground as the wearer is in a standing posture); hchange in height of CoM, estimated 

by double integration of ay and controlling for drift by using a high pass fourth-order, zero- lag 

Butterworth filter  [140]. This approach has proven very useful to determine estimates or proxy values 

for step length as quantifying spatial gait values from a wearable is fraught with limitations such as 

requiring and assuming the wearer is walking at normal gait speed in a linear direction [140]. Yet, the 

method remains popular, especially for use in controlled/laboratory settings where the assessor can 

dictate how the wearer walks. Moreover, other methods used by Zijlstra and Hoff [138,140] proved 

insightful as to how different characteristics and features of the gait cycle could be extracted from 
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interpretation of inertial signals. For example, they implemented a zero-crossing study of the 

displacement in the anterior-posterior direction to examine left to right stepping.  

𝑠𝑡𝑒𝑝 𝑙𝑒𝑛𝑔𝑡ℎ = 2√𝑎𝑙ℎ − ℎ2   (Equation 5) 

If not familiar with the area, one may now be wondering, what are all the different characteristics of 

the gait and how many are there in addition to determining left and right steps as well as step length? If 

one enters “gait cycle” into a web browser and searches images, a plethora of images focusing on such 

terminology as cycle double support time, mid-stance, terminal swing, etc. In short there are two key 

components that need to be examined and quantified separately for each foot to provide a stepping to 

stone to the terms: Initial contact (IC, when the heel first touches the ground) and final contact (FC, 

when the toe leaves the ground to begin the swing forward journey to the next IC). Thus, IC and FC 

detection within the signal of an inertial wearable have become the focus for many features extraction 

approaches. Popular methods to define characteristics of the gait cycle including but not limited to IC 

and FC based on different features extracted from an inertial wearable located on the waist includes:  

1. IC timings of the peaks of the low-pass filtered anterior-posterior acceleration preceding the 

positive-to-negative transitions (i.e., zero-crossing) of the filtered anterior-posterior 

acceleration [140,141].  

2. Searching for IC in a region of interest defined by the positive values of the filtered anterior-

posterior acceleration. In that interval, local maxima of the raw acceleration are searched where 

the timing of one of the maxima is identified as IC. To select the correct local maximum, several 

empirical rules are applied. Once the IC is identified, the timing of the first local minimum 

occurring after the IC is identified as FC [142].  

3. The values of the acceleration norm falling within a sliding window of fixed length are summed 

(sliding window summation). The difference of the resulting summation values and those 

obtained from the window length samples are then computed to remove gravity. The resulting 

pattern is a smooth curve periodically crossing zero. The instances of negative-to-positive 

transitions are then used as markers to determine the step duration. FC timings are not estimated 

[143].  

4. Gait events are searched within regions of interest identified from a multiresolution approach, 

that is, the signal reconstructed with the first three levels of detail of a stationary wavelet 

decomposition of the vertical acceleration. Those featuring the highest peaks of the vertical 

acceleration (i.e., containing the instrumented side IC) are only considered. The ipsilateral IC 

and contralateral FC were determined from the vertical acceleration in the region of interest, 

then the ipsilateral FC was identified from the anterior-posterior acceleration. The contralateral 

IC was identified from the medio-lateral acceleration [144]. 

5. IC timings are identified as the times of the minima of the signal obtained after applying a 

multiresolution approach (Gaussian continuous wavelet transformation) to the vertical 

acceleration recorded. The resulting signal is then differentiated, and FC timings are identified 

as the instances of its maxima [145]. Additionally, the accelerometer approach used here was 

supplement with a gyroscope to define right and left IC/FC’s (steps). 

Method number 5 has been used extensively in the literature given its apparent robust use in and 

beyond the clinic and will therefore form the methods used in later chapters [146]. A step-by-step is 

also provided including pseudo code on how it can be implemented in MATLAB
® with tri-axial data 

in.csv format is also provided [147]. Figure 8 graphically represents how the IC/FC events are extracted 

from the method 5 in conjunction with adopting the step length methodology to estimate many gait 
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characteristics: step length, step time, swing time, stance time and step velocity (a proxy for gait speed). 

However, although one wearable may be easier to configure, wear and synthesis arising data when 

highly impaired gait is analysed (e.g., those with advanced Parkinson’s disease), methods employing 

one inertial unit on each leg is preferred for more accurate detection of ICs and FCs [148]. It has been 

shown that in similar pathological cohorts when exploiting some lower limb invariant kinematic 

characteristics, both missed and extra events can be avoided and that the errors can be reduced to 1% 

for the stride duration, 2%-3% for the step and stance durations and 6% - 7% for the swing if multiple 

sensors are used [149].  

 

 

 

Once those gait characteristics have been estimated they can be investigated further, such as the 

variability (e.g., standard deviation of step time) or asymmetry (timing differences between left and 

right) of steps, which has informed the development of conceptual gait models [150]. Gait 

characteristics defined here have been described by the referenced theoretical approach as micro, which 

form a focused examination of the subtle (millisecond) changes of inertial data within the macro 

behavioural changes of the longitudinal (hours/days) inertial data. Others have defined quality and 

quantity models through use of frequency-based characteristics [151,152]. However, when considering 

a macro/micro or quantity/quality approach beyond the clinic one must first identify when the wearer 

is performing a gait task. To achieve this, heuristics have been employed to define when the wearer is 

upright (wearable attached to lower back in a predefined orientation, x acceleration) and moving 

(dynamic, σ acceleration). Once periods of possible gait events are detected, an IC/FC methodology 

(e.g., 1 to 5 described here) can be applied to that section of inertial data to examine the gait cycle [153]. 

These approaches for gait assessment in the clinic and beyond are the source of ongoing research and 

constitute considerable efforts to utilize gait as a low-cost and pragmatic tool for remote patient 

assessment [154].  

 

 

Figure 8. Estimating many gait characteristics (A) from IC and FC events (B, b) in the raw accelerometer 

signal/data along with change in Center of Mass (C, c) height (h). 
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3.3 Conclusion 

This chapter investigated the current state of the art for instrumented motor assessment with inertial 

wearables. Use of discrete and affordable/low-cost inertial sensors have paved the way for them to be 

investigated within wearables as useful clinical tools, to aid assessment of individuals with motor 

impairments. To date, many traditional physical motor assessments have been instrumented by 

attaching inertial-based wearables at different anatomical locations, capturing raw acceleration and 

angular velocity data. Examination of the raw data and deriving useful features from the signals have 

provided informative spatial, temporal, and frequency-based digital outcomes. Although clinical 

assessment under observation is still the preferred method to determine e.g., mobility limitations, use 

of these wearables and their digital biomarkers/outcomes could provide objective and personalized 

high-resolution data that can augment clinical decisions. Yet, although the use of wearables and digital 

outcomes is new, the field is quickly evolving.  

To this point, I have detailed some current mTBI management challenges (chapter 1) and explored 

my hypothesis, use of digital approaches to better manage mTBI (chapter 2). Subsequently, I focused 

attention on one mode of digital technology and its use on instrumenting gait to later inform mTBI-

based motor assessment in this thesis. Here, the focus was on gait assessment alone as that has not been 

fully explored within mTBI (the latter alludes to use during free-living and as a mechanism to examiner 

rehabilitation due to intervention). Next, I reconnect to the findings from chapters 1 and 2 by 

investigating PoI1 and PoI2 and exploration low-cost inertial-wearable technology for supervised gait 

assessment in a low-resource setting. 
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Chapter 4: Exploring the validity 

and suitability of a low-cost 

wearable for motor assessment in a 

low-resource environment 
 

This chapter uses text from my previously published online article to fit the context and narrative of 

this thesis. The journal article “Investigating the AX6 inertial-based wearable for instrumented 

physical capability assessment of young adults in young adults in low resource settings” was 

published in Smart Health in 2021 (URL: https://doi.org/10.1016/j.smhl.2021.100220 

  

 

 

  

https://doi.org/10.1016/j.smhl.2021.100220


 48 

4.1 Introduction 

Chapter 3 detailed how inertial-based technology can instrument one of the components within 

mTBI motor assessment i.e., gait. The latter is highlighted within this thesis as it remains under explored 

within mTBI and may have pragmatic utility to inform RTP as well as effectiveness of intervention 

(highlighted in chapter 2). In this chapter, I explore acceptance/useability, validity and capability of a 

low-cost approach in instrumented gait assessment and its ability to discriminate those with recent SRC 

history versus those without. Work undertaken here will help shed light on PoIs 1-2. 

4.2  Background 

Wearable-based IMU’s have become popular for instrumentation of motor tasks (chapters 2 and 3), 

due to attachment at any anatomical location without burden and provision of raw (sample level) data. 

Chapter 3 focused on gait and detailed the fundamental techniques/skills to convert the raw inertial data 

to quantifiable outcomes e.g., step time. Currently, there are a plethora of inertial-based wearables that 

enable gait instrumentation, each with varying degrees of (financial) cost and technical complexity 

[155]. The latter alludes to the ease with which arising gait outcomes can be attained by those with a 

e.g., non-computing or engineering background. Typically, higher cost devices may provide greater 

ease to attain many gait outcomes. Conversely, lower cost devices may provide barriers to more regular 

adoption, as they can be less well complemented with proprietary software, requiring bespoke tools 

created by engineers or computer scientists. However, the financial implications may ultimately help 

turn the tide, especially with a greater trend towards open software tools for a non-computing audience. 

The AX3 has been of particular interest for use in affordable healthcare as it is developed under 

Open Movement (OM, https://opendatahandbook.org/glossary/en/terms/open-movement), which is of 

growing interest as clarification and transparency on how wearables are created for generating digital 

biomarkers like gait outcomes are of increased importance [56,57,156]. OM fosters open-source code 

for firmware and software made available under a BSD 2-clause license 

(https://opensource.org/licenses/BSD-2-Clause), while the hardware (e.g., PCB designs), enclosure 

designs and documentation are made available under a Creative Commons 3.0 BY Attribution License 

(https://github.com/digitalinteraction/openmovement), to reduce costs and overcome black-box 

development [34]. Investigation of these more transparently developed wearables will be key to see 

their pragmatic use in mTBI management. Previously, the AX3 has shown promise for use in low-

resource settings to yield pragmatic gait data across a holistic battery assessment of motor tasks [4,19–

22] 

This chapter has two aims. Firstly, this study aims to investigate a new IMU-based wearable 

developed under OM (AX6) as a pragmatic tool to instrument motor assessment in a low-resource 

setting. To do so I investigate its robustness to quantify a common gait task in comparison to another 

OM-based wearable (AX3). The AX3 was chosen as it is (i) validated in a range of motor 

capability/functioning studies with use of previous algorithms to be implemented here [132,157–159] 

and (ii) the most suitable comparative reference where instrumented walkways or 3D motion analysis 

would not be suitable [160]. The second aim is to then explore the AX6‘s utility to distinguish groups, 

specifically those with recent SRC history versus those without within the same low-resource setting. I 

hypothesize that data from the AX6 will provide robust motor assessment outcomes, plausible objective 

digital gait biomarkers that may be useful to aid SRC management.  

4.3 Methods 

4.3.1 Participant recruitment 

University students were invited to take part in this study. Inclusion criteria included ≥18 years, 

English as a first language and with no impairment which would prohibit them from safely performing 

functional tasks. Those interested were then given a participant information sheet which detailed the 

study. Ethical consent for the project was granted by the Northumbria University ethical committee 

https://opensource.org/licenses/BSD-2-Clause
https://github.com/digitalinteraction/openmovement
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(Reference: 3672). Shown in Appendix 2, all participants gave informed written consent prior to testing, 

which took place at Northumbria University Sport Central, Newcastle-upon-Tyne.  

 

4.3.2 Equipment  

Supervised assessment was conducted using the low-cost/accessible AX6 (Axivity. 2.3×3.3×0.8 cm, 

11g: https://axivity.com). The AX6 has configurable tri-axial accelerometer (±2-16g) sensor (Bosch, 

BMI160) with variable sampling capabilities (e.g., 50 or 100Hz), set via proprietary software 

(OmGUI1). Here, the AX6 was programmed to ±8g, 250°/s and 100Hz. The AX6 and reference device 

were placed as close as possible to the 5th lumbar vertebrae (L5) with double sided tape (Hypafix) to 

quantify all tasks.  

The AX6 was placed to the right of L5, while the reference was placed to the left, Fig. 1. L5 was 

chosen based on algorithms used (section 1.3.5). Participants wore the AX6 and reference continuously. 

Manual timed recordings were taken for completeness as this method is often used in low-resource 

settings to establish validity.  Here, we also use manual recordings to provide insight to those 

investigating wearables for functional testing, highlighting where discrepancies may arise between 

methods. Upon completion of recording, participants were verbally asked if they found the devices 

comfortable to wear during all assessments. The AX6 and AX3 were time synchronized from the same 

research computer. 

 

4.3.3 Reference standards 

The previously validated accelerometer only sensor based (ADXL345, Analog Devices) AX3 

(2.3×3.3×0.8 cm, 11g) wearable was used (located beside the AX6 on L5, Fig. 9). The AX3 was 

programmed similar to the AX6 (±8g, 100Hz) via proprietary software. The AX3 was previously 

investigated and validated for use during physical functional assessment in laboratory and low-resource 

settings [70,159]. In brief, the referenced studies studied the AX3 in comparison to video, instrumented 

walkway and direct observation to assess its suitability for physical functioning assessment. For 

example, the laboratory study used video data to segment periods of walking to compare young adult 

(28.6years) AX3 derived gait characteristics to a GaitRite system with results showing good to excellent 

agreement between both. 

Observational pen-and-paper timings with a stopwatch were taken by me during all testing. Manual 

timings were taken for completeness as this method is often used in low-resource settings to establish 

validity. Upon completion of recording, participants were verbally asked if they found the devices 

comfortable to wear during all tasks. The AX6 and AX3 were time synchronized from the same 

computer. After testing participants were asked about wearing wearables and the general level of 

comfort. 

 

 
1 https://github.com/digitalinteraction/openmovement/wiki/AX3-GUI  

https://axivity.com/
https://github.com/digitalinteraction/openmovement/wiki/AX3-GUI
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4.3.4  Experimental protocol 

Here, I adopted a similar protocol as previously presented [70]. (Please note that the published online 

version of this study [161] details a greater number of motor tasks and associated algorithms, but gait 

is presented for the purposes of this thesis only). 

Here, the typical outcome of interest is the total distance walked in 2mins which is a widely 

implemented and useful methodology within motor assessment and the recommended amount of time 

to capture gait [162]. The task consists of participants walking continuously and as fast as they can but 

without running. The route consisted of walking back and forth around cones (10m apart). Wearable-

based total distance walked was calculated by summing total step length i.e., Algorithm A and C, Table 

3. For observational/manual records, the number of laps were counted, and the remaining portion of a 

lap measured.  

4.3.5 Previous SRC history 

All participants' SRC history was self-reported by the individual and with consent of participants 

verified against university medical records to ensure accuracy. Groups consisted of those with a 

previous SRC (pSRC) and no previous SRC (npSRC). 

4.3.6 Algorithms 

Raw IMU data were manually segmented via MATLAB® (R2020a, MathWorks Inc., Massachusetts, 

USA) ginput function, made readily possible by the identification of hop/jump data peaks examined 

from visual observations. Asking participants to hop/jump before each task generated acceleration 

peaks, not representative of data acquired during tasks.   

Data were analyzed with previously validated instrumented motor assessment algorithms [159], 

Table 3. For example, raw vertical acceleration was filtered by integrating and then differentiating using 

a Gaussian continuous wavelet transform (CWT) to examine signal local minima, which corresponded 

to initial contact (IC) times during gait. Subsequently, final contact (FC) events were identified as the 

signal maxima obtained from a further CWT [145]. Additional IC and FC details can be found 

elsewhere [132]. (Table 3) was used to deriving temporal gait outcomes. 

Once IC and FC were correctly estimated, the inverted pendulum model was used to calculate step 

length and therefore total distance covered [138,140]. In brief, use of the same inertial data located on 

L5 can track the center of mass (COM) trajectory during walking to predict amplitude and timing of 

pelvic displacement (Algorithm D, Table 3). Full details of algorithms and processes are detailed 

elsewhere [2]. 

 

 

 

Figure 9: Attachment of the AX6 (left) and reference device (AX3, right) on the 5th lumbar vertebrae (L5). 



 51 

 

4.3.7 Statistical analysis  

Data were tested for normality and linearity of distributions by plotting and inspecting histograms 

and Quintile-Quintile (Q-Q) plots, respectively. Differences between pairs were found to be normally 

distributed and so Pearson’s correlation was used to assess linear correlations. Paired sample t-tests are 

commonly used to test differences between means and whether two samples are different from each 

other and used here to test for differences between AX6 and references (AX3 and manual). Bland-

Altman plots help compare agreement (mean differences) between e.g., technologies ([163] and were 

used to investigate device limits of agreement (LoA) between the AX3 to AX6. For all analysis, 

statistical significance was set at p < 0.05. 

4.4 Results 

Twelve participants were recruited (12 male, 20 years ± 0.82, 181.69 cm ± 6.84, 91.01 kg ± 10.59). 

All participants reported no issues/problems with any wearable, stating they were comfortable to wear 

during the gait task. During testing, participants wore their usual footwear/shoes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Algorithms and features for gait assessment 

Algorithm Description, used in gait tasks #1 and #2 Representation 

A Detecting initial contact (IC) and final 

contact (FC) times from gait cycle  
𝑊(𝑎, 𝑏) =

1

√|𝑎|
∫ 𝑥(𝑡)𝜓

∞

−∞

∗ (
𝑡 − 𝑏

𝑎
) 𝑑𝑡 

The transformed signal is a function of two variables b and a, which are the 

translation and scale parameters, respectively. The transforming (wavelet) 

function (ψ(t)) is defined as the ‘mother wavelet’ 

B Step length (using IC/FC detection) Step length=2√2𝑙ℎ − ℎ2 

Changes in height (h) can be calculated (double integration of av) in which l 

refers to the pendulum length (i.e. height of the inertial wearable from the 

ground to place of attachment) 

C From estimated IC/FC data, where i 

denotes an incremental value within the 

array 

 

Step time (i) = IC (i + 1) – IC (i); 

Stance time (i) = FC (i + 1) – IC (i); 

Stride time (i) = IC (i + 2) – IC (i); 

Swing time = Stride time – Stance time. 

D Estimating pelvic displacement (h) derives 

step length and consequently step velocity  

 

Step length = 2(sqrt (2*(Wearable Height) *h–h^2));  

Step velocity = Step length / Step time; 

Table 4. Demographics of those with no SRC history and those with a SRC history 

Characteristic 
 

npSRC 

(n= 9) 

pSRC history 

(n =3) 

Independent samples t test 

p 

Age (years) 20.5 (0.87) 21 (0) 0.43 

Height (cm) 181.8 (7.9) 186.5 (8.4) 0.23 

Mass (kg) 92.12 (4.36) 93.9 (4.36) 0.78 

Number of previous concussions - 2.3 (1.9) - 

Days Since last Injurya  (n) - 180 (431) - 

Return to Play from last injury (days) - 18 (2.9) - 

Position: Back (Bk), Forward (F) Bk (5) F (4)  Bk (1) F (2) - 
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4.4.1 Total distance 

There was a significant (p<0.01) positive correlation (r=0.95) between AX6 and AX3 reference for 

total distance walked but total distances were significantly different (p<0.01), Table 5. Bland-Altman 

(Fig. 2iv) shows moderate agreement with no outliers outside the upper or lower LoA. Significant 

differences were also found between AX6 and manual estimations (p<0.01). 

 

4.4.2 Spatial and temporal gait  

There were strong correlations between devices for all spatial and temporal characteristics (r>0.72). 

No significant differences were found in step time (p=0.60), stride time (p=0.60), swing time (p=0.78), 

stance time (p=0.52) or step velocity (p=0.38), Table 5. However, step length showed a significant 

difference (p<0.01). Bland-Altman analysis was conducted for each outcome, Fig. 10. For example, 

stride time (Fig. 10-ii), showed good to excellent agreement with very narrow bias in mean difference 

and no outliers. 

 

 

 

Figure 10: Bland-Altman plots showing agreement between AX6 and reference device for spatial and temporal 

gait characteristics/biomarker during the 2-minute walking task (i) step time (s), (ii) stride time (s), (iii) swing 

time (s), (iv) stance time (s), (v) step length (m) and (vi) step velocity (m/s) 

Stride time Step time 

Swing time Stance time 

Step length  Step velocity 
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4.4.3 Distinguishing groups 

No significant differences were found in step time (p=0.1), stride time (p=0.1), swing time 

(p=0.06), stance time (p=0.14) or step velocity (p=0.42). However, step length showed a significant 

difference (p<0.05) potentially indicating its usefulness in differentiating those with SRC history and 

those without, this is supported by large effect sizes of (1.8) across the remaining variables.  

 

 

4.5 Discussion 

This study investigated a new OM inertial-based wearable (AX6) as a suitable tool within 

instrumented motor assessment in a low-resource setting. Outcomes from the AX6 were compared to 

those from previously validated reference (AX3) and manual recordings. Findings suggest that the AX6 

may be a suitable digital tool for use in low-resource settings to quantify gait. The AX6 can capture 

robust raw data transparently, an emerging research priority [57,164]. Additional analysis comparing 

those with recent SRC history and those without suggest, that gait may be a useful method for 

distinguishing those cohorts. This suggests the technologies usefulness to meet current challenges in 

low-resource, community settings for personalised mTBI management (PoI 1 to 3).  

 

 

Table 5. Temporal and spatial gait characteristic estimations from AX6 compared to references 

Characteristics 
AX6 Reference (AX3) Pearsons correlation 

Paired sample 

t.test 

Mean ± SD Mean ± SD r p p 

Total distance (m) 140.57 ± 16.01 133.85 ± 15.42 0.95 0.00* 0.00* 

2min walk 

(Single task) 

Step time (s) 0.46 ±0.04 0.46 ± 0.04 0.99 0.00* 0.60 

Stride time (s) 0.91 ± 0.08 0.91 ± 0.08 0.99 0.00* 0.60 

Swing time (s) 0.32 ± 0.03 0.32 ± 0.03 0.99 0.00* 0.78 

Stance time (s) 0.59 ± 0.06 0.59 ± 0.05 1.00 0.00* 0.52 

Step length (m) 0.55 ± 0.08 0.52 ± 0.07 0.72 0.01* 0.00* 

Step velocity (ms-1) 1.18 ± 0.18 1.14 ± 0.11 0.76 0.00* 0.38 

Characteristics 

npSRC 

(n=9) 

pSRC 

(n=3) 
Independent sample t test 

Mean ± SD Mean ± SD d p 

Total distance (m) 134.9 ± 12.89 157.31 ± 12.37 1.6 0.04*  

2min walk 

(Single task) 

Step time (s) 0.44 ± 0.04 0.49 ± 0.04 1.2 0.1 

Stride time (s) 0.89 ± 0.08 0.98 ± 0.07 1.2 0.1 

Swing time (s) 0.31 ± 0.03 0.35 ± 0.03 1.3 0.06 

Stance time (s) 0.57 ± 0.06 0.63 ± 0.04 1.1 0.14 

Step length (m) 0.52 ± 0.08 0.86 ± 0.40 1.8 0.02* 

Step velocity (ms-1) 1.15 ± 0.21 1.26 ± 0.10 0.5 0.42 

Table 6: Temporal and spatial gait characteristic, SRC history and no history 2-minute walk 
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4.5.1 Validation 

There were no significant differences between the AX6 and reference device for temporal gait 

outcomes or velocity derived. Although the spatial outcome (step length) was significantly correlated, 

there was a significant difference between mean values. Again, this can be attributed to the reasons 

highlighted in section 4.1 i.e., inverted pendulum model and protocol used.  

Compared to manual recordings, both wearables underestimated total distance. There are some key 

issues pertaining to the difference of total distance walked during this test. The inverted pendulum 

model is optimized for straight line linear walks only [138,140]. Authors of the proposed model describe 

how the center of mass and pelvic displacement approximately correspond to sinusoidal movement 

patterns. However, the underlying pattern of acceleration during walks in our protocol would not have 

been linear and so could not be perfectly modelled by a sinusoidal function. That would have been 

further impacted by the directions given to participants i.e., walking as fast as they could, where walking 

speeds would have fluctuated during all endurance walks due to e.g., fatigue. Moreover, inconsistent 

angular changes (left or right turns) during which participants rounded ends of the 10m course would 

negatively impact functionality of the inverted pendulum model. That is because wearables placed on 

either side of the vertebrae would experience different biomechanical properties of foot placement of 

up to many centimeters which would accumulate into many meters over the duration of a 2min walk. 

Thus, linear acceleration and wearable placement will not have been perfectly described by a sinusoidal 

function here. When the raw acceleration signals were examined, we observed that not all IC/FC events 

were suitability identified at the moment of a turn (identified from raw gyroscope data) which 

negatively impacted the algorithms’ ability to correctly estimate steps length compared to straight line 

walking. This may have been attributed to location around L5 and direction of turning at the end of 

each walk. 

Although the AX6 (140.57m ± 16.01) compared to wearable reference (133.85m ± 15.42) showed 

statistically significant differences (p<0.01), the mean difference was approx. 6.7m with a 95% 

confidence interval (3.6m to 9.9m). With total walking distances ranging from 115m to 170m, this 

degree of accuracy may be deemed suitable, especially as the protocol involved walking back and forth. 

However, such accuracies should be investigated as to their suitability in examining individual 

performance variation/change due to e.g., mTBI in a sporting context. Significant differences between 

AX6 and manual recordings (196.67m ± 19.72) can also be attributed to the protocol adopted here. The 

AX6 sensor being sensitive to linear deviations of gait (rounding/turning past the cones) and wide 

movement path around cones, which may negatively impact on peak detection accuracy and subsequent 

IC/FC estimations. Clearly asking participants to complete the task in a linear fashion with 180-degree 

may help to overcome these overestimations, but this would limit the clinical relevance and ecological 

validity as humans naturally complete lots of turns or rarely walk in a straight line [86]. Nevertheless, 

current use of existing wearable algorithms to quantify step length with any walking protocol would 

suggest useful proxy values as outcomes to gauge total distance walked.  

On average, the AX6 (4.89s ± 0.76) recorded slightly lower times (0.15s) compared to the reference 

(5.04s ± 0.87). This is despite both devices utilising the same algorithm to identify IC and FC times to 

estimate total time. The slight discrepancy may be from wearable placement, both placed laterally near 

L5. Visual examination showed slight variations in accelerometer signals (raw data). This was perhaps 

due to the left and right placement along/on the L5 vertebrae. Additionally, the AX6 uses a different 

inertial sensor (BMI160) compared to the AX3 (ADXL345). Perhaps differences in sensor manufacture 

contribute to slight signal deviations, impacting end values here as well as in all physical capability 

tests. Given slight signal discrepancies may arise between sensor signals (BMI160 vs ADXL345), these 

could be exacerbated by their differing attachment location. Thus, use of different wavelet scale 

parameters could improve signal to noise ratio without losing resolution enhancement for different 

sensor types and wear locations, warranting future investigation [165]. Different wavelet approaches 

have been examined elsewhere. For example, previous work examined a plethora of wavelet approaches 
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for one aspect of physical functioning (i.e., postural transitions) noting possible accuracy improvement 

through careful wavelet type selection [166]. Here, a CWT with a Gaussian wavelet function was used 

for the purposes of detecting IC and FC events within the gait cycle. Alternatively, it has been proposed 

that IC and FC accuracy could be improved by using a bi-orthogonal spine wavelet [70,159].  

Timing differences were >0.7s between the AX6 and manual recordings. Large discrepancies and 

significant difference is primarily due to the subjective nature of manual assessment and errors within 

researcher timing on correctly identifying initial as well as final contact to signify the start and end of 

the trial, respectively.  

4.5.2 Useability  

Participants were able to wear these devices for the duration of the lab visit without complaints or 

negative effects. However significant set up time was associated with attaching devices to the lower 

back with Hypafix tape as described in the methods and required assistance of a researcher/physio to 

re-attach. This may suggest usability for short testing periods such as laboratory assessment, but further 

research is required if suitable for longer term assessment such as in free-living environments. 

4.5.3 Distinguishing groups 

My preliminary results showed that a 2-minute walk may have mixed utility in differentiating those 

with mTBI/SRC and those without. As highlighted in the results, there were no significant differences 

found in step time (p=0.1), stride time (p=0.1), swing time (p=0.06), stance time (p=0.14) or step 

velocity (p=0.42). However, total distance walked, and (as would be expected) step length showed a 

significant difference (p<0.05), yet this was also significantly different between devices. This may be 

due to the approaches used to calculate step length being optimised for lower speed linear walking and 

subtle deviations or drift when walking or in turns leading to small discrepancies between reference and 

AX6 devices [167,168]. Similarly, there may be differences in type of walking or pattern e.g., non-

uniform walking pattern which may also lead to small discrepancies.  

Despite there being no significant differences between groups for almost all variables, the presence 

of large effect sizes of (1.8) across the majority of variables on a small sample size is of interest. This 

is important initial signal in the wider context of my thesis and provides an important contribution to 

PoI 2 about the accuracy or consistency of wearables and warrants further investigation across larger 

cohorts in later chapters. 

4.5.4 Limitations and future work 

One limitation of this study was the small sample size (n=12), which may limit the ability to detect 

small differences between variables and groups. Future work should include a larger and more 

substantial sample size to increase variability in participant data. Moreover, this study was conducted 

on young, fit healthy males only. Similar studies examining use of the AX6 wearable should examine 

the device between genders to determine the wearables wider suitability/fit-for-purpose. Here, I aimed 

to assess the usefulness of the AX6 to generate accelerometer-based gait outcomes in young adults in a 

low-resource setting. Going forward, the AX6 (accelerometer and gyroscope data) should be examined 

for its suitability to better quantity digital data biomarkers for clinical validity across measures of gait 

e.g., gait and turning outcomes as well as during free-living. Indeed, use of the gyroscope sensor could 

help automated segmentation of all tasks. 

Although beyond the scope/aims of this study, a future recommendation would be for an analytical 

validation to be performed via suitable bench testing approaches to thoroughly investigate raw data 

from both devices. For example, a previous approach compared the acceleration output of an ADXL202 

to a potentiometer within a pendulum-based device [169]. The referenced study used a bench top rig 

(ADXL202 embedded within the center of a pendulum mass and compared output to the rotating shaft 

of a potentiometer from which the pendulum was suspended) to subject the accelerometer to a known 
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repeatable, varying acceleration signal similar to that experienced in gait. Such an approach aids 

verification approaches to device/sensor suitability for movement similar to motor assessment. 

4.6 Conclusion 

This study investigates the use of a new Open Movement IMU (AX6) for gait assessments in young 

adults within a low-resource setting. Compared to a well validated reference, good to excellent 

agreement for gait outcomes were found. Findings suggest the low-cost AX6 is a suitable digital tool 

to provide accessible and robust raw data to quantify a motor task i.e., gait in a non-bespoke (clinical) 

setting. In addition, I explored whether gait can it distinguish between groups (recent SRC history and 

no SRC history), finding that step length may be useful in differentiating groups. This provides an initial 

step into investigating and stratifying which tasks may be useful for wider clinical utility.  

Although my sample size was small, preliminary results suggest the AX6 may be scalable for data 

collection on larger studies in community environments. This directly contributes to PoI1, whereby 

affordability of assessment is important within current SRC/mTBI challenges. Current reliance on 

traditional assessment may be limiting opportunity to understand patterns and the nature of motor 

impairments in mTBI. Using objective inertial wearable data may also help mitigate the error introduced 

in subjective assessment by an observer. 

4.6.1 Passive monitoring tools: Next steps 

In chapters 1 and 2 the suggestion of altered behaviour when under direct observation of a clinician 

was introduced. It is widely known that assessment under observation can induce the white coat 

syndrome, also known as the Hawthorne effect [170]. This is something alluded to by Will Hooley 

(Chapter 1) and often witnessed by myself during my physiotherapy work with rugby teams. 

Specifically, Will Hooley described how: 

"...players push themselves too hard and lie about their symptoms to enable them to RTP”  

 

Additionally, he (Mr. Hooley) progressed to describe how: 

“...players can also overthink how they are feeling, making them feel worse than they are. Naturally, 

players want to continue playing/training and so medics must see through these” 

 

To overcome, my research will be informed by other areas of inertial wearable research where there 

is a trend to move gait assessment beyond the well-controlled environment of a supervised setting to 

overcome strategies to improve their performance or compensate [160,171]. The move to free-living, 

habitual assessment/monitoring was proposed in Chapter 2 and will be a notable contribution from 

Chapter 5. 

The use of inertial-based wearables to instrument motor tasks (like gait) can be useful to provide 

objective data continuously in habitual environments. Here, I suggest that may help overcome player 

strategies during supervised and contrived snap-shot assessment [172]. Accordingly, the next chapter 

explores the novelty of using the same wearable investigated here for remote motor/gait assessment i.e., 

in habitual free-living environments.
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Chapter 5: Habitual motor 

assessment: A single-subject 

investigation 
 

This chapter uses text from my previously published online article to fit the context and narrative of 

this thesis. The journal article “Exploring Inertial-Based Wearable Technologies for Objective 

Monitoring in Sports-Related Concussion: A Single-Participant Report” was published in Physical 

Therapy and Rehabilitation in 2022 (URL: https://doi.org/10.1093/ptj/pzac016) 

 

  

https://doi.org/10.1093/ptj/pzac016
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5.1 Introduction 

As detailed in chapter 2, digital technologies are suggested as viable contemporary means to 

continuously and objectively measure outcomes which could augment traditional snapshot mTBI 

assessments[34,173]. Chapters 3 and 4 focused and showcased the use of inertial technology approaches 

to quantify gait which may have novel utility and value in mTBI. Additionally, chapter 4 evidenced that 

use of financially attainable and accessible wearables to produce objective gait outcomes via the OM 

initiative, which could be a valid and viable pragmatic option. In chapter 4, I suggest that the same 

wearable technology could be used to see through any potential strategies by players to improve/alter 

motor/gait outcomes during supervised assessment. That suggestion is motivated by other fields of 

inertial gait research describe a desire to move away from contrived supervised assessments, going 

beyond the lab for a remote monitoring approach. That would help to overcome snap-shot assessments 

as also highlighted in chapter 2.  

Going beyond supervised assessment and into the home to gather habitual data is now a tangible 

research methodology. That is due to the widespread availability of wearables and other associated 

technologies (e.g., smartphone and apps) which could gather (high-resolution) habitual data 

continuously for many days [35]. The SCAT5 is a snap-shot assessment tool, confounded by subjective 

approaches of manual rating and self-reporting during each subcomponent/test [174–176]. Thus, 

making it extremely challenging to accurately/objectively and transparently monitor and assess SRC 

impairments. This justifies demand for new objective methods to better track SRC recovery and better 

inform RTP.  

To my current knowledge, no study has examined the use of inertial-based wearable for (holistic) 

SRC assessment under habitual conditions. Using these disruptive digital technologies would enable 

high resolution data capture to augment snap-shot assessment as well as remote monitoring to assess 

habitual SRC impairments over longitudinal periods. In short, utilizing digital approaches to 

continuously monitor mTBI impairments (e.g., gait) may enhance current methods and deliver more 

objective and personalised mTBI assessment digital (bio) markers.  

The purpose of this single-participant report/study was to explore the feasibility and potential of a 

wearable IMU to improve SRC/mTBI assessment in a rugby player. Remote monitoring was conducted 

to investigate how arising data could augment traditional approaches. The study participant completed 

traditional supervised/reference testing (SCAT5) yielding primary outcomes. Then, the participant 

undertook supervised instrumented and remote assessment yielding secondary (digital) outcomes pre 

and post SRC. I suggest that using supervised and remote (free-living) assessment with a wearable IMU 

will yield more insights compared to traditional SRC assessment alone. (Please note the online 

published version of this study goes beyond gait to showcase a wider array of possible data to the 

research audience. Some of those data are presented in Appendix 4) 

5.2 Methods 

5.2.1 Participant recruitment 

Inclusion criteria consisted of: ≥18 years of age, English as a first language and with no impairment 

which would prohibit them from safely performing the supervised task or remote assessment. Ethical 

consent for the project was granted by the Northumbria University ethical committee (Reference: 3672). 

The participant was given an information sheet which detailed the study, and the subject gave informed 

written consent prior to testing. All supervised testing took place in a generic room at Northumbria 

University Sport Central, Newcastle-upon-Tyne during the 2019 and 2020 season.  

A player who sustained a SRC was chosen at random from the larger pool of male university rugby 

union players. A male participant was selected (20 years, 175cm, 77kg) for assessment. This player had 

been followed up after sustaining a SRC/mTBI within 24 hours. At the time of testing, he had completed 

16 years of full-time education and self-reported a total of five SRC with his most recent prior to testing 
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occurring in Spring 2019. University medical records detailed that his recovery time from previous SRC 

was 19 days. 

5.2.2 Technology 

The IMU-based wearable assessment was conducted using the low-cost AX6 (Chapter 4). The AX6 

was placed as close as possible to the 5th lumbar vertebrae (L5) with double sided tape as described in 

Chapter 4. The subject wore the AX6 continuously for the duration of supervised (30 minutes) and 

remote assessments (the latter comprising 24 hours at each timepoint).  

5.2.3 Design phases: Experimental protocol 

The participant was assessed at pre-SRC, post-SRC and once RTP using both traditional (SCAT5) 

and wearable assessment as described below.  

5.2.4 Primary outcome(s) – SCAT5  

The SCAT5 was completed by a physiotherapist (me) at (i) baseline (conducted in 2018) as well as, 

(ii) 1-hour, (iii) 2 days, (iv) 5 days, (v) 12 days and (vi) approx. 2.5 months post mTBI/SRC (Table 1). 

5.2.5 Secondary outcomes – Wearable IMU 

Data were processed using custom-made and validated MATLAB® (MathWorks Inc, Massachusetts, 

USA) algorithms to estimate supervised and remote gait characteristics [132,153]. Raw IMU data were 

examined pre-SRC, post-SRC (1 day) and once RTP (28 days post-SRC) as follows: 

1. Supervised (laboratory) gait assessment: 

The participant walked continuously and as fast as he could (without running) back and forth 

around cones (10m apart) as part of the two-minute walk test [177,178]. Wearable timing began 

upon the first step. Recording ended after the subject completed the walk (manual, by 

stopwatch) or last purposeful footfall (as detected by wearable). The latter was determined from 

the vertical acceleration (aV) exceeding a predetermined threshold [86].  

2. Gait characteristics:  

Raw IMU accelerometer data were used to identify the initial contact (IC) and final contact 

(FC) times within the gait cycle [145]. IC and FC estimation facilitated quantification of step 

time (seconds, s) where a walking bout has been previously defined as and ≥3 steps with 

consecutive steps within a 0.25 to 2.25s window [118]. Subsequently, variability and 

asymmetry gait characteristics were quantified from alternate values within an array of step 

times. Here, we examined all gait data (from gait initiation to termination) in bouts/periods of 

gait that were approx. 2mins to be comparable with lab-based gait. As described the total 

distance walked in 2mins is a widely implemented and useful methodology within a motor 

assessment and provides the optimal gait capture gait protocol [162].  For exploratory purposes 

we quantified two variations of gait variability which are common in the literature, as follows: 

i. Variability (Var): The combined standard deviation of left and right steps was calculated 

by taking the square root of the mean variance of the left and right steps. This method 

avoids confounding step-to-step variability with variation originating from asymmetry 

between left and right steps [179]. Here, true left and right footsteps were not explicitly 

identified, and so alternate values were chosen. 

ii. Standard deviation (SD): The SD of all steps were calculated for left and right i.e., left 

and right were not separated out as alternating values. 

Asymmetry was calculated as the absolute difference between left and right steps. Again, true 

left and right footsteps were not explicitly identified, and so alternate values were chosen. 

3. Remote gait assessment (post-SRC and 1-month post-SRC once RTP) 
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The wearable IMU was worn continuously for 24-hours, with the participant asked to perform their 

normal/habitual routine. A validated algorithm [153] quantified gait/walking bouts where for the 

purposes of this study, gait bouts ≥120s/2-min were examined only. Once possible gait bouts were 

detected, the same gait characteristics were calculated as during supervised assessment (above).  

5.3 Results 

5.3.1 Primary outcomes 

Post-SRC symptom severity data shows a sharp increase in symptom score 1-hour post injury (87) 

peaking at day 2 post injury (106) before decreasing and returning to normal at day 12 (0). Balance 

errors also peaked (11) shortly after injury before gradually decreasing 12 days post injury. Similarly, 

immediate memory returned to normal function, 5 days post injury. The subject was cleared to RTP 

and contact sport by an independent general practitioner after 20 days. At re-assessment (2.5 months 

after injury) there was a decline in some SCAT5 outcomes (decreased well-being and increased balance 

errors).  

Measure 

Pre-SRC Post-SRC RTP 

Baseline  1-hour 1-day 2-days 5-days 12-days 

2.5 

months 

Symptom number 

(out of 22)* 
0 20 18 22 7 0 0 

Symptom severity 

score 

(out of 132)*  

0 87 63 106 21 0 0 

Percent wellbeing 

(out of 100%)** 
100 50 0 70 75 100 80 

Orientation 

(out of 5)** 
5 4 0 5 5 5 5 

Immediate memory 

 (out of 15 or 30)**  
19/30 4/15 0/15 14/15 15/15 15/15 15/15 

Concentration  

(out of 5)** 
0 1 0 3 3 2 3 

Neuro Exam 

(abnormal or normal) 
normal abnormal abnormal normal normal normal normal 

Balance errors 

(out of 30)* 
12 16 30 11 4 1 8 

Delayed Recall 

Out of 5 or 10)** 
4/10 0/5 0/5 2/5 2/5 3/5 5/5 

* A lower score is better (more normal) 

** A higher score is better (more normal) 

Green/bold data - the player returned to baseline levels 

Red/italic data – the player scoring worse than baseline 

Table 7. SCAT5 Pre-SRC, Immediately Post-SRC and 2-months later 
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5.3.2 Secondary outcomes 

5.3.2.1 Supervised gait (2-minute walk) 

Wearable IMU assessment was well tolerated by the participant and no concerns of discomfort were 

raised. There were differences for gait pre-SRC, immediately post-SRC and 2.5-months follow up, 

respectively. Results show increases in step time (0.461s, 0.491s, 0.529s), step time variability (0.018, 

0.151s, 0.255s) and step asymmetry (0.012s, 0.003, 0.036s) for baseline, post-concussion and 2-months 

follow up, respectively (Table 7). 

 Characteristic Pre-SRC Post-SRC (1-day) 2.5-month post SRC 

All gait data (entire 2min walk) 

Step time (s) 0.461 0.491 0.529 

Step time variability (Var, s) 0.018 0.151 0.255 

Step time variability (SD, s) 0.019 0.057 0.171 

Step time asymmetry (s) 0.012 0.003 0.036 

 

5.3.2.2 Remote gait 

Remote wearable IMU gait assessment showed 4-bouts of (sustained) walking for ≥2mins 

immediately post-SRC compared to 6-bouts 1-month post-SRC, Table 9. Mean step times were shorter 

immediately post-SRC compared to 1-month later. There were no clearly observable trends for step 

time variability between different timepoints but what was observed during gait assessment 1-moth post 

SRC is the difference in variability outcomes for contrasting calculation methods. Asymmetry was 

notably higher 1-month post SRC, which may have been influenced by some abnormal outliers. 

Additional data are presented in appendix 4 for further gait characteristic exploration. 

  Post-SRC (1-day) 

  Bout 1 

2:43pm 

Bout 2 

2:51pm 

Bout 3 

4:33pm 

Bout 4 

4:36pm 

Bout 5 Bout 6 

All gait data 

Step time (s) 0.464 0.458 0.462 0.440 -- -- 

Step time variability (Var, s) 0.016 0.013 0.041 0.043 -- -- 

Step time variability (SD, s) 0.016 0.013 0.041 0.043 -- -- 

Step time asymmetry (s) 0.005 0.001 0.004 0.004 -- -- 

  Post -SRC (1month) 

 
 Bout 1 

11:47am 

Bout 2 

11:50am 

Bout 3 

12:38pm 

Bout 4 

12:42pm 

Bout 5 

12:54pm 

Bout 6 

1:01pm 

All gait data 

Step time (s) 0.508 0.504 0.486 0.490 0.491 0.489 

Step time variability (Var, s) 0.028 0.025 0.017 0.021 0.016 0.057 

Step time variability (SD, s) 0.033 0.031 0.020 0.024 0.022 0.058 

Step time asymmetry (s) 0.034 0.036 0.022 0.024 0.031 0.008 

Var = Variability. SD = Standard deviation 

 

 

 

 

 

 

 

 

Table 8. Gait characteristics from supervised 2-min walk (initiation to termination) 

Table 9. Remote gait from bouts of walking ≥120s/2-mins (initiation to termination) 
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5.4 Discussion 

The purpose of this single subject report/study was to examine feasibility and potential of supervised 

and remote assessment with a wearable IMU to augment traditional SRC assessment. To my 

knowledge, this is the first study to deploy an IMU-based wearable for mTBI/SRC monitoring during 

a RTP protocol. Use of IMU-based wearables can yield many objective gait outcomes e.g., step time 

compared to traditional observational assessment Free-living/remote assessment with an IMU for gait 

was well tolerated and may be particularly useful when examining individuals with complex medical 

and frequent SRC history. Continuous monitoring with wearables over long periods may be required to 

detect sensitive or subtle deficits that become more evident during habitual behaviours which persist 

after RTP. 

5.4.1 Enhancing assessment 

My results reinforce the challenges of traditional approaches with the SCAT5 which may not be 

sensitive i.e., significant ceiling effects (i) to the varied recovery participants experience post-SRC or 

(ii) useful in dealing with complex recovery trends. Indeed, it is often the case a different clinician 

administering/recording the SCAT5 at each time point contributing to variation (PoI2). For example, 

the choice of what cognitive test difficulty (5- or 10-word list), can impact the reliability or consistency 

in testing, meaning some players being tested on different difficulty ratings/scoring. This is shown in 

Table 1 whereby the participant was scored initially on the 10-word list at baseline; however, post injury 

was scored on 5-word lists, making comparison between scores more challenging. As shown in Table 

1, SCAT5 outcomes quickly trended to baseline after 12 days. Specifically, there was full symptom 

resolution and improvement in both cognitive and balance scores (Table 1) indicating progress in 

recovery. A general practitioner approved RTP (full contact rugby) by day 20 based on those SCAT5 

outcomes and (subjective) clinical judgement. The decline in some SCAT5 outcomes (decreased 

wellbeing and increased balance errors) 2.5 months after injury is difficult to attribute to a specific 

injury or timepoint. However, it is reasonable to speculate incomplete recovery from initial injury 

and/or playing through a new/distracting injury to contribute to the decline in outcomes. This highlights 

how challenging it can be for clinicians to rely on subjective outcomes to assess or judge a player's 

injury/recovery status.  

Addition of a wearable IMU facilitated instrumented assessment was an efficient method to gain a 

more objective impression of SRC impact and recovery, albeit on motor assessment alone. Data from 

the wearable allowed investigation into more detailed trends for gait outcomes longitudinally (during 

recovery and 1-mointh post-SRC). Specifically, within supervised wearable gait assessment, there were 

differences for step time immediately post-SRC, consistent with impaired motor control [40]. 

Unsupervised/remote wearable gait assessment suggested impairments even upon RTP, which could 

further support an incomplete/full recovery [180].   

Wearable IMU assessment afforded the opportunity to yield high-resolution clinical-based gait 

outcomes such as mean step time and variations (variability and asymmetry) which is not possible with 

traditional approaches (SCAT5). My exploratory analysis suggests those data may be clinically useful 

but that it is also important to consider how those outcomes are calculated and presented. Here, I 

explored two common methods to estimate step time variability which resulted in differences in 

outcomes even during the same walking bouts, supervised or remote assessment, Tables 2 and 3. The 

quantification of step time is calculated as the difference between the estimations of initial and final 

contact within the gait cycle as previously described in chapter 3 and elsewhere [132,140,145]. Step 

time variability (standard deviation of left and right steps) is estimated via the square root of the mean 

variance of the left and right steps, and step time asymmetry is calculated from the difference between 

right and left steps (mean values) [132]. Increased step time variability and asymmetry have been 

closely linked with impaired or dysfunctional motor control and deficits in similar groups such as mTBI 

and TBI [181]. One can observe broad changes and trends in step time in other conditions such as 

Parkinsons disease and chronic mTBI [81,90,182]. However, at present there is a lack of consensus on 
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exactly what constitutes normal or impaired gait, particularly in SRC/mTBI [183]. Therefore, I am 

unable to give exact values or be precise about an agreed meaningful clinical change here but will be 

explored further in later chapters.  

This case study also can’t be directly compared to studies examining larger cohorts of TBI 

participants, which observed differences for step time variability pre-SRC and post-SRC. My results 

also found large step asymmetry 1-month post-SRC, which may be explained by outliers at that 

timepoint. However, recent research [184] suggests step time asymmetry could also be linked to energy 

demand and compensatory behaviours due to energy cost of impaired gait [184,185]. My results would 

align with that research, as step time asymmetry decreased immediately post-SRC, then increased 1-

month post-SRC once the participant had RTP.  

Overall, the addition of a wearable IMU facilitated instrumented assessment was an efficient method 

to gain a more representative and insightful exploration of gait trends and recovery. Accordingly, the 

digital approach helps support PoI3, achieving personalised approach for mTBI management. However, 

collecting data on more participants is required for a thorough/robust investigation and interpretation 

of gait (and other physiological outcomes that can be captured with an IMU) during SRC recovery.  

5.4.2 Enhancing RTP decisions 

Traditionally RTP clearance and readiness to RTP is within the realm of a general practitioner or 

medical professional who uses clinical judgement to form the basis of their opinion. They may use tools 

such as the SCAT5 to aid in their judgment, but this should not be used in isolation (Chapter 2). 

Furthermore, symptom resolution is the main driver in RTP [11], with full resolution and the successful 

navigation of the graduated RTP a necessary precursor before RTP.  

Remote assessment using wearables is a unique example of an objective digital method which has 

been successfully tested in other neurological conditions e.g., Parkinson’s disease [90,186]. Remote 

assessment affords the opportunity for habitual monitoring of a variety of individualised digital (bio) 

makers such as gait [56]. Adoption of such technology can improve upon episodic data points (e.g., 

supervised data collection), enabling a more objective and in-depth SRC/mTBI assessment. Remote 

gait assessment may be more clinically useful and informative than isolated supervised (snapshot, 

Figure 3) assessment when comparing post-SRC, recovery and RTP.  

Alongside the traditional RTP a general practitioner or other clinician would have additional 

objective data to aid in RTP decision making. Instead of number of balance errors from the SCAT5, the 

multi average in e.g., gait variability and asymmetry outcomes could be presented and compared to 

normative and/or baseline performances. Overall, a wealth of additional outcomes could be given. Here 

within my results, preliminary gait outcomes (step time) suggest use of wearables to quantify some 

degree of motor impairment upon RTP, suggesting an incomplete recovery of the subject or displaying 

compensatory gait behaviours. As this is a case study, strong (clinical) conclusions can’t be drawn, but 

the potential value and benefits of remote gait assessment are highlighted and should be considered and 

explored further in my thesis. (The wearable also provided insight for other motor assessment such as 

sleep disturbance but is not for investigation within this thesis – Appendix 5) 
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5.4.3 Limitations 

The limitations of a single subject research include generalizability of study conclusions. There are 

other extraneous considerations that should be considered. For example, no baseline assessment (e.g., 

previous injuries) was conducted for wearable assessment, which may impact gait patterns and gait data 

captured by the wearable. Additionally, this study did not include the use of any self-reported diary 

relating to physical activity, which has previously been used in free-living activity monitoring to better 

contextualize (see below) wearable data [187,188] and should be included in future explorations and 

studies. Furthermore, although the wearable provided rich data, its current form factor has suitability 

challenges issues for longitudinal use in multiday assessment. 

5.4.3.1 Challenge 1: Form factor 

As highlighted in Chapter 4, I found the AX6 to be a valid low-cost device suitable for lab-based 

assessment, however there are substantial challenges pertaining to pragmatics of using the AX6 

technology for direct-to-consumer assessment or clinician to consumer assessment. The reasons for this 

are partly related to form factor, with the AX6 requiring attachment directly to the body via hypafix 

tape, which may not be applicable or suitable for long periods of assessment. This is particularly 

challenging for those who live active lifestyles, such as university athletes, and may be participating in 

a range of different activities e.g., strength training, which would require constant re-attachment with 

tape or discomfort if worn through these activities. This suggests a device with easier attachment or re-

attachment may be more tolerated across larger cohorts of individuals. 

5.4.3.2 Challenge 2: OM approach 

To process the IMU data requires specialist training and prior experience of IMU data processing 

[57,156]. Therefore, a current barrier to using IMU data from an OM wearable is the provision of ‘no-

code’ software for pragmatic interpretation by clinicians or non-technical skilled researchers [57]. To 

improve accessibility and transparency of data collection methodologies future research should focus 

on developing complementary open-source approaches for e.g., gait recognition and spatio-temporal 

outcomes from all gait bouts, as suggested elsewhere for waist worn sensors [189]. Starting points exist 

but their approach remains specialised and not configured for everyday use or by those without 

experience of programming/coding[190,191]. 

Figure 11: Traditional (SCAT5) versus Enhanced Returned to Play with additional metrics such as gait 
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5.5 Conclusion 

My results evidence the shortcomings of traditional approaches (i.e., SCAT5) which may not be 

sensitive e.g., significant ceiling effects (i) to the varied recovery participants experience post-SRC or 

(ii) useful in dealing with complex recovery trends. This single-subject case study showed wearable 

assessment can be well tolerated for short periods and yields objective outcomes through remote 

assessment at different time points, which may have utility in routine and complex mTBI/SRC RTP 

decisions. Although the wearable (AX6) provided rich data, its current form factor and requirement to 

be directly attached to the body by e.g., Hypafix tape, may not be applicable for longitudinal use in 

multiday assessment. Regardless, precise mTBI/SRC motor-based impairments could and should be 

measured with (inertial) wearables but need refining across more individuals. 
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Chapter 6: Lessons learned 
 

6.1 Introduction 

The purpose of this chapter is to determine how the PoI’s (Chapter 1) have been addressed from 

preliminary investigations (Chapters 2 to 5). Here I outline the lessons learned as part of my research 

so far in this thesis and introduce the next stage of my research to provide a unique contribution to 

knowledge while examining my thesis statement / research hypothesis.   

6.2 Lessons learned and the next stages of the thesis 

There have been some important and practical findings gathered to this point to inform mTBI 

management. In chapter 1 a rapid landscape analysis via a semi-structured interview approach was taken 

to understand the current unmet needs arising from contrasting perspectives, challenges in the context 

of rugby union on the pitch and from the sideline across the professional to amateur spectrum. Three 

PoI’s emerged as important levers/mechanism for change, namely; 

• PoI1: finance and resources,  

• PoI2: access, scalability and consistency (inc. accuracy, subjectivity vs. objectivity) 

• PoI3: personalised assessment and increased patient/player involvement 

Those PoI’s led me to hypothesise that digital technologies may enable affordable (PoI1) mTBI 

management while ensuring continuity (PoI2) and offering more objective personalised assessment to 

support traditional approaches (PoI3).    

6.2.1 Addressing PoI1, PoI2 and PoI3 

Chapter 2 provided a critical analysis of the literature into the traditional and more contemporary 

methods relating to mTBI/SRC. Focus was on assessment techniques to better understand the current 

state of the art, with a goal to harmonise key work to shed light on research gaps relating to mTBI 

management. Affordable (low-cost) digital technologies were identified in inertial wearables and the 

opportunity for (i) gait as a useful assessment tool and (ii) a need for multimodal assessment. 

Accordingly, chapter 3 provided a thorough investigation and understanding of inertial/IMU through a 

scoping review to inform key technical details for use by me later in the thesis. Chapter 4 helps to 

address Po11 and PoI2, use of an affordable wearable in a low-resource environment to be a valid and 

pragmatic tool to inform mTBI motor-based (gait) assessment with promise to distinguish those with a 

recent mTBI/SRC. Chapter 5 deployed the same affordable wearable but beyond a supervised setting, 

into remote/habitual mTBI assessment as part of a single subject report. That chapter showed evidence 

of how habitual gait data could be captured, overcoming player/patient strategies to “cheat” symptoms 

(i.e., more traditional mTBI/SRC checklists) and providing personalised monitoring (PoI3). Although 

the affordable wearable was useful/acceptable for short assessments (Chapter 4), it was deemed not 

currently fit-for-purpose during longitudinal deployment (Chapter 5).  

6.2.1.1 Move towards user friendly technology 

Significant pragmatic and computational challenges were found when using the AX6 inertial 

wearable, namely the form factor and mode of attachment with e.g., Hypafix tape. I believe that 

approach would restrict successful long-term deployment/remote assessment due to lack of adherence 

by study volunteers. Accordingly, I therefore sought an analogous device which would have the same 

underlying (electronic) hardware but offer an alternative, more user-friendly attachment method.   

The MoveMonitor (McRoberts, Netherlands41; 106.6×58×11.5mm, 55g) was sourced and will be 

used for the remainder of this thesis, unless otherwise stated. It comprises an equivalent inertial 

technical specification (accelerometer and gyroscope with comparable range and sampling frequency 
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capabilities compared to the AX6). Importantly the MoveMonitor is also worn on L5 but offers an easy-

to-use belt attachment (elastic belt with clip) [192,193] and has been used extensively for motor 

assessment while being considered a valid technology for use in controlled/lab/clinic and free-living 

environments. Critically, recent findings from the EU Mobilise-D study [3–7] have reported that gait 

algorithms used in this thesis to be device agnostic, meaning they can be used interchangeably with 

validity on different inertial technologies.  

At the time of receiving quotes and purchasing the technologies (2019/2020), the AX6 was 

considered affordable (approx. £150) while MoveMonitor was deemed less affordable, primarily due 

to the proprietary software that needs to accompany the physical wearable for programming, data 

download and storage (approx. £260 + £340 = £500). Though price differences have since fluctuated 

for both technologies, the fundamental principle presented in this thesis remains that affordable inertial 

wearables exist and (as presented elsewhere) algorithms can be used interchangeably. However, 

opportunities do exist, and they will be presented in Chapter 11.  

6.2.2 A contemporary approach 

Pervasive mTBI/SRC assessment techniques such as the SCAT5, collect self-reported/subjective 

measures are restricted to highly controlled supervised environments such as physiotherapy clinics or 

health centers. Although useful data are collected, these assessments are unable to capture habitual 

behaviors/trends and therefore omit a wealth of data which could be captured by non-obtrusive digital 

approaches. This is supported by the concussion consensus statement (CCS) which highlighted that 

digital objective approaches are crucial to improve the ability to diagnose and monitor SRC 

impairments [11,194]. Therefore, harnessing objective digital approaches like wearables, are key to 

advancing diagnostics and precision in mTBI/SRC assessment and monitoring.   

Chapter 2 found that monitoring single isolated impairments is unlikely to drive any step changes 

into SRC assessment and diagnosis. Therefore, a necessary step change and progression in SRC 

assessment will require combining complementary multimodal technologies and moving away from 

reliance on the SCAT5 which collects data on isolated impairments. Through the first half of my thesis, 

I have provided a technical and clinical assessment of wearables for their propensity to capture objective 

data relevant to mTBI impairments. As further highlighted in chapter 2, collecting and integrating 

multimodal digital approaches (e.g., free-living gait) will likely augment and enhance data gathered 

from traditional methods. By understanding pragmatic challenges while addressing arising PoI’s, I have 

understood the scope and range of opportunities afforded by wearables to devise a contemporary 

approach for mTBI assessment. Accordingly, the next chapter details a comprehensive process for a 

more rounded and thorough mTBI assessment. 

6.3 Free-living gait, next steps 

From the lessons learned, the latter stages of my thesis (chapters 8 to 10) will primarily apply and 

evaluate free-living gait in acute and chronic mTBI/SRC from free living data to gain better insights 

into player recovery and improved RTP. That exploration will be undertaken within the framework of 

investigating gait as a possible diagnostic (chapters 8 and 9) or response (bio) marker (chapter 10) [99]. 

But first, I describe a rigorous protocol for multimodal mTBI assessment for use within SRC.  
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Chapter 7: A protocol for 

multimodal mTBI assessment and 

management 
 

This chapter uses text from my previously published online article to fit the context and narrative of 

this thesis. The journal article “Wearables in rugby union: A protocol for multimodal digital sports-

related concussion assessment”, was published in PLOS One in 2021 (URL: 

https://doi.org/10.1371/journal.pone.0261616) 

  

https://doi.org/10.1371/journal.pone.0261616
https://doi.org/10.1371/journal.pone.0261616)
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7.1 Introduction 

To date, there has been no suggested use of digital technologies to capture novel biomarkers to better 

inform sports related mTBI (in low-resource settings). Accordingly, with evidence gathered from 

chapter 1 to chapter 5, I present a comprehensive and contemporary approach proposing use of 

attainable (and accessible) technologies for digital mTBI biomarker capture applicable in low resource 

settings (SRC context). 

7.2 Progression to contemporary assessment         

Non-invasive mobile wearable technologies have been used to objectively measure and monitor 

impairments in neurological injury [34,54]. Examples include visual assessment technologies to 

objectively monitor eye movements during laboratory tasks, assessing visual and cognitive processing 

[49,53]. In mobility assessment (e.g., balance, gait and turning), inertial wearables have successfully 

been used to track disease progression in Parkinson’s disease [186]. Wearables offer several advantages 

over traditional (non-mobile) methods of assessment. This includes the opportunity for passive 

monitoring, whereby continuous data can be collected on participants without their active attention or 

participation. Remote monitoring outside of clinic or laboratory can augment traditional assessment and 

avoid ‘snapshot’ collection at episodic intervals [34,160]. Indeed, viewing SRC impairments in 

isolation could be futile and ignores the interconnected and related nature of SRC [20]. Wearables may 

provide continuous digital outcome measures, which can be easily compared and integrated with other 

impairments (e.g., cognitive function) [195]. SRC is considered a complex injury and will likely require 

a multimodal assessment approach to provide sufficient sensitivity for diagnosis and monitoring and 

enhanced understanding.  

Using a multimodal approach with attainable wearables could provide objective and pragmatic 

outcomes from robust data to inform more insightful mTBI/SRC management [35,36]. However, to my 

knowledge, no multimodal protocol for this in rugby union has been published. As such I propose a 

comprehensive multimodal protocol to translate technical research into an attainable clinical application 

[81]. I suggest that multimodal digital-based wearables will yield more objective and insightful data in 

those with mTBI/SRC compared to the traditional assessment methods alone and the protocol proposed 

here will guide future data acquisition within my research and beyond. Throughout, useful estimates 

are provided to inform e.g., how long each assessment could take. It is my suggestion that this 

comprehensive protocol would enable future researchers to subsequently fine-tune their contemporary 

and digital data collection for mTBI assessments. 

7.3 Methods  

7.3.1 Study design  

I designed this protocol around a repeated-measures observational study using a battery of SRC 

assessment tools (cognitive, visual motor, and symptom assessment). The protocol was developed 

according to the Standard Protocol Items: Recommendations for Interventional Trials’ (SPIRIT) 

checklist [196], as appropriate. As this is a study protocol no data has been included and was registered 

with clinicaltrials.gov (NCT04938570). 

7.3.2 Participants  

This protocol was designed pre-COVID-19 pandemic. At the time of writing University-level and 

amateur rugby players (males n≈100, and females n≈100) were to be recruited and assessed over one 

season. However, due to lockdown and social distancing, that was not conducted as part of this thesis. 

Accordingly, the following describes suggested approaches for a large observational approach.  

Participants should be stratified according to gender (males and females). The inclusion and 

exclusion criteria are outlined in Table 10. Those that have a mTBI/Concussion during the season must 

have a diagnosis of mTBI from a healthcare professional (physiotherapist or medic) based upon 

https://clinicaltrials.gov/
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standard criteria or identified head injury from their contact sport governing body Although the number 

of SRC that will be observed during the season is not known, we will compare number of head 

injuries/SRC to our results from cohort baseline testing. Those that do not sustain a concussion will also 

have follow up testing at the end of the season, which will allow comparison between baseline and post-

season.  

7.3.2.1 Setting 

Testing will be conducted at Clinical Gait Laboratory, Coach Lane Campus, Northumbria University, 

Newcastle upon Tyne and at the amateur rugby clubs in the North East of England.  

7.3.2.2 Recruitment 

An ethics application was submitted to Northumbria University research ethics committee and 

approved June 2020 (23365). An amended ethics application (due to changes required from of the 

COVID-19 pandemic) was submitted to same ethics committee in October 2020 and approved in 

January 2021 but no participant recruitment remained largely prohibited until late 2022.  

Upon resumption, written, informed consent to participate will be obtained by all participants prior 

to each stage of the study in accordance with General Data Protection Regulations (GDPR). All 

Northumbria University Rugby Union Players will be invited to take part in the study. Additionally, 

local adult rugby union teams within 25 miles of Newcastle Upon Tyne will be invited to participate. 

An advertisement will be sent via email to local rugby clubs and the university rugby teams. Those 

interested will then be given a Participant Information Sheet (PIS) and a letter concerning the study 

with consent form. Inclusion and exclusion criteria are detailed in Table 1. In brief, all participants must 

be ≥18 years, have minimal cognitive impairment (Short-Blessed test 0 and 8), have fluency in English. 

Those excluded from participating in the study include anyone with a medical history that could grossly 

impact balance; stroke, severe TBI, amputation, vestibular pathology, alcohol addiction or substance 

abuse.  

 

7.3.2.3 Primary Outcomes 

The primary outcomes of this study are the proportion of players who have altered free-living, 

quality-based gait/walking patterns (e.g., gait speed), defined as micro gait characteristics measured by 

a digital inertial sensor-based wearable. Secondary outcomes are related to the change in free-living 

turning characteristics and clinical based visual data. Possible predictors for altered free-living micro 

gait patterns will include baseline assessment and acute SRC timeframe.  

 

7.3.2.4 Sample size calculation 

The sample size calculation is based sample sizes from previous paper examining multimodal 

assessment, ~200 [80,195]. To determine the appropriate sample size (SS) for estimating the proportion 

of players we used the following formula as previously described.  

Table 10. Inclusion and exclusion criteria 

Inclusion Criteria Exclusion Criteria 

≥18 years; 

Have minimal cognitive impairment, defined as a score 

between 0 and 8 on the Short-Blessed test for cognitive 

function; 

English as a first language or fluency. 

Those that have a mTBI/Concussion during the season must 

have a diagnosis of mTBI from a healthcare professional 

(physiotherapist or medic) based upon standard criteria or 

identified head injury from contact sport. 

Medical history of a neurological illness that could grossly affect balance or 

coordination (such as. stroke, greater than mild TBI, lower-extremity 

amputation, recent lower extremity or spine orthopaedic injury requiring a 

profile). 

Be a pregnant female 

Have past history of peripheral vestibular pathology or eye movement 

deficits. 

Be unable to abstain from medication/alcohol 24 hours in advance of testing  
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SS = (Z-score)
2
×proportion×(1 – proportion)/(margin of error)

2
 

For a confidence level of 95%, α is 0.05 and the corresponding Z-value is 1.96. The sample 

proportion is unknown. We chose the number 0.50 (50%) because it takes the maximum spread into 

account. Consensus about the margin of error was achieved by joint discussion of the research group; a 

margin error of 0.075 (7.5%) was accepted. For a population size of 200 and a confidence level of 95%, 

α is 0.05 and the corresponding z-value is 1.96. Therefore, in total, 200 patients will be enrolled in the 

study to reach the necessary sample size. 

7.3.2.5 Participant stratification 

All participants (male≈100, female≈100) who respond to the advertisement will complete baseline 

testing during pre-season and post-season. In-house university assessment will allow a clear pathway 

for concussed university players to be referred for post-SRC assessment. Local and amateur players 

who responded to the initial advertisement and sustain a SRC during the season can a) self-refer 

themselves (player) or b) be referred with consent by other personnel (physiotherapist, clinician, 

coaches) into the study for testing. Testing availability for amateur players will be expanded (after 

4:30pm Monday to Friday) to accommodate amateur player work/education commitments. Those 

diagnosed with SRC will be asked to attend a laboratory session with a subsequent free-living 

assessment at the following time frames post injury where possible; within 72 hours post, 7-14 days 

post, once returned to play and post season.  The overall schedule and time commitment for trial 

participants is depicted in Fig 1. (A more generic flow diagram depicting the schedule is presented in 

supplementary material.) 

 

 STUDY PERIOD 

 Enrolment Allocation Post-allocation Close-out 

TIMEPOINT** -t1 0 t1 (baseline) 

t2 

(within 

72 hous 

) 

t3 

(within 

14 days) 

t4 (within 

28 days or 

returned to 

play 

t5 

(post-season) 

ENROLMENT:        

Eligibility screen X       

Informed consent  X       

[List other procedures] X       

Allocation  X      

INTERVENTIONS: 

NA 
       

ASSESSMENTS:   X X X X X 

[baseline variables]   X    X 

[Primary Outcomes]   X X X X X 

[Secondary Outcomes]   X X X X X 

 

 

 

Figure 1. SPIRIT diagram, overall schedule, and time commitment for trial participants  
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7.3.2.6 Anthropometric measures and screening 

Test: Visual acuity (VA) eye chart and contrast sensitivity 

VA is used to estimate degree of visual impairments in participants and will be measured binocularly 

using a standard eye chart. Participants will be asked to be seated or standing 4m from the chart. 

Participants will then be instructed to read aloud, starting from the top left, and moving down the chart. 

The test is terminated if the participant makes two consecutive errors. Assessment will be done for right 

and then left eyes.  

Test: Height, weight and leg length. 

Height (Bodysense Smart Scale, Eufy, USA) and weight (Seca 217, Seca Deutschland, Hamburg, 

Germany) will be measured for each participant. Participants leg length or sensor distance to ground 

will be measured [197], by a trained researcher/physiotherapist from posterior iliac spine to medial 

malleolus and used to inform inertial wearable algorithm analysis. 

7.3.3 Data collection: In the lab 

Test: Sports Concussion Assessment Tool 5th edition, SCAT5 

Estimated time: (10-15 minutes) 

The SCAT5 [11] is one of the most widely used assessment tools in aiding diagnosis and assessment 

measuring symptom scores [11], aspects of cognitive function (Standardised Assessment of Concussion 

[198] and balance function (modified balance error scoring system [199] via a pen and paper SCAT5 

forms, Table 11. 

Symptom: The test measures aspects of symptom score and severity recorded across 22 symptoms self-

reported by the player. A higher score indicates a more severe or worsened symptom profile (out of 

132). 

Cognition: The standardised assessment of concussion, is a mental status assessment previously 

developed [198] but now incorporated in the SCAT5 assessing individuals across immediate memory, 

concentration and delayed recall and recorded via the SCAT5 form.  

Balance: The modified Balance Error Scoring System (mBESS) test [199] is an assessment protocol 

used to assess impairments in SRC [79]. The mBESS test assesses balance, postural stability across six 

different positions (double leg stance, single-leg stance, tandem stance) and tandem gait walking over 

2.5-3 meters). Participants will be asked to maintain eyes closed, with hands placed on the iliac crest 

for each test's duration (20 seconds). These tests are observed, and the number of errors counted. Errors 

are movements indicating a loss of balance or position such as; removing hands from iliac crest, 

stepping out with contralateral foot, stumbling or lifting forefoot or heel. The mBESS is assessed 

subjectively by the medical professional using a stopwatch and recorded using pen and paper. A higher 

error count indicating worse performance. 
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Test: Vestibular ocular motor screen (VOMS)  

Estimated Time: (5-10 minutes)  

The VOMS test includes a baseline measurement after which participants later verbally rate changes 

in headache, dizziness and nausea symptoms compared with their immediate baseline state on a scale 

from 0 (none) to 10 (severe) to determine if each of the tests provokes symptoms [51]. The test then 

measures impairments via this self-report across five sections (smooth pursuit, saccades, convergence, 

vestibular ocular reflex test and visual motion sensitivity test). Testing will be conducted on a standard 

height of chair (45cm) at a distance of 90-100cm away from the stimuli.  

Test: Two-minute walk test 

Estimated Time: (5-10 minutes)  

Participants will be asked to complete two-minutes of continuous walking [177,178] at self-selected, 

normal walking speed over 8m with 180° turns, single and dual-task. Cognitive measurement to 

determine dual task will be conducted prior to any walking. The dual-task will involve the backwards 

digit span [200], which will be set to the maximal amount of numbers recalled in sitting. The first 

walking trial will be single task walking. Secondly for dual task, the participant will hear a series of 

numbers while walking and repeat the numbers in backwards order while walking. Participants will be 

instructed to concentrate on both tasks equally.  

Test: High Level Mobility Assessment Tool, HiMAT 

Estimated Time: (5-15 minutes)  

HiMAT is a standardised outcome measure used to quantify motor performance in individuals with 

high-level balance and mobility deficits [201]. The HiMAT is scored over 13 items derived from expert 

clinicians' opinions and from existing multi-dimensional mobility scales. which includes tasks such as: 

backwards tandem walking, Walk over obstacle, Up/downstairs.  

 

 

 

 

Assessment Domain Component tests Outcome Measures Method of assessment 

Symptom Concussion Symptom Scale 
Symptom severity (out of 22) 

Symptom total (out of 132) 

Self-reported by player 

 

Cognitive Standardised Assessment of Concussion (SAC)  
 

Orientation (out of 5) 

Immediate memory (out of 15 

30) 

Concentration (out of 5) 

Delayed recall (out of 5 or 10) 

Auditory/verbal 

assessment recorded on 

pen and paper 

Neurological 

Passive cervical movement Pain (yes or no) Subjectively assessed 

Finger nose test Able to complete (yes or no) Subjectively assessed 

Visual Horizontal Nystagmus Double vision (yes or no) Subjectively assessed 

Balance 

Tandem Gait Able to complete (yes or no) Subjectively assessed 

Modified Balance Error Scoring System (mBESS) Total number of errors 
Subjectively count number 

of errors 

Table 11. Sports Concussion Assessment Tool, 5th version (SCAT5). 
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Assessment 

Domain 
Test Digital Approach Digital Technology Primary Outcome Measures 

 

Time Commitment 

Cognitive 

Reaction Time 
Computerised 

neurocognitive testing 

 

Brain Gauge. Cortical 

Metrics, USA1 

Reaction Time & reaction time 

variability (milliseconds) 

10-15 minutes 

Amplitude Discrimination 

Simultaneous and sequential 

amplitude discrimination 

(microns) 

Balance 

SCAT 55 

(Modified Balance Error 

Scoring System) 

 

Wearable 

Inertial Measurement 

Units 

 

MoveMonitor, 

McRoberts, UK2 

Postural stability characteristics 

Sway (speed at which the 

centre-of-pressure moves) 

Root mean square (average 

variance signal captured) 

Jerk (the rate of change of 

acceleration from signal) 

10-15 minutes 

Gait & Turning 

SCAT 55 

Lab: (Tandem Walk) 

Wearable 

Inertial Measurement 

Units 

 

MoveMonitor, 

McRoberts, UK2 

Gait characteristics 

Mean stance time (seconds, s) 

Mean step time (s) 

Mean stride time (s) 

Mean swing time (s) 

Mean stride length (cm) 

Mean stride velocity (cms-1) 

Turning characteristics 

Number of turns per hour (n) 

Turn Angle(°) 

Turn Duration(seconds) 

Turn Velocity (°/seconds) 

10-15 minutes 

Lab: Two Minute Walk Test 

High Level Mobility 

Assessment Tool (HiMAT) 

 

Visual 

Horizontal Nystagmus test 

SCAT 55 

Mobile Eye Tracker 

Pupil Labs, Core Eye 

Tracker, Germany3 

Tobii Pro Glasses 24 

(100Hz, Tobii 

Technology Inc., VA, 

USA) 

Visual characteristics 

Mean and variability of 

fixations, 

saccades and smooth pursuit 

Symptom number 

10 minutes 

Visual Oculomotor Screen 

Questionnaires 

Neck Disability Index 

Mobile 

application/secure 

questionnaire 

PC or 

Tablet 

Symptom Severity and 

symptom number 

20-30 minutes 

 

 

Lower Extremity Function 

Scale 

Symptom Severity and 

symptom number 

International Physical 

Activity Questionnaire  
Self-reported activity levels 

Dizziness Handicap 

Inventory 

Symptom Severity and 

symptom number 

Neurosymptom Inventory 

Index 

Symptom Severity and 

symptom number 

1 https://www.corticalmetrics.com/ 
2 https://www.mcroberts.nl/products/movemonitor/ 
3 https://pupil-labs.com/products/core/ 
4 https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/ 
5 https://bjsm.bmj.com/content/bjsports/early/2017/04/26/bjsports-2017-097506SCAT5.full.pdf 

 

7.3.4 Digital technologies 

Using traditional approaches but overlayed with digital technologies to provide more objective and 

insightful outcome measures.  

 

 

Table 12.Laboratory testing: Multimodal approach for SRC assessment 

https://www.corticalmetrics.com/
https://www.mcroberts.nl/products/movemonitor/
https://pupil-labs.com/products/core/
https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
https://bjsm.bmj.com/content/bjsports/early/2017/04/26/bjsports-2017-097506SCAT5.full.pdf
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7.3.4.1 Digital neurocognitive tests 

Conducted with the Brain Gauge Pro2. Cortical Metrics, Chapel Hill, NC, USA. Testing takes 

approximately 8 minutes and is completed with participants sitting at a laptop [202,203]. Two computer 

mouse probes on the device provide a stimulus through vibration (25-50Hz) for participants index (D2) 

and third (D3) fingers. Participants are asked to respond by pressing their D2 and D3 according to 

specific tests. Outcomes calculated by the technology are reaction time (RT) measured in milliseconds, 

sequential, simultaneous amplitude discrimination (measured in microns) and reaction time variability.  

7.3.4.2 Wearable eye-tracking 

Conducted with the wearable eye tracker (Pupil Labs3, Core Eye Tracker, Berlin, Germany. 

160×51mm, high speed 120hz and 200hz) and Tobii Pro Glasses 23 (100Hz, Tobii Technology Inc., 

VA, USA) which have shown to have good accuracy and showed the least error accuracy error overall 

in comparison with three other models of wearable eye-trackers [204]. The wearable eye-tracker in this 

protocol will be compared to a subjective test (VOMS), which has been clinically adopted in 

neurological assessment and will be used a reference standard [51,205,206].  

7.3.4.3 Inertial wearable 

The AX6 and/or MoveMonitor (McRoberts, Netherlands44; 106.6×58×11.5mm, 55g) comprises an 

accelerometer (+/- 100Hz) and gyroscope (+/- 8g) tri-axial sensors and are worn on L5, attached with 

an elastic strap. The latter wearable has been used extensively for functional and mobility monitoring 

in neurological disorders and is considered a valid technology which can capture data in 

controlled/lab/clinic and free-living environments [207–210]. The MoveMonitor technology uses the 

same hardware as the AX6 but can be attached using the provided Velcro waist belt, allowing easy 

attachment/removal and may help overcome the limitation of using tape to fix as with the AX6 used in 

chapter 5. This will be used to compare against traditional methods of gait assessment in walking tasks 

(lab and free-living assessment, see chapter 6). 

7.3.5 Instrumentation with digital technologies 

7.3.5.1 VOMS and eye tracking 

Due to the test's subjective outcomes (provocation of non-specific symptoms), the VOMS cannot be 

used in isolation to diagnose SRC. Wearable eye trackers may provide an objective method of 

instrumenting traditional subjective tests like the VOMS and yield enhanced metrics on fixations, 

saccades and smooth pursuit [50,211]. We will use the Pupil Labs, Core eye tracker or Tobii Pro Glasses 

2 while comparing the traditional VOMS test results across three main movements, fixations, saccades 

and smooth pursuits. Data is wirelessly transferred to Pupil Labs/Tobi proprietary software and stored 

locally. Data will then be stored on a secure Further analysis of these will be made using a custom-

made MATLAB® (MathWorks Inc, Massachusetts, USA) algorithm as previously described [205,212].  

 

7.3.5.2 Balance, two-minute walk test (gait and turning) 

By instrumented digital approaches such as use of inertial sensor-based wearables, detection of 

subtle deficits may be detected. Indeed, the instrumentation of the balance error scoring system (BESS) 

has been shown to have superior diagnostic classification compared to traditional balance tests in 

concussion/mTBI [78]. Data will be downloaded to PC or laptop via USB and uploaded to a secure 

database or file storage and analysed. Movement bouts will be calculated for lab and free-living balance, 

 
2 https://www.corticalmetrics.com/ 
3 https://pupil-labs.com/products/core/ 
3 https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/  
4 https://www.mcroberts.nl/products/movemonitor/ 

 

https://www.corticalmetrics.com/
https://pupil-labs.com/products/core/
https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
https://www.mcroberts.nl/products/movemonitor/
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gait and turning characteristics using bespoke MATLAB® algorithms [86,153]. Free-living data will be 

initially processed using two separate custom-made and validated MATLAB® algorithms to estimate 

free-living balance (e.g., jerk, sway), gait (e.g., mean step time, stance time variability) and turning 

(e.g., peak velocity, turn duration) characteristics [132,153,213,214]. 

Differences in gait between single and dual task will be examined rather than dual task cost. Absolute 

dual-task differences between groups (healthy vs those with a mTBI) will be examined to investigate if 

objectively measured dual-task walking could be a useful assessment for SRC, which will be compared 

to the use of single-task gait outcomes. 

7.3.6 Data collection: Beyond the lab 

At present wearable laboratory-based motor assessment in SRC only offers a snapshot assessment. 

Little research has focused on participants motor assessment outside of the laboratory at episodic 

intervals of assessment. To overcome this limitation, testing could be better utilised through constant 

remote evaluation in free-living environments. This would mitigate the need for the clinician to be 

present and would allow a higher frequency of testing within the player's own environment [89]. 

Although testing in the latter would be conducted in less controlled conditions, there is considerable 

value in conducting testing in remote, real-world/free-living as s/he would be within habitual conditions 

[34,90,91].  

7.3.6.1 Test: Free-living gait 

After laboratory testing participants will wear the MoveMonitor (L5) continuously for 7-days 

(weekdays and weekend to examine daily habitual fluctuations). Participants will be instructed how to 

take off and reattach the device for general hygiene purposes and return the device at their next 

laboratory visit. Free-living balance, gait and turning data will be segmented from raw (sample level) 

data and analysed to generate clinically relevant spatial and temporal outcomes to examine habitual 

motor and behavioural characteristics as previously described, Table 4 [86,153]. Application and 

evaluation of conceptual models previously described [91,95,97] will be applied to provide better 

insight to habitual player recovery, which may better inform RTP.  

Assessment Domain Digital Approach 
Digital 

Technology 
Primary Outcome Measures Time 

Balance, gait & 

turning 
 

Wearable 

Inertial Measurement Units 

 

MoveMonitor1, 

McRoberts, UK 

Balance 

Root mean square (m/s2), 

Jerk (m2/s5), 

Sway (area, mm2/s5) 

Gait 

Mean stance time (seconds, 

s) 

Mean step time (s) 

Mean stride time (s) 

Mean swing time (s) 

Mean stride length (cm) 
 

Turning 

Number of turns per 

hour (n) 

Turn Angle (°) 

Turn Duration 

(seconds) 

Turn Velocity 

(°/seconds) 

Up to 7 

days 

Symptom 

(SCAT 52 Symptom) 

Mobile application/Secure 

questionnaire 

PC or 

Tablet 

Symptom severity (out of 22) 

Symptom total (out of 132) 

5-10 

minutes 

1https://www.mcroberts.nl/products/movemonitor/ 

2SCAT5: Sports Concussion Assessment Tool 5 

 

Table 13. Data collection: beyond the lab 

https://www.mcroberts.nl/products/movemonitor/
https://bjsm.bmj.com/content/bjsports/early/2017/04/26/bjsports-2017-097506SCAT5.full.pdf
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7.3.6.2 Test: Concussion symptom checklist, SCAT5  

Technology: Secure questionnaire  

Participants will complete symptom assessment during their RTP, via a secure mobile application 

or questionnaire. This will be from the concussion symptom scale as part of the SCAT5 [11]. 

7.3.7 Digital outcomes (primary) 

7.3.7.1 Cognitive characteristics  

Reaction time tests how quickly participants can respond to stimuli. Reaction time variability is a 

measure of how quickly participants fatigue or concentrate [202,203]. Amplitude discrimination tests 

how well participants brain can differentiate between similar stimuli. These will be tested across all 

participants and tracked across different time points of recovery.   

7.3.7.2 Gait outcomes 

The inertial balance, gait and turning characteristics will be estimations from the MoveMonitor. The 

balance (postural control tasks, BESS) includes root mean square (m/s2), (root mean square of signal), 

Jerk (m2/s5), (first derivative of acceleration signal) and Sway (area, mm2/s5). Gait characteristics 

include step time (s), stride time (s), swing time (s), stance time (s), step length (m), step velocity (ms-

1). Those comprehensive gait measures will be assess upon division into four original domains (pace, 

rhythm, variability and turning) based on the previously described model [95]. Turning characteristics 

include number of turns per hour (n), turn angle (°), turn duration (s) and turn velocity (°/s), Table 13. 

7.3.8 Secondary Subjective outcomes  

7.3.8.1 Visual Characteristics 

As outlined in the visual oculomotor screening test, we will be comparing traditional VOMS versus 

the eye-trackers calculations for; (1) smooth pursuit, (2) horizontal and vertical saccades, (3) near point 

of convergence (NPC) distance, (4) horizontal vestibular ocular reflex (VOR), and (5) visual motion 

sensitivity (VMS) from the visual oculomotor screen.  

7.3.8.2 Questionnaire #1: Neck Disability Index 

Estimated Time: (5minutes) 

The Neck Disability Index (NDI) is a patient recorded functional status questionnaire [215] with 

10 items (pain, personal care, lifting, reading, headaches, concentration, work, driving, sleeping 

and recreation). The NDI a commonly used self-reporting measure for neck pain which will be 

monitored across the study. This will be given to participants at each testing session and used to 

compare specific neck pain responses from baseline SRC. 

7.3.8.3 Questionnaire #2: Lower Extremity Function Scale 

Estimated Time: (5minutes) 

The lower extremity functional scale (LEFS) is a questionnaire containing 20 questions about a 

person's ability to perform everyday tasks [216]. Clinicians can use the LEFS as a measure of patients' 

initial function, ongoing progress and outcome, as well as to set functional goals. The LEFS can be used 

to evaluate the functional impairment of a patient with a disorder of one or both lower extremities and 

can be used to monitor the patient injuries progress over time. This will be used to account for injuries 

that may negatively impact gait and influence any changes measured.  
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7.3.8.4 Questionnaire #3 Dizziness Handicap Inventory  

The dizziness handicap inventory (DHI) is a 25 item self-report questionnaire designed to assess 

perceived dizziness affecting function [217]. The DHI will be used as secondary outcomes and 

compared between healthy and SRC individuals. 

7.3.8.5 Questionnaire #4 Neurosymptom Inventory Index 

The Neurobehavioral Symptom Inventory (NSI) is a self-reported evaluation tool [218] frequently 

completed after mTBI. This will be used to monitor and measure post-concussion symptom changes 

between healthy and non-concussed individuals.  

7.3.9 Statistical analysis  

This is an exploratory study consisting of two groups. To the authors knowledge, there has yet to be 

a comprehensive free-living analysis of participants with SRC in rugby union. However, there have 

been analyses of non-sporting concussion/mTBI. Previous non-sporting studies have used datasets of 

30-100 individuals [86]. Therefore, our original anticipated dataset size of ~200 individuals, will 

provide greater statistical power to quantify between-group differences and detect small differences in 

visual, motor and symptom metrics. The multimodal battery of assessment used in this study will 

compare metrics between wearable systems and against traditional assessment methods. Data will be 

analysed in SPSS (v23, IBM) and R studio (R. RStudio, Boston, MA, USA). All data will be checked 

for normality distributed with Shapiro-Wilks tests before conducting parametric tests. Independent t-

tests will be performed comparing demographic information between groups. Anonymised data will be 

made available on reasonable request. 

7.3.9.1 Primary analyses 

The study aims will be explored with the analysis below. 

1) Investigate use of multimodal digital-based wearables to capture objective data relevant to cognitive, 

gait and visual metrics in those with SRC compared to a traditional assessment method.  

For the purposes of this thesis, paired sample t-tests will be used to assess differences in group means 

for laboratory-based gait (two-minute walk test, single and dual-task) and visual (VOMS) between 

healthy and SRC groups. To examine differences in SRC laboratory and free-living mobility across 

multiple recovery time points. To determine which features of each assessment domain (visual, motor, 

symptom) is best to distinguish SRC from healthy we will use receiver operating characteristic (ROC) 

and area under the curve (AUC). Later work should also investigate balance and turning outcomes and 

balance assessment (mBESS, HiMAT) but is beyond the scope of this thesis. 

2) Investigate free-living mobility/gait in those with SRC 

Between groups (concussed or non-concussed) differences in macro/micro gait and turning 

characteristics will be analysed with covariance (gender and age) for pre- and post-season, free-living 

motor assessment. and linear mixed models to further examine concussed player time-points and 

recovery. 

3) Consider practical and technical considerations of digital multimodal protocols in SRC. 

Feedback will be collected from participants on usability of wearables during laboratory and free-

living assessment using the system usability scale [219]. A higher score is associated with improved 

usability and anything over 68 above average [219].  This will be analysed and compared across groups. 
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7.3.9.2 Secondary analyses 

1) Explore the interaction and sex differences between all outcomes 

We will use Pearson's correlation analysis heatmap to explore the relationship between mobility, 

visual and self-reported symptoms in mTBI/SRC and across sex. Thus, this component of the 

interaction analysis will be data-driven, rather than hypothesis-driven. Statistical significance will be 

determined at p < 0.05 unless otherwise stated. Principal Component Analysis and/or Receiver 

Operating Characteristics will be used to compare those with SRC history and no SRC concussion 

history across cognitive, visual and motor impairments. This will be used  assess/ deduce distinct 

groupings or clustering or the most useful the various cognitive, visual, and motor characteristics.  

7.4 Discussion  

Here we provide a protocol for multimodal objective SRC assessment, with a focus on wearable 

technologies. At present there is no gold standard or proposed method for SRC assessment, currently 

impairments are often viewed in isolation and not interconnected. This protocol will allow consideration 

of the combined and interactive impact of SRC on gait, cognition and vision and symptom recognition 

using wearables to collect objective data in university rugby union. This multimodal assessment 

paradigm distinguishes therefore itself from other work in the field. To my knowledge, no research has 

examined free-living gait in SRC among university rugby players. Furthermore, there hasn’t been 

attempts explore visual and motor impairments concurrently in laboratory and free-living environments. 

Therefore, the development and synthesis of this multimodal protocol would provide an important step 

in quantitively monitoring SRC motor and visual impairments and begin preliminary analyses of 

multimodal assessment in SRC.  

This protocol does carry some limitations. Firstly, there are several equivalent technologies that 

could be deployed or tested across each component test (cognitive, motor and visual). However, given 

the lack of multimodal protocols in SRC, we feel the proposed manuscript provides a starting point to 

work on and develop in future research. Secondly, although we aim to have participants with SRC 

assessed within 72 hours of injury and associated time points, this may not be feasible in all cases and 

players may not wish to be tested in this frequency. Likewise follow up once returned to play, may not 

be always feasible if there are chronic issues associated with return to play and extended time lapse post 

injury or issues associated with local lockdowns due to COVID-19. These limitations and solutions may 

become apparent when practically tested.  

7.5 Conclusion 

Current SRC assessment focusses on impairments viewed in isolation, ignoring the interconnected 

nature and spectrum of SRC. As such, reliance on traditional methods of assessment and monitoring in 

SRC is limiting our understanding. Multimodal digital technologies can measure and monitor 

impairments non-invasively more informed assessments [34] in neurological injury [54].  

My suggested multimodal and digital approach could yield a more objective and robust health profile 

for those who sustain a mTBI/SRC. Additionally, with an increased frequency of testing, a greater 

insight into SRC progression and recovery may be possible. This combination of data (cognitive, gait 

and visual assessment) may uncover mechanistic interactions, showing trends between different 

impairments to infer new recovery patterns. Here my proposed multimodal protocol for digital 

assessment, could be used in conjunction and enhance the current SCAT5 approach which may provide 

an important first step towards clinical deployment.  

In the next chapter, I use a portion of my protocol among a baseline cohort of athletes with and 

without a recent mTBI/SRC to investigate the primary analysis presented here (section 7.3.8.1). This is 

set within a single season with analysis of players having acute mTBI/SRC. The aim is to explore 

instrumented free-living gait as a diagnostic (bio) marker. 
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Chapter 8: mTBI assessment: A 

focus on gait as a diagnostic marker 
 

This chapter is developed from an abstract previously presented to fit the context of this thesis. The 

article “Exploring digital sports related concussion (SRC) assessment, performed by a single 

clinician”, was presented at the sixth edition of the International Consensus Conference on 

Concussion in Sport in 2022, Amsterdam, The Netherlands. The abstract will be published online in 

a special themed issue of the British Journal of Sports Medicine, 2022.  
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8.1 Introduction 

In this chapter I use a portion of my protocol to explore gait as a diagnostic (bio) marker (with wider 

multimodal measures) to assess sensitivity distinguishing those with mTBI/SRC history and none [99]. 

This chapter also explores the practicalities and feasibility of conducting large scale multimodal 

assessment in the same cohort pertaining to adherence. (Note: From the onset of my doctoral studies 

and protocol description, this study initially targeted a large cohort of approx. 200 players but had to be 

curtailed and conducted due to the impact of COVID-19.) 

8.2 Background 

Relying on pen and paper tests is limiting the opportunity for robust data analysis which may hinder 

understanding of the interconnected nature and relationships in deficit recovery. In chapters 4 and 5 I 

showed that digital approaches provide more objectivity to measure and monitor impairments in SRC. 

However, to my knowledge, no multimodal protocols with remote free-living gait assessment 

mTBI/SRC across rugby union have been tested. As such there was opportunity and strong rational for 

implementing and testing the use of digital multimodal approaches in their capacity as objective tools 

in SRC assessment/monitoring. From chapter 7, there is a need to practically test, develop and refine 

multimodal protocols which may augment and support traditional methods (SCAT5) [81]. Moreover, a 

gap remains as to whether measures of free-living gait quality are useful in distinguishing those with 

recent SRC history and those without. Here I investigate results from a multimodal assessment of 

university athletes, my aims were to; Therefore, a gap remains as to whether measures of free-living 

gait quality are useful in distinguishing those with recent SRC history and those without. Here I conduct 

the primary analysis outlined in the previous chapter (section 7.3.8.1). Accordingly, my broad aims of 

this chapter/study were to;  

1. Investigate use of multimodal digital-based wearables to capture objective data relevant to 

cognitive, gait and visual metrics in those with SRC compared to a traditional assessment 

method. 

2. Explore free-living gait as a plausible diagnostic (bio) marker.  

3. Consider practical and technical considerations of digital multimodal protocols in SRC. 

8.3 Methods 

8.3.1 Participants 

Fifty/50 male university rugby union athletes, 30 with a previous SRC history (pSRC), 20 with no 

previous SRC (npSRC) were enrolled in the northeast of England and underwent a baseline multimodal 

battery of assessment, performed by one clinician. During the season, 8 of these players (from pSRC) 

were diagnosed with acute SRC (aSRC) within the first 2 months of the season starting (40.38 ± 20.34 

days) by the university physiotherapist based on standard SCAT5 criteria. The athletes spanned a range 

of playing positions, Table 15. Five of each group (aSRC and npSRC) were followed up at the end of 

the season (post season) for free-living gait assessment only, Figure 12. Inclusion criteria and exclusion 

criteria were consistent as previously described in chapter 7. (Ethics approval and approaches to consent 

previously described in chapter 5.)  

8.3.2 Assessments 

Participants underwent a multimodal assessment battery of assessment including symptom, visual, 

motor, and cognitive assessment and remote gait assessment during pre-season testing Northumbria 

University campus facilities and laboratories. The total supervised assessment within the clinic took 

approximately 45 minutes and the remote gait assessment was for ~7 days.  

All participants with SRC history (pSRC, within last 12 months) were self-reported by the 

individual and with consent of participants verified against university medical records to ensure 
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accuracy. Those included as acute SRC (aSRC, within 28 days or 1 month) were initially assessed 

(within 7 days) and diagnosed by a university physiotherapist and researcher using SCAT5 [11]. All 

novel (non-SCAT5) assessment approaches were used ‘non-operational’ (blind). This means the team 

and or medical staff were abided to not to look at results or allow findings to influence RTP decisions 

as previously described  [48,220].    

8.3.2.1 Reference standard test (SCAT5) 

The primary outcomes of this study were traditional; (SCAT5) symptom number and severity, 

orientation, immediate memory, balance errors and delayed recall.  

8.3.3 Multimodal assessments (Lab) 

The experimental multimodal assessment protocol incorporated a number of domains including 

cognitive, gait, visual and questionnaires symptom inventories; (Becks Depression Score, Lower 

extremity function scale, Neurobehavioral Symptom Inventory) Cognitive (Simple Reaction Tim, 

milliseconds). Visual; Visual Oculomotor score. Motor; 3m tandem walk time (seconds) which can be 

found in detail in Table 14. 

 

 

 

 

 

 

 

Figure 12.Schematic of testing 
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Assessment 

Domain 
Test Digital Approach Digital Technology Primary Outcome Measures 

 

Time Commitment 

Physiological  Vital sign 

Pulse oximetry 

(spectrophotometric 

methodology) 

Finger pulse oximeter 
Resting heart rate (beats per minute) 

Oxygen Saturation (percentage %) 
1-2 minutes 

Symptom 

Neck Disability Index 

Secure questionnaire 
PC or 

Tablet 

Symptom Severity and symptom 

number 

 

20-30 minutes 

 

 

Lower Extremity Function 

Scale 

Dizziness Handicap 

Inventory 

Neurosymptom Inventory 

Index 

Visual 
Horizontal Nystagmus test 

SCAT 53 
Secure questionnaire 

PC or 

Tablet 

Visual characteristics 

Smooth Pursuit (out of 10) 

Horizontal Saccade (out of 10) 

Vertical saccade (out of 10) 

Convergence (out of 10) 

Convergence distance 

(centimeters,cm) 

VOR horizontal (out of 10) 

VOR vertical (out of 10) 

VMS total symptom (out of 10) 

10 minutes 

Cognitive 

Reaction Time Computerised 

neurocognitive testing 

 

Brain Gauge. Cortical 

Metrics, USA1 

Reaction Time & reaction time 

variability (milliseconds) 
10-15 minutes 

Amplitude Discrimination 
Simultaneous and sequential 

amplitude discrimination (microns) 

Gait  

SCAT 53 

Lab: (Tandem Walk) 

Wearable 

Inertial Measurement 

Units 

 

MoveMonitor, 

McRoberts, UK2 

Time to complete (seconds) 

Mean stance time (seconds, s) 

Mean step time (s) 

Mean stride time (s) 

Mean swing time (s) 

Mean stride length (cm) 

Mean stride velocity (cms-1) 

 

10-15 minutes in lab 

and 7 days free-living 

Lab: Two Minute Walk Test 

Free-living 

1 https://www.corticalmetrics.com/ 
2 https://www.mcroberts.nl/products/movemonitor/ 
3 https://bjsm.bmj.com/content/bjsports/early/2017/04/26/bjsports-2017-097506SCAT5.full.pdf 

 

8.3.3.1 Instrumented gait: lab and free-living  

Gait was assessed in the lab and free-living (Table 14) by an inertial sensor-based wearable worn on 

the lumbar spine (MoveMonitor, McRoberts, Netherlands; 106.6×58×11.5mm, 55g). Participants wore 

the IMU around their waist for as much time as possible for up to 7 days using the protocol described 

previously, Chapter 7 [220], [221]. Data were stored on the MoveMonitor IMU internal storage (8GB) 

and then downloaded to a laptop. Free-living data were then processed using custom-made and 

validated MATLAB® (MathWorks Inc, Massachusetts, USA) algorithms to estimate 6 free-living gait 

quality metrics [132,153,213,214].  

Laboratory and free-living measures of gait quality were calculated using a bespoke MATLAB® 

algorithm as detailed in chapter 2. In brief, the waist worn IMU was used to examine orientation and 

periods of static and dynamic activity [132,153]. Subsequently, the latter were examined for initial and 

final foot contact events within the gait cycle via the continuous wavelet transform [145], where a 

bout/period of walking was predefined by a time period of between 0.25 and 2.25 seconds and ≥3 steps 

[118]. For the purposes of this study a bout of gait ≥2 minutes were used only. This provides continuity 

Table 14. Multimodal assessment  

https://www.corticalmetrics.com/
https://www.mcroberts.nl/products/movemonitor/
https://bjsm.bmj.com/content/bjsports/early/2017/04/26/bjsports-2017-097506SCAT5.full.pdf
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from chapters 4 and 5, and comparison to traditional tasks. Gait characteristics included mean; stance 

time (seconds, s), step time(s), stride time (s), swing time (s), stride length (meters, m) and stride 

velocity (meters per second, ms-1). 

8.3.4 Statistical analyses 

Data were analysed in SPSS (v23, IBM) and R studio (Boston, MA, USA). All data were normally 

distributed as assessed with Shapiro-Wilks tests and therefore parametric tests were used. Independent 

t-tests were performed comparing demographic information between those with SRC and those without.  

To estimate which gait characteristic differentiated mTBI/SRC history patients from those with no 

SRC history, I used ROC and AUC analysis. ROC analysis provides a trade-off between specificity and 

sensitivity between the various laboratory and free-living gait quality metrics and binary classification 

of either pSRC, and npSRC and aSRC. Statistical significance was determined at p<0.05 (two-tailed) 

unless otherwise stated. Bonferroni corrected significance values were applied for multiple comparisons 

(p<0.002) where applicable. Effect sizes were interpreted as small (0.2), medium (0.5), and large (0.8) 

as previously described [222].  

 

8.4 Results 

8.4.1 Wearer adherence and practical considerations 

Wearer adherence analysis and results from the system usability scale (section 7.3.8.1) show that 

there was mixed user experience and usage among the cohorts. The number of days worn is low, but 

consistent across the cohorts and no significant differences between those with baseline and aSRC 

groups, Table 16. 

8.4.2 SCAT5  

A higher SCAT5 symptom scores indicates a worse performance. My results show that the SCAT5 

(section 7.3.3) did not show any significant differences (p>0.05) between those with pSRC and npSRC 

at baseline (Table 17) with both scoring low, indicating a better performance. Comparing those npSRC 

to aSRC there were significant differences for symptom severity (p=0.01). Many variables were 

classified as small (0.2) or medium (0.5) with only one variable symptom severity classified as a large 

effect size (1.1). 

8.4.3 Supervised assessment 

Table 15. Group characteristics 

Variable 

 

 

Baseline During Season 

npSRC 

(n =20) 

Mean ± S.D 

(pSRC) 

(n= 30) 

Mean ± S.D 

aSRC 

(n= 8) 

Mean ± S.D 

Age (years) 22.58 (4.84) 21.62 (5.58) 21.17 (1.04) 

Height (cm) 182.40 (6.8) 181.57 (6.5) 180.38 (4.77) 

Mass (kg) 91.88 (11.4) 92.94 (11.64) 95.48 (7.36) 

Number of previous concussions - 2 (1) 2.13 (1) 

Days Since last Injurya (n) - 365 (328) 5.75 (2.95) 

Return to Play from last injury (days) - 24.21 (6.8) 25.63 (8.05) 

Position: Forward (F), Back (Bk) F (9), Bk (11) F (16), Bk (14) F (5), Bk(3) 
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There were significant differences between groups (pSRC vs npSRC) in cognitive and laboratory 

gait assessment. Interestingly reaction time and reaction time variability was higher in the pSRC cohort 

(252.98s ± 39.56) than aSRC (236.09s ± 40.08) with the equivalent trend for reaction time variability 

(Table 17). Interestingly subjective gait outcomes, 3-meter tandem gait was significantly different 

between groups pSRC and nSRC  with those with a recent SRC history (15.90s ± 3.97), walking much 

slower than those without (13.37s ± 4.37). In contrast there were no significant differences between 

groups for the pairwise comparison of pairwise comparison nSRC vs aSRC (p<0.05). There were also 

no significant differences between groups for physiological measures across all groups (Table 17). 

8.4.4 Remote assessment 

Free-living gait (Table 19) in baseline cohorts which showed pSRC and aSRC had higher mean step 

velocity (ms-1) than npSRC. This contrasts to laboratory assessment which found pSRC had 

significantly lower mean step velocity than npSRC, respectively. 
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Qualitative metric 

Baseline During Season 
Pairwise comparison 

npSRC vs pSRC 

Pairwise comparison 

npSRC vs aSRC 

npSRC 

(n=20) 

Mean ± S.D 

pSRC 

(n=30) 

Mean ± S.D 

aSRC 

(n= 8) 

Mean ± S.D F sig ηp
2 F sig ηp

2 

Number of days worn  (n) ii 3.85 ± 1.98 4.55 ± 1.98 4.25 ± 2.19 0.22 0.29 0.35 0.15 0.64 0.63 

Percentage of day worn (%) ii 23.9 ± 18 28.93 ± 18.47 20.63 ±14.45 0.12 0.35 0.28 0.22 0.66 0.19 

System Usability Scale (out of 100)ii 45 ± 7.25 45.33 ± 8.88 46.88 ± 9.14 0.16 0.89 0.04 0.48 0.57 0.24 
iA lower score is better  
iiA higher score is better 

 

SCAT5 Variable 

Baseline During Season 
Pairwise comparison 

npSRC vs pSRC history 

Pairwise comparison 

npSRC vs aSRC 

npSRC 

(n=20) 

Mean ± S.D 

pSRC 

(n=30) 

Mean ± S.D 

aSRC 

(n= 8) 

Mean ± S.D F sig ηp
2 F sig ηp

2 

Symptom Number (out of 22)i 0.00 ± 0.00 0.20 ± 0.81 0.88 ± 2.48 5.49 0.23 0.32 14.4 0.1 0.68 

Symptom Severity (out of 132)i 0.65 ± 2.5 1.07 ± 3.39 7.13 ±10.52 0.66 0.64 0.14 38.7 0.01* 1.1 

Orientation (out of 5)ii 4.85 ± 0.34 4.90 ± 0.31 4.63 ± 0.52 1.09 0.60 0.15 4.97 0.20 0.55 

Immediate Memory (out of 15)ii 12.25 ± 3.58 11.73 ± 3.4 13.38 ± 1.4 0.03 0.61 0.15 1.45 0.40 0.36 

Balance Errors (out of 30)i 6.70 ± 1.72 6.37 ± 3.011 7.38 ± 2.07 7.23 0.66 0.13 0.85 0.38 0.37 

Delayed Recall (out of 5)ii 3.16 ± 1.61 3.00 ± 1.59 3.50 ± 1.41 0.02 0.74 0.1 0.40 0.61 0.22 
iA lower score is better  
iiA higher score is better 

 

 

 

 

 

Table 16: Wearer adherence and system usability scales across cohorts 

Table 17: SCAT5 in baseline groups and acute 
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Assessment 

Domain 
Variable 

Baseline During Season 
Pairwise comparison  

npSRC vs pSRC history 

Pairwise comparison 

npSRC history vs aSRC 

npSRC 

(n=20) 

Mean ± S.D 

pSRC 

(n=30)  

Mean ± S.D 

aSRC 

(n=8) 

Mean ± S.D 

F sig  d F sig d 

Physiological 
Resting Heart Rate (beats per minute) i 73.10 ± 10.32 72.70 ± 11.40 81.57 0.02 0.90 0.04 0.00 0.07 0.83 

Oxygen Saturation (percentage %)ii 97.65 ± 1.84 97.70 ± 1.10 98.29 ± 0.49 0.06 0.90 0.04 0.45 0.38 0.39 

Symptom 

Becks Depression Inventory (out of 63)i 1.68± 3.22 4.23 ± 8.66 5 ± 7.82 3.02 0.23 0.36 5.65 0.13 0.67 

Lower Extremity Function Scale (out of 80)ii 62.09 ± 33.68 64.09 ± 30.92 53 ± 41.1 0.17 0.19 0.06 0.99 0.61 0.25 

Neurobehavioral Symptom Inventory (out of 88)i 2.63 ± 5.79 6.42 ± 16.39 5.6 ± 7 1.81 0.34 0.28 0.24 0.3 0.48 

Neck Disability Index (out of 50)i 1.37 ± 2.17 2.23 ± 3.97 1.50 ± 2.5 1.73 0.39 0.25 0.06 0.89 0.06 

Visual 

Visual Oculomotor 

Screen  

(VOMS) 

Smooth Pursuit (out of 10)i 0.00 ± 0.00 0.04 ± 0.20 0.00 ± 0.00 2.89 0.42 0.26 - - - 

Horizontal Saccade (out of 10)i 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 - - - - - - 

Vertical saccade (out of 10)i 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 - - - - - - 

Convergence (out of 10)i 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 - - - - - - 

Convergence distance (centimeters,cm)i 4.31 ± 2.2 5.12 ± 2.91 4.6 ±1.83 1.34 0.36 0.31 0.01 0.75 0.17 

VOR horizontal (out of 10)i 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 - - - - - - 

VOR vertical (out of 10)i 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 - - - - - - 

VMS total symptom (out of 10)i 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 - - - - - - 

Cognitive 

(BrainGauge) 

 

Reaction Time (milliseconds)i 252.98 ± 39.56 236.09 ± 40.08 258.83 ± 49.3 0.30 0.02* 0.42 2.66 0.34 0.41 

Reaction Time Variability (milliseconds)i 22.82 ± 18.15 15.96 ± 7.87 22.49 ± 11.5 10.63 0.01* 0.5 0.07 0.89 0.06 

Simultaneous Amplitude Discrimination (microns)i 68.59 ± 25.95 78.06 ±39.48 107.5 ± 47.64 3.35 0.27 0.28 4.76 0.07 0.78 

Sequential Amplitude Discrimination (microns)i 54.76 ±33.81 67.38 ± 30.15 68.8 ± 43.31 0.43 0.12 0.40 4.87 0.31 0.44 
iA lower score is better  
iiA higher score is better 

Table 18.  Supervised assessment of baseline and acute groups 
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Assessment Domain 
Variable 

 

Baseline During Season 
Pairwise comparison  

npSRC vs pSRC 

Pairwise comparison  

 npSRC history (B) vs aSRC 

npSRC 

(n=20) 

Mean ± S.D 

pSRC 

(n=30) 

Mean ± S.D 

aSRC 

(n=8) 

Mean ± S.D 

F sig d F sig d 

Subjective Clinical  

Outcomes 

3-meter tandem gait (seconds)i 15.90 ± 3.97 13.37 ± 4.37 16.25 ± 5.23 0.04 0.04* 0.60 3.59 0.86 0.07 

2-minute walk test distance 

Single (meters)ii 

127.70 

±17.66 
132.73 ± 26.59 127.75 ± 17.65 3.1 0.46 0.22 0.34 0.99 0.03 

2-minute walk test distance 

Dual (meters)ii 

 

124.50 

±16.23 
129.60 ± 24.43 129 ±17.63 2.92 0.42 0.24 0.07 0.52 0.27 

Wearable 

Laboratory Gait 

2-minute walk test 

distance (Single) 

Mean stance time (seconds, s) 0.70 ± 0.07 0.71 ± 0.06 0.72 ± 0.52 0.49 0.78 0.09 0.02 0.82 0.1 

Mean step time (s) 0.56 ± 0.07 0.56 ± 0.46 0.55 ± 0.51 0.99 0.81 0.08 0.42 0.66 0.19 

Mean stride time (s) 1.11 ± 0.10 1.11 ± 0.83 1.09 ± 0.13 0.15 0.78 0.09 0.59 0.61 0.26 

Mean swing time (s) 0.41 ± 0.06 0.41 ± 0.06 0.39 ± 0.68 1.5 0.9 0.04 0.68 0.59 0.23 

Mean step length (meters, m) 0.65 ± 0.07 0.61 ± 0.09 0.66 ± 0.33 3.73 0.07 0.56 3.83 0.16 0.62 

Mean step velocity (ms-1) 1.17 ± 0.10 1.04 ± 0.27 1.2 ± 0.7 19.17 0.02* 0.72 8.13 0.11 0.72 

2-minute walk test 

distance (Dual)  

Mean stance time (seconds, s) 0.70 ± 0.10 0.71 ± 0.07 0.68 ± 0.13 0.33 0.7 0.1 1.91 0.61 0.22 

Mean step time (s) 0.56 ± 0.08 0.55 ± 0.06 0.56 ± 0.8 2.26 0.84 0.06 1.3 0.61 0.20 

Mean stride time (s) 1.08 ± 0.12 1.1 ± 0.08 1.11 ± 0.92 1.37 0.5 0.2 0.001 0.88 0.26 

Mean swing time (s) 0.39 ± 0.06 0.40 ± 0.04 0.39 ± 0.54 1.06 0.49 0.2 0.67 0.24 0.24 

Mean step length (meters, m) 0.65 ± 0.07 0.61 ± 0.91 0.67 ± 0.55 2.74 0.09 0.53 2.28 0.11 0.72 

Mean step velocity (ms-1) 1.18 ± 0.14 1.06 ± 0.27 1.19  0.89 7.41 0.04* 0.62 4.67 0.17 0.26 

Wearable Free-living Gait 

Mean stance time (seconds, s) 0.66 ± 0.32 0.66 ± 0.25 0.66 ± 0.03 1.82 0.58 0.17 0.07 0.88 0.07 

Mean step time (s) 0.52 ±0.21 0.52 ±0.21 0.52 ± 0.02 0.17 0.43 0.26 0.18 0.44 0.16 

Mean stride time (s) 1.05 ±0.44 1.04 ±0.42 1.04 ± 0.05 0.24 0.5 0.22 0.11 0.71 0.2 

Mean swing time (s) 0.38 ± 0.14 0.38 ±0.20 0.38 ± 0.02 1.04 0.43 0.25 1.65 0.88 0.37 

Mean step length (meters, m) 0.62 ± 0.43 0.62 ± 0.43 0.64 ± 0.02 3.35 0.32 0.31 4.29 0.69 0.61 

Mean step velocity (ms-1) 1.18±0.12 1.18±0.12 1.24 ± 0.05 8.13 0.04* 0.64 6.51 0.04* 0.91 
iA lower score is better  
iiA higher score is better 

Table 19. Supervised and free-living gait of baseline and acute groups 
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8.4.5 Acute and post-season free-living gait follow up 

Only step velocity within free-living assessment was significantly different (p <0.05) across both pairwise comparisons (nSRC vs pSRC and pSRC vs aSRC) 

as detailed in Table 20. Free-living gait metrics were then interrogated for further analysis shown in table 5 to compare changes between a subset of participants 

to follow up post season (n=5). As shown in table 19 there were no significant differences between groups between the non-acute cohort in measures of free-

living gait. Interestingly mean step velocity was significantly lower in the Acute SRC cohort during recovery (1.24 ± 0.05) and end of season (1.15 ± 0.04) with 

a large effect size of 1.6.  

Assessment Domain Variable 

No SRC History 

(nSRC) 

Pairwise comparison 

(nSRC) 

Acute SRC  

(aSRC) 

Pairwise comparison 

(aSRC) 

Baseline 

N=20 

Mean ± S.D 

End season 

N=5 

Mean ± S.D F sig d 

During Season 

N=8 

Mean ± S.D 

End of Season  

N=5 

Mean ± S.D F sig d 

Wearable Free-living 

Gait 

Mean stance time (seconds, s) 0.67 ± 0.33 0.64 ± 0.38 0.07 0.19 0.83 0.66 ± 0.03 0.66 ± 0.04 0.87 0.77 0.17 

Mean step time (s) 0.52 ± 0.24 0.51 ±0.02 0.33 0.21 0.66 0.52 ± 0.02 0.52 ± 0.03 0.28 0.98 0.02 

Mean stride time (s) 1.05 ±0.43 1.01 ± 0.06 0.43 0.14 0.77 1.04 ± 0.05 1.04 ± 0.07 0.53 0.89 0.08 

Mean swing time (s) 0.38 ± 0.14 0.37 ± 0.03 1.92 0.30 0.54 0.38 ± 0.02 0.38 ± 0.02 0.26 0.89 0.08 

Mean step length (meters, m) 0.60 ±0.67 0.58 ± 0.42 0.68 0.58 0.28 0.64 ± 0.02 0.64 ± 0.02 0.11 0.81 0.14 

Mean step velocity (ms-1) 1.08 ± 0.21 1.1 ± 0.1 1.91 0.75 0.16 1.24 ± 0.05 1.15 ± 0.04 0.58 0.02* 1.6 

 

8.4.6 Sensitivity and specificity of significantly different metrics 

Only characteristics with that were significantly different between groups were entered into the binary classification model for AUC and ROC. Results from 

the ROC analysis found that the 3-meter tandem gait walk time followed by mean step velocity (Free living, single task and dual task) was best at differentiating 

those with pSRC from nSRC history, as detailed in table 21 and figure 13A. Between those with nSRC and aSRC the mean step velocity in free living was best 

followed by symptom severity as shown in table 21 and figure 13B. 

Table 20. Acute and post-season free-living gait follow up 
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Table 21: AUC analysis across pairwise comparisons 

Variable 

npSRC vs pSRC npSRC vs aSRC 

AUC AUC 

3-meter tandem gait (seconds) 0.69 - 

Free living Mean step velocity (ms-1) 0.65 0.72 

Single task Mean step velocity (ms-1) 0.63 - 

Dual task Mean step velocity (ms-1) 0.61 - 

Reaction time (milliseconds) 0.60 - 

Reaction time variability 0.60 - 

Symptom Severity (out of 132) 
- 

0.65 

 

Figure 13.13A ROC of those with SRC and those without SRC, 13B comparison between no SRC and acute SRC. 
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8.5 Discussion 

Chapter 7 proposed a comprehensive multimodal protocol in mTBI/SRC assessment with the 

novel inclusion of free-living gait. There was opportunity and strong rational for implementing and 

testing the use of digital approaches in their capacity as objective tools for assessment/monitoring. This 

chapter implemented portions of that protocol and also explored the practicalities and feasibility of 

conducting large scale multimodal assessment.  

My exploratory results showed that free-living gait (i.e., step velocity) showed significant 

differences between all groups (pSRC, npSRC and aSRC), which may suggest potentially diagnostic 

use in revealing motor deficits between stages of mTBI. Other measures (SCAT symptom severity, 

reaction time) seem to have some capability to distinguish mTBI deficits between stages but not all i.e., 

are inconsistent in their diagnostic capabilities. 

8.5.1 Wearer adherence 

Overall, the wearable devices were moderately tolerated between groups and did not significantly 

differ. However, there were trends from the data suggesting those with acute SRC tolerated the devices 

more, and that it didn’t impact their daily tasks. Furthermore, some players reported that during baseline 

testing they found the devices cumbersome to wear when at training or attending social events whereas 

those recovering from SRC were more restricted in the range of exercise/ active daily activities they 

would be participating in. Therefore, significant practical limitations were presented if data capture is 

required for over seven days as the players were reluctant in wearing, particularly in healthy baseline 

monitoring where they would be expected to have more of an active routine, whereas in recovery from 

acute SRC they are given guidance on activity modification and refrain from certain 

activities/behaviours (e.g., exercise, driving, and drinking alcohol). 

8.5.2 SCAT5: Limited capabilities  

Our results show that the SCAT5 did not show any significant differences between pSRC and nSRC 

(Table 17). This corroborates with previous literature outlined in chapters 2 of the potential subjectivity 

and low sensitivity associated with the SCAT5 when assessing players outside of acute timelines and 

even greater than seven days [66,67,81]. Other research has even suggested the effectiveness of the 

SCAT5 assessment decreases as soon as three days after injury [223]. Therefore, the reasons for no 

significant differences here may be related to the considerable chronicity in the previous SRC history 

(365 days). Additionally, some studies report that players can manipulate self-reported symptom scores 

during baseline assessment, allowing them to mitigate any poorer performance of scores when injured 

during the season [83]. Overall, this reinforces the challenges of relying on self-reported data may be 

particularly challenging in competitive environments where there is societal or financial gain in staying 

injury free. 

In contrast, when examining those with aSRC and those with nSRC, there were significant 

differences found (p=0.01) in symptom severity. This finding is unsurprising given the very acute 

cohort, mean days post injury (5.75 ± 2.95) and is consistent with clinical guidelines on the use of 

SCAT5 in acute phases.   

8.5.3 Free-living gait: A useful diagnostic 

Analysis of over twenty different proxy measures of brain health found that free-living gait 

assessment was the most sensitive metric to distinguish acute SRC (n=8) and no previous SRC (n=20). 

The second most sensitive characteristic was symptom severity as part of the SCAT5 which is consistent 

with the body of literature when examining the acute (less than 7 days) and as discussed above [66,224].   



 92 

As shown in figure 1B (ROC) analyses found that step velocity had the highest (AUC) of was the 

most accurate method of analysis and distinguishing non SRC (B) from SRC (A, C). But as this has yet 

to be tested in this cohort of university rugby athletes, we don’t have a reliable comparison, but suggests 

further examination is warranted for more clarity on a clinically meaningful change. 

My results do however corroborate with previous research in TBI and from laboratory-based 

assessment of individuals with SRC whereby the motor cortex involved with gait speed is impaired 

[225]. Examination of other cohorts (Parkinson’s) also found differences with pathological cohort 

showing slower, shorter steps [90].  However, our result was also somewhat surprising with those with 

acute SRC walking faster than non-injured equivalents. This may be related to impaired motor control 

and or behavioural interaction. This increase in gait speed then levelling off has been seen and is 

consistent with other literature examining longitudinal assessment of gait after SRC in collegiate 

athletes suggesting gait deficits may take longer than other deficits to recover and return to baseline 

[226].  

8.5.4 Strengths and limitations 

Digital technologies such as IMU’s have many advantages over traditional methods of assessment 

including objectivity and continuous data collection. In this study I alone (as a single clinician) was 

able to capture twenty measures of brain health using technologies and assess fifty players during 

baseline and during a season. This was feasible but challenging at times due to the recording and set up 

time associated with equipment and data download post session. Despite the wealth of data captured, it 

is unlikely that all physios or clinical staff will have the resources or time to complete a full multimodal 

assessment in their individual clinical setting. Therefore, the result from this study provides an initial 

signal and stratification for which variables (e.g., gait) and deficits to focus on in future research. 

The primary strength of this study was the use of a single IMU to objectively measure free-living 

gait quality in a young health athletic population; the use of a single device and assessment within usual 

daily life means that subjects had longitudinal data collection carried after a battery of multimodal 

assessment [150]. I also quantified useful gait quality metrics which in future could be explored using 

(clinical-based) conceptual models [95,150,162]. Although use of a single IMU alone on the lower back 

facilitated more longitudinal data collection, significant challenges were encountered with wearer 

adherence and data loss associated. More emphasis should be given to why there was reduced adherence 

among players and improved patient/public involvement for future research. Future research should 

investigate participants longitudinally in including immediately post SRC and post season, as well as 

those who may have chronic symptoms or more severe TBI. 

8.6 Conclusion 

The concern about missed or delayed SRC diagnosis is growing, but methods to objectively monitor 

baseline performance and return to play after concussion are still lacking. This exploratory study 

showcased that multimodal baseline assessment was feasible in a low-resource setting and able to 

distinguish those who have a history of SRC and those without. Wearable technologies can yield 

additional data that traditional self-report approaches cannot, such as subtle physiological responses. 

Combining data from nondigital (traditional) and digital (wearable) methods may augment SRC 

assessment for improved objectivity in baseline assessment and subsequent RTP decisions.  

In this chapter/study, I found that inertial wearables yielded useful objective data relevant to 

cognitive, gait and metrics in those with SRC history compared to the traditional assessment method 

(SCAT5). I found free living step velocity to be the best at distinguishing acute SRC from non SRC 

cohorts, in baseline assessment 3m tandem walk speed was the best in distinguishing those with no 

SRC history and those with a recent SRC (<12 months). This finding, that gait speed is of interest and 

may be a useful surrogate marker of recovery of those with acute SRC and those who may have deficits 

long after RTP and relates strongly to PoI3 for the objectivity of assessment.  
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Following exploration in young populations SRC history and no SRC history, the next chapter 

explores chronic mTBI. This is an important consideration given the large numbers of reported. Due to 

COVID, local recruitment was not possible (see chapter 7). Accordingly, although the next chapter uses 

data from a non-sporting context it continues to explore free-living gait as a diagnostic (bio) marker in 

those still reporting mobility deficits from impacts of mTBI, long after initial injury.  
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Chapter 9: Chronic mTBI: 

Exploring free-living gait as a 

diagnostic (bio) marker 
 

This chapter uses text from my previously published online article to fit the context and narrative of 

this thesis. The journal article, Free-living gait does not differentiate chronic mTBI patients compared 

to healthy controls was published in the Journal of NeuroEngineering and Rehabilitation in 2022 

(URL: https://doi.org/10.1186/s12984-022-01030-6) 
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9.1 Introduction 

In my previous chapter I explored the use of multimodal baseline assessment and in particular gait 

as a possible SRC based diagnostic (bio) marker in a range acute mTBI. Accordingly, in this chapter I 

further explore free-living gait as a diagnostic but in a large cohort of chronic mTBI participants 

compared to healthy controls [99]. No study to date has comprehensively quantified free-living gait 

quality in chronic mTBI patients and healthy controls. Therefore, this research fills a gap which remains 

as to whether measures of free-living gait quality are impaired in chronic mTBI patients. As the 

increasing awareness of sub concussive impacts associated with SRC becomes apparent, there is 

demand for more passive longitudinal monitoring techniques. Greater understanding of how mobility 

is affected in free-living environments may uncover useful markers for subtle deficits in chronic mTBI 

patients and target areas for further research and or areas for (personalised) rehabilitation (PoI3).  

9.2 Background 

Motor, psychological and sensory deficits can be subtle and difficult to detect in mTBI and may 

persist for long periods after the initial injury (e.g., >3 months). Chronic symptoms post-mTBI can 

significantly impact quality of life and daily function, which can lead to prolonged issues/symptoms 

[227]. Physical/motor impairments are particularly prevalent in mTBI, with eight out of ten people with 

acute mTBI reporting balance impairments within a few days of the injury and three out of ten reporting 

longer-term (chronic) motor impairments [228–230]. Therefore, motor testing (e.g., gait) remains a 

crucial component of clinical assessment to quantify impairment across various mTBI timelines [20,69–

71]. Understanding gait deficits may provide targets for rehabilitation as well as continued monitoring.   

 As highlighted in my previous chapter, monitoring mobility within free-living environments may 

provide a novel opportunity to detect subtle and meaningful deficits following mTBI. Elsewhere, results 

from laboratory-based objective gait assessment have also found pace-related gait deficits (stride length 

and gait speed) in chronic mTBI patients compared with healthy controls [183], suggesting gait may be 

a useful diagnostic marker of mTBI. While laboratory studies provide a foundation for evaluating the 

differences between healthy and impaired gait, laboratory-centric assessment methods are prescriptive 

in nature, and may mask subtle mTBI-related deficits that may otherwise occur within habitual (free-

living) environments. Monitoring mobility/gait within free-living environments may therefore provide 

an opportunity to detect subtle and meaningful deficits following mTBI.  

As described, IMUs can estimate mobility/gait and a variety of other outcomes[73,81,85,94–96]. 

Recent work has examined free-living IMU-based turning quality measures in chronic mTBI patients 

and controls, showing turning to be more sensitive in differentiating groups [86]. Specifically, those 

with chronic mTBI had larger, slower and more variable turns during daily life, but had a similar number 

of steps per day compared with controls [86]. While the previous study evaluated turning, it did not 

measure other gait quality metrics such as stride velocity, step length, or swing time. Additionally, while 

previous studies have examined mTBI gait in research settings, no study to date has comprehensively 

quantified free-living gait quality in chronic mTBI patients and healthy controls. Therefore, a gap 

remains as to whether measures of free-living gait quality outside of measures of turning are impaired 

in chronic mTBI. A greater understanding of how mobility/gait is affected in free-living environments 

may uncover useful markers for subtle deficits in chronic mTBI patients, providing insights if it can be 

a tangible diagnostic in this cohort. Accordingly, the study aims of this chapter were therefore to;  

1. explore if free-living gait is impaired in people with chronic mTBI compared with healthy 

controls, and 

2. determine the most sensitive free-living gait quality metrics that differentiate chronic mTBI 

patients from controls.  
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9.3 Methods  

9.3.1 Participants 

Thirty-two symptomatic chronic mTBI patients and 23 healthy controls participated. Participants 

were recruited as part of a larger study [221], through posters in athletic facilities, physical therapy 

clinics, hospitals, concussion clinics, community notice boards, and cafes in and around the Portland, 

OR metropolitan area. Patient demographics are shown in Table 1.  Ethical approval was granted by 

the Oregon Health and Science University (OHSU) and Veterans Affairs Portland Health Care System 

(VAPORHCS) joint institutional review board with participants providing written informed consent 

before commencing the study. 

9.3.2 Inclusion and exclusion criteria 

Participants were included in the chronic mTBI group if they had had a diagnosis of mTBI based 

upon Veteran Health Administration (VHA) /Department of Defense (DoD) [233] criteria and who 

were greater than three months post mTBI with self-reported balance impairments. The control group 

consisted of those who had no history of brain injury in the last year. Additionally, mTBI patients were 

required to have minimal to no cognitive deficits as determined by the Short-Blessed Test (score ≤8) 

[234] and no peripheral vestibular or oculomotor pathology preceding their mTBI. Participants were 

excluded if they had any musculoskeletal injury which could impair their gait or balance or a recent 

history of moderate or severe substance abuse. 

9.3.3 Gait analysis 

Participants were asked to wear an IMU for 7 days, and participants with less than 3 days were 

excluded from analysis, in line with previous studies [86,213,214]. Participants wore a compact 

(L×W×H: 43.7×39.7×13.7 mm, 128 Hz) and lightweight (<25 grams) IMU (previously validated [235–

237]) attached to a belt (128 Hz, Opal V1, APDM Inc., Portland, OR) that contained an accelerometer 

(± 16g, ± 200g) and gyroscope (± 2000 deg/s). Participants wore the IMU around their waist for a 

minimum of 5 hours per day for up to 7 days using the protocol described previously [221] and [86]. 

Data were stored on the IMU internal storage (8Gb) and then downloaded via proprietary software 

(MobilityLab, APDM Inc., Portland, OR) to a laptop. The devices were charged everynight. Free-living 

data were then processed using custom-made and validated MATLAB® (MathWorks Inc, 

Massachusetts, USA) algorithms to estimate 12 free-living gait quality metrics [132,153,213,214]. As 

described in chapter 6, algorithms used in this thesis are device agnostic and can be equally applied to 

different IMU technologies. 

Gait: Free-living measures of gait quality were calculated using a bespoke MATLAB® algorithm as 

follows. The waist worn IMU was used to examine orientation and periods of static and dynamic 

activity [132,153]. Subsequently, the latter were examined for initial and final foot contact events within 

the gait cycle via the continuous wavelet transform [145], where a bout/period of walking was 

predefined by a time period of between 0.25 and 2.25 seconds and ≥3 steps [118]. For the purposes of 

this study and examining a chronic cohort with self-reported mobility deficits, a movement bout was 

classified as >10 seconds. That was to ensure subtle deficits were captured. Gait quality metrics 

included mean; stance time (seconds, s), step time(s), stride time (s), swing time (s), stride length 

(centimetres, cm), stride velocity (centimetres per second, cms-1). 

9.3.4 Self-Reported symptoms   

Chronic mTBI patients completed the NSI which is widely used in the assessment of mTBI 

symptoms [183,238]. The NSI is composed of 22 items within the questionnaire and recorded on a five-

point Likert scale, with higher scores indicating more severe symptoms. The maximum a participant 

can score is 88. The NSI and subscales [239] have acceptable reliability in characterising presence and 

tracking severity of symptoms in TBI [239,240]. The NSI remains the cornerstone of clinical symptom 
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assessment and was determined as the appropriate method to capture self-reported impairments in the 

chronic mTBI patients. 

9.3.5 Statistical analysis  

Data were analysed in SPSS (v23, IBM) and R studio (Boston, MA, USA). All data were normally 

distributed as assessed with Shapiro-Wilks tests and therefore parametric tests were used. Independent 

t-tests were performed comparing demographic information between mTBI and control groups. To 

compare free-living gait quality metrics between chronic mTBI patients and controls, we used separate 

multivariate analysis of covariance (MANCOVA). MANCOVA was used to control for sex and age 

[98,241].  

To estimate which gait quality metrics differentiated chronic mTBI patients from controls, we used 

ROC) and AUC analysis. ROC analysis provides a trade-off between specificity and sensitivity between 

the various free-living gait quality metrics and binary classification of either mTBI patients and healthy 

control. Statistical significance was determined at p<0.05 (two-tailed) unless otherwise stated. 

Bonferroni corrected significance values were applied for multiple comparisons in free-living gait 

quality measures (p<0.002). Effect sizes were described as interpreted as weak (<0.50), moderate (0.50 

-0.79) or strong (>80) as previously described [47].   

9.4 Results 

9.4.1 Demographics and clinical assessments 

Demographic characteristics are presented in Table 22 for age (years), height (cm), mass (kg) and the 

number of days since injury and NSI for the mTBI group only. In our mTBI cohort, NSI total score was 

moderately high (5th to 9th percentile) compared to previously published normative mTBI scores, 

demonstrating that our chronic mTBI group was still symptomatic at least more than 3 months after 

injury [44]. SCAT results were substantially higher than the cohort examined in chapter 7.  

9.4.2 Adherence to IMU sensor 

Participants were asked to wear the IMU sensor for 7 days, but compliance was variable across both 

groups with several mTBI (n=16) and control (n=13) participants wearing the sensor for less than 7 

days. Specifically, the mean number of days that the IMU was worn was 6.8 (± 2.4) days in the mTBI 

group and 6.04 (± 2.0) days in the control group which is higher than the cohorts explored in chapter 8. 

(npSRC 3.85± 1.98 days, pSRC 4.55± 1.98 days, aSRC 4.25 ± 2.19 days). 

9.4.3 Group differences in free-living gait 

When controlling for age and sex, there were no significant differences in measures of free-living 

gait quality between chronic mTBI patients (p >0.05) and controls. Descriptive data for free-living gait 

quality metrics are provided in Table 23.  
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TABLE 22. Free-living gait quality metrics; group differences whilst controlling for age and sex, Area under the Curve (AUC) 

Free-living gait metric mTBI (n=32) Mean (S.D.) Controls (n=23) Mean (S.D.) F p  d AUC 

Mean stance time (seconds, s) 0.83 (0.05) 0.85 (0.09) 0.19 0.66 0.00 0.44 

Mean step time (s) 0.70 (0.05) 0.73 (0.09) 0.21 0.65 0.00 0.44 

Mean stride time (s) 1.41 (0.10) 1.45 (0.18) 0.21 0.65 0.00 0.44 

Mean swing time (s) 0.58 (0.05) 0.60 (0.09) 0.22 0.64 0.00 0.44 

Mean stride length (centimetres,cm) 74.01 (4.10) (0.74, 0.04) 72.68 (3.60) (0.72, 0.04) 2.84 0.10 0.05 0.63 

Mean stride velocity (cms-1) 105.59 (8.88) (1.05, 0.09) 101.34 (11.47) (1.01, 0.11) 1.37 0.25 0.03 0.60 

Stance time variability CV (s) 0.20 (0.01) 0.21 (0.02) 0.03 0.87 0.00 0.49 

Step time variability CV (s) 0.20 (0.01) 0.20 (0.02) 0.10 0.75 0.00 0.48 

Stride time variability CV (s) 0.22 (0.01) 0.22 (0.01) 0.35 0.56 0.01 0.51 

Swing time variability CV (s) 0.20 (0.01) 0.21 (0.02) 0.13 0.72 0.00 0.47 

Step length variability CV (s) 18.62 (1.18) 18.32 (0.96) 2.30 0.14 0.04 0.61 

Step velocity variability CV (cms-1) 36.90 (3.11) 35.48 (4.08) 1.18 0.28 0.02 0.60 

Bolded p values: p < 0.05 (Bonferroni corrected p value 0.002). Group analysis of covariance results controlling for age and sex. mTBI, mild traumatic brain 

injury; S.D., standard deviation; CV, coefficient of variation,  Cohens D effect size 

AUC > 0.50 in 

italics and bold. 

 
 

Controls 

(n= 23) 

mTBI 

(n =32) p 

Age (years) 48.56 (22.56) 40.88 (11.78) 0.11 

Sex (Male or Female) b M(6) F(17) M(6) F(26) 0.52 

Height (cm) 165.46 (8.03) 168.51 (9.19) 0.22 

Mass (kg) 68.03 (15.32) 76.17 (18.80) 0.25 

NSI Total Score - 35.88 (13.9) - 

NSI Vestibular - 5.44 (2.22) - 

NSI Somatosensory - 10 (4.92) - 

NSI Cognitive Score - 8.34 (3.89) - 

NSI Affective Score - 10.34 (5.64) - 

SCAT5 (Severity Total) - 33.69 (19.44) - 

Days Since Injurya - 440.68 (700.63) - 

a Median and interquartile range. b chi-squared, Mean and standard deviation reported unless otherwise stated.  

TABLE 23. Participant demographics 
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9.5 Discussion 

This study progresses our previous work [3], which examined free-living activity quantity and 

turning quality measured by a single IMU in those with chronic mTBI compared to healthy controls. 

Free-living mobility assessment in chronic mTBI is still an emerging research area, but results from 

other neurological conditions (e.g., Parkinson's disease) suggest that impaired gait occurs in parallel 

with neurological dysfunction [48]. However, results in this study indicated that free-living gait quality 

was not significantly different between our samples of chronic mTBI patients and healthy controls 

(when controlling for age and gender). The absence of significant differences in this study are likely 

multifactorial and could involve both inherent limitations of self-reporting of issues, and the chronicity 

of this mTBI cohort. However, assessment of free-living mobility in chronic mTBI may still allow for 

improved diagnostics and monitoring of recovery within real-world environments, which is 

unachievable using analogue (non-digital) approaches or laboratory-based assessments only, but further 

research with longitudinal assessments following the initial injury would be required. 

9.5.1 Free-living gait  

Our results show that free-living gait quality metrics were not different between chronic mTBI and 

control groups, - which is surprising given this cohort had self-reported balance deficits. Overall 

research into chronic mTBI has yet to gain consensus on what specific measures can differentiate 

healthy people from those with mTBI [24]. Indeed, some laboratory-based studies have found pace-

related deficits (stride length and gait speed) while other studies have found no differences outside of 

the acute timeframe (>10 days) [2]. Laboratory gait assessment does allow for more controlled 

assessment of complex tasks (e.g., dual-task, obstacle avoidance, etc.), which may be required to elicit 

or provoke gait deficits in chronic mTBI [2,49]. For example, dual-task laboratory assessment in people 

with chronic mTBI can reveal gait deficits in rhythm (stride time) [24]. However, complex laboratory 

tasks fail to fully replicate free-living environments where motor, cognitive and sensory function are 

continuously challenged [50]. Given these challenges in free-living environments, we were surprised 

that our measures of gait quality did not suggest impaired mobility in this chronic mTBI cohort. 

The lack of significant differences and low effect sizes in gait quality measures between chronic 

mTBI patients and healthy controls may be related to the considerable chronicity (median 1.2 years 

post-injury) of this mTBI cohort. This duration may have resulted in the cohort developing chronic 

compensatory strategies over time to replicate ‘normal’ gait patterns during walking in their daily life. 

To fully understand this, future research should test participants in free-living environments 

longitudinally from the time of initial injury to better understand how gait changes acutely after mTBI 

and into more chronic stages. Similarly, although outside the scope of this thesis, incorporating 

assessment of turning during gait, which is a more complex task that is difficult to compensate for, may 

also reveal subtle mobility deficits [24,28,51]. Overall, there is no definitive way of objectively 

understanding the reasons for lack of differences in free-living gait quality between our cohorts of 

chronic mTBI patients and healthy controls. There are many unknown factors and contexts that affect 

free-living assessments. For example, here the environments participants were regularly walking in, the 

surfaces they walked on, or the types of terrain encountered were all unknown and such heterogeneity 

could impact results [52]. Equally, it is not possible to quantify the usual free-living mobility habits of 

the participants or to determine if this chronic mTBI cohort displayed any compensatory behaviour 

strategies (e.g., refraining from talking or performing other tasks whilst walking) that could further 

impact results. The introduction of egocentric video recordings of free-living mobility may enable 

greater insight and a robust reference to better understand the context of environments [53]. If used in 

conjunction with objective free-living IMU assessment, video data could yield even greater contextual 

understanding of free-living gait performance and any compensatory behaviour mTBI patients display 

within an environment.  

9.5.2 Strengths and limitations 
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Digital technologies such as IMU’s have many advantages over traditional methods of assessment 

including objectivity and continuous data collection. The primary strength of this study was the use of 

a single IMU to objectively measure free-living gait quality in chronic mTBI patients and controls; the 

use of a single device and assessment within usual daily life means that subjects had low research 

burden [54]. We also quantified useful gait quality metrics from clinical-based conceptual models from 

neurological-based research. Although use of a single IMU alone on the lower back facilitated more 

rapid data collection and reduced burden, it fails to quantify other useful gait characteristics which may 

provide more insight to dynamic postural control and environmental information i.e., step width and 

step width variability arising from uneven terrain [55].Thus, future research should investigate 

additional gait characteristics (based on conceptual gait models) or a video-based wearable for a more 

informed free-living assessment. While I am not currently aware of any IMU-based technology to 

quantify step width during free-living, a computer vision-based approach has been suggested from a 

wearable camera [53]. Additionally, the outcome measures presented are primarily research-orientated, 

requiring a great deal of time-consuming post-processing and checking, which is based on prior 

experience of inertial data [56,57]. Therefore, there are needs to refine and deploy software that 

clinicians and patients can easily navigate, which would allow more widespread uptake and use by 

health professionals [57].   

Future research should aim to use power calculations to ensure sufficient sample size and ability to 

detect small differences in results. Participants were assessed for ~7 days using a single IMU attached 

to a waist belt. However, variation in the exact length of time participants wore wearables (minimum 

three days) could introduce differences and therefore not reflect true habitual free-living mobility as 

used in other studies [48,58]. Using multiple IMUs may provide more detailed spatial and temporal 

data for turning, balance and gait as used in previous studies [24], but this carries different limitations, 

such as longer data download, processing complexity and increased wearer burden, limiting the 

practical or clinical application. This trade-off should be considered in future studies as a potential 

improvement to the assessment protocol. [59,60].  

There were some additional limitations to this study. First, a more detailed demographic profile 

could be reported in future studies to derive further inferences about the free-living mobility results or 

underlying physiological mechanisms for persistent symptom and mobility deficits [24]. For example, 

the symptom questionnaires were limited to NSI and the SCAT that were only completed by the mTBI 

cohort, which limited any useful comparisons and inference on the relationship between groups [3].  

Second, balance/mobility problems in the chronic mTBI group were self-reported with no baseline or 

robust analysis done to quantify the magnitude of impairment [3], with the many factors such as the 

previous history of mTBI and evidence of abnormal neuroimaging omitted [4,61]. Third, the differences 

in this mTBI cohort's chronicity are likely to limit the direct comparison with other studies. Our study's 

cohort was chronic with a median post-injury time greater than 1-year, which compared to other studies 

examining people post-mTBI is a longer time since injury [24,62].  

9.6 Conclusions 

My results demonstrate that free-living IMU-based gait quality metrics were not significantly 

different between patients with chronic mTBI and healthy aged-matched controls. Accordingly, gait as 

a diagnostic in chronic mTBI remains unfulfilled. However, I feel that this work provides a useful 

comparison to chapter 8 and lays the foundation for future work in this area. For example, future 

research should focus on (i) additional characteristics from conceptual gait models such as absolute 

(between left and right feet) asymmetry and variability during all bouts of gait and (ii) longitudinal 

analysis of chronic mTBI patients during different stages of recovery (acute to chronic) to holistically 

monitor mobility impairments and recovery. Improving objectivity in mTBI assessment will result in 

greater understanding of injury progression, recovery and rehabilitation across a variety of clinical 

settings including both sporting and nonsporting mTBI settings. Accordingly, the next chapter explores 

the effectiveness of rehabilitation in a comparative cohort of chronic mTBI (identified by my literature 

review as novel) and free-living gait as a response (bio) marker [99]. 
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Chapter 10:  Free-living gait as a 

response (bio) marker: Exploration 

within a pilot intervention 
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10.1 Introduction 

This study progresses my previous work in the last chapter which examined free-living gait measured 

by a single IMU in those with chronic mTBI compared to healthy controls. Free-living mobility assessment 

in chronic mTBI is still an emerging research area, but results from other neurological conditions (e.g., 

Parkinson's disease) suggest that impaired gait occurs in parallel with neurological dysfunction [48]. 

Chapter 9 indicated that free-living gait quality was not significantly different between our samples of 

chronic mTBI patients and healthy controls (when controlling for age and gender) and so needs further 

investigation to determine diagnostic use. The absence of significant differences in this study are likely 

multifactorial and could involve both inherent limitations of self-reporting of balance issues, and the 

chronicity of this mTBI cohort. However, assessment of free-living gait in chronic mTBI may still allow 

for improved diagnostics and monitoring of recovery within real-world environments, which is 

unachievable using analogue (non-digital) approaches or laboratory-based assessments only. As such 

further research with longitudinal assessments following the initial injury would be required and if deficits 

are modifiable with rehabilitation. This is particularly relevant for those with chronic deficits resulting from 

recurrent exposure to sporting head injuries/SRC and associated risk of neurological disorders. 

Accordingly, this chapter explores instrumented gait as a response (bio) marker. 

10.2 Background 

Dynamic balance impairments are common following mTBI [246,247] and can result in significant 

difficulty returning to routine activities such as work [248]. The standard recovery time based on self-

reported symptoms is typically within three months [249], but up to 64% of individuals may develop 

persistent and chronic (>3months) post-concussive symptoms [250]. Balance impairment can be a 

debilitating consequence of mTBI, affecting daily activities that involve standing and walking, as well as 

other complex motor tasks. Good performance in these tasks require adequate integration of visual, 

vestibular, and sensorimotor systems for maintaining balance. 

Vestibular rehabilitation (VR) is often prescribed to treat people suffering from dizziness and imbalance, 

and is based on theories of habituation, adaptation, and sensory substitution [251]. Specifically, VR 

focusses on specific head and eye movements, head and trunk movements and varying balance conditions 

with evidence to suggest that VR can significantly improve self-reported and performance outcomes [228]. 

Furthermore, improvements have been seen even when initiation of VR occurs in more persistent stages 

after injury. For example, research has found a significantly higher proportion of individuals to be medically 

cleared to return to sport within 8 weeks of initiating cervical spine physiotherapy and VR treatment (73%) 

compared with control (7%) [252]. 

While the use of VR alone has provided promising results, augmented treatment techniques, such as the 

addition of biofeedback to VR has been posited to assist in the rehabilitative process of imbalance. Audio 

biofeedback (ABF) is one approach that may be beneficial for improving balance because it does not 

interfere with other sensory information important to balance control. ABF works by providing an auditory 

signal that corresponds with the direction of sway. For example, if a patient stands with their eyes closed 

and sways to the right, a tone in the patient’s right ear will be heard telling the patient they are starting to 

go too far to the right. Research has suggested that the nervous system adapts to sensory information 

depending on the environment and on individual tendencies to rely on vestibular, somatosensory or visual 

information to control sway [253].  
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Although contemporary strategies exist, studies investigating best practice rehabilitation following 

mTBI have been limited, especially where persistent symptoms are involved [11,254,255]. This may not 

be unsurprising given the heterogeneity of response to mTBI [256,257] but there is one major challenge 

that still needs to be overcome, a lack of consensus pertaining to rehabilitation. Specifically, knowing what 

tools and arising outcomes/metrics are the most sensitive to change in those suffering from mTBI across 

different recovery timelines. A better understanding of those tools and outcomes could be used to better 

inform rehabilitation.  

Currently, clinical assessment tools for assessing functional problems with balance and gait are limited. 

For example, the Balance Error Scoring System (BESS) remains the most frequently administered clinical 

balance assessment for those with suspected mTBI, and is recommended in the most recent consensus 

statement [20] in addition to a clinical pass-or-fail assessment of tandem gait. Both assessments provide 

low-resolution information and suffer from clinical subjectivity [176]. Furthermore, the BESS has been 

shown to have poor sensitivity [258] and lack quantitative ability to track recovery beyond acute stages of 

mTBI. Comparatively, instrumented assessments using wearable inertial sensors have shown greater 

promise in detecting long-lasting postural deficits [229,259–262] and gait impairment post-injury [263–

266]. Of interest are the use of those technologies to gather free-living data, providing more insightful 

habitual gait data [86,256,267] and thus is the outcome of interest here.  

Therefore, my colleagues and I at OHSU theorised that the additional sensory information from real-

time ABF would complement VR in patients with chronic mobility deficits following mTBI by helping to 

shift sensory reliance from the visual system, known to be frequently impaired post mTBI [268]. By 

affecting that reliance, distorted central processing and sensory integration would be recalibrated, and in 

turn motor control would be improved. Should this type of rehabilitative intervention treat the cause 

effectively, then improved function and should occur within and beyond the laboratory setting where 

wearable inertial technology can capture objective data. Therefore; the aim of this chapter was to conduct 

a pilot study to determine if VR improved free-living gait and therefore its usefulness as a response (bio) 

marker. 

10.3 Methods 

10.3.1 Participants 

Participants were recruited as part of a larger study [221], through posters in athletic facilities, physical 

therapy clinics, hospitals, concussion clinics, community notice boards, and cafes in and around the 

Portland, OR metropolitan area (similar to chapter 9). Ethical approval was granted by the Oregon Health 

and Science University (OHSU) and Veterans Affairs Portland Health Care System (VAPORHCS) joint 

institutional review board with participants providing written informed consent before commencing the 

study. Thirty-six symptomatic chronic mTBI patients participated, demographics are shown in Table 22. 

Of these thirty-six participants 24 were followed up post intervention.  

10.3.1.1 Inclusion and exclusion Criteria 

Participants were included in the chronic mTBI group if they had had a diagnosis of mTBI based upon 

Veteran Health Administration (VHA) / Department of Defense (DoD) [233] criteria and who were >3 

months post mTBI with self-reported balance impairments. Additionally, mTBI patients were required to 

have minimal to no cognitive deficits as determined by the Short-Blessed Test (score ≤8) [234] and no 

peripheral vestibular or oculomotor pathology preceding their mTBI. Participants were excluded if they 

had any musculoskeletal injury which could impair their gait or balance or a recent history of moderate or 

severe substance abuse. 



 

104 

 

10.3.1.2  Intervention: VR+ABF 

Full details of the VR+ABF intervention are described elsewhere [269]. In brief, participants received 

progressive (3 levels of difficulty) exercises that targeted gaze stabilization, vestibular stimulation, balance, 

and proprioceptive retraining. While performing the rehabilitation exercises participants also wore an ABF 

device, a lumbar-mounted smartphone (mHealth Technologies s.r.l., Bologna, Italy) which detects 

anteroposterior (AP), and mediolateral (ML) accelerations. Participants wore headphones and the ML 

inclination was encoded as a sound in either the left or right ear while the AP tilt was encoded as changes 

in pitch as the person leans backward or forward. When the body is in perfect equilibrium, the system is 

quiet. AP and ML feedback were supplied to the participant during static balance exercises. During dynamic 

balance exercises, ML feedback was provided only. During balance exercises, participants were instructed 

to utilize the auditory sounds provided by the ABF device to maintain balance and keep the system quiet. 

In discussion with OHSU colleagues a range of outcomes were quantified (e.g., turning) but free-living gait 

are presented here only to fit in the context of the thesis. 

10.3.2 Assessment 

10.3.2.1  Inertial-based wearable  

Participants were asked to wear an inertial measurement unit (IMU which was the Opal V1, APDM Inc., 

Portland, OR) for 7 days as described in chapter 9. 

10.3.2.2 Free-living gait 

Free-living measures of gait quality were calculated using a bespoke MATLAB® algorithm as described 

in chapter 9.  

10.3.3 Data collection 

Demographic information (age, gender, height, weight, and date of injury), as well as symptom 

information (Dizziness Handicap Inventory [DHI] and Neurobehavioral Symptom Inventory [NSI]) were 

collected on each participant as part of the main study. Home monitoring data were collected over a period 

of one week immediately prior to, and immediately following a 6-week vestibular rehabilitation program. 

The IMU was worn for a minimum of 5 hours/day for up to 7 days using the protocol described previously 

[221][86]. Participants with less than 3 days of consecutive IMU wear were excluded from analysis, in line 

with previous studies [86,213,214]. 

10.3.4 Statistical analysis 

Data were analysed in SPSS (v23, IBM) and R studio (Boston, MA, USA). All data were normally 

distributed as assessed with Shapiro-Wilks tests and therefore parametric tests were used. To compare free-

living gait quality metrics between pre and post intervention we used separate multivariate analysis of 

covariance (MANCOVA). MANCOVA was used to control for sex, age, height and mass [98,241]. 

To estimate which gait quality metrics were most altered after vestibular rehabilitation mTBI patients 

from controls, we would use receiver operating characteristic (ROC) and area under the curve (AUC) 

analysis. ROC analysis provides a trade-off between specificity and sensitivity between the various free-

living gait quality metrics and binary classification. However, as there were no statistically significant 

differences this was not included. Statistical significance was determined at p<0.05 (two-tailed) unless 

otherwise stated. Bonferroni corrected significance values were applied for multiple comparisons in free-

living gait quality measures (p<0.002). Effect sizes were described as interpreted as weak (<0.50), moderate 

(0.50 -0.79) or strong (>80) as previously described [242].   



 

105 

 

10.4 Results 

Demographic characteristics are presented in Table 24 for age (years), height (cm), mass (kg) and the 

number of days since injury and NSI for the mTBI group only. Many of the same cohort were also examined 

in a separate study detailed in chapter 9. In our mTBI cohort, NSI total score was moderately high (5th to 

9th percentile) compared to previously published normative mTBI scores, demonstrating that our chronic 

mTBI group was still symptomatic at least more than 3 months after injury [44]. SCAT results were 

substantially higher than the cohort examined in chapter 7.  

 

Table 24. Participant demographics 

 

10.4.1 Demographics and clinical assessments 

Demographic characteristics are presented in Table 1 for age (years), height (cm), mass (kg) and the 

number of days since injury and NSI for the mTBI group only. In our mTBI cohort, NSI total score was 

moderately high (5th to 9th percentile) compared to previously published normative mTBI scores, 

demonstrating that our chronic mTBI group was still symptomatic at least more than 3 months after injury 

[239].  

10.4.1.1 Adherence to rehabilitation 

Participants were asked to wear the IMU device for 7 days pre- and post-intervention and in 

rehabilitation. Overall compliance to rehabilitation was high (90 ± 13.83 %). 

 

 

 

 
 

Pre-Intervention 

(n= 36) 

Post Intervention 

(n =23) 

Age (years) 40.77 (11.58) 40.88 (11.78) 

Sex (Male or Female) a M(8) F(28) M(6) F(16) 

Height (cm) 169.55 (9.30) 169.74 (9.74) 

Mass (kg) 77.40 (18.88) 77.90 (19.78) 

Number of days post injuryb 698.92 (744.29) 785.73 (848.06) 

Sports Concussion Assessment Tool (SCAT5) 36.97 (21.97) - 

NSI Total Score 36.63 (13.78) - 

NSI Vestibular 5.31 (2.14) - 

NSI Somatosensory 10.17 (4.99) - 

NSI Cognitive Score 8.46 (3.89) - 

NSI Affective Score 10.86 (5.33) - 

a Median and interquartile range. b chi-squared, Mean and standard deviation reported unless otherwise stated. 

mTBI, mild traumatic brain injury; NSI – neurobehavioral symptom inventory 
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10.4.1.2  Group differences in free-living gait 

Multivariate analysis showed there was an interaction effect of the combined model (age, height, mass, 

gender and time) and individual differences based on age and mass (Subsequent analysis found that 

individually there were no significant differences pre- and post- rehabilitation in any gait characteristic. 

Descriptive data for free-living gait quality metrics are provided in Table 24. Overall, the lack of differences 

in free living measures may suggest gait is not modifiable in this rehab protocol or the effects were too 

small to detect. 

Effect Value F p d 

Combined 0.36 14.53 0.00* 0.65 

Age 0.77 2.43 0.04* 0.23 

Height 0.83 1.60 0.17 0.25 

Mass 0.75 2.69 0.03* 0.25 

Gender 0.92 0.70 0.66 0.08 

Time (pre and post rehab) 0.92 0.622 0.68 0.08 

 

Table 25. Multivariate model with covariates  
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Table 26. Free-living gait quality metrics; independent sample group differences 

Free-living gait metric Pre(n=36) Mean (S.D.) Post (n=23) Mean (S.D.) F p  d 

Mean stance time (seconds, s) 0.90 (0.07) 0.89 (0.06) 0.01 0.33  0.26 

Mean step time (s) 0.78 (0.06) 0.76 (0.06) 0.03 0.34  0.26 

Mean stride time (s) 1.56 (0.13) 1.53 (0.11) 0.01 0.34  0.26 

Mean swing time (s) 0.65 (0.06) 0.64 (0.05) 0.01 0.36  0.25 

Mean stride length (meters,m) 0.47 (0.07) 0.46 (0.09) 0.2 0.73  0.09 

Mean stride velocity (cms-1) 0.99 (0.15) 0.96 (0.19) 0.4 0.64  0.12 

Stance time variability CV (s) 0.94 (0.03) 0.93 (0.03) 0.02 0.38  0.24 

Step time variability CV (s) 0.87 (0.03) 0.87 (0.03) 0.02 0.39  0.23 

Stride time variability CV (s) 1.23 (0.05) 1.22 (0.04) 0.01 0.39  0.23 

Swing time variability CV (s) 0.80 (0.03) 0.79 (0.03) 0.01 0.42  0.22 

Step length variability CV (s) 0.66 (0.05) 0.65 (0.08) 0.33 0.68  0.11 

Step velocity variability CV (cms-1) 0.96 (0.08) 0.94 (0.12) 0.58 0.63  0.13 

Bolded p values; p < 0.05 (Bonferroni corrected p value 0.002). Group analysis of covariance results controlling for age and sex. mTBI, mild traumatic brain injury; S.D., standard deviation; CV, 

coefficient of variation, d, Cohens d effect size  F Wilks’ λ, 
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10.5 Discussion 

The results demonstrate that free-living IMU-based gait quality metrics were not significantly different 

between patients with chronic mTBI pre and post rehabilitation. Overall, the lack of differences in free 

living measures may suggest gait is not modifiable in this rehab protocol or the effects were too small 

to detect.  However, there were significant interaction effects for multivariate model where I controlled 

for a number of covariates, whereby age and weight were significantly different (p>0.05) but not time 

(pre- versus post- rehabilitation)  

10.5.1 Free-living gait 

Multivariate analysis showed there was an interaction effect of the combined model (age, height, 

mass, gender and time) and individual differences based on age and mass (p>0.05). Subsequent analysis 

found that individually there were no significant differences pre and post rehabilitation in any of the 

gait characteristics. Overall, the lack of differences in free living measures may suggest gait is not 

modifiable in this rehab protocol or the effects were too small to detect. Accordingly, its use as a 

response (bio) marker remain unfulfilled. However as outlined in chapter 9 this study's cohort was 

chronic with a median post-injury time greater than 1-year, which compared to other studies examining 

people post-mTBI is a longer time since injury [84,183]. This may mean the cohort developed other 

compensatory strategies that masked or did not change the resulting gait metrics.  

Despite this lack of significant findings herein, I feel that there is value in undertaking free-living 

mobility assessments. This study has further highlighted that a single IMU can obtain a wealth of 

continuous free-living gait quality measures in people with symptomatic chronic mTBI and be used 

across a pilot rehabilitation programme. Thus, while this exploratory study indicated no between group 

differences, I feel that this work provides a useful comparison to chapter 7 and foundation for future 

work in this area, and unique comparison to the acute SRC cohort. 

10.5.2 Limitations 

Consistent with chapter 9, there are a number of limitations to this study. First, a more detailed 

demographic profile could be reported in future studies to derive further inferences about the free-living 

mobility results or underlying physiological mechanisms for persistent symptom and mobility deficits 

[24]. For example, the symptom questionnaires were limited to NSI and the SCAT that were only 

completed by the mTBI cohort pre intervention, which limited any useful comparisons and inference 

on the relationship between groups pre and post intervention [3].  Second, balance/mobility problems 

in the chronic mTBI group were self-reported with no baseline or robust analysis done to quantify the 

magnitude of impairment [3], with the many factors such as the previous history of mTBI and evidence 

of abnormal neuroimaging omitted [4,61]. Third, the differences in this mTBI cohort's chronicity are 

likely to limit the direct comparison with other studies. This study's cohort was chronic with a median 

post-injury time greater than 1-year, which compared to other studies examining people post-mTBI is 

a longer time since injury and may influence both the biological and social propensity to respond to 

intervention [24,62].  

10.6 Conclusion 

Our results in chapters 8 and 9 demonstrate that free-living IMU-based gait quality metrics were not 

significantly different between patients with chronic mTBI and healthy aged-matched controls. Despite 

a lack of significant findings here (and chapter 9), I feel that there is value in undertaking free-living 

mobility/gait assessments. These studies highlighted that a single IMU can obtain a wealth of 

continuous free-living gait quality measures in people with symptomatic chronic mTBI and healthy 

controls. Thus, while these exploratory studies indicated no definitive insights to diagnostic or 

responsive (bio) markers, I feel that this work provides a useful comparison to SRC cohorts and also 

foundation for future work in this area (e.g., additional characteristics from conceptual gait models and 

longitudinal analysis of SRC/mTBI patients during different stages of recovery, acute to chronic) to 

holistically monitor mobility impairments and recovery. That will continue the improvement and 

objectivity in mTBI assessment which will result in greater understanding of injury progression, 

recovery and rehabilitation across a variety of settings.   
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Chapter 11: Discussion, conclusions 

and wider impact 
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11.1 Introduction 

This concluding chapter summarises my thesis. I recount key challenges of mTBI within the sporting 

context. I believe that my findings and the wider contribution to knowledge will be useful to better 

inform player health and welfare. I also highlight some extraneous limitations, wider research impact 

and recommendations for future research. 

11.2 Addressing pragmatic challenges 

As highlighted in chapter 1, there are many ongoing challenges to better inform mTBI management 

stemming from SRC. To grasp some of those challenges, rugby union helped frame a few for the context 

of this thesis and my professional ambition to improve patient care. Although there are well financed 

mechanisms at the elite rugby level, there is a dearth of categorically approved tools in general and next 

to none when providing routine care at amateur/community levels. Broadly, I defined 3 points of interest 

to define the early chapter of this thesis to inform possible tools to improve mTBI arising from SRC. 

Specifically, I considered PoI1 (finance/resources), PoI2 (access, scalability and consistency) and PoI3 

(personalised assessment) to be necessary drivers of change to inform contemporary mTBI 

management. Achieving a digital approach encompassing those three would help fulfill an unmet 

(clinical) need. 

11.2.1 The role of digital technologies: Part 1 

Chapters 2 provided an examination of the literature, traditional and contemporary. There was a 

focus on harmonizing work within the field to shed light on research gaps and where the use of digital 

technologies may succeed. Some new affordable (PoI1) technological findings emerged namely, the 

opportunity for free-living (remote) multi sensing modalities, and use of digital gait outcomes as 

possible diagnostic and response (bio) markers. Technical requirements detailed in chapter 3 provided 

an investigation and understanding of an inertial wearable in a low-resource environment (chapter 4), 

detailing the technology as a valid and pragmatic tool to inform gait to screen and distinguish those 

with mTBI. Chapter 5 then went beyond a supervised setting to explore free-living habitual mTBI gait 

assessment as part of a single subject report. In those later chapters my findings supported the inertial 

gait approach to address PoI2 and PoI3 i.e., consistent objective data to provide personalised insights. 

11.2.2 The role of digital technologies: Part 2 

Lessons learned (chapters 1 to 6) enabled me to devise a thorough and comprehensive protocol to 

inform a contemporary mTBI assessment, chapter 7. The protocol is wide-ranging to generally inform 

the area of mTBI, but some of the suggested methods for analysis are purposefully excluded in later 

chapters to ensure clarity and focus within the context of this thesis. Due to COVID-19 I was not able 

to capture as many participants as planned (n=200). Additionally, there were many challenges that 

became apparent in following players up post injury, with many unable to complete the necessary visits 

post season due to e.g., study and exams. Regardless, I was able to gather a sufficient dataset to explore 

instrumented lab and more uniquely, free-living gait. Accordingly, chapter 8 showed the latter was 

(somewhat) practical and feasibility during a thorough multimodal assessment. More importantly, in 

chapter 8 I found evidence which suggested that free-living gait (step velocity) to be useful as a 

diagnostic (bio) marker i.e., to distinguish acute mTBI from controls. Of note, 3m tandem walk speed 

also seemed useful to distinguish those with a recent SRC (<12 months) to controls. This finding is of 

interest and may be a useful surrogate marker of recovery of those with acute SRC and those who may 

have deficits long after RTP.  

In chapters 9 and 10 I explored instrumented gait in chronic mTBI, but from an independent dataset 

due to impact of COVID. Specifically, I examined the diagnostic (chapter 9) and response (chapter 10) 

of instrumented free-living gait. My results demonstrated that there were no significant differences 

between groups to categorically define diagnostic or responsive free-living gait markers. Despite those 

results, I feel that there is value in undertaking free-living mobility assessments. These chapters/studies 
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highlighted that a single IMU can obtain a wealth of continuous free-living gait characteristics in people 

with symptomatic chronic mTBI and controls. I also believe that this work also provides a useful 

comparison to SRC cohorts and a foundation for future work in this area. This will continue the 

improvement and objectivity in mTBI assessment which will result in greater understanding of injury 

progression, recovery and rehabilitation across a variety of clinical settings including both sporting and 

nonsporting mTBI settings.  

11.3 Addressing my hypothesis  

My central hypothesis was:  

The use of digital technologies may enable affordable mTBI management, ensuring continuity 

(e.g., between assessors) while offering more objective personalised assessment to support traditional 

approaches 

From my work undertaken in this thesis I believe my hypothesis to be valid. This thesis generally 

supports the suggested use of digital technologies as an affordable and objective method to support 

traditional approaches of assessment in mTBI/SRC. Moreover, the use of instrumented (lab) and free-

living gait may fit that context with evidence of its use as a diagnostic tool. More work is needed to 

strengthen that claim as well as further investigate its use as a responsive tool. 

11.4 Contribution to knowledge 

My multidisciplinary approach reveals that focusing on one impairment in mTBI/SRC is unlikely to 

reveal meaningful insight to mTBI management and RTP (chapter 2). Instead, multimodal digital 

technologies could enable affordable management, ensuring continuity (e.g., between assessors) while 

offering objective but personalised data to better support traditional approaches (chapters 4-5). My 

results provide insight to the usefulness of instrumented free-living gait speed (step velocity) as a digital 

diagnostic (bio) marker for mTBI management (chapter 8).  

One notable technical learning from the earlier chapter was the shift to using a more user-friendly 

equivalent technology, McRoberts Dynaport system from the AX6 which can be easier to deploy in 

uninjured active cohorts (chapters 5-7). In a purely computing science context, my findings have 

uncovered challenges and opportunities for further refinement. For example, there is still room for more 

‘no code’ solutions in gait and algorithm analysis. Few clinicians would have the technical skillsets for 

completing free-living gait analysis. Therefore, validated algorithms within a "drag and drop", click and 

collect approach is needed to meet the recommend approach of remote, free-living monitoring of 

habitual behaviours. That is an important next step for the translation of academic research grade 

devices to be used more widely in clinical practice.  

11.5 Limitations  

COVID-19 has significantly affected my PhD topic as no contact sport has been played until 

restarting full in Summer/Autumn 2021. Although that brought about many challenges, including a 

reduced opportunity to collect longitudinal data sets, outlined in our protocol across additional cohorts 

(e.g Womens Rugby), it afforded me an opportunity to adapt by creating new opportunities for data 

collection and collaboration whilst COVID restrictions have limited my primary data collection in the 

UK. This is exemplified with collaborations with Oregon Health State University to work 

collaboratively on equivalent and complementary datasets in mild traumatic brain injury (mTBI) 

presented in chapters 9 and 10. However as highlighted in chapter 9 and 10 the considerable chronicity 

within this cohort post injury may have limited the comparison to more acute cohorts. Equally there are 

many unknowns about the social and medical history of this cohort, such as pre-morbid physical status, 

psychosocial assessment which are known to influence recovery[270], which also limits the usefulness 

to compare to more comprehensive baseline in chapter 8. Future research should also include the 

investigation of additional gait characteristics (based on conceptual gait models model [97]) for a more 
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informed free-living assessment interpretation. Despite the nature of gait models being heterogenous 

with many different groups defining their own different conceptual models to classify and interpret a 

range of gait-based outcomes, there is opportunity to harmonise and develop an acute mTBI/SRC model 

of gait to allow closer comparison to other pathological cohorts (e.g elderly, parkinsons and stroke) 

[271]. It has also been recognised that the stratified employment (e.g. collecting data for, 1 vs 7 days) 

or duration worn by players or participants can be inconsistent across studies [271]..  Equally the context 

by which free living gait data is collected in is heterogenous, in particular in younger active populations. 

Moving forward it is likely subsets of confirmatory video-validated free-living datasets would better 

support collaboration, harmonization across research groups [271].  

11.6 Wider impact and future focus 

I truly believe mTBI/SRC is at a crossroads in terms of both the way in which it is viewed by the 

general public, sporting bodies and players. The plight of recent players who unfortunately have been 

diagnosed with suspected early onset dementia or functional cognitive disorder further raises awareness 

of the risks of inappropriate management and overexposure of head trauma in sports[1].  This new and 

emerging evidence also shows the interconnected nature of mTBI and SRC with longer term 

neurological disorders [2]. As highlighted in chapter 1, Will Hooley suggested that mTBI/SRC 

previously viewed as non-harmful and short lived, but now lack of intervention concerning the longer 

terms impacts are now catching up unfortunately for both players and governing bodies. This has 

coincided with accusations of academic dishonesty among the concussion consensus statements lead 

author and expert committee has created a perfect storm of disruption [3]. Accordingly, in this period 

of disruption, in my opinion there is an opportunity to recalibrate the future of mTBI /SRC assessment, 

management and treatment. It also provides an opportunity to see mTBI/SRC assessment in the wider 

healthcare ecosystem and landscape. For example, important themes researched during my PhD but 

outside the scope of this thesis should be investigated in more detail under the move to multimodal 

approaches. Here are three topical examples learned from my wider PhD studies. 

11.6.1 Open digital assessment tools 

As highlighted and realised across many chapters, the challenges and reliance subjective approaches 

carries significant limitations for the assessment of players and ultimate health/welfare of players. As 

the field moves towards using more digital approaches such as wearables, there is a need to consider 

the wrap around and complementary approaches which underpin and will be widely used by clinicians 

such as the SCAT5. An open, digital equivalent may facilitate more efficient and transparent 

assessment, like the apps presented in chapter 2. During my PhD research I have been involved with 

co-creating an iOS SCAT5 app (appendix 6) to enable an Internet of Things (IoT) assessment, a first 

next step in this journey will be gaining user feedback and testing to ensure suitability for widescale 

deployment.  The net benefit of moving towards digital symptom recording, which will allow greater 

understanding and co-investigation of the prognostic value of other SRC impairments.  

11.6.2 Investigation motor impairments: Sleep 

Recent research has indicated there may be subtypes of post-concussion presentation specifically 

linked to sleep disturbance [274]. Although a detailed evaluation of sleep metrics was outside the scope 

of this thesis, inertial wearables may be able to provide additional nocturnal data for inference of sleep 

quality and monitoring. For example, in Appendix 5 I provide a preliminary proof of concept for the 

use of a single wearable (AX6) to detail sleep quality in conjunction with remote gait assessment as it 

is an analysis of the same inertial data. Specifically raw IMU accelerometer data were used to broadly 

examine and compare nocturnal/sleep activity at different times. This was able to show notable 

differences between timepoints with greater frequency of movement as defined by the changing 

orientation of the accelerometer signal resulting in visual differences between sleep analysis timepoints 

with increased sleep disturbances immediately post-SRC compared to 1-month post-SRC and once 

RTP. This can be explored in further detail to examine with other mobile technologies such as 
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electroencephalogram (EEG) and or traditional approaches such as sleep diaries to augment SRC sleep 

deficit monitoring. Next steps should include exploring alternative wearable IMU-based algorithms for 

a more robust sleep analysis [5,6]. Future studies may consider the use of different/multiple wearable 

technologies for combinatory day and night/sleep assessments, although that approach would increase 

the complexity of data synchronization/processing and wearer adherence considered. 

11.6.3 Improved understanding of contexts free-living data is collected in 

Computing methods to inform environmental context to enhance remote/free-living inertial 

wearable gait outcomes remain underdeveloped. As identified in chapter 9, there are many unknown 

factors and contexts that affect free-living or remote assessments. An example being the environments 

participants were regularly walking in, the surfaces they walked on, or the types of terrain encountered 

were all unknown and such heterogeneity could impact results [7]. Equally, it is not possible to quantify 

the usual free-living mobility habits of the participants or to determine if acute SRC or chronic mTBI 

cohorts displayed any compensatory behaviour strategies (e.g., refraining from talking or performing 

other tasks whilst walking) that could further impact results.  

Currently, remote/free-living inertial-based wearable gait analysis cannot 

absolutely/comprehensively determine if gait variations are due to intrinsic (physiological) or extrinsic 

(environmental) factors. However, for the purposes of this research and similar to other research, I 

assumed the unknown contexts (e.g., walking environment and types of terrain encountered) were 

heterogenous to impact results [244]. Equally, it is not possible to quantify if different free-living 

mobility habits or if people display any compensatory behaviour strategies (e.g., refraining from talking 

or performing other tasks whilst walking) which may further impact results. These suggestions may 

explain why there are differences between supervised and unsupervised wearable gait assessment and 

lack of differences in chronic cohorts (chapters 9 and 10). Future research should investigate the 

contexts of free-living assessment as previously described with wearable camera technology [190,191]. 

A logical next step would be introduction egocentric video recordings of free-living mobility may 

enable greater insight and a robust reference to better understand the context of environments [8]. If 

used in conjunction with objective free-living IMU assessment, video data could yield even greater 

contextual understanding of free-living gait performance and any compensatory behaviour mTBI 

patients display within an environment. This suggestion of combining multiple technologies and 

approaches is an important one and as such, below I highlight the wider issues of sustainability and 

moving wearables into everyday practices.  

1.1.1 Making the leap into pragmatic use 

The following examples are within the context of low-resource, observational or remote assessment 

and may provide some food for thought. As highlighted, there are opportunities within the topic of mild 

traumatic brain injury (mTBI) arising in sports but the prevalence of mTBI is much broader when 

considering e.g., older adult fallers or road traffic accidents equating to over 1.5 million accident and 

emergency admissions in the UK each year [30,31].  

Clinicians working as first responders in the community or in sport often have the challenge of 

making rapid decisions on the severity of an injury - deciding on whether the patient needs to be sent 

to A&E for further assessment or equally if it is safe for them to return to play after recovery. Consider 

the scenario that a accelerometer-based wearables are widely deployed and pre-programmed with a 

validated algorithm and then activated for a person with suspected mTBI to assess their gait and balance, 

offering the clinician more objective and high-resolution data to better inform their clinical decision-

making process. Alternatively, consider a scenario that the person may have repeated mTBI’s (from 

playing e.g., rugby or American football or perhaps it is an older adult who is a repeated faller) [32,33]. 

Perhaps they already have the wearable at home from a previous meeting with the clinician or it is a 

wearable that was purchased for private use. These technologies may negate some of the challenges of 

solo working, whereby decisions for complex injuries or life-threatening injuries are made on the 
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information available at the time and clinical judgement.  Overall, more widespread use of digital 

technologies and 5G-enabled telemedicine could enable real-time multidisciplinary decision-making 

involving doctors, first responders and sports professionals. By relaying vital signs and live images to 

trauma centres, alongside the data captured from wearables, second opinions can be used to help triage 

and prioritise those with the most urgent clinical need for hospital intervention, while enabling those 

with less severe clinical need to be monitored in alternative settings during their recovery. This may 

help reduce the risk of unnecessary A&E assessment while improving the reassurance provided to 

patients during their recovery [34]. 

11.7 Closing summary 

As a qualified physiotherapist the associated challenges of diagnosing and identifying mTBI were 

very apparent during my clinical practice.  It is now clear and apparent that the traditional tools and 

techniques used to diagnose and help my patients were lacking and adoption of new approaches which 

could enhance clinical assessment (e.g., digital approaches) restricted to distinct clinical environments. 

Wearables such as those described in my thesis, do provide affordable objective methods to support 

traditional approaches, but these findings should be carefully considered against the wider determinants 

of health, where sustainability is now of utmost importance.  Definite and sustained changes will only 

be possible when viewing change through an ecosystem which will bring about the desired actions and 

outcomes much faster than without collective action.  

Overall passive monitoring solutions such as wearables are becoming ubiquitous in daily life. 

Identifying useful digital biomarkers in pathological cohorts such as mTBI may improve the detection 

of injuries and better inform (personalised) safe RTP. Identifying stages of recovery more accurately 

reduces the likelihood of premature return to play or activity before full recovery and is a necessary 

threshold in offering personalised care and rehabilitation. Wearables could also directly provide more 

sustainable healthcare as well as indirectly offering personalised and decentralised approaches in 

medicine. Fundamental sensing requirements exist across a range of conditions (silent pandemic) but 

actioning novel approaches through prescribed software could provide the necessary steps in the overall 

journey in concurrent health and sustainability ambitions. My aim of this thesis was to contribute to the 

body of knowledge that seeks to improve the confidence and quality of care delivered for those with 

mTBI in SRC. I feel very grateful to have contributed and advanced the body of knowledge in this field 

and look forward to continuing to do so hereafter. 

 

 

 

 

 

 

 

 

 



 

P a g e  | 115 

 

Appendices 

Appendix 1. Full Publication list and outputs 

 

1. Powell D, Stuart S, Godfrey A. “Sports Related Concussion: Digital Approaches for Targeted 
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Appendix 3. Copyright permissions to use full use of chapters 
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Appendix 4. Chapter 5 Supplementary Gait Data  

 
(A) Supervised (laboratory) gait assessment (Two-Minute Walk Test); pre-SRC, post-SRC and RTP 

for step time. (B) remote gait assessment for step time 

Appendix 5. Supplementary data for exploring sleep 

 

Raw IMU accelerometer data were used to broadly examine and compare nocturnal/sleep activity at 

different times. Figure below shows notable differences between timepoints with greater frequency of 

movement as defined by the changing orientation of the accelerometer signal (e.g., axis 3 representing 

the traverse plane about the longitudinal axis within the IMU). This high-level visual examination 

suggests the participant had poorer sleep quality due to unsettled behaviour and changing from lying on 

right to supine to left postures, Contrastingly (B) shows far fewer periods of movement and longer 

periods of less sleep disturbance, potentially indicating improved sleep quality 1-month post-SRC.  
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Post-concussion 



 

P a g e  | 121 

 

Appendix 6. iOS SCAT5 app 
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Appendix 7. Sustainable healthcare: Considerations for integrating wearables into 

everyday practice  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

P a g e  | 123 

 

References 

1  Lawrence T, Helmy A, Bouamra O, et al. Traumatic brain injury in England and Wales: 

prospective audit of epidemiology, complications and standardised mortality. BMJ Open 

2016;6:12197. doi:10.1136/BMJOPEN-2016-012197 

2  Kemp S. BUCS Super Rugby Injury Surveillance Project Season Report. 2018. 

3  Russell ER, Mackay DF, Lyall D, et al. Neurodegenerative disease risk among former 

international rugby union players. J Neurol Neurosurg Psychiatry 2022;0:jnnp-2022-329675. 

doi:10.1136/JNNP-2022-329675 

4  Baugh CM, Stamm JM, Riley DO, et al. Chronic traumatic encephalopathy: 

neurodegeneration following repetitive concussive and subconcussive brain trauma. Brain 

Imaging Behav 2012;6:244–54. doi:10.1007/s11682-012-9164-5 

5  Mez J, Daneshvar DH, Kiernan PT, et al. Clinicopathological Evaluation of Chronic 

Traumatic Encephalopathy in Players of American Football. JAMA 2017;318:360–70. 

doi:10.1001/jama.2017.8334 

6  The Times. Brain damage risk for children after three rugby games | The Times.  

7  Scottish Sports Concussion Guidance: grassroots sport and general public. Sport Scotland. 

2018.https://sportscotland.org.uk/media/3382/concussionreport2018.pdf (accessed 20 Sep 

2022). 

8  England Rugby. Headcase Concussion Guidance: Extended Guidelines. England Rugby. 2021. 

9  World Rugby. World Rugby. 

2020.https://resources.world.rugby/worldrugby/document/2020/07/28/212ed9cf-cd61-4fa3-

b9d4-9f0d5fb61116/P56-57-Participation-Map_v3.pdf (accessed 30 Oct 2022). 

10  World Rugby. Global Participation in Rugby. 

2020.https://resources.world.rugby/worldrugby/document/2020/07/28/212ed9cf-cd61-4fa3-

b9d4-9f0d5fb61116/P56-57-Participation-Map_v3.pdf (accessed 27 Sep 2022). 

11  Echemendia RJ, Meeuwisse W, McCrory P, et al. The Sport Concussion Assessment Tool 5th 

Edition (SCAT5): Background and rationale. Br J Sports Med 2017;51:848–50. 

doi:10.1136/bjsports-2017-097506 

12  Till K, Weakley J, Read DB, et al. Applied Sport Science for Male Age-Grade Rugby Union 

in England. Sports Med Open. 2020;6:1–20. doi:10.1186/s40798-020-0236-6 

13  World Rugby. World Rugby Tournament Minimum Medical Standards 2019. 2019. 

14  Stokes KA, Jones B, Bennett M, et al. Returning to Play after Prolonged Training Restrictions 

in Professional Collision Sports. Int J Sports Med 2020;41:895. doi:10.1055/A-1180-3692 

15  Martin RK, Hrubeniuk TJ, Witiw CD, et al. Concussions in Community-Level Rugby: Risk, 

Knowledge, and Attitudes. Sports Health: A Multidisciplinary Approach 2017;9:312–7. 

doi:10.1177/1941738117695777 

16  Daneshvar DH, Nowinski CJ, McKee AC, et al. The Epidemiology of Sport-Related 

Concussion. NIH Public Access 2011. doi:10.1016/j.csm.2010.08.006 

17  Rafferty J, Ranson C, Oatley G, et al. On average, a professional rugby union player is more 

likely than not to sustain a concussion after 25 matches. Br J Sports Med 2018;53:bjsports-

2017-098417. doi:10.1136/bjsports-2017-098417 



 

P a g e  | 124 

 

18  McCrory P, Meeuwisse W, Johnston K, et al. Consensus statement on concussion in sport: The 

3rd International Conference on Concussion in Sport held in Zurich, November 2008. In: 

Journal of Athletic Training. National Athletic Trainers’ Association Inc. 2009. 434–48. 

doi:10.4085/1062-6050-44.4.434 

19  Marshall SW, Spencer RJ. Concussion in Rugby: The Hidden Epidemic. J Athl Train 

2001;36:334–8. 

20  McCrory P, Meeuwisse W, Dvorak J, et al. Consensus statement on concussion in sport—the 

5th international conference on concussion in sport held in Berlin, October 2016. Br J Sports 

Med 2017;12:6–11. doi:10.1136/BJSPORTS-2017-097699 

21  Tator C, Starkes J, Dolansky G, et al. Fatal Second Impact Syndrome in Rowan Stringer, A 

17-Year-Old Rugby Player. Canadian Journal of Neurological Sciences 2019;46:351–4. 

doi:10.1017/cjn.2019.14 

22  Hind K, Konerth N, Entwistle I, et al. Mental Health and Wellbeing of Retired Elite and 

Amateur Rugby Players and Non-contact Athletes and Associations with Sports-Related 

Concussion: The UK Rugby Health Project. Sports Medicine 2022;52:1419–31. 

doi:10.1007/S40279-021-01594-8/TABLES/10 

23  Fuller GW, Kemp SPT, Raftery M. The accuracy and reproducibility of video assessment in 

the pitch-side management of concussion in elite rugby. J Sci Med Sport 2017;20:246–9. 

doi:10.1016/j.jsams.2016.07.008 

24  Fuller CW, Fuller GW, Kemp SPT, et al. Evaluation of World Rugby’s concussion 

management process: Results from Rugby World Cup 2015. Br J Sports Med 2017;51:64–9. 

doi:10.1136/bjsports-2016-096461 

25  Hodgson L, Patricios J. Clarifying concussion in youth rugby: Recognise and remove. Br J 

Sports Med. 2015;49:966–7. doi:10.1136/bjsports-2014-094561 

26  McCrory P, Meeuwisse WH, Aubry M, et al. Consensus statement on concussion in sport: the 

4th International Conference on Concussion in Sport, Zurich, November 2012. J Athl Train 

2013;48:554–75. doi:10.4085/1062-6050-48.4.05 

27  World Rugby. World Rugby Player Welfare - Putting Players First. 

2018.http://playerwelfare.worldrugby.org/concussion (accessed 21 May 2018). 

28  Alla S, Sullivan SJ, Hale L, et al. Self-report scales/checklists for the measurement of 

concussion symptoms: A systematic review. In: British Journal of Sports Medicine. British 

Association of Sport and Excercise Medicine 2009. i3–12. doi:10.1136/bjsm.2009.058339 

29  McCrea M, Meier T, Huber D, et al. Role of advanced neuroimaging, fluid biomarkers and 

genetic testing in the assessment of sport-related concussion: A systematic review. Br J Sports 

Med. 2017;51:919–29. doi:10.1136/bjsports-2016-097447 

30  Ptito A, Chen JK, Johnston KM. Contributions of functional Magnetic Resonance Imaging 

(fMRI) to sport concussion evaluation. NeuroRehabilitation 2007;22:217–27. doi:10.3233/nre-

2007-22308 

31  NICE. Overview | Head injury: assessment and early management | Guidance | NICE. NICE 

guidance 2019. 



 

P a g e  | 125 

 

32  Pozzato I, Meares S, Kifley A, et al. Challenges in the acute identification of mild traumatic 

brain injuries: Results from an emergency department surveillance study. BMJ Open 

2020;10:34494. doi:10.1136/bmjopen-2019-034494 

33  Mistry DA, Rainer TH. Concussion assessment in the emergency department: a preliminary 

study for a quality improvement project. Exerc Med 2018;4:445. doi:10.1136/bmjsem-2018-

000445 

34  Godfrey A, Hetherington V, Shum H, et al. From A to Z: Wearable technology explained. 

Maturitas 2018;113:40–7. doi:10.1016/j.maturitas.2018.04.012 

35  Seshadri DR, Li RT, Voos JE, et al. Wearable sensors for monitoring the internal and external 

workload of the athlete. NPJ Digit Med 2019;2. doi:10.1038/s41746-019-0149-2 

36  Bhavnani SP, Narula J, Sengupta PP. Mobile technology and the digitization of healthcare. 

Eur Heart J 2016;37:1428–38. doi:10.1093/eurheartj/ehv770 

37  Stiell IG, Wells GA, Vandemheen K, et al. The Canadian CT Head Rule for patients with 

minor head injury. Lancet 2001;357:1391–6. doi:10.1016/S0140-6736(00)04561-X 

38  Phillips T, Guy K, Martin R, et al. Concussion in the emergency department; unconsciously 

incompetent? Br J Sports Med 2017;51:A49.1-A49. doi:10.1136/bjsports-2016-097270.126 

39  Mccrory P, Meeuwisse WH, Kutcher JS, et al. What is the evidence for chronic concussion-

related changes in retired athletes: behavioural, pathological and clinical outcomes? Br J 

Sports Med 2013;47:327–30. doi:10.1136/bjsports-2013-092248 

40  Martini DN, Broglio SP. Long-term effects of sport concussion on cognitive and motor 

performance: A review. International Journal of Psychophysiology 2018;132:25–30. 

doi:10.1016/j.ijpsycho.2017.09.019 

41  Coppel DB. Use of Neuropsychological Evaluations. Phys Med Rehabil Clin N Am. 

2011;22:653–64. doi:10.1016/j.pmr.2011.08.006 

42  Snowdon A, Hussein A, Kent R, et al. Comparison of an electronic and paper-based montreal 

cognitive assessment tool. Alzheimer Dis Assoc Disord 2015;29:325–9. 

doi:10.1097/WAD.0000000000000069 

43  Covassin T, Elbin RJ, Stiller-Ostrowski JL, et al. Immediate post-concussion assessment and 

cognitive testing (ImPACT) practices of sports medicine professionals. J Athl Train 

2009;44:639–44. doi:10.4085/1062-6050-44.6.639 

44  Dessy AM, Yuk FJ, Maniya AY, et al. Review of Assessment Scales for Diagnosing and 

Monitoring Sports-related Concussion. Cureus 2017;9. doi:10.7759/cureus.1922 

45  Iverson GL, Lovell MR, Collins MW. Interpreting Change on ImPACT Following Sport 

Concussion. Clinical Neuropsychologist 2003;17:460–7. doi:10.1076/clin.17.4.460.27934 

46  Van Kampen DA, Lovell MR, Pardini JE, et al. The ‘value added’ of neurocognitive testing 

after sports-related concussion. American Journal of Sports Medicine 2006;34:1630–5. 

doi:10.1177/0363546506288677 

47  Broglio SP, Katz BP, Zhao S, et al. Test-Retest Reliability and Interpretation of Common 

Concussion Assessment Tools: Findings from the NCAA-DoD CARE Consortium. Sports 

Medicine 2018;48:1255–68. doi:10.1007/s40279-017-0813-0 



 

P a g e  | 126 

 

48  Fuller GW, Cross MJ, Stokes KA, et al. King-Devick concussion test performs poorly as a 

screening tool in elite rugby union players: a prospective cohort study of two screening tests 

versus a clinical reference standard. Br J Sports Med 2018;53:bjsports-2017-098560. 

doi:10.1136/bjsports-2017-098560 

49  Stuart S, Hunt D, Nell J, et al. Do you see what I see? Mobile eye-tracker contextual analysis 

and inter-rater reliability. Med Biol Eng Comput 2018;56:289–96. doi:10.1007/s11517-017-

1669-z 

50  Samadani U, Ritlop R, Reyes M, et al. Eye tracking detects disconjugate eye movements 

associated with structural traumatic brain injury and concussion. J Neurotrauma 2015;32:548–

56. doi:10.1089/neu.2014.3687 

51  Mucha A, Collins MW, Elbin RJ, et al. A brief vestibular/ocular motor screening (VOMS) 

assessment to evaluate concussions: Preliminary findings. American Journal of Sports 

Medicine 2014;42:2479–86. doi:10.1177/0363546514543775 

52  Schatz P, Moser RS, Solomon GS, et al. Prevalence of invalid computerized baseline 

neurocognitive test results in high school and collegiate athletes. J Athl Train 2012;47:289–96. 

doi:10.4085/1062-6050-47.3.14 

53  Akhand O, Balcer LJ, Galetta SL. Assessment of vision in concussion. Curr Opin Neurol. 

2019;32:68–74. doi:10.1097/WCO.0000000000000654 

54  Gibaldi A, Vanegas M, Bex PJ, et al. Evaluation of the Tobii EyeX Eye tracking controller and 

Matlab toolkit for research. Behav Res Methods 2017;49:923–46. doi:10.3758/s13428-016-

0762-9 

55  Stuart S, Parrington L, Martini D, et al. The Measurement of Eye Movements in Mild 

Traumatic Brain Injury: A Structured Review of an Emerging Area. Front Sports Act Living 

2020;2:5. doi:10.3389/fspor.2020.00005 

56  Goldsack JC, Coravos A, Bakker JP, et al. Verification, analytical validation, and clinical 

validation (V3): the foundation of determining fit-for-purpose for Biometric Monitoring 

Technologies (BioMeTs). NPJ Digit Med 2020;3:1–15. doi:10.1038/s41746-020-0260-4 

57  Godfrey A, Vandendriessche B, Bakker JP, et al. Fit-for-Purpose Biometric Monitoring 

Technologies: Leveraging the Laboratory Biomarker Experience. Blackwell Publishing Ltd 

2021. doi:10.1111/cts.12865 

58  Khalife H, Okdeh MA, Hage-Diab A, et al. Concussion detection using a commercially 

available eye tracker. In: International Conference on Advances in Biomedical Engineering, 

ICABME. Institute of Electrical and Electronics Engineers Inc. 2017. 

doi:10.1109/ICABME.2017.8167534 

59  Funke G, Greenlee E, Carter M, et al. Which Eye Tracker Is Right for Your Research? 

Performance Evaluation of Several Cost Variant Eye Trackers. Proceedings of the Human 

Factors and Ergonomics Society Annual Meeting 2016;60:1240–4. 

doi:10.1177/1541931213601289 

60  Sundaram V, Ding VY, Desai M, et al. Reliable sideline ocular-motor assessment following 

exercise in healthy student athletes. J Sci Med Sport 2019;22:1287–91. 

doi:10.1016/j.jsams.2019.07.015 

61  Samadani U, Li M, Qian M, et al. Sensitivity and specificity of an eye movement tracking-

based biomarker for concussion. Concussion 2016;1. doi:10.2217/cnc.15.3 



 

P a g e  | 127 

 

62  Downey RI, Hutchison MG, Comper P. Determining sensitivity and specificity of the Sport 

Concussion Assessment Tool 3 (SCAT3) components in university athletes. Brain Inj 

2018;32:1345–52. doi:10.1080/02699052.2018.1484166 

63  Rivara FP, Graham R. Sports-related concussions in youth: Report from the Institute of 

Medicine and National Research Council. In: JAMA - Journal of the American Medical 

Association. 2014. 239–40. doi:10.1001/jama.2013.282985 

64  Parrington L, Fino PC, Swanson CW, et al. Longitudinal assessment of balance and gait after 

concussion and return to play in collegiate athletes. J Athl Train 2019;54:429–38. 

doi:10.4085/1062-6050-46-18 

65  Kirkwood G, Parekh N, Ofori-Asenso R, et al. Concussion in youth rugby union and rugby 

league: a systematic review. Br J Sports Med 2015;49:506–10. doi:10.1136/bjsports-2014-

093774 

66  Meehan WP, Mannix RC, Stracciolini A, et al. Symptom severity predicts prolonged recovery 

after sport-related concussion, but age and amnesia do not. Journal of Pediatrics 

2013;163:721–5. doi:10.1016/j.jpeds.2013.03.012 

67  Linder SM, Cruickshank J, Zimmerman NM, et al. A technology-enabled electronic incident 

report to document and facilitate management of sport concussion: A cohort study of youth 

and young adults. Medicine 2019;98:e14948. doi:10.1097/MD.0000000000014948 

68  CSX. Concussion Management App | Apple & Android - CSX. https://csx.co.nz/ (accessed 29 

Jun 2020). 

69  Alberts JL, Hirsch JR, Koop MM, et al. Using accelerometer and gyroscopic measures to 

quantify postural stability. J Athl Train 2015;50:578–88. doi:10.4085/1062-6050-50.2.01 

70  Godfrey A, Lara J, Del Din S, et al. iCap: Instrumented assessment of physical capability. 

Maturitas 2015;82:116–22. doi:10.1016/j.maturitas.2015.04.003 

71  Stuart S, Hickey A, Morris R, et al. Concussion in contact sport: A challenging area to tackle. 

J Sport Health Sci 2017;6:299–301. doi:10.1016/j.jshs.2017.03.009 

72  Bell DR, Guskiewicz KM, Clark MA, et al. Systematic review of the balance error scoring 

system. Sports Health. 2011;3:287–95. doi:10.1177/1941738111403122 

73  King LA, Mancini M, Fino PC, et al. Sensor-Based Balance Measures Outperform Modified 

Balance Error Scoring System in Identifying Acute Concussion. Ann Biomed Eng 

2017;45:2135–45. doi:10.1007/s10439-017-1856-y 

74  Johnston W, Coughlan GF, Caulfield B. Challenging concussed athletes: The future of balance 

assessment in concussion. Qjm 2017;110:779–83. doi:10.1093/qjmed/hcw228 

75  Martini D, Sabin M, Depesa S, et al. The chronic effects of concussion on gait. Br J Sports 

Med 2011;45:361–2. doi:10.1136/bjsm.2011.084038.146 

76  Johnston W, Heiderscheit B, Sanfilippo J, et al. Athletes with a concussion history in the last 

two years have impairments in dynamic balance performance. Scand J Med Sci Sports 

2020;30:1497–505. doi:10.1111/sms.13691 

77  Salarian A, Horak FB, Zampieri C, et al. ITUG, a sensitive and reliable measure of mobility. 

IEEE Transactions on Neural Systems and Rehabilitation Engineering 2010;18:303–10. 

doi:10.1109/TNSRE.2010.2047606 



 

P a g e  | 128 

 

78  King LA, Horak FB, Mancini M, et al. Instrumenting the balance error scoring system for use 

with patients reporting persistent balance problems after mild traumatic brain injury. Arch 

Phys Med Rehabil 2014;95:353–9. doi:10.1016/j.apmr.2013.10.015 

79  Celik Y, Powell D, Woo WL, et al. A feasibility study towards instrumentation of the Sport 

Concussion Assessment Tool (iSCAT). In: Proceedings of the Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. Institute of 

Electrical and Electronics Engineers Inc. 2020. 4624–7. 

doi:10.1109/EMBC44109.2020.9175656 

80  Johnston W, Heiderscheit B, Coughlan GF, et al. Concussion recovery evaluation using the 

inertial sensor instrumented Y Balance Test. J Neurotrauma Published Online First: 12 May 

2020. doi:10.1089/neu.2020.7040 

81  Fino PC, Parrington L, Pitt W, et al. Detecting gait abnormalities after concussion or mild 

traumatic brain injury: A systematic review of single-task, dual-task, and complex gait. Gait 

Posture. 2018;62:157–66. doi:10.1016/j.gaitpost.2018.03.021 

82  Chesnutt J, King L, Parrington L, et al. Turning the Tide: Real-World Turns are More 

Sensitive to mTBI Deficits Than Daily Activity Measures. Arch Phys Med Rehabil 

2018;99:e181. doi:10.1016/j.apmr.2018.08.165 

83  Stuart S, Parrington L, Martini D, et al. Validation of a velocity-based algorithm to quantify 

saccades during walking and turning in mild traumatic brain injury and healthy controls. 

Physiol Meas 2019;40:044006. doi:10.1088/1361-6579/ab159d 

84  Fino PC, Parrington L, Walls M, et al. Abnormal Turning and Its Association with Self-

Reported Symptoms in Chronic Mild Traumatic Brain Injury. J Neurotrauma 2018;35:1167–

77. doi:10.1089/neu.2017.5231 

85  Del Din S, Godfrey A, Galna B, et al. Free-living gait characteristics in ageing and 

Parkinson’s disease: Impact of environment and ambulatory bout length. J Neuroeng Rehabil 

2016;13:1–12. doi:10.1186/s12984-016-0154-5 

86  Stuart S, Parrington L, Martini DN, et al. Analysis of Free-Living Mobility in People with 

Mild Traumatic Brain Injury and Healthy Controls: Quality over Quantity. J Neurotrauma 

2020;37:139–45. doi:10.1089/neu.2019.6450 

87  Sherry NS, Fazio-Sumrok V, Sufrinko A, et al. Multimodal Assessment of Sport-Related 

Concussion. Clinical Journal of Sport Medicine 2021;31:244–9. 

doi:10.1097/JSM.0000000000000740 

88  Wilke S, Prehn K, Taud B, et al. Multimodal Assessment of Recurrent mTBI across the 

Lifespan. Journal of Clinical Medicine 2018, Vol 7, Page 95 2018;7:95. 

doi:10.3390/JCM7050095 

89  King D, Brughelli M, Hume P, et al. Assessment, management and knowledge of sport-related 

concussion: Systematic review. Sports Medicine. 2014;44:449–71. doi:10.1007/s40279-013-

0134-x 

90  del Din S, Galna B, Godfrey A, et al. Analysis of Free-Living Gait in Older Adults with and 

Without Parkinson’s Disease and with and Without a History of Falls: Identifying Generic and 

Disease-Specific Characteristics. Journals of Gerontology - Series A Biological Sciences and 

Medical Sciences 2019;74:500–6. doi:10.1093/gerona/glx254 



 

P a g e  | 129 

 

91  Morris R, Hickey A, Del Din S, et al. A model of free-living gait: A factor analysis in 

Parkinson’s disease. Gait Posture 2017;52:68–71. doi:10.1016/j.gaitpost.2016.11.024 

92  Wang Y, Nelson LD, Laroche AA, et al. Cerebral Blood Flow Alterations in Acute Sport-

Related Concussion. J Neurotrauma 2016;33:1227–36. doi:10.1089/neu.2015.4072 

93  Lovell MR, Collins MW, Iverson GL, et al. Recovery from mild concussion in high school 

athletes. J Neurosurg 2003;98:296–301. doi:10.3171/jns.2003.98.2.0296 

94  Pitt W, Chen SH, Chou LS. Using IMU-based kinematic markers to monitor dual-task gait 

balance control recovery in acutely concussed individuals. Clinical Biomechanics 

2020;80:105145. doi:10.1016/j.clinbiomech.2020.105145 

95  Stuart S, Parrington L, Morris R, et al. Gait measurement in chronic mild traumatic brain 

injury: A model approach. Hum Mov Sci 2020;69. doi:10.1016/j.humov.2019.102557 

96  Howell D, Osternig L, Chou L-SS. Monitoring recovery of gait balance control following 

concussion using an accelerometer. J Biomech 2015;48:3364–8. 

doi:10.1016/j.jbiomech.2015.06.014 

97  Rochester L, Stuart S, Galna B, et al. A protocol to examine vision and gait in Parkinson’s 

disease: Impact of cognition and response to visual cues. F1000Res 2016;4. 

doi:10.12688/f1000research.7320.2 

98  Kenzie ES, Parks EL, Bigler ED, et al. The dynamics of concussion: Mapping 

pathophysiology, persistence, and recovery with causal-loop diagramming. Front Neurol 

2018;9:1. doi:10.3389/fneur.2018.00203 

99  Coravos A, Khozin S, Mandl KD. Developing and adopting safe and effective digital 

biomarkers to improve patient outcomes. npj Digital Medicine 2019 2:1 2019;2:1–5. 

doi:10.1038/s41746-019-0090-4 

100  Githens G. Product Lifecycle Management: Driving the Next Generation of Lean Thinking by 

Michael Grieves. Journal of Product Innovation Management 2007;24:278–80. 

doi:10.1111/j.1540-5885.2007.00250_2.x 

101  Björnsson B, Borrebaeck C, Elander N, et al. Digital twins to personalize medicine. Genome 

Med. 2019;12:4. doi:10.1186/s13073-019-0701-3 

102  Alderson J, Johnson W. THE PERSONALISED ‘DIGITAL ATHLETE’: An evolving vision 

for the capture, modelling and simulation, of on-field athletic performance. 2016.  

103  Jones D, Snider C, Nassehi A, et al. Characterising the Digital Twin: A systematic literature 

review. CIRP J Manuf Sci Technol 2020;29:36–52. doi:10.1016/j.cirpj.2020.02.002 

104  Harris B. How ‘digital twins’ are harnessing IoT to advance precision medicine | Healthcare IT 

News. https://www.healthcareitnews.com/news/how-digital-twins-are-harnessing-iot-advance-

precision-medicine (accessed 3 May 2020). 

105  Shafrin J, Sullivan J, Goldman DP, et al. The association between observed mobility and 

quality of life in the near elderly. PLoS One 2017;12:e0182920. 

doi:10.1371/JOURNAL.PONE.0182920 

106  Berg K, Wood-Dauphinee S, Williams JI, et al. Measuring balance in the elderly: Preliminary 

development of an instrument. Physiotherapy Canada 1989;41:304–11. 

doi:10.3138/ptc.41.6.304 



 

P a g e  | 130 

 

107  Palmer JL, Coats MA, Roe CM, et al. Unified Parkinson’s Disease Rating Scale-Motor Exam: 

Inter-rater reliability of advanced practice nurse and neurologist assessments. J Adv Nurs 

2010;66:1382–7. doi:10.1111/j.1365-2648.2010.05313.x 

108  Godfrey A, Conway R, Meagher D, et al. Direct measurement of human movement by 

accelerometry. Med Eng Phys 2008;30:1364–86. doi:10.1016/j.medengphy.2008.09.005 

109  O’Donovan KJ, Kamnik R, O’Keeffe DT, et al. An inertial and magnetic sensor based 

technique for joint angle measurement. J Biomech 2007;40:2604–11. 

doi:10.1016/J.JBIOMECH.2006.12.010 

110  Cereatti A, Trojaniello D, Croce U Della. Accurately measuring human movement using 

magneto-inertial sensors: Techniques and challenges. 2nd IEEE International Symposium on 

Inertial Sensors and Systems, IEEE ISISS 2015 - Proceedings Published Online First: 5 May 

2015. doi:10.1109/ISISS.2015.7102390 

111  Mathie MJ, Coster ACF, Lovell NH, et al. Detection of daily physical activities using a triaxial 

accelerometer. Medical and Biological Engineering and Computing 2003 41:3 2003;41:296–

301. doi:10.1007/BF02348434 

112  Godfrey A, Lord S, Mathers JC, et al. The association between retirement and age on physical 

activity in older adults. Age Ageing 2014;43:386–93. doi:10.1093/AGEING/AFT168 

113  Lyons GM, Culhane KM, Hilton D, et al. A description of an accelerometer-based mobility 

monitoring technique. Med Eng Phys 2005;27:497–504. 

doi:10.1016/j.medengphy.2004.11.006 

114  Veltink PH, Bussmann HBJ, De Vries W, et al. Detection of static and dynamic activities 

using uniaxial accelerometers. IEEE Transactions on Rehabilitation Engineering 1996;4:375–

85. doi:10.1109/86.547939 

115  Godfrey A, Morris R, Hickey A, et al. Beyond the front end: Investigating a thigh worn 

accelerometer device for step count and bout detection in Parkinson’s disease. Med Eng Phys 

2016;38:1524–9. doi:10.1016/j.medengphy.2016.09.023 

116  Palmerini L, Rocchi L, Mellone S, et al. Feature selection for accelerometer-based posture 

analysis in Parkinsons disease. IEEE Transactions on Information Technology in Biomedicine 

2011;15:481–90. doi:10.1109/TITB.2011.2107916 

117  Del Din S, Godfrey A, Coleman S, et al. Time-dependent changes in postural control in early 

Parkinson’s disease: what are we missing? ;54:401–10. 

118  Najafi B, Aminian K, Paraschiv-Ionescu A, et al. Ambulatory system for human motion 

analysis using a kinematic sensor: Monitoring of daily physical activity in the elderly. IEEE 

Trans Biomed Eng 2003;50:711–23. doi:10.1109/TBME.2003.812189 

119  Godfrey A, Conway R, Leonard M, et al. Motion analysis in delirium: A discrete approach in 

determining physical activity for the purpose of delirium motoric subtyping. Med Eng Phys 

2010;32:101–10. doi:10.1016/j.medengphy.2009.10.012 

120  Palmerini L, Rocchi L, Mellone S, et al. Feature selection for accelerometer-based posture 

analysis in Parkinsons disease. IEEE Transactions on Information Technology in Biomedicine 

2011;15:481–90. doi:10.1109/TITB.2011.2107916 



 

P a g e  | 131 

 

121  Culhane KM, Lyons GM, Hilton D, et al. Long-term mobility monitoring of older adults using 

accelerometers in a clinical environment. Clin Rehabil 2004;18:335–43. 

doi:10.1191/0269215504cr734oa 

122  Dhillon MS, McCombie SA, McCombie DB. Towards the prevention of pressure ulcers with a 

wearable patient posture monitor based on adaptive accelerometer alignment. In: Proceedings 

of the Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society, EMBS. 2012. 4513–6. doi:10.1109/EMBC.2012.6346970 

123  Mayagoitia RE, Lötters JC, Veltink PH, et al. Standing balance evaluation using a triaxial 

accelerometer. Gait Posture 2002;16:55–9. doi:10.1016/S0966-6362(01)00199-0 

124  Gershon RC, Cella D, Fox NA, et al. Assessment of neurological and behavioural function: the 

NIH Toolbox. Lancet Neurol 2010;9:138–9. doi:10.1016/S1474-4422(09)70335-7 

125  Rine RM, Schubert MC, Whitney SL, et al. Vestibular function assessment using the NIH 

Toolbox. Neurology 2013;80:S25–31. doi:10.1212/wnl.0b013e3182872c6a 

126  Whitney SL, Roche JL, Marchetti GF, et al. A comparison of accelerometry and center of 

pressure measures during computerized dynamic posturography: A measure of balance. Gait 

Posture 2011;33:594–9. doi:10.1016/j.gaitpost.2011.01.015 

127  Kosse NM, Caljouw S, Vervoort D, et al. Validity and Reliability of Gait and Postural Control 

Analysis Using the Tri-axial Accelerometer of the iPod Touch. Annals of Biomedical 

Engineering 2014 43:8 2014;43:1935–46. doi:10.1007/S10439-014-1232-0 

128  Mancini M, Salarian A, Carlson-Kuhta P, et al. ISway: A sensitive, valid and reliable measure 

of postural control. J Neuroeng Rehabil 2012;9. doi:10.1186/1743-0003-9-59 

129  Craig JJ, Bruetsch AP, Lynch SG, et al. Instrumented balance and walking assessments in 

persons with multiple sclerosis show strong test-retest reliability. J Neuroeng Rehabil 2017;14. 

doi:10.1186/s12984-017-0251-0 

130  Pantall A, Del Din S, Rochester L. Longitudinal changes over thirty-six months in postural 

control dynamics and cognitive function in people with Parkinson’s disease. Gait Posture 

2018;62:468–74. doi:10.1016/J.GAITPOST.2018.04.016 

131  Verghese J, Robbins M, Holtzer R, et al. Gait dysfunction in mild cognitive impairment 

syndromes. J Am Geriatr Soc 2008;56:1244–51. doi:10.1111/j.1532-5415.2008.01758.x 

132  Godfrey A, Del Din S, Barry G, et al. Instrumenting gait with an accelerometer: A system and 

algorithm examination. Med Eng Phys 2015;37:400–7. doi:10.1016/j.medengphy.2015.02.003 

133  Godfrey A, Brodie M, van Schooten KS, et al. Inertial wearables as pragmatic tools in 

dementia. Maturitas 2019;127:12–7. doi:10.1016/j.maturitas.2019.05.010 

134  Chen S, Lach J, Lo B, et al. Toward Pervasive Gait Analysis With Wearable Sensors: A 

Systematic Review. IEEE J Biomed Health Inform 2016;20:1521–37. 

doi:10.1109/JBHI.2016.2608720 

135  Silva de Lima AL, Evers LJW, Hahn T, et al. Freezing of gait and fall detection in Parkinson’s 

disease using wearable sensors: a systematic review. J Neurol 2017;264:1642–54. 

doi:10.1007/S00415-017-8424-0/FIGURES/4 

136  Nouredanesh M, Godfrey A, Howcroft J, et al. Fall risk assessment in the wild: A critical 

examination of wearable sensor use in free-living conditions. Gait Posture 2021;85:178–90. 

doi:10.1016/j.gaitpost.2020.04.010 



 

P a g e  | 132 

 

137  Moore SA, Hickey A, Lord S, et al. Comprehensive measurement of stroke gait characteristics 

with a single accelerometer in the laboratory and community: A feasibility, validity and 

reliability study. J Neuroeng Rehabil 2017;14:1–10. doi:10.1186/s12984-017-0341-z 

138  Zijlstra W, Hof AL. Displacement of the pelvis during human walking: Experimental data and 

model predictions. Gait Posture 1997;6:249–62. doi:10.1016/S0966-6362(97)00021-0 

139  Cavagna GA, Thys H, Zamboni A. The sources of external work in level walking and running. 

J Physiol 1976;262:639–57. doi:10.1113/jphysiol.1976.sp011613 

140  Zijlstra W, Hof AL. Assessment of spatio-temporal gait parameters from trunk accelerations 

during human walking. Gait Posture 2003;18:1–10. doi:10.1016/S0966-6362(02)00190-X 

141  Zijlstra W. Assessment of spatio-temporal parameters during unconstrained walking. Eur J 

Appl Physiol 2004;92:39–44. doi:10.1007/s00421-004-1041-5 

142  González RC, López AM, Rodriguez-Uría J, et al. Real-time gait event detection for normal 

subjects from lower trunk accelerations. Gait Posture 2010;31:322–5. 

doi:10.1016/j.gaitpost.2009.11.014 

143  Shin SH, Park CG. Adaptive step length estimation algorithm using optimal parameters and 

movement status awareness. Med Eng Phys 2011;33:1064–71. 

doi:10.1016/j.medengphy.2011.04.009 

144  Köse A, Cereatti A, Della Croce U. Bilateral step length estimation using a single inertial 

measurement unit attached to the pelvis. J Neuroeng Rehabil 2012;9:1–10. doi:10.1186/1743-

0003-9-9 

145  McCamley J, Donati M, Grimpampi E, et al. An enhanced estimate of initial contact and final 

contact instants of time using lower trunk inertial sensor data. Gait Posture 2012;36:316–8. 

doi:10.1016/j.gaitpost.2012.02.019 

146  Trojaniello D, Cereatti A, Della Croce U. Accuracy, sensitivity and robustness of five different 

methods for the estimation of gait temporal parameters using a single inertial sensor mounted 

on the lower trunk. Gait Posture 2014;40:487–92. doi:10.1016/j.gaitpost.2014.07.007 

147  Del Din S, Hickey A, Ladha C, et al. Instrumented gait assessment with a single wearable: An 

introductory tutorial [version 1; referees: 1 approved, 1 approved with reservations]. F1000Res 

2016;5:2323. doi:10.12688/F1000RESEARCH.9591.1 

148  Trojaniello D, Ravaschio A, Hausdorff JM, et al. Comparative assessment of different 

methods for the estimation of gait temporal parameters using a single inertial sensor: 

Application to elderly, post-stroke, Parkinson’s disease and Huntington’s disease subjects. 

Gait Posture 2015;42:310–6. doi:10.1016/j.gaitpost.2015.06.008 

149  Trojaniello D, Cereatti A, Pelosin E, et al. Estimation of step-by-step spatio-temporal 

parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: 

Application to elderly, hemiparetic, parkinsonian and choreic gait. J Neuroeng Rehabil 

2014;11:1–12. doi:10.1186/1743-0003-11-152 

150  Lord S, Galna B, Rochester L. Moving forward on gait measurement: Toward a more refined 

approach. Movement Disorders 2013;28:1534–43. doi:10.1002/mds.25545 

151  Hausdorff JM, Hillel I, Shustak S, et al. Everyday Stepping Quantity and Quality Among 

Older Adult Fallers With and Without Mild Cognitive Impairment: Initial Evidence for New 



 

P a g e  | 133 

 

Motor Markers of Cognitive Deficits? The Journals of Gerontology: Series A 2018;73:1078–

82. doi:10.1093/GERONA/GLX187 

152  Weiss A, Brozgol M, Dorfman M, et al. Does the evaluation of gait quality during daily life 

provide insight into fall risk? A novel approach using 3-Day accelerometer recordings. 

Neurorehabil Neural Repair 2013;27:742–52. doi:10.1177/1545968313491004 

153  Hickey A, Del Din S, Rochester L, et al. Detecting free-living steps and walking bouts: 

Validating an algorithm for macro gait analysis. Physiol Meas 2017;38:N1–15. 

doi:10.1088/1361-6579/38/1/N1 

154  Mobilise-D. Connecting digital mobility assessment to clinical outcomes for regulatory and 

clinical endorsement | MOBILISE-D Project | Fact Sheet | H2020 | CORDIS | European 

Commission. https://cordis.europa.eu/project/id/820820 (accessed 11 Jan 2022). 

155  Storm FA, Heller BW, Mazzà C. Step Detection and Activity Recognition Accuracy of Seven 

Physical Activity Monitors. PLoS One 2015;10:e0118723. 

doi:10.1371/JOURNAL.PONE.0118723 

156  Godfrey A, Goldsack JC, Tenaerts P, et al. BioMeT and Algorithm Challenges: A Proposed 

Digital Standardized Evaluation Framework. IEEE J Transl Eng Health Med 2020;8. 

doi:10.1109/JTEHM.2020.2996761 

157  Del Din S, Godfrey A, Rochester L. Validation of an Accelerometer to Quantify a 

Comprehensive Battery of Gait Characteristics in Healthy Older Adults and Parkinson’s 

Disease: Toward Clinical and at Home Use. IEEE J Biomed Health Inform 2016;20:838–47. 

doi:10.1109/JBHI.2015.2419317 

158  Godfrey A, Del Din S, Barry G, et al. Within trial validation and reliability of a single tri-axial 

accelerometer for gait assessment. In: 2014 36th Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society, EMBC 2014. Institute of Electrical and 

Electronics Engineers Inc. 2014. 5892–5. doi:10.1109/EMBC.2014.6944969 

159  Godfrey A, Lara J, Munro CA, et al. Instrumented assessment of test battery for physical 

capability using an accelerometer: A feasibility study. Physiol Meas 2015;36:N71–83. 

doi:10.1088/0967-3334/36/5/N71 

160  del Din S, Godfrey A, Mazzà C, et al. Free-living monitoring of Parkinson’s disease: Lessons 

from the field. Movement Disorders 2016;31:1293–

313.http://doi.wiley.com/10.1002/mds.26718 (accessed 6 Sep 2020). 

161  Powell D, Nouredanesh M, Stuart S, et al. Investigating the AX6 inertial-based wearable for 

instrumented physical capability assessment of young adults in a low-resource setting. Smart 

Health 2021;22:100220. doi:10.1016/j.smhl.2021.100220 

162  Galna B, Lord S, Rochester L. Is gait variability reliable in older adults and Parkinson’s 

disease? Towards an optimal testing protocol. Gait Posture 2013;37:580–5. 

doi:10.1016/J.GAITPOST.2012.09.025 

163  Giavarina D. Understanding Bland Altman analysis. Biochem Med (Zagreb) 2015;25:141–51. 

doi:10.11613/BM.2015.015 

164  Ariel, Dora Stern, Caroline M. Connected tech gathers real-time behavioral and physiological 

data beyond a controlled setting | Harvard Business School Digital Initiative. Harvard Business 

School Digital Initiative. https://digital.hbs.edu/data-and-analysis/the-growing-role-of-

connected-tech-in-medical-research/ (accessed 22 Sep 2020). 



 

P a g e  | 134 

 

165  Shao X, Ma C. A general approach to derivative calculation using wavelet transform. 

Chemometrics and Intelligent Laboratory Systems 2003;69:157–65. 

doi:10.1016/j.chemolab.2003.08.001 

166  Hickey A, Galna B, Mathers JC, et al. A multi-resolution investigation for postural transition 

detection and quantification using a single wearable. Gait Posture 2016;49:411–7. 

doi:10.1016/j.gaitpost.2016.07.328 

167  Zijlstra W, Hof AL. Displacement of the pelvis during human walking: experimental data and 

model predictions. Gait Posture 1997;6:249–62. doi:10.1016/S0966-6362(97)00021-0 

168  Hartmann A, Luzi S, Murer K, et al. Concurrent validity of a trunk tri-axial accelerometer 

system for gait analysis in older adults. Gait Posture 2009;29:444–8. 

doi:10.1016/J.GAITPOST.2008.11.003 

169  Godfrey A, Hourigan T, ÓLaighin GM. Pendulum analysis of an integrated accelerometer to 

assess its suitability to measure dynamic acceleration for gait applications. 2007. 

doi:10.1109/IEMBS.2007.4353436 

170  Geh CLM, Beauchamp MR, Crocker PRE, et al. Assessed and distressed: white-coat effects 

on clinical balance performance. J Psychosom Res 2011;70:45–51. 

doi:10.1016/J.JPSYCHORES.2010.09.008 

171  Godfrey A, Bourke A, del Din S, et al. Towards holistic free-living assessment in Parkinson’s 

disease: Unification of gait and fall algorithms with a single accelerometer. Proceedings of the 

Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 

EMBS 2016;2016-October:651–4. doi:10.1109/EMBC.2016.7590786 

172  van Ancum JM, van Schooten KS, Jonkman NH, et al. Gait speed assessed by a 4-m walk test 

is not representative of daily-life gait speed in community-dwelling adults. Maturitas 

2019;121:28–34. doi:10.1016/J.MATURITAS.2018.12.008 

173  Dunn J, Kidzinski L, Runge R, et al. Wearable sensors enable personalized predictions of 

clinical laboratory measurements. Nat Med 2021;27:1105–12. doi:10.1038/s41591-021-01339-

0 

174  Cooper R, Kuh D, Hardy R. Objectively measured physical capability levels and mortality: 

Systematic review and meta-analysis. BMJ (Online) 2010;341:639. doi:10.1136/bmj.c4467 

175  Cooper R, Kuh D, Cooper C, et al. Objective measures of physical capability and subsequent 

health: A systematic review. Age Ageing. 2011;40:14–23. doi:10.1093/ageing/afq117 

176  Finnoff JT, Peterson VJ, Hollman JH, et al. Intrarater and Interrater Reliability of the Balance 

Error Scoring System (BESS). PM and R 2009;1:50–4. doi:10.1016/j.pmrj.2008.06.002 

177  Rossier P, Wade DT. Validity and reliability comparison of 4 mobility measures in patients 

presenting with neurologic impairment. Arch Phys Med Rehabil 2001;82:9–13. 

doi:10.1053/apmr.2001.9396 

178  Test TMW. Downloaded from www.rehabmeasures.org 2 Minute Walk Test Instructions.  

179  Galna B, Lord S, Rochester L. Is gait variability reliable in older adults and Parkinson’s 

disease? Towards an optimal testing protocol. Gait Posture 2013;37:580–5. 

doi:10.1016/j.gaitpost.2012.09.025 

180  Howell DR, Osternig LR, Chou LS. Single-task and dual-task tandem gait test performance 

after concussion. J Sci Med Sport 2017;20:622–6. doi:10.1016/j.jsams.2016.11.020 



 

P a g e  | 135 

 

181  Katz-Leurer M, Rotem H, Keren O, et al. The relationship between step variability, muscle 

strength and functional walking performance in children with post-traumatic brain injury. Gait 

Posture 2009;29:154–7. doi:10.1016/j.gaitpost.2008.06.013 

182  Zanardi APJ, da Silva ES, Costa RR, et al. Gait parameters of Parkinson’s disease compared 

with healthy controls: a systematic review and meta-analysis. Sci Rep 2021;11:1–13. 

doi:10.1038/s41598-020-80768-2 

183  Martini DN, Parrington L, Stuart S, et al. Gait Performance in People with Symptomatic, 

Chronic Mild Traumatic Brain Injury. J Neurotrauma 2021;38:218–24. 

doi:10.1089/neu.2020.6986 

184  Stenum J, Choi JT. Step time asymmetry but not step length asymmetry is adapted to optimize 

energy cost of split-belt treadmill walking. Journal of Physiology 2020;598:4063–78. 

doi:10.1113/JP279195 

185  Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery 

2014;75:S24–33. doi:10.1227/NEU.0000000000000505 

186  Del Din S, Elshehabi M, Galna B, et al. Gait analysis with wearables predicts conversion to 

parkinson disease. Ann Neurol 2019;86:357–67. doi:10.1002/ana.25548 

187  Van Hees VT, Sabia S, Anderson KN, et al. A novel, open access method to assess sleep 

duration using a wrist-worn accelerometer. PLoS One 2015;10:e0142533. 

doi:10.1371/journal.pone.0142533 

188  Ouellet MC, Beaulieu-Bonneau S, Morin CM. Sleep-wake disturbances after traumatic brain 

injury. Lancet Neurol. 2015;14:746–57. doi:10.1016/S1474-4422(15)00068-X 

189  Migueles JH, Rowlands A V., Huber F, et al. GGIR: A Research Community–Driven Open 

Source R Package for Generating Physical Activity and Sleep Outcomes From Multi-Day Raw 

Accelerometer Data. J Meas Phys Behav 2019;2:188–96. doi:10.1123/jmpb.2018-0063 

190  Nouredanesh M, Li AW, Godfrey A, et al. Chasing Feet in the Wild: A Proposed Egocentric 

Motion-Aware Gait Assessment Tool. In: Lecture Notes in Computer Science (including 

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 

Springer Verlag 2019. 176–92. doi:10.1007/978-3-030-11024-6_12 

191  Czech MD, Patel S. GaitPy: An Open-Source Python Package for Gait Analysis Using an 

Accelerometer on the Lower Back. J Open Source Softw 2019;4:1778. 

doi:10.21105/JOSS.01778 

192  de Groot S, Nieuwenhuizen MG. Validity and reliability of measuring activities, movement 

intensity and energy expenditure with the DynaPort MoveMonitor. Med Eng Phys 

2013;35:1499–505. doi:10.1016/j.medengphy.2013.04.004 

193  Mazzà C, Alcock L, Aminian K, et al. Technical validation of real-world monitoring of gait: a 

multicentric observational study. BMJ Open 2021;11:e050785. doi:10.1136/BMJOPEN-2021-

050785 

194  McCrory P, Meeuwisse W, Dvořák J, et al. Consensus statement on concussion in sport—the 

5th international conference on concussion in sport held in Berlin, October 2016. Br J Sports 

Med 2017;51:838–47. doi:10.1136/bjsports-2017-097699 



 

P a g e  | 136 

 

195  Howell DR, Myer GD, Brilliant A, et al. Quantitative Multimodal Assessment of Concussion 

Recovery in Youth Athletes. Clin J Sport Med 2021;31:133–8. 

doi:10.1097/JSM.0000000000000722 

196  Chan AW, Tetzlaff JM, Gøtzsche PC, et al. SPIRIT 2013 explanation and elaboration: 

guidance for protocols of clinical trials. BMJ 2013;346. doi:10.1136/BMJ.E7586 

197  Sabharwal S, Kumar A. Methods for assessing leg length discrepancy. In: Clinical 

Orthopaedics and Related Research. Springer New York 2008. 2910–22. doi:10.1007/s11999-

008-0524-9 

198  McCrea M. Standardized mental status assessment of sports concussion. Clinical Journal of 

Sport Medicine 2001;11:176–81. doi:10.1097/00042752-200107000-00008 

199  Guskiewicz KM. Assessment of postural stability following sport-related concussion. Curr 

Sports Med Rep. 2003;2:24–30. doi:10.1249/00149619-200302000-00006 

200  Mishra SP, Ferguson BA, King P V. Research with the Wechsler Digit Span Subtest: 

Implications for Assessment. School Psych Rev 1985;14:37–47. 

doi:10.1080/02796015.1985.12085142 

201  Williams GP, Robertson V, Greenwood KM, et al. The high-level mobility assessment tool 

(HiMAT) for traumatic brain injury. Part 2: Content validity and discriminability. Brain Inj 

2005;19:833–43. doi:10.1080/02699050500058711 

202  King D, Hume P, Tommerdahl M. Use of the Brain-gauge Somatosensory Assessment for 

Monitoring Recovery from Concussion: A Case Study. Journal of Physiotherapy Research 

2018;2:13–13. 

203  Powell D. Exploratory Analysis of the effects of University Rugby on Brain Health monitored 

via a Somatosensory Device. 2018.  

204  Macinnes JJ, Iqbal S, Pearson J, et al. Wearable Eye-tracking for Research: Automated 

dynamic gaze mapping and accuracy/precision comparisons across devices. bioRxiv 2018. 

doi:10.1101/299925 

205  Anzalone AJ, Blueitt D, Case T, et al. A Positive Vestibular/Ocular Motor Screening (VOMS) 

Is Associated with Increased Recovery Time after Sports-Related Concussion in Youth and 

Adolescent Athletes. American Journal of Sports Medicine 2017;45:474–9. 

doi:10.1177/0363546516668624 

206  Sufrinko AM, Marchetti GF, Cohen PE, et al. Using Acute Performance on a Comprehensive 

Neurocognitive, Vestibular, and Ocular Motor Assessment Battery to Predict Recovery 

Duration after Sport-Related Concussions. American Journal of Sports Medicine 

2017;45:1187–94. doi:10.1177/0363546516685061 

207  Taylor LM, Klenk J, Maney AJ, et al. Validation of a body-worn accelerometer to measure 

activity patterns in octogenarians. Arch Phys Med Rehabil 2014;95:930–4. 

doi:10.1016/j.apmr.2014.01.013 

208  Godinho C, Domingos J, Cunha G, et al. A systematic review of the characteristics and 

validity of monitoring technologies to assess Parkinson’s disease. J Neuroeng Rehabil 

2016;13:24. doi:10.1186/s12984-016-0136-7 



 

P a g e  | 137 

 

209  Lugade V, Fortune E, Morrow M, et al. Validity of using tri-axial accelerometers to measure 

human movement-Part I: Posture and movement detection. Med Eng Phys 2014;36:169–76. 

doi:10.1016/j.medengphy.2013.06.005 

210  Dijkstra B, Kamsma YP, Zijlstra W. Detection of gait and postures using a miniaturized 

triaxial accelerometer-based system: Accuracy in patients with mild to moderate Parkinson’s 

disease. Arch Phys Med Rehabil 2010;91:1272–7. doi:10.1016/j.apmr.2010.05.004 

211  Bin Zahid A, Hubbard ME, Lockyer J, et al. Eye Tracking as a Biomarker for Concussion in 

Children. Clinical Journal of Sport Medicine 2018;:1. doi:10.1097/JSM.0000000000000639 

212  Stuart S, Hickey A, Vitorio R, et al. Eye-tracker algorithms to detect saccades during static 

and dynamic tasks: A structured review. Physiol Meas. 2019;40:02TR01. doi:10.1088/1361-

6579/ab02ab 

213  Mancini M, El-Gohary M, Pearson S, et al. Continuous monitoring of turning in Parkinson’s 

disease: Rehabilitation potential. NeuroRehabilitation 2015;37:3–10. doi:10.3233/NRE-

151236 

214  El-Gohary M, Pearson S, McNames J, et al. Continuous monitoring of turning in patients with 

movement disability. Sensors (Switzerland) 2014;14:356–69. doi:10.3390/s140100356 

215  Vernon H, Mior S. The neck disability index: A study of reliability and validity. J 

Manipulative Physiol Ther 1991;14:409–15. 

216  Binkley JM, Stratford PW, Lott SA, et al. The Lower Extremity Functional Scale (LEFS): 

Scale development, measurement properties, and clinical application. Phys Ther 1999;79:371–

83. doi:10.1093/ptj/79.4.371 

217  Jacobson GP, Newman CW. The Development of the Dizziness Handicap Inventory. Arch 

Otolaryngol Head Neck Surg 1990;116:424–7. doi:10.1001/archotol.1990.01870040046011 

218  King PR, Donnelly KT, Donnelly JP, et al. Psychometric study of the neurobehavioral 

symptom inventory. J Rehabil Res Dev 2012;49:879–88. doi:10.1682/JRRD.2011.03.0051 

219  Affairs AS for P. System Usability Scale (SUS). 2013. 

220  Powell D, Stuart S, Godfrey A. Wearables in rugby union: A protocol for multimodal digital 

sports-related concussion assessment. PLoS One 2021;16:e0261616. 

doi:10.1371/journal.pone.0261616 

221  Fino PC, Peterka RJ, Hullar TE, et al. Assessment and rehabilitation of central sensory 

impairments for balance in mTBI using auditory biofeedback: A randomized clinical trial. 

BMC Neurol 2017;17:41. doi:10.1186/s12883-017-0812-7 

222  Kontos AP, Eagle SR, Mucha A, et al. A Randomized Controlled Trial of Precision Vestibular 

Rehabilitation in Adolescents following Concussion: Preliminary Findings. Journal of 

Pediatrics 2021;239:193–9. doi:10.1016/j.jpeds.2021.08.032 

223  Lumba-Brown A, Teramoto M, Josh Bloom O, et al. Concussion Guidelines Step 2: Evidence 

for Subtype Classification. Neurosurgery 2020;86:2. doi:10.1093/NEUROS/NYZ332 

224  Tucker R, Brown J, Falvey E, et al. The effect of exercise on baseline SCAT5 performance in 

male professional Rugby players. Sports Med Open 2020;6:37. doi:10.1186/s40798-020-

00265-8 



 

P a g e  | 138 

 

225  Dever A, Powell D, Graham L, et al. Gait Impairment in Traumatic Brain Injury: A Systematic 

Review. Sensors (Basel) 2022;22. doi:10.3390/S22041480 

226  Parrington L, Fino PC, Swanson CW, et al. Longitudinal Assessment of Balance and Gait 

After Concussion and Return to Play in Collegiate Athletes. J Athl Train 2019;54:429. 

doi:10.4085/1062-6050-46-18 

227  Chu SY, Tsai YH, Xiao SH, et al. Quality of return to work in patients with mild traumatic 

brain injury: a prospective investigation of associations among post-concussion symptoms, 

neuropsychological functions, working status and stability. Brain Inj 2017;31:1674–82. 

doi:10.1080/02699052.2017.1332783 

228  Alsalaheen BA, Mucha A, Morris LO, et al. Vestibular rehabilitation for dizziness and balance 

disorders after concussion. In: Journal of Neurologic Physical Therapy. J Neurol Phys Ther 

2010. 87–93. doi:10.1097/NPT.0b013e3181dde568 

229  Basford JR, Chou LS, Kaufman KR, et al. An assessment of gait and balance deficits after 

traumatic brain injury. Arch Phys Med Rehabil 2003;84:343–9. doi:10.1053/apmr.2003.50034 

230  Kleffelgaard I, Roe C, Soberg HL, et al. Associations among self-reported balance problems, 

post-concussion symptoms and performance-based tests: A longitudinal follow-up study. 

Disabil Rehabil 2012;34:788–94. doi:10.3109/09638288.2011.619624 

231  Lee H, Sullivan SJ, Schneiders AG. The use of the dual-task paradigm in detecting gait 

performance deficits following a sports-related concussion: A systematic review and meta-

analysis. J Sci Med Sport. 2013;16:2–7. doi:10.1016/j.jsams.2012.03.013 

232  Schneiders AG, Sullivan SJ, Handcock P, et al. Sports concussion assessment: The effect of 

exercise on dynamic and static balance. Scand J Med Sci Sports 2012;22:85–90. 

doi:10.1111/j.1600-0838.2010.01141.x 

233  Veterans Affairs/Department of Defense. Management of Concussion-mild Traumatic Brain 

Injury (mTBI) clinical practice guidelines. 2016. 

234  Katzman R, Brown T, Fuld P, et al. Validation of a short orientation-memory-concentration 

test of congestive impairment. American Journal of Psychiatry 1983;140:734–9. 

doi:10.1176/ajp.140.6.734 

235  Washabaugh EP, Kalyanaraman T, Adamczyk PG, et al. Validity and repeatability of inertial 

measurement units for measuring gait parameters. Gait Posture 2017;55:87–93. 

doi:10.1016/j.gaitpost.2017.04.013 

236  Taylor L, Miller E, Kaufman KR. Static and dynamic validation of inertial measurement units. 

Gait Posture 2017;57:80–4. doi:10.1016/j.gaitpost.2017.05.026 

237  Schmitz-Hübsch T, Brandt AU, Pfueller C, et al. Accuracy and repeatability of two methods of 

gait analysis - GaitRiteTM und Mobility LabTM - in subjects with cerebellar ataxia. Gait Posture 

2016;48:194–201. doi:10.1016/j.gaitpost.2016.05.014 

238  Belanger HG, Silva MA, Donnell AJ, et al. Utility of the neurobehavioral symptom inventory 

as an outcome measure: A VA TBI model systems study. Journal of Head Trauma 

Rehabilitation 2017;32:46–54. doi:10.1097/HTR.0000000000000208 

239  Vanderploeg RD, Silva MA, Soble JR, et al. The structure of postconcussion symptoms on the 

neurobehavioral symptom inventory: A comparison of alternative models. Journal of Head 

Trauma Rehabilitation 2015;30:1–11. doi:10.1097/HTR.0000000000000009 



 

P a g e  | 139 

 

240  Black AM, Miutz LN, Warriyar VK, et al. Baseline Performance of High School Rugby 

Players on the Sport Concussion Assessment Tool 5. J Athl Train 2020;55:116–23. 

doi:10.4085/1062-6050-123-19 

241  Anto-Ocrah M, Tiffany K, Hasman L, et al. Mild traumatic brain injury/concussion and female 

sexuality, a scoping review of the literature. Inj Epidemiol. 2020;7:7. doi:10.1186/s40621-020-

0232-9 

242  Cohen J. Statistical power analysis for the behavioral sciences, Rev. ed. - PsycNET.  

243  Takakusaki K. Functional Neuroanatomy for Posture and Gait Control. J Mov Disord 

2017;10:1–17. doi:10.14802/jmd.16062 

244  Celik Y, Stuart S, Woo WL, et al. Gait analysis in neurological populations: Progression in the 

use of wearables. Med Eng Phys. 2021;87:9–29. doi:10.1016/j.medengphy.2020.11.005 

245  MacDonald SWS, Nyberg L, Bäckman L. Intra-individual variability in behavior: links to 

brain structure, neurotransmission and neuronal activity. Trends Neurosci 2006;29:474–80. 

doi:10.1016/j.tins.2006.06.011 

246  Fife TD, Kalra D. Persistent vertigo and dizziness after mild traumatic brain injury. Ann N Y 

Acad Sci 2015;1343:97–105. doi:10.1111/nyas.12678 

247  Guskiewicz KM, Weaver NL, Padua DA, et al. Epidemiology of concussion in collegiate and 

high school football players. American Journal of Sports Medicine 2000;28:643–50. 

doi:10.1177/03635465000280050401 

248  Daneshvar DH, Riley DO, Nowinski CJ, et al. Long-Term Consequences: Effects on Normal 

Development Profile After Concussion. Phys Med Rehabil Clin N Am. 2011;22:683–700. 

doi:10.1016/j.pmr.2011.08.009 

249  Boake C, McCauley SR, Levin HS, et al. Diagnostic criteria for postconcussional syndrome 

after mild to moderate traumatic brain injury. Journal of Neuropsychiatry and Clinical 

Neurosciences 2005;17:350–6. doi:10.1176/jnp.17.3.350 

250  Ingebrigtsen T, Waterloo K, Marup-Jensen S, et al. Quantification of post-concussion 

symptoms 3 months after minor head injury in 100 consecutive patients. J Neurol 

1998;245:609–12. doi:10.1007/s004150050254 

251  Whitney SL, Sparto PJ. Principles of vestibular physical therapy rehabilitation. 

NeuroRehabilitation 2011;29:157–66. doi:10.3233/NRE-2011-0690 

252  Schneider KJ, Meeuwisse WH, Nettel-Aguirre A, et al. Cervicovestibular rehabilitation in 

sport-related concussion: a randomised controlled trial. Br J Sports Med 2014;48:1294–8. 

doi:10.1136/bjsports-2013-093267 

253  Dozza M, Horak FB, Chiari L. Auditory biofeedback substitutes for loss of sensory 

information in maintaining stance. Exp Brain Res 2007;178:37–48. doi:10.1007/s00221-006-

0709-y 

254  Tucker R, Falvey E, Fuller G, et al. Effect of a concussion on subsequent baseline SCAT 

performance in professional rugby players: A retrospective cohort study in global elite Rugby 

Union. BMJ Open 2020;10:e036894. doi:10.1136/bmjopen-2020-036894 

255  Giza CC, Kutcher JS, Ashwal S, et al. Summary of evidence-based guideline update: 

Evaluation and management of concussion in sports. Neurology 2013;80:2250–7. 

doi:10.1212/WNL.0b013e31828d57dd 



 

P a g e  | 140 

 

256  Powell D, Stuart S, Godfrey A. Sports related concussion: an emerging era in digital sports 

technology. NPJ Digit Med 2021;4:1–8. doi:10.1038/s41746-021-00538-w 

257  Powell D, Bowen S, Hooley W, et al. A range of perspectives for concussion management in 

men’s rugby union - BJSM blog - social media’s leading SEM voice. British Journal Sports 

Medicine. 2021;Blog. 

258  McCrea M, Barr WB, Guskiewicz K, et al. Standard regression-based methods for measuring 

recovery after sport-related concussion. 2005;11:58–69. doi:10.1017/S1355617705050083 

259  Cavanaugh JT, Guskiewicz KM, Giuliani C, et al. Detecting altered postural control after 

cerebral concussion in athletes with normal postural stability. Br J Sports Med 2005;39:805–

11. doi:10.1136/bjsm.2004.015909 

260  De Beaumont L, Mongeon D, Tremblay S, et al. Persistent motor system abnormalities in 

formerly concussed athletes. J Athl Train 2011;46:234–40. doi:10.4085/1062-6050-46.3.234 

261  Sosnoff JJ, Broglio SP, Shin S, et al. Previous mild traumatic brain injury and postural-control 

dynamics. J Athl Train 2011;46:85–91. doi:10.4085/1062-6050-46.1.85 

262  Fino PC, Nussbaum MA, Brolinson PG. Decreased high-frequency center-of-pressure 

complexity in recently concussed asymptomatic athletes. Gait Posture 2016;50:69–74. 

doi:10.1016/j.gaitpost.2016.08.026 

263  Catena RD, Van Donkelaar P, Chou LS. Cognitive task effects on gait stability following 

concussion. Exp Brain Res 2007;176:23–31. doi:10.1007/s00221-006-0596-2 

264  Howell DR, Osternig LR, Chou LS. Dual-task effect on gait balance control in adolescents 

with concussion. Arch Phys Med Rehabil 2013;94:1513–20. doi:10.1016/j.apmr.2013.04.015 

265  Parker TM, Osternig LR, Van Donkelaar P, et al. Gait stability following concussion. 

2006;38:1032–40. 

266  Fino PC. A preliminary study of longitudinal differences in local dynamic stability between 

recently concussed and healthy athletes during single and dual-task gait. J Biomech 

2016;49:1983–8. doi:10.1016/j.jbiomech.2016.05.004 

267  Powell D, Godfrey A, Parrington L, et al. Free-living gait does not differentiate chronic mTBI 

patients compared to healthy controls. J Neuroeng Rehabil 2022;19. doi:10.1186/S12984-022-

01030-6 

268  Fino PC, Peterka RJ, Hullar TE, et al. Assessment and rehabilitation of central sensory 

impairments for balance in mTBI using auditory biofeedback: A randomized clinical trial. 

BMC Neurol 2017;17:41. doi:10.1186/s12883-017-0812-7 

269  Fino PC, Peterka RJ, Hullar TE, et al. Assessment and rehabilitation of central sensory 

impairments for balance in mTBI using auditory biofeedback: A randomized clinical trial. 

BMC Neurol 2017;17:1–14. doi:10.1186/S12883-017-0812-7/TABLES/5 

270  Porter A, Brown C, Wilkerson J, et al. 214 Association of insurance status with the treatment 

and outcomes of adult patients with severe traumatic brain injury: a propensity matched 

analysis. Injury Prevention 2020;26:A37–A37. doi:10.1136/INJURYPREV-2020-SAVIR.92 

271  Nouredanesh M, Godfrey A, Howcroft J, et al. Fall risk assessment in the wild: A critical 

examination of wearable sensor use in free-living conditions. Gait Posture 2021;85:178–90. 

doi:10.1016/J.GAITPOST.2020.04.010 



 

P a g e  | 141 

 

272  Nowinski CJ, Bureau SC, Buckland ME, et al. Applying the Bradford Hill Criteria for 

Causation to Repetitive Head Impacts and Chronic Traumatic Encephalopathy. Front Neurol 

2022;13. doi:10.3389/FNEUR.2022.938163/FULL 

273  Kmietowicz Z. Former British Journal of Sports Medicine editor is subject of a slew of 

retractions. BMJ 2022;379:o2442. doi:10.1136/BMJ.O2442 

274  Ouellet MC, Savard J, Morin CM. Insomnia following traumatic brain injury: A review. 

Neurorehabil Neural Repair. 2004;18:187–98. doi:10.1177/1545968304271405 

275  van Hees VT, Sabia S, Anderson KN, et al. A Novel, Open Access Method to Assess Sleep 

Duration Using a Wrist-Worn Accelerometer. PLoS One 2015;10:e0142533. 

doi:10.1371/JOURNAL.PONE.0142533 

276  Mosti C, Spiers M v., Kloss JD. A practical guide to evaluating sleep disturbance in 

concussion patients. Neurol Clin Pract 2016;6:129. doi:10.1212/CPJ.0000000000000225 

277  Powell D, Stuart S, Godfrey A. Sports related concussion: an emerging era in digital sports 

technology. npj Digital Medicine 2021 4:1 2021;4:1–8. doi:10.1038/s41746-021-00538-w 

278  Lawrence T, Helmy A, Bouamra O, et al. Traumatic brain injury in England and Wales: 

prospective audit of epidemiology, complications and standardised mortality. BMJ Open 

2016;6:e012197. doi:10.1136/BMJOPEN-2016-012197 

279  Powell D. How digital technology is changing healthcare: A physiotherapists perspective - 

Thoughts from the Centre | Deloitte UK. 2022.https://blogs.deloitte.co.uk/health/2022/01/how-

digital-technology-is-changing-healthcare-a-physiotherapists-perspective.html (accessed 15 

Aug 2022). 

  

 

 

 

 

 

 

 

 


	Abstract
	List of contents
	Table of figures
	Table of Tables
	Abbreviations
	List of publications in thesis chapters (full list of publications & outputs please see Appendix 1)
	Acknowledgments
	Declaration

	Chapter 1: Understanding the challenges within mild traumatic brain injury (mTBI) management
	1.1 Introduction
	1.1.1 mTBI: In sports
	1.1.2 Contrasting perspectives
	1.1.3 A professional rugby player (Will Hooley)
	1.1.3.1 Perspectives within professional levels?
	1.1.3.2 Can you give a brief outline of the management you received having sustained a SRC?
	1.1.3.3 What can be transferred into the amateur game?
	1.1.3.4 What would you want all medics to know/appreciate for RTP post-concussion?

	1.1.4 Elite physiotherapist (Salwa Bowen)
	1.1.4.1 Perspectives within professional levels?
	1.1.4.2 Perspectives within amateur levels?

	1.1.5  Amateur Player and physiotherapist (Dylan Powell)
	1.1.5.1  What is your perspective?

	1.1.6 What is there to learn?
	1.1.7 Defining a research hypothesis
	1.1.8  Thesis overview
	1.1.8.1 Chapter 2
	1.1.8.2 Chapter 3
	1.1.8.3 Chapter 4
	1.1.8.4  Chapter 5
	1.1.8.5 Chapter 6
	1.1.8.6 Chapter 7
	1.1.8.7 Chapter 8
	1.1.8.8 Chapter 9
	1.1.8.9 Chapter 10
	1.1.8.10 Chapter 11: Discussion, conclusion, and wider impact

	1.1.9 Impact of COVID-19
	1.1.10 Funding declaration

	Chapter 2: Digital approaches in mTBI assessment and monitoring
	2.1 Introduction
	2.2 Background
	2.2.1 Sports related concussion assessment
	2.2.2 Cognitive assessment
	2.2.2.1 Routine clinical approaches
	2.2.2.2  Digital approaches: Computerised programs

	2.2.3 Visual assessment
	2.2.3.1 Current approaches
	2.2.3.2 Wearable digital eye-trackers

	2.2.4 Symptom assessment
	2.2.4.1 Current approaches
	2.2.4.2 Digitally recorded symptoms

	2.2.5 Motor assessment
	2.2.5.1 Balance and gait under direct observation
	2.2.5.2 Inertial sensor-based wearables

	2.2.6 Towards daily use of digital approaches

	2.3 Discussion
	2.3.1 Towards the digital athlete
	2.3.2 Future considerations for the field

	2.4 Conclusions
	Chapter 3: Instrumenting motor assessment: Gait
	3.1 Introduction
	3.2  Evolution of physical assessment
	3.2.1 Wearables
	3.2.1.1 Inertial and magnetic sensors
	3.2.1.2 Feature extraction

	3.2.2 Preparation is key
	3.2.2.1 Preliminary wearable configuration
	3.2.2.2 Configuring for data capture
	3.2.2.3 Examining the signal
	3.2.2.4 Basic approaches
	3.2.2.5 Advanced approaches

	3.2.3 Instrumenting motor tasks
	3.2.3.1  Posture
	3.2.3.2 Gait


	3.3 Conclusion
	Chapter 4: Exploring the validity and suitability of a low-cost wearable for motor assessment in a low-resource environment
	4.1 Introduction
	4.2  Background
	4.3 Methods
	4.3.1 Participant recruitment
	4.3.2 Equipment
	4.3.3 Reference standards
	4.3.4  Experimental protocol
	4.3.5 Previous SRC history
	4.3.6 Algorithms
	4.3.7 Statistical analysis

	4.4 Results
	4.4.1 Total distance
	4.4.2 Spatial and temporal gait
	4.4.3 Distinguishing groups

	4.5 Discussion
	4.5.1 Validation
	4.5.2 Useability
	4.5.3 Distinguishing groups
	4.5.4 Limitations and future work

	4.6 Conclusion
	4.6.1 Passive monitoring tools: Next steps

	Chapter 5: Habitual motor assessment: A single-subject investigation
	5.1 Introduction
	5.2 Methods
	5.2.1 Participant recruitment
	5.2.2 Technology
	5.2.3 Design phases: Experimental protocol
	5.2.4 Primary outcome(s) – SCAT5
	5.2.5 Secondary outcomes – Wearable IMU

	5.3 Results
	5.3.1 Primary outcomes
	5.3.2 Secondary outcomes
	5.3.2.1 Supervised gait (2-minute walk)
	5.3.2.2 Remote gait


	5.4 Discussion
	5.4.1 Enhancing assessment
	5.4.2 Enhancing RTP decisions
	5.4.3 Limitations
	5.4.3.1 Challenge 1: Form factor
	5.4.3.2 Challenge 2: OM approach


	5.5 Conclusion
	Chapter 6: Lessons learned
	6.1 Introduction
	6.2 Lessons learned and the next stages of the thesis
	6.2.1 Addressing PoI1, PoI2 and PoI3
	6.2.1.1 Move towards user friendly technology

	6.2.2 A contemporary approach

	6.3 Free-living gait, next steps
	Chapter 7: A protocol for multimodal mTBI assessment and management
	7.1 Introduction
	7.2 Progression to contemporary assessment
	7.3 Methods
	7.3.1 Study design
	7.3.2 Participants
	7.3.2.1 Setting
	7.3.2.2 Recruitment
	7.3.2.3 Primary Outcomes
	7.3.2.4 Sample size calculation
	7.3.2.5 Participant stratification
	7.3.2.6 Anthropometric measures and screening
	Test: Visual acuity (VA) eye chart and contrast sensitivity
	Test: Height, weight and leg length.


	7.3.3 Data collection: In the lab
	Test: Sports Concussion Assessment Tool 5th edition, SCAT5
	Test: Vestibular ocular motor screen (VOMS)
	Test: Two-minute walk test
	Test: High Level Mobility Assessment Tool, HiMAT

	7.3.4 Digital technologies
	7.3.4.1 Digital neurocognitive tests
	7.3.4.2 Wearable eye-tracking
	7.3.4.3 Inertial wearable

	7.3.5 Instrumentation with digital technologies
	7.3.5.1 VOMS and eye tracking
	7.3.5.2 Balance, two-minute walk test (gait and turning)

	7.3.6 Data collection: Beyond the lab
	7.3.6.1 Test: Free-living gait
	7.3.6.2 Test: Concussion symptom checklist, SCAT5

	7.3.7 Digital outcomes (primary)
	7.3.7.1 Cognitive characteristics
	7.3.7.2 Gait outcomes

	7.3.8 Secondary Subjective outcomes
	7.3.8.1 Visual Characteristics
	7.3.8.2 Questionnaire #1: Neck Disability Index
	7.3.8.3 Questionnaire #2: Lower Extremity Function Scale
	7.3.8.4 Questionnaire #3 Dizziness Handicap Inventory
	7.3.8.5 Questionnaire #4 Neurosymptom Inventory Index

	7.3.9 Statistical analysis
	7.3.9.1 Primary analyses
	7.3.9.2 Secondary analyses


	7.4 Discussion
	7.5 Conclusion
	Chapter 8: mTBI assessment: A focus on gait as a diagnostic marker
	8.1 Introduction
	8.2 Background
	8.3 Methods
	8.3.1 Participants
	8.3.2 Assessments
	8.3.2.1 Reference standard test (SCAT5)

	8.3.3 Multimodal assessments (Lab)
	8.3.3.1 Instrumented gait: lab and free-living

	8.3.4 Statistical analyses

	8.4 Results
	8.4.1 Wearer adherence and practical considerations
	8.4.2 SCAT5
	8.4.3 Supervised assessment
	8.4.4 Remote assessment
	8.4.5 Acute and post-season free-living gait follow up
	8.4.6 Sensitivity and specificity of significantly different metrics

	8.5 Discussion
	8.5.1 Wearer adherence
	8.5.2 SCAT5: Limited capabilities
	8.5.3 Free-living gait: A useful diagnostic
	8.5.4 Strengths and limitations

	8.6 Conclusion
	Chapter 9: Chronic mTBI: Exploring free-living gait as a diagnostic (bio) marker
	9.1 Introduction
	9.2 Background
	9.3 Methods
	9.3.1 Participants
	9.3.2 Inclusion and exclusion criteria
	9.3.3 Gait analysis
	9.3.4 Self-Reported symptoms
	9.3.5 Statistical analysis

	9.4 Results
	9.4.1 Demographics and clinical assessments
	9.4.2 Adherence to IMU sensor
	9.4.3 Group differences in free-living gait

	9.5 Discussion
	9.5.1 Free-living gait
	9.5.2 Strengths and limitations

	9.6 Conclusions
	Chapter 10:  Free-living gait as a response (bio) marker: Exploration within a pilot intervention
	10.1 Introduction
	10.2 Background
	10.3 Methods
	10.3.1 Participants
	10.3.1.1 Inclusion and exclusion Criteria
	10.3.1.2  Intervention: VR+ABF

	10.3.2 Assessment
	10.3.2.1  Inertial-based wearable
	10.3.2.2 Free-living gait

	10.3.3 Data collection
	10.3.4 Statistical analysis

	10.4 Results
	10.4.1 Demographics and clinical assessments
	10.4.1.1 Adherence to rehabilitation
	10.4.1.2  Group differences in free-living gait


	10.5 Discussion
	10.5.1 Free-living gait
	10.5.2 Limitations

	10.6 Conclusion
	Chapter 11: Discussion, conclusions and wider impact
	11.1 Introduction
	11.2 Addressing pragmatic challenges
	11.2.1 The role of digital technologies: Part 1
	11.2.2 The role of digital technologies: Part 2

	11.3 Addressing my hypothesis
	11.4 Contribution to knowledge
	11.5 Limitations
	11.6 Wider impact and future focus
	11.6.1 Open digital assessment tools
	11.6.2 Investigation motor impairments: Sleep
	11.6.3 Improved understanding of contexts free-living data is collected in
	1.1.1 Making the leap into pragmatic use

	11.7 Closing summary
	Appendices
	Appendix 1. Full Publication list and outputs
	Appendix 2. Ethics declaration, Participant information and Consent Sheet
	Appendix 3. Copyright permissions to use full use of chapters
	Appendix 4. Chapter 5 Supplementary Gait Data
	Appendix 5. Supplementary data for exploring sleep
	Appendix 6. iOS SCAT5 app
	Appendix 7. Sustainable healthcare: Considerations for integrating wearables into everyday practice
	References

