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Abstract

Adversarial evasions are modern threats to Machine Learning (ML) based applications. Due to

the vulnerabilities in the classic ML inference systems, botnet detectors are equally likely to be

attacked using adversarial examples. The evasions can be generated using sophisticated attack

strategies using complex AI models. Generative AI models are one of the candidates to spawn

evasion attacks. The other significant concern is the data scarcity due to which ML classifiers

become biased toward the majority class samples during training. This research proposes novel

techniques to improve the detection accuracy of botnet classifiers to mitigate the effects of ad-

versarial evasion and data scarcity. The ultimate goal is to design a sophisticated botnet detector

that is adversarially aware in low data regimes. First, the technical background of the research

is mentioned to help understand the problem and the potential solutions. Second, a Generative

Adversarial Network (GAN) based model called Botshot is proposed to address the dataset im-

balance issues using Adversarial Training (AT). Botshot gives promising results in contrast to

the most voguish ML classifiers that can be fooled by adversarial samples by 100%. Botshot

improves the detection accuracy up to 99.74% after AT as the best case scenario in one of the

botnet datasets used. Third, an evasion-aware model called Evasion Generative Adversarial Net-

work (EVAGAN) for botnet detection in low data regimes is presented. EVAGAN outperforms

the state-of-the-art Auxiliary Classifier Generative Adversarial Network (ACGAN) in detection

performance, stability, and time complexity. Last, an improved version of EVAGAN called deep

Reinforcement Learning based Generative Adversarial Network (RELEVAGAN) is bid to make

the EVAGAN further hardened against evasion attacks and preserve the attack sample semantics.

The rationale is proactively attacking the detection model with a Deep Reinforcement Learning

(DRL) agent to know the possible unseen functionality-preserving adversarial evasions. The

attacks are conducted during the EVAGAN training to adjust the network weights for learning

perturbations crafted by the agent. RELEVAGAN, like its parent model, does not require AT for

the ML classifiers since it can act as an adversarial-aware botnet detection model. The exper-

imental results show the RELEVAGAN’s supremacy over EVAGAN in terms of early conver-
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gence. RELEVAGAN is one step further toward designing an evasion-aware and functionality-

preserving botnet detection model that tends to be sustainable with evolving botnets with the

help of DRL.
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Chapter 1

Introduction

1.1 Overview

The ever-increasing sophistication in the design of botnets is alarming for digital economies.

With the increase in online transactions, mobile payments, and cryptocurrencies, botnets could

be in greater demand by cybercriminals on the dark web. Soon botnets will be used to mine

Bitcoins on a gigantic scale and rallied to perform more seriously detrimental DDoS attacks

than ever on traditional as well as Internet of Things [1, 2]. These attacks exploit the inherent

weaknesses in existing Intrusion Detection Systems (IDSs) and analysis frameworks. Machine

learning (ML) has recently emerged as a powerful tool to design sophisticated IDSs for bot-

net detection. With the modern enhancements in hardware capabilities of computer systems,

deep learning started getting tremendous attention within the research community after giving

remarkable results in computer vision [3, 4]. Deep Neural Networks (DNNs) have been suc-

cessfully used to solve classification problems with high accuracy. To facilitate online learning,

researchers use DRL, which does not require classifiers to be trained exclusively offline for new

updates [5]. However, due to vulnerabilities to adversarial attacks, the training model may learn

malicious samples as benign and train itself on false negatives. This malicious effect is poison-
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ing caused by adversarial evasion attacks [6–8]. An adversarial evasion attack can be defined

as crafting the input sample to evade the ML-based detectors due to probing an IDS [9]. In this

way, the behaviour of the decision boundary of an IDS can be learned and replicated to a local

machine. As a result, example inputs that evade the copied learning model are generated. These

evading examples are fed to the target IDS that most likely cannot classify those as malign. This

crucial concern about the security of ML-based systems has also gained significant attention

in botnet detection [10]. The state-of-the-art IDS for botnet detection would ideally learn such

crafting by an attacker beforehand to minimise the effect of an evasion attack.

Another significant aspect discussed in this research is addressing the botnet dataset scarcity and

imbalance issues in low data regimes without incurring the additional cost of generating actual

attacks with multiple computers. In low data regimes, the ML classifiers over-fit the majority

class and fall short in generalising the test set [11]. Various synthetic oversampling techniques

have been proposed, like SMOTE IPF, ProWSyn, and polynom fit SMOTE, to address the data

imbalance [12, 13]; however, these techniques depend on algorithms like nearest neighbours and

linear interpolation, which make them unsuitable for high-dimensional and complex probabil-

ity distributions of data [14]. Deep learning models have been rigorously researched for data

oversampling [14–19] only recently. There are two types of deep learning models: generative

and discriminative. Generative models produce joint probability distribution 𝑝(𝑙 |𝑜), given ob-

servable examples of data 𝑜 and labels 𝑙, while discriminative models work around conditional

probability for classification tasks. Deep belief networks [20], Restricted Boltzmann Machines

(RBM) [21], and GANs [22] are some of the examples of generative models [23].

In this research, GANs are used to generate the botnet samples to address the problems of data

scarcity, imbalance and adversarial evasions. A GAN combines two different AI models com-

petitively learning to generate realistic samples. The use of GANs in a particular way makes

this research novel compared to some previous works in [15, 19, 24]. The advantage of using

GANs here is that they follow the probability distribution of a minority class (botnet) to generate
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sister samples. When training a GAN with a binary class, these samples can be learned along

with the benign class. D of a GAN can be used as a powerful evasion-aware botnet detector

since the discriminative model learns with the generative part of a GAN. This research proposes

a GAN model that could be used as an oversampler and a sophisticated evasion-aware detector

for botnets. However, making a GAN-based semantic-aware model is a non-trivial problem.

DRL-based models could generate semantic-aware evasion samples [25–27]; however, the sim-

ilarity with the real distribution of the benign samples can not be guaranteed if the perturbation

size goes beyond a threshold. Moreover, unlike GANs, a reinforcement learning-based model

does not follow a particular data distribution. Hence, a combination of GAN and reinforcement

learning models can provide both distribution and semantic awareness that can help address the

issues of adversarial evasion attacks in an efficient manner. This research discusses a solution

to the problem with concrete experimentation and reasoning around GANs and DRL to design

a sophisticated botnet detection model. Two out of three contributions of this research are based

on GANs to generate evasion samples to improve ML classifiers’ detection and to devise an

automatic adversarial learning GAN model. The third contribution of the research leverages

DRL-based GAN for self-learning the evasion attacks generated using DRL.

1.2 Research Problems

Due to the imbalance in cybersecurity botnet datasets, ML-based botnet detectors suffer from

detection inaccuracies and evasion attacks. The improvement in detection accuracy demands

the design of sophisticated AI-based models robust against adversarial evasion attacks. There

is a considerable gap between the current state-of-the-art botnet detection models and an ideal

botnet detector. The solution towards achieving the goal of devising an accurate and evasion-

aware botnet detection model demands more data and researching novel schemes. This thesis

proposes a solution around modern AI techniques like GANs to increase the robustness with

improved detection accuracies for botnet detection. GANs can also be used as oversamplers
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to generate more data for addressing the problem of data imbalance. At the same time, the

detection models can be devised based on GANs, addressing adversarial evasion attacks. There

is a broad scope of using GANs in cybersecurity due to their versatile forms, so exploring the

evasion-hardened schemes for botnet detection is still evolving. However, more specifically, this

research thesis highlights and addresses the following research problems:

• The scarcity of data in cybersecurity datasets is due to their sensitive nature. Usually, the

malicious class data, as compared to the normal class data, are low in number. Due to

this problem, the data generalisation in ML classifiers is affected. Data can be generated

using attack emulation in labs. However, the emulation can be costly due to the involve-

ment of various hardware resources. Moreover, the emulated attacks generated in a lab

environment may not represent the real attack generalisation. Since the semantics of one

type of generated attack may differ from another. Will it always require expensive hard-

ware resources to generate individual attack samples to create datasets for research and

development? The answer to this question is ”No”, as the attacks can be generated using

synthetic oversampling. However, the oversampling methods use nearest neighbours and

linear interpolation, which can be unsuitable for high-dimensional and complex probabil-

ity distributions like Cybersecurity data. So which oversampling would be more suitable

for such scenarios?

• Modern studies propose using GANs that have proved to be better than the traditional

oversampling methods that use linear interpolation. However, how would GANs be em-

ployed as oversamplers to improve the detection accuracy of ML-based botnet classifiers?

• ML-based botnet classifiers are prone to adversarial evasion attacks as well. This problem

can be due to insufficient data or model vulnerabilities. ML models have inherent vulner-

abilities that can be addressed using novel data samples. This method is called adversarial

training. How could the GANs be exploited to generate adversarial examples that could

be used in adversarial training to improve the ML classifiers’ detection accuracy?
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• The problem with adversarial training is that the data may not have a linear relationship

with detection accuracy. Second, adversarial training can not guarantee a robust defence

as it can be bypassed. So, can a sophisticated, evasion-aware model be devised that could

simultaneously act as an intelligent botnet detector?

• In contrast to interpolation-based methods, GANs follow the probability distribution of

input training data. So similar samples as given as input data are generated by GANs.

However, GANs are not good at generating categorical features like IP addresses or port

numbers in Cybersecurity datasets. Moreover, the synthetic samples generated by GANs

may not necessarily preserve the original attack semantics of the botnet. So DRL can

be employed to confine the Generator (G)’s output so that the GAN can be made both

adversarial and semantic-aware?

1.3 Research Contributions

The novel research contributions of this research are as follows:

• To address the problem of data scarcity, a GAN-based technique called Botshot has been

proposed in Chapter 3. The unique selling point of Botshot is the use of recall in C2ST

as the metric in sample evaluation during GAN training. The empirical results show that

Botshot based oversampling outperforms the traditional oversampling methods, especially

in minimising false negative rates for most of the datasets used.

• To render adversarial training needless, especially in low data regimes, a novel GAN de-

sign called Evasion Generative Adversarial Network (EVAGAN) is proposed. EVAGAN

acts as an oversampler and a powerful evasion-aware botnet detection model. D of EVA-

GAN acts as a botnet detector and simultaneously trains itself on adversarial evasions

generated by G of GAN. The details of the work have been explained in Chapter 4.

• Semantic preservation is ensured by using DRL-based evasion generation techniques.
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However, many previous research works used adversarial training, which may be undesir-

able in cybersecurity due to intricate probability distributions. A novel technique called

Reinforcement Learning based EVAGAN (RELEVAGAN) using DRL in conjunction with

EVAGAN is proposed in Chapter 5 to preserve the semantics without the need for adver-

sarial training. To the best of the knowledge, no previous research has used EVAGAN

with DRL in the proposed way.

1.4 Research Publications

Journal Papers:

[1] R. H. Randhawa, N. Aslam, M. Alauthman, H. Rafiq and F. Comeau, ”Security Hardening of

Botnet Detectors Using Generative Adversarial Networks,” in IEEE Access, vol. 9, pp. 78276-

78292, 2021, DOI: 10.1109/ACCESS.2021.3083421.

[2] R. H. Randhawa, N. Aslam, M. Alauthman and H. Rafiq, ”Evasion Generative Adversarial

Network for Low Data Regimes,” in IEEE Transactions on Artificial Intelligence, 2022, DOI:

10.1109/TAI.2022.3196283.

[3] R. H. Randhawa, N. Aslam, M. Alauthman, M. Khalid and H. Rafiq. ”Deep Reinforcement

Learning based Evasion Generative Adversarial Network for Botnet Detection,” in ArXiv, 2022,

abs/2210.02840.

1.5 Thesis Structure

The thesis is organised into six chapters as follows:

• Chapter 2 discusses the problem’s background in the related works. It also explains the

technical details of the AI models used in this research.

• Chapter 3 proposes Botshot. Section 3.2 illustrates the proposed methodology, Section
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3.3 explains the implementation details. Section 3.4 shows results, Section 3.5 gives the

reasoning for the inferences from the experimental outcomes and Section 3.6 concludes

this chapter.

• Chapter 4 proposes EVAGAN. Section 4.2 presents the details of the proposed model,

section 4.3 gives a description of implementation details, section 4.4 demonstrates the re-

sults, section 4.5 provides an analysis of the results and section 4.7 concludes the chapter.

• Chapter 5 proposes RELEVAGAN. Section 5.2 presents the details of the proposed

model, section 5.3 gives a description of implementation details, section 5.4 demonstrates

the results, section 5.4 provides an analysis of the results and section 5.6 summarises the

chapter.

• Chapter 6 concludes this thesis by discussing potential future work and open challenges.
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Chapter 2

Background

This chapter discusses background literature to help the readers understand the vulnerabilities

in AI-based systems in general and botnet detectors in particular. Multiple problems concerning

the botnet datasets, evasion attacks, sophisticated adversarial-aware detection model and func-

tionality preservation have been discussed.

2.1 Problems with Botnet Datasets

The importance of ML in IDS, especially botnet detection, has gained significant attention in

the last decade [28–33]. The primary concern raised by the authors in [28] is that most of

the research works had addressed only 25% of the modern attacks because they were based on

outdated datasets. With the continuous evolution in botnet evasion techniques, it is necessary to

update benchmark data sets [34]. To fulfil this objective, many researchers have proposed the

generation of new data sets emulating known attacks [35–37]. However, these proposed methods

of generating data sets have two drawbacks:

• Data set generation can be costly due to the involvement of multiple machines.

• The generated traffic may not depict the actual scenario of attacks [38]
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The problems mentioned above can be addressed in two ways. One is to merge all the bench-

mark data sets publicly available into a new data set. The authors of [38] used this approach to

generate a new data set, considering the common updated attacks with eleven different evalua-

tion characteristics of IDS data sets. However, the problem of obsolescence [28] remains. There

is a need to continuously update the data sets to maintain deterrence against evolving botnets

[38]. Hence, for the generation of botnet datasets, unseen attack data is needed in large amounts

to address the issues of dataset imbalance and obsolescence. The data generation can be opted

using synthetic oversampling methods that can solve both problems.

In network-based anomaly detection for botnets, mainly two schemes are employed: deep

packet-based and network flow-based inspection. Since botnets have evolved, modern types

have used packet encryption. Another issue with deep packet inspection (DPI) is the severe con-

cern about user privacy [38]. As a solution to these problems, most research is now performed

using network flow-based features to detect anomalies. For botnet detection, researchers have

extensively studied different flow-based features based on their effectiveness for the desired out-

come [39–41]. The researchers in [42] have devised new time and flow-based traffic features

for detecting Tor traffic. This extended set of features can improve the detection of the network

anomaly in the case of botnet detectors as well because most botnet traffic types have underlying

similarities in spacio-temporal communication patterns [27].

So not only are there scarcity, unavailability and data imbalance issues with botnet detectors, but

the appropriate feature set selection can also affect the performance of detection models.

2.2 Adversarial Attacks on Botnet Detectors

Artificial Intelligence (AI) is an open-source tool that cybercriminals can compromise for the

incarnation of intelligent evasions. AI-based intrusion detection systems (IDSs) need continuous

online learning to keep them up to date against zero-day attacks. To address the problem of

online learning, researchers use DRL to avoid training the system exclusively offline for new
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updates [43, 44]. However, DRL can train the model on malicious samples recognised as benign

ones [45]. This type of evasion of malign samples can be caused by adversarial attacks such as

model extraction or black-box attack [9]. In this type of attack, the behaviour of the decision

boundary of a machine learning (ML) model can be learned and replicated to a local machine.

After this step, the example inputs that evade the copied learning model are generated. These

evading examples are tried on the target system that most likely is unable to classify those as

malign. In [19], the authors proposed an attack and a countermeasure to demonstrate that AI-

based IDSs are prone to adversarial attacks.

2.2.1 Adversarial Attacks

The adversarial ML deals with ruggedising the existing models by learning the adversarial ex-

amples [46]. This term was coined for computer vision problems but is also valid in network

and computer security since both these fields are highly dependent on ML models [47–49]. The

adversarial evasion can be defined as a perturbed version of an input sample x as x* such that

the x* = x + [, where [ is a carefully crafted perturbation. When making an adversarial attack,

[ could be sought and selected so that the classifier cannot discriminate the x* from x.

2.2.2 Attack Types

In general, the adversary can make two types of adversarial attacks, white-box and black-box

attacks [50].

2.2.2.1 White-box Attacks

In white-box attacks, the attacker knows not only the gradient information for the model’s loss

function but also the source of the training data, hyper-parameters, model architectures, num-

bers of layers, activation functions and model weights. In other words, the attacker has complete

knowledge of the model and even the direction of the gradient. The attacker can create a pertur-

bation that most likely could increase the loss value.
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2.2.2.2 Black-box Attacks

In black-box attacks, the adversary has no inside information except probing the system on a

particular input. The attacker does not know the model and can only know the system’s response.

One of the objectives of this research work is to make the classifiers adept at proactively knowing

the adversarial examples so that the effect of black-box attacks can be mitigated, especially on

ML-based botnet detectors.

2.2.3 Transferability

The white-box attacks can be transferable to attack a black-box service [51]. Hence most of

the attacks generated are white-box attacks due to the ease of generation, but the transferability

property can be effectively exploited for black-box attacks [50, 52].

It means that if an adversarial attack is valid for one type of ML model, then it is highly likely

that it will be effective against another model without added effort by the adversary [52]. To

address the transferability of adversarial examples, researchers use GANs to train the existing

deep learning models, with synthetic adversarial examples [19, 53]. This way, an IDS may

become aware of a zero-day attack and avoid it.

Given the above discussion, GANs can be suitable for generating new botnet data to address

the dataset imbalance and scarcity issues and mitigate the effects of adversarial evasion at-

tacks.

2.3 Generative Adversarial Networks (GANs)

The GAN is a combination of two neural networks, among which the one that generates samples

is called G and the other that evaluates the generated samples is called Discriminator (D). The

loss of D over generated data is fed back to G while D’s weights are not updated so that G can

try to mimic the real data probability density function more efficiently and fool D.
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2.3.1 Working of a GAN

Figure 2.1 shows the internal architecture of a classical/vanilla GAN. There are two consecutive

steps in which a GAN is trained. In the first step, D is trained on real data labelled as REAL,

and the data generated by an untrained G is labelled as FAKE. In the next step, now that D

has trained already, it is tested on the fake data from G, but this time intentionally labelled as

REAL. The loss of D on this falsely labelled data is fed back to G, which adjusts its weights

in one complete batch training. There can be several batch iterations, after which one complete

traversal of the dataset is complete, also known as an epoch. In the classical GAN, the generator

model can be represented as G: z→ X where z is the normal distribution from noise space and

X is the real data distribution.

The discriminator D: X → [0,1] model is a classifier that outputs an estimate of probability

between 0 and 1, to mark whether the data coming from G is real or fake. The objective function

of the combined model can be represented by Equation 2.1.

min
G

max
D
𝑉 (D,G) = E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥 ) [logD(𝑥)]+

E𝑧∼𝑝𝑧 (𝑧) [log(1 − D(G(𝑧)))]
(2.1)

Here, E represents the expected value of the loss and 𝑥 and 𝑧 denote the real and noise samples,

respectively. At the same time, 𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑧 are the probability distributions of real and noise

data, respectively. The objective of a min-max game is to minimise the generator’s loss in

creating data resembling real data. Since the generator can not control the loss of D on real

data, still, it can maximize the loss of D on generated data G(𝑧). The objective function 𝐽G of

G is given by Equation 2.2. The goal is to minimise the log-likelihood of the fake samples being

classified as fake by D.

𝐽G (G) = E𝑧∼𝑝𝑧 (𝑧) [log(D(G(𝑧)))] (2.2)
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Figure 2.1: Internal Architecture of a classical GAN

As demonstrated in the Figure 2.1, the losses of D on real 𝐷 𝐿𝑜𝑠𝑠(𝑅𝐸𝐴𝐿) and generated

data 𝐷 𝐿𝑜𝑠𝑠(𝐹𝐴𝐾𝐸) respectively, are fed to D using back-propagation. In the next step, in

forward propagation, given label as REAL to the input generated samples (coming from G),

the evaluation is done by D and 𝐺 𝐿𝑜𝑠𝑠(𝑅𝐸𝐴𝐿), is fed back to G to update its weights. This

step can be called combined model training. The combined model takes noise as input and the

output of D as the feedback to update the weights of G. This process keeps iterating till the

number of epochs reaches a set value. Upon achieving the Nash equilibrium, the generator and

discriminator do not learn further.

2.4 Other GAN Models used in this Research

In the first part of this research, two different GAN architectures, vanilla and conditional GAN

have been used to generate botnet traffic to keep the experiments simple for estimating their

potential for botnet data generation. The second part proposed a unique GAN model based on

Auxiliary Classifier GAN (ACGAN) called EVAGAN. The last part of this research proposes
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another enhanced GAN model called RELEVAGAN based on EVAGAN. The following is a

brief detail of existing GAN architectures used in this research.

2.4.1 Conditional GAN (CGAN)

The conditional version of vanilla GAN adds another feature as a class label to help GAN learn

the probability distribution quicker than vanilla GAN. This is equivalent to feeding additional

information so that the convergence of the G can be quicker. With the class label incorporation,

the CGAN generates higher-quality samples than the vanilla GAN. The loss functions forD and

G, in this case, can be represented in Equations 2.3 and 2.4 as 𝐽D and 𝐽G respectively.

𝐽D = − 1
2𝑚

𝑚∑︁
𝑖=1

logD(𝑥𝑖 , 𝑦𝑖)+

𝑚∑︁
𝑖=1

log(1 − D(G(𝑧𝑖 , 𝑦𝑖), 𝑦𝑖))]
(2.3)

𝐽G = − 1
𝑚

𝑚∑︁
𝑖=1

logD(G(𝑧𝑖 , 𝑦𝑖), 𝑦𝑖) (2.4)

Here, 𝑚 is the total number of examples in one batch selected for training the model, 𝑥 is real

data, and 𝑦 are the additional labels as a condition due to which this GAN is called conditional

GAN. The batch size is the same for noise and real data inputs to G and D, respectively.

2.4.2 Auxiliary Classifier GAN

Auxiliary Classifier GAN (ACGAN) extends a classical GAN exploiting class labels in the train-

ing process [54]. Like a classical GAN, ACGAN includes two neural networks: a G and a D.

In addition to random noise samples 𝑧, the input of G includes class labels 𝑐. Therefore, the

synthesized sample from G in ACGAN is X 𝑓 𝑎𝑘𝑒 = G(𝑐, 𝑧), instead of X 𝑓 𝑎𝑘𝑒 = G(𝑧). In other

terms, desired class label data can be generated by an ACGAN. So D of ACGAN works as a

dual classifier for differentiating between the real/fake data and different classes of the input
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samples whether coming from the real source or G.

The objective function of ACGAN consists of two parts: The first is the log-likelihood 𝐿𝑆 of

the correct source data, and the second is the log-likelihood 𝐿𝐶 of the correct class labels. D is

trained to maximize 𝐿𝐶 + 𝐿𝑆 and G learns to maximize 𝐿𝐶 − 𝐿𝑆 . In other words, the objective

of D is to improve the two likelihoods while of G is to improve only one likelihood, i.e. to

improve the performance of D on classifying the samples as different class labels. G will also

try to suppress the log-likelihood by D on a fake sample correctly classified as fake, i.e. it

will try to fool D. D gives both a probability distribution over sources and the class labels

respectively [𝑃(𝑆 |X), 𝑃(𝐶 |X)] = D(X) where 𝑆 are the sources (real/fake) and 𝐶 are the class

labels. Equations 2.5 and 2.6 denote the 𝐿𝑠 and 𝐿𝑐 respectively.

𝐿𝑆 = E[𝑙𝑜𝑔𝑃(𝑆 = 𝑟𝑒𝑎𝑙 |X𝑟𝑒𝑎𝑙)] +

E[𝑙𝑜𝑔𝑃(𝑆 = 𝑓 𝑎𝑘𝑒 |X 𝑓 𝑎𝑘𝑒)]
(2.5)

𝐿𝐶 = E[𝑙𝑜𝑔𝑃(𝐶 = 𝑐 |X𝑟𝑒𝑎𝑙)] +

E[𝑙𝑜𝑔𝑃(𝐶 = 𝑐 |X 𝑓 𝑎𝑘𝑒)]
(2.6)
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Figure 2.2 shows a structural comparison of a classical GAN, CGAN and ACGAN.

2.5 Botnet Detectors & GANs

Currently, adversarial attacks on AI-based systems are of considerable attention in botnet detec-

tors [10]. Adversarial examples from black-box attacks can be detrimental to an IDS because

malign inputs can become part of benign network applications. The research community has

highlighted the gravity of this issue [10, 55, 56]. In [57], the authors have proposed ensemble

techniques to address the problem of transferability for adversarial attacks in computer vision.

However, efficient and reliable IDS design techniques for most botnet behaviours are missing.

For example, in [58], authors deal only with the domain generation aspect of the botnet evasion

using GANs; however, not all modern botnets use DNS-based communication because these

techniques are more prone to detection than peer-to-peer botnets [59]. In [15], the authors pro-

pose another GAN-based technique for botnet detection named Bot-GAN. The authors have

extended the discriminator output from two to three traffic types, i.e. normal, fake botnet and

real botnet. By using GANs, they have achieved better accuracy and lower false positives than

previous studies. However, the feature set selection is limited in their work. In addition, the

authors need to balance their data set with increasing generated examples as the accuracy drops

after adding a certain number of samples. In another work, authors have proposed the avoidance

of model theft or extraction [60]. The same concept can be applied in conjunction with GAN for

botnet detection.

2.6 Data Oversampling & GANs

In low data regimes, oversampling or undersampling can help balance the datasets. How-

ever, undersampling might result in the loss of diversity. For oversampling, methods like Syn-

thetic Minority Oversampling TEchnique (SMOTE) use nearest neighbours, and linear inter-

polation, which can be unsuitable for high-dimensional and complex probability distributions
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[13, 14]. Recent research works proposed algorithms for data oversampling. Authors in [12]

compared 85 different oversampling techniques and suggested the three best-performing vari-

ants as SMOTE IPF, ProWSyn and polynom fit SMOTE. In [53], authors have compared the

performance of these three SMOTE variants with GANs. Through empirical results, they found

that GANs outperform the three mentioned oversamplers in most ML classifiers’ adversarial

training.

2.7 Adversarial Evasion & GANs

The decision bias in ML classifiers can lead to misclassifying malicious samples as normal.

The attackers can exploit this intrinsic nature of ML classifiers to incarnate evasion samples,

particularly in low data regimes. The adversarial evasion is a perturbed version of an input

sample j as j* such that the j* = j + [, where [ is a carefully crafted perturbation. When making

an adversarial attack, [ could be sought and selected so that the classifier can not discriminate

the j* from j [9, 25]. The researchers usually employ adversarial training to make the classifiers

proactively aware of the evasion samples. However, this is not needed if D of a GAN is used as

a classifier to differentiate not only between the fake and real samples but also between normal

and anomaly samples. The fake samples generated by G are also learnt simultaneously, so it is

better to consider the power of D as an evasion-aware classifier. The use of extra ML classifiers

is not needed, which is a common practice in various literary works to design such a classifier

[15, 24].

To this end, EVAGAN is proposed that provides such type of D and compares its performance

with D of ACGAN and other ML classifiers, xgboost (XGB), decision tree (DT), naive bayes

(NB), random forests (RF), logistic regression (LR) and k-nearest neighbours (KNN). Following

rigorous experimentation, it has been explored that EVAGAN’sD not only outperforms the ML

classifiers in black box testing but also gives 100% accuracy in normal and evasion samples

estimation. The details of the experimental results will be discussed in section 4.4.
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2.7.1 Adversarial Attacks & DRL

A plethora of seminal works have been created to deal with adversarial attacks like poison-

ing, evasion and transferability [7, 8, 53]. The counter defence strategies can be based on pre-

processing, adversarial training, architecture, detection, defensive testing, multiclassifiers, and

game theory [7]. Adversarial training seems to be a simplistic strategy to provide robustness

against adversarial evasion attacks; however, it has some cons. First, increasing the number of

samples in the auxiliary data may not have a linear relationship with detection accuracy [53].

Second, the adversarial training can not guarantee a robust defence as it can be bypassed [57].

Although adopted as an immediate remedy against some adversarial attacks, it can not be con-

sidered an ultimate cure for the grave problem in AI. Third, it consumes additional time for

retraining. Several GAN-based research works preserve the functionality of the generated sam-

ples by manipulating only non-functional features [19, 61]. However, GANs do not play a role

in generating a complete feature vector in those works. It is also quite challenging to generate

categorical features using a GAN without manual engineering except using a sequence GAN

[62]. Researchers have also used DRL to generate functionality-preserving evasion attacks [25–

27]. The main goal of employing DRL is to explore functionality-preserving samples as it can

guarantee semantic awareness in contrast to GANs; however, these works consider adversarial

training to make the detection models adept at evasion awareness.

In [27], the authors proposed a DRL-based model to evade the botnet classifiers based on the

output from the ML classifiers under black-box attacks. According to the authors, this work was

the first on evasion attacks using a DRL agent. Following similar research, the authors in [25]

proposed a technique to generate evasion attacks on the botnet detector as a black box. In [63],

authors presented a new dataset generated using DRL evasion attacks on botnet detectors. The

adversarial sample generation using DRL can be used with GANs to oversample the adversarial

examples, which will be presented in Chapter 5, named RELEVAGAN.
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2.8 Semantics/Functionality Preservation

Semantics or functionality preservation means that the synthetic samples can still execute the

original malicious function intended by the attacker. Various researchers have employed GANs

to synthesise the network traffic data to address the issue of data imbalance and adversarial eva-

sion attacks [53, 64, 65]. However, GANs are not good at generating categorical features [62].

Researchers have used one-hot representation [19], or IP2Vec techniques [17, 66] to transform

IP addresses into integer values to input to GANs for data generation. Since GANs follow the

probability distribution of the input data so there is a high chance that the synthetic samples may

lie outside the semantic limits. The perturbations could be easily perceived as anomalies by the

ML detectors. To preserve the functionality, the perturbation j* in Equation 2.3 should be small

enough not to be perceived by the detectors as malicious and distant enough to be considered

a normal sample. At the same time, the malicious activity must not be compromised. For this

reason, several researchers have proposed functionality preservation by modifying only the non-

functionality-preserving features using GANs [19, 61, 62]. However, various research works

claim to preserve the malicious functionality of the generated samples using DRL.

2.9 DRL-based Evasion Generation

A reinforcement learning model comprises an agent and an environment that engage for a de-

fined number of iterations/steps. For a turn 𝑡 the agent chooses an action 𝑎𝑡 𝜖 A using some

policy 𝜋(𝑎 |𝑠𝑡 ) and an observable state 𝑠𝑡 . The environment returns a reward 𝑟𝑡 𝜖 R against an

action and a new state 𝑠𝑡+1. The reward 𝑟𝑡 and observed state of the environment 𝑠𝑡+1 are fed

back to the agent for defining a new action based on policy 𝜋(𝑎 |𝑠𝑡+1). Keeping the current state

in view, the agent tries to learn through the trade-off between exploration and exploitation. The

maximum reward collection is the main goal for exploration, which can be possible if the agent

employs a certain policy to boost the expected value given by the Q-value function in Equation

2.7.
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𝑉 𝜋 (𝑠𝑡 ) = E𝑎𝑡 [𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 ) |𝑠𝑡 ] (2.7)

Here 𝑄 is given by Equation 2.8.

𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 ) = E𝑠𝑡+1:∞,𝑎𝑡+1:∞ [𝑅𝑡 |𝑠𝑡 , 𝑎𝑡 ] (2.8)

and 𝑅 is denoted by Equation 2.9

𝑅𝑡 = Σ𝑖≥0𝛾
𝑖𝑟𝑡+𝑖 (2.9)

In Equation 2.9, 𝛾 ∈ [0, 1] is a discounting factor for rewards from future actions. For catering

to the large intractable storage of tabular representation of the Q-function, DNNs come to the

rescue to act as an approximator in the deep Q-Network (DQN) to represent the state-action

value function [67]. In RELEVAGAN, double DQN is the core technique for DRL-based attack

generation.
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botnet 
sample

environment

botnet 
detector

agent

reward action

state

Figure 2.3: Markov Decision Process for Botnet evasion generation using Reinforcement
Learning

Figure 2.3 shows the Markov Decision Process (MDP) [68] where an agent is interacting with a

botnet detector environment by providing a new sample which can act as a potential evasion. The

Q-function and the policy help in taking a particular action. The botnet sample is a manipulated

feature vector defined within certain boundaries to ensure semantics preservation. The reward is

the classification output of the botnet detector. After trying the botnet detector, the reward and

the new state are fed back to the agent.

2.10 DRL-based Functionality Preservation

To preserve the malicious functionality, researchers generate the evasion samples within seman-

tic limits [25–27, 69, 70] by attacking the trained classifiers using a DRL agent. The evaded

samples were collected to be used for adversarial training to make the model adept at adversar-

ial awareness. Similarly, in [69], authors used DRL to attack PDF (Portable Document Format)

malware detectors to generate evasive malware samples while preserving the attacks’ functional-

ity. The rationale for using the DRL is that it can be bound to explore the evasion attacks within a
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specific range defined by 𝜖 in Equation 2.3. This research uses the DRL and the EVAGAN model

to continuously generate the evasion attack samples using a DRL agent. The process becomes

part of the EVAGAN training. The marriage of GAN and DRL culminates in RELEVAGAN,

which uses the power of EVAGAN as a robust evasion-aware detection model and DRL as the

semantics check on the samples generated by G of EVAGAN. The details of the model will be

further discussed in Section 5.2.

2.11 Summary

This chapter includes the prerequisite knowledge to understand the rest of the thesis. The chapter

started with current problems with botnet datasets, like scarcity and obsolescence. The problems

associated with dataset generation using lab emulation were also discussed. Another significant

issue with ML-based botnet detectors is their vulnerability to adversarial evasion attacks. Several

previous research works were referred to highlight the problems and solutions proposed by peers.

The use of GANs for improving ML-based classifiers was extensively researched. The working

of a classical GAN was also explained along with two other GANs (CGAN and ACGAN) that are

the basis for this research. More specifically, the use of GANs in botnet detection was discussed

in some papers from which the ideas were conceived to set the foundation of this research. The

use of DRL for semantic preservation of the generated data was also mentioned. DRL confines

the samples based on a specific policy which can help generate semantic-aware samples. The

feasibility of using DRL in conjunction with a GAN was also elaborated.

The rest of the thesis is based on the realisation of the ideas discussed in this chapter; in par-

ticular, the use of GANs to oversample the attacks data, devising a GAN-based evasion-aware

detection model and use of DRL to help the detection model become semantic-aware.
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Chapter 3

Security Hardening of Botnet

Detectors using Generative Adversarial

Networks

3.1 Introduction

Machine learning (ML) based botnet detectors are no exception to traditional ML models for

adversarial evasion attacks. The datasets used to train these models have also scarcity and imbal-

ance issues. In this chapter, a technique named Botshot has been proposed, based on generative

adversarial networks (GANs), for addressing these issues and proactively making botnet detec-

tors aware of adversarial evasions. In contrast to the network emulation for botnet traffic data

generation, Botshot is cost-effective because it does not involve dedicated hardware resources.

In this chapter, first, the extended set of network flow and time-based features have been used

for three publicly available botnet datasets. Second, two different types of GANs (vanilla and

conditional) have been utilised for generating realistic botnet traffic. The generator performance

is evaluated using the classifier two-sample test (C2ST) with a 10-fold 70-30 train-test split. The
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use of ’recall’ has been proposed in contrast to ’accuracy’ for the proactive learning of adversar-

ial evasions. The train set is augmented with the generated data and tested using the unchanged

test set. Last, the results were compared with benchmark oversampling methods to augment

additional botnet traffic data in terms of average accuracy, precision, recall and F1 score over six

different ML classifiers. The empirical results demonstrate the effectiveness of the GAN-based

oversampling for learning in advance the adversarial evasion attacks on botnet detectors.

The classifier two-sample test (C2ST) was used to assess the quality of generated traffic data.

The use of ’recall’ is proposed as the evaluation metric of the generator performance in C2ST

instead of ’accuracy’ for the purpose of learning evasions. Since the false negatives are possible

evasions, the objective function should minimise the value of ’recall’ during GAN training for

the exploration of generator weights that generate samples with maximum similarity with the

real samples, The detail of this proposition will be discussed in Section 3.2.

To maintain the coherency of the experiments, An extended flow, and time-based feature set of

network traffic [10] has been utilised for three botnet datasets, i.e. ISCX-2014, CIC-IDS2017

and CIC-IDS2018, from the Canadian Institute of Cybersecurity. The traffic was generated using

two different GANs. Six different classifiers (extreme gradient boosting or xgboost (XGB),

random forests (RF), decision trees (DT), linear regression (LR), k-nearest neighbours (KNN)

and naive bayes (NB) with default parameters) were used for generator evaluation and post

augmentation detection. The main purpose of using two different GANs was to compare their

performance over all three botnet datasets using the six classifiers and choose the best pair (GAN

& classifier) to be used in continued research work. The six different classifiers were selected

based on a related work that utilised those for comparative analysis using black-box testing [19].

The support vector machine (SVM) was not included due to its expensive training time. Instead

of gradient boosting (GB), XGB was used which has a better timer complexity [71]. The neural

network (NN) was not used because the discriminator in GAN is also an NN. It was desired to

test the performance of GAN only on non-neural network-based ML classifiers.
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The botnet traffic data generated after the GANs’ training was used to augment the original train

set to improve the performance of the classifiers. The tests were performed using a 10-fold,

70-30 train-test split for the aforementioned datasets for both generator performance in C2ST

and post-augmentation testing. The post-augmentation performance was evaluated based on

accuracy, recall, precision and F1 scores. It was demonstrated by experiments that using the

proposed approach; the GAN-generated data could be better evaluated with improved botnet

traffic detection .

The main essence of this chapter is the proposition of a novel technique named Botshot, which

has the following contributions:

• Botshot proactively learns adversarial evasions in terms of recall score/false negatives for

quantitative evaluation of GANs.

• To the best of the knowledge, this is the first work to use an extended set of features [38]

for botnet data generation using GANs.

• To the best of the knowledge, no previous work has provided the comparison of GAN

based oversampling with state-of-the-art synthetic oversamplers for improvement in bot-

net detection.

3.2 Proposed Methodology

a GAN-based technique is proposed that could mimic and generate the botnet traffic and then

augment the original dataset with the generated traffic to improve the detection performance of

the botnet classifiers. The purpose of training the botnet classifiers on GAN-generated data is to

proactively learn the unseen samples with similar but slightly different probability distributions.

Botshot is novel in a way that recall is used as the evaluation metric for C2ST instead of accu-

racy. The intuition is that the false negatives need to be reduced in the classifier performance in

post-augmentation testing. The false negatives are the possible evasions in the test set that the
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classifiers are not aware of. Since the primary purpose of the Botshot is to suppress the false

negatives; the C2ST has been tweaked so that the objective function becomes as given in the

Equation 3.1

𝑟𝑎𝑟𝑔𝑚𝑖𝑛 =
1

𝑛𝑡𝑒𝑠𝑡

∑︁
𝑧𝑖 ,𝑙𝑖∈𝐷𝑡𝑒𝑠𝑡

I[I( 𝑓 (𝑧𝑖) >
1
2
) = 𝑙𝑖] (3.1)

In the above Equation, 𝑟 is the recall score on 𝐷𝑡𝑒𝑠𝑡 which is test set, 𝑛𝑡𝑒𝑠𝑡 is the total number

of samples in test set, 𝑧𝑖 are the samples in test set, 𝑙𝑖 are the labels, 𝑓 (𝑧𝑖) is the conditional

probability distribution 𝑝(𝑙𝑖 = 1|𝑧𝑖). If a GAN-bot is very close in probability distribution with

a real bot, the recall in Equation 3.1 should remain close to 50%, which is also called a chance

level, which means that the classifier was evaded, or the sample was misclassified as a real bot.

So if recall is used as the metric instead of accuracy, the false negatives can be better minimised

because accuracy includes the value for false positives (FP) and true negatives (TN) given by

Equation 3.2.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(3.2)

However, in the recall, there are only true positives (TP) and false negatives (FN) as given by

Equation 3.3.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3.3)

3.2.1 C2ST for GAN Evaluation

The classifier two-sample test (C2ST) is a quantitative metric to evaluate whether two different

data samples have been taken from the same distribution. In other words, if there are samples

real bots (X𝑏) and GAN bots (𝐺 (𝑧)), then it can be assessed if both samples have similar or
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identical probability distributions. The more the distributions overlap, the greater the chance

that GAN bots are realistic. The C2ST method has been shown in Algorithm 1.

Algorithm 1 C2ST Algorithm

Require: X𝑏 (real bots), 𝐺 (𝑧) (GAN bots), botnet classifier
Ensure: A(accuracy)

1: {Evaluation of Generated Data (𝐺 (𝑧))}
2: 𝑡𝑟 ← X𝑏 [0 : 𝑚(7/10)] ∪ 𝐺 (𝑧) [0 : 𝑚(7/10)] {Create a train set from 70% of examples in

the unified set where m = total number of examples in X𝑏} and 𝐺 (𝑧)
3: 𝑡𝑠 ← X𝑏 [𝑚(7/10) : 𝑚] ∪ 𝐺 (𝑧) [𝑚(7/10) : 𝑚] {Create a test set from 30% of examples in
X𝑏 and 𝐺 (𝑧)}

4: train botnet classifier on 𝑡𝑟
5: test botnet classifier on 𝑡𝑠
6: computeA = (TP + TN)/(TP + TN + FP + FN){Compute accuracy using confusion matrix}

Since the objective function is to minimise false negatives in generator evaluation, those epochs

must be chosen in which the recall was the lowest instead of the epochs where accuracy was the

lowest.

The complete functional block diagram of Botshot is illustrated in Figure 3.1. First, the datasets

are preprocessed as mentioned in Section 3.3.6. From the cleaned train set, the real bot samples

of the set size for each dataset are extracted as mentioned in Table 3.1 and train the selected

GAN. The GAN is trained for a certain number of epochs as given in Table 3.3. Once an

epoch is completed, the trained G is used to generate data of size equal to the total number of

real bots given as an input to the GAN (Algorithm 2 line 16). The generated bot samples, also

called GAN bots, along with real bots, are combined into a unified set (Algorithm 2 line 17).

This unified set is reshuffled and used to perform 10-fold train-test splitting using the selected

classifier (Algorithm 2 lines 18-24).

The results are compiled based on accuracy for C2ST and recall for Botshot (Algorithm 2 line

25-26). The epoch numbers for each classifier’s minimum values for recall and accuracy are

saved. After generating the GAN-bots, using the epoch number with minimum accuracy value

for C2ST and minimum recall value for Botshot, these are augmented into two sets Y𝐶2𝑆𝑇 and
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Algorithm 2 Bothshot Algorithm

Require: T (preprocessed train set in csv format), 𝐺𝐴𝑁𝑡 𝑦 𝑝𝑒, batch size, botnet classifier
Ensure: A (average accuracy), R (average recall), P (average precision), F (average F1)

1: 𝑋𝑏 ∼ T {Extract real bots from the data set T}
2: Create D, G and C models{Define and compile discriminator, generator and combined

models for the GAN}
3: if 𝐺𝐴𝑁𝑡 𝑦 𝑝𝑒 is equal to CGAN then
4: X𝑏 [𝐿𝑎𝑏𝑒𝑙] ← K-Means labels {Replace the Label column with k-means class labels}
5: end if
6: {Adversarial Training GAN}
7: for i = 1, 2, 3, ..., epochs do
8: for j = 1, 2, 3, ..., batches do
9: 𝑥𝑖 ∼ X𝑏 {Extract botnet data of batch size}

10: 𝑧 𝑗 ← N{𝑚𝑒𝑎𝑛=0,𝑠𝑡𝑑=1,𝑠𝑖𝑧𝑒=𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒} {Extract noise from normal distribution of
batch size}

11: 𝑔𝑧 𝑗 ← E𝑧𝑖∼𝑝 (𝑧 𝑗 ) {Probability Estimation from G using 𝑧 𝑗}
12: \D 𝑗 ← \D 𝑗 − [∇\D 𝑗L(𝑥 𝑗) {Train D on 𝑥 𝑗 with Adam optimizer}
13: \D 𝑗 ← \D 𝑗 − [∇\D 𝑗L(𝑔𝑧 𝑗 ) {Train D on 𝑔𝑧 𝑗 with Adam optimizer}
14: \G 𝑗 ← \G 𝑗 − [∇\G 𝑗L(𝑧 𝑗) {Train C (combined model) on 𝑧 𝑗 with Adam optimizer}
15: end for
16: \G 𝑖 ← \G 𝑗 {Save the weights of C after every epoch}
17: 𝑧𝑖 ← N{𝑚𝑒𝑎𝑛=0,𝑠𝑡𝑑=1,𝑠𝑖𝑧𝑒=𝑠𝑖𝑧𝑒𝑜 𝑓 (X𝑏 ) } {Extract noise from normal distribution with botnet

data size}
18: 𝐺𝑧𝑖 ← E𝑧𝑖∼𝑝 (𝑧) {Probability Estimation from G using 𝑧𝑖}
19: {Evaluation of Generated Data (𝑔𝑧)}
20: U = X𝑏 ∪ 𝐺𝑧𝑖
21: for k= 1, 2, 3, ..., 10 do
22: split pointer = k
23: 𝑡𝑟 ← 70% of U {Create a train set from 70% of examples in unified set }
24: 𝑡𝑠 ← 30% of U {Create a test set from 30% of examples in unified set }
25: train botnet classifier on 𝑡𝑟 test botnet classifier on 𝑡𝑠
26: compute A𝑖 , R𝑖 {Compute accuracy and recall using confusion matrix}
27: end for
28: 𝐿A ←compute average A {Compute average accuracy and save into a list}
29: 𝐿R ←compute average R {Compute average recall and save into a list}
30: end for
31: 𝑧 ← N{𝑚𝑒𝑎𝑛=0,𝑠𝑡𝑑=1,𝑠𝑖𝑧𝑒=𝑁𝑜𝑟𝑚𝑎𝑙−𝑟𝑒𝑎𝑙 𝑏𝑜𝑡𝑠} {Extract noise from normal distribution of size

= (Normal - real bots)}
32: 𝐺𝑧I𝑎𝑟𝑔𝑚𝑖𝑛A) ← E𝑧∼𝑝 (𝑧) {Probability Estimation from G using 𝑧 𝑗}
33: Y𝐶2𝑆𝑇 ← T ∪ 𝐺𝑧I𝑎𝑟𝑔𝑚𝑖𝑛 (A) {Augment the original dataset T with GAN bots generated

based on the epoch of GAN training with minimum value of accuracy }

30



CHAPTER 3. SECURITY HARDENING OF BOTNET DETECTORS USING
GENERATIVE ADVERSARIAL NETWORKS

34: 𝑧 ← N{𝑚𝑒𝑎𝑛=0,𝑠𝑡𝑑=1,𝑠𝑖𝑧𝑒=𝑁𝑜𝑟𝑚𝑎𝑙−𝑟𝑒𝑎𝑙 𝑏𝑜𝑡𝑠} {Extract noise from normal distribution of size
= (Normal - real bots)}

35: 𝐺𝑧I𝑎𝑟𝑔𝑚𝑖𝑛 (R) ← E𝑧∼𝑝 (𝑧) {Probability Estimation from G using 𝑧 𝑗}
36: Y𝐵𝑜𝑡𝑠ℎ𝑜𝑡 ← T ∪ 𝐺𝑧I𝑎𝑟𝑔𝑚𝑖𝑛 (R) {Augment the original dataset T with GAN bots generated

based on the epoch of GAN training with minimum value of recall }
37: for K= 1, 2, 3, ..., 10 do
38: split pointer = K
39: 𝑇𝑟 ← 70% of Y𝐵𝑜𝑡𝑠ℎ𝑜𝑡 {Create a train set from 70% of examples in unified set }
40: 𝑇𝑠 ← 30% of Y𝐵𝑜𝑡𝑠ℎ𝑜𝑡 {Create a test set from 30% of examples in unified set }
41: train botnet classifier on 𝑇𝑟 test botnet classifier on 𝑇𝑠
42: compute A𝐾 , R𝐾 , P𝐾 and
43: F𝐾 {Compute accuracy, recall, precision and F1 score using confusion matrix}
44: end for
45: compute average A, R, P and F {Compute average accuracy, recall, precision and F1

score}

Y𝐵𝑜𝑡𝑠ℎ𝑜𝑡 respectively (Algorithm 2 lines 27-32). Finally, the average accuracy, recall, precision,

and F1 scores are computed after the 10-fold train-test split of the two augmented datasets. The

values have been recorded in Table 3.4 for the case of no augmentation, interpolation-based

synthetic oversamplers, GAN and CGAN-based C2ST and Botshot evaluation for oversampling

the botnet data.

3.3 Implementation

3.3.1 Datasets

Three different datasets were used from the same source, i.e. Canadian Institute of Cybersecurity

(CIC), to keep the coherency of the experiments. The choice of the dataset is based on the

rigorous use in existing literature, public availability and the support for the open-source feature

extraction tool called CICFlowmeter-v4 provided by CIC. Table 3.2 shows the features used

in this work (in bold text). The features can be categorised into different groups based on the

number of packets, time, size, flow and flags. The categorical features like IP addresses or port

numbers were not used, while a previous work [15] did use protocol. Although previously used

for Tor traffic characterisation [42], and data set generation for CIC-IDS2017 and CIC-IDS2018
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[38], these extended sets of features can improve the detection of the network anomaly in case

of botnet detection as well [27]. To the best of the knowledge, this is the first work to use these

extended features for botnet datasets for data generation using GANs. The number of samples

of benign vs botnet is mentioned in Table 3.1. The following is the detail of each dataset and the

botnet samples used in this work.

3.3.2 ISCX-2014 Dataset

The ISCX-2014 data set [72] is an amalgamation of three publicly available datasets ISOT [39],

ISCX 2012 IDS [40] and CTU-13 [73]. The composition of the dataset has been explained in

terms of generality, realism, and representativeness. The generality can be defined as the richness

of diversity of botnet behaviour. Realism is the closeness with the actual traffic captured, and

representativeness determines the ability to reflect the real environment a detector would face in

deployment. Only the VIRUT botnet was used for this work among the seven different botnets.

The VIRUT was chosen because it had very few samples compared to other botnets and was not

insufficiently scarce as the Zeus bot. SMTP or NSIS could be used, but their labels were not

available on the website1. As a result, a subset including all the normal traffic flows with VIRUT

samples was used. In this way, this dataset could be used as a good example of an unbalanced

set.

3.3.3 CIC-IDS2017 Dataset

The CIC-IDS2017 is a relatively recent dataset by CIC with the traffic of the ARES botnet. On

Friday, July 7, 2017, the traffic was collected from 10:02 AM – 11:02 AM in the CIC facility.

The dataset is available on the CIC website2. a subset of this dataset was made using all the

normal flows with the botnet. The ratio of the number of samples has been mentioned in Table

3.1. As the previously mentioned dataset, the subset is also a good kind of unbalanced dataset

for the particular research problem of this work.

1https://www.unb.ca/cic/datasets/botnet.html
2https://www.unb.ca/cic/datasets/ids-2017.html
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3.3.4 CIC-IDS2018 Dataset

To create another subset of the unbalanced dataset, CIC-IDS2018 was used. This dataset in-

cluded samples for ARES and ZEUS botnets. A subset of all the benign traffic samples was

created with just 2560 samples of botnet flows to mimic another unbalanced dataset.

Table 3.1: Distribution of Normal and Bot samples in three Engineered Datasets

Dataset Normal Real bots Total Samples
ISCX-2014 246929 VIRUT: 1748 248677

CIC-IDS2017 70374 ARES: 1956 72330
CIC-IDS2018 390961 ARES/ZEUS:2560 393521

3.3.5 Feature Selection

The performance of the botnet detectors can be highly dependent on the quality of the dataset

in general and the number of distinct features in particular. Using a limited feature set may not

necessarily give a stronger classification than an enhanced set of non-redundant features. Pre-

viously, [72] summarised the most important features from network flows that could be helpful

in botnet detection. Almost all these features except a few are included in [10] that are also

used in this thesis. A utility used by the authors was also employed, available on GitHub named

CICFlowMeter-v4, to extract more than 80 flow & time-based features from the three different

datasets’ .pcap files. This utility can extract the said features for any input .pcap files. Table 3.2

shows the feature set. The detail of the features is available on the source website3.

3.3.6 Preprocessing

For preprocessing the ISCX-2014 dataset, one may need to label it. For this purpose, the in-

formation provided on the CIC website for IPs associated with the particular botnets was used.

After labelling, the preprocessing was performed as mentioned in Algorithm 3. All the high and

low skewed values were removed to suppress outliers, cleaned the NaN and Inf values, removed

3https://www.unb.ca/cic/datasets/ids-2018.html
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Table 3.2: Existing vs Extended Feature Set: The features can be categorised into five different
groups. Features in the bold text were used in the current work, and the rest were dropped in

preprocessing using Algorithm 2.

Group
Features [15]
(used in Existing
Work)

Extended Features [38] (used in current work)

Categorical Protocol -

Number
of packets

PX, NNP, PSP,
IOPR, Reconnect

fin cnt, syn cnt, rst cnt, psh cnt, ack cnt, urg cnt, cwe cnt, ece cnt, down up ratio,
fw byt blk avg, fw pkt blk avg, fw blk rate avg, bw byt blk avg, bw pkt blk avg,
bw blk rate avg, subfl fw pk, subfl fw byt, subfl bw pkt, subfl bw byt, fw win byt,
bw win byt, fw act pkt, fw seg min

Time Duration
fl dur, fw iat tot, fw iat avg, fw iat std, fw iat max, fw iat min, bw iat tot, bw iat avg,
bw iat std, bw iat max, bw iat min, atv avg, atv std, atv max, atv min, , idl avg, idl std,
idl max, idl min, idl min

Size
FPS, TBT, APL,
DPL, PV

tot fw pk, tot bw pk, tot l fw pkt, tot l bw pkt, fw pkt l max, fw pkt l min, fw pkt l avg,
fw pkt l std, Bw pkt l max, Bw pkt l min, Bw pkt l avg, Bw pkt l std, fw hdr len,
bw hdr len, pkt size avg, fw seg avg, bw seg avg

Flow BS, PS, AIT, PPS
fl byt s, fl pkt s, fl iat avg, fl iat std, fl iat max, fl iat min, fw pkt s, bw pkt s, pkt len min,
pkt len max, pkt len avg, pkt len std, pkt len va,

Flags - fw psh flag, bw psh flag, fw urg flag, bw urg flag

the features with zero standard deviation, and scaled those in the [0,1] range. The [0,1] scaling

is necessary to apply GANs with rectified linear unit (ReLU) activation function in its layers be-

cause the range of the output with the ReLU function lies within this range. The CIC-IDS2017

and CIC-IDS2018 were already labelled. So the preprocessing was performed only for these

two data sets after extracting the unbalanced subsets.

Algorithm 3 Preprocessing

Require: X (original train set in csv format)
Ensure: T (preprocessed train set in csv format)

1: X𝑛←X[𝐿𝑎𝑏𝑒𝑙 = 0], X𝑏 ←X[𝐿𝑎𝑏𝑒𝑙 = 1] {label flows based on malicious IPs}
2: Preprocess Data {remove: outliers, rows with NaN and Inf values, columns with std=0 and

scale the features in range(0,1)}

3.3.7 GAN Hyperparameters Tuning

The GAN tuning can be challenging, primarily working on tabular data, because, unlike images,

the GAN performance needs to be assessed based on some quantitative parameters (one of which

is C2ST). However, if a classical GAN is tuned carefully [74], it can work to generate realistic

samples as it was done in the particular case. After a random search of batch size and the

multiple for the number of neurons in hidden layers of G and D, the optimum values could be
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explored as highlighted in Figure 3.2. The choice is based on the stability of losses of D and

G. The rest of the hyperparameter details are in Table 3.3. The densely connected feed-forward

neural networks were used as the architecture in both G and D. The activation functions are

ReLU in all the hidden layers and sigmoid in the output layer of D. The batch normalisation

was used in all the hidden layers. This technique regularises the output of each hidden layer and

stabilises the GAN loss. The optimiser type used was Adam, with binary cross-entropy (BCE)

as the loss function. The learning rate was set as 5e-1 because classifiers tend to get fooled more

at this learning rate than at lower values. So it can also be considered an exploratory value in the

case.

Figure 3.2 shows that the values for the three losses are stable in case of a batch size of 256 and

multiplier (n) equal to 64 for both GAN and CGAN. In all the other cases, the values are overshot

or not converging. These results were taken in the ISCX-2014 dataset and considered for the

other two datasets. However, the individual loss values for the three datasets are manifested

for each GAN in Figures 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11. The GAN losses for each GAN

are different for every data set used. Red-coloured peaks are shown where G has a high loss

L[G(z)]; then damps down in the next few epochs and remains close to zero. This result means

that G has achieved Nash equilibrium, but it can be observed that more peaks arrive in which

D’s loss L[D(G(z))] also is increased along with L[G(z)] and sometimes even higher. This result

happened when G generated some sample which fooledD pretending to be real, but it was fake.

Most of the time, during the training of the desired epochs, the GAN losses remain stable. The

result could be very different if the batch normalisation is not used, which regularises values in

each hidden layer.

3.3.8 Data Augmentation

An unlimited amount of data could be generated from GAN’s generator virtually. However,

an equal number of the GAN-bot samples were generated to the benign traffic samples. The

generated samples were augmented into the 70% train set only while 30% of the test set remains
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Figure 3.2: Hyperparameters Exploration for batch size (𝑏) and hidden layer neurons count
multiple (𝑛)
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Table 3.3: GAN Models

Parameter GAN CGAN
Network Type Densely Connected Feed Forward

Number of Layers G: 6, D/C: 5
Activations G: ReLU (All Layers), D: ReLU (All Layers except output)

Batch Size (𝑏) 256
Multiplier (𝑛) 64

Neurons in the input
layer 64 65

Neurons in layer 1 G : 𝑛 × 1 = 64, D : 𝑛 × 4 = 256
Neurons in layer 2 G : 𝑛 × 2 = 128, D : 𝑛 × 2 = 128
Neurons in layer 3 G : 𝑛 × 4 = 256, D : 𝑛 × 1 = 64
Neurons in layer 4 G : 𝑛 × 8 = 512

Neurons in output layer G : 64, D : 1 G : 65, D : 1
Layer Regularization G,D: 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚

Optimizer Adam (beta 1=0.5, beta 2=0.9)
Loss Function binary cross entropy
Learning Rate 5e-1

unchanged for each k-fold split where k is equal to 10 in the proposed case.

3.3.9 Experimental Setup

The experiments were performed on a GPU workstation AMD Ryzen threadripper 1950x 16-

core processor with three GeForce GTC 1070 Ti units running ubuntu 20.04. The platform used

was the Jupyter notebook with libraries mainly Keras, TensorFlow, Sklearn and NumPy.

3.4 Results

The results are demonstrated in Table 3.4 for the performance evaluation of six classifiers after

the augmentation of data generated from different data generation techniques. The case of no

augmentation was used as the benchmark to compare with the oversampling-based techniques.

For making a performance comparison, the three variants of the best performing SMOTEs

among 85 as suggested by the author in [12] were employed. The results of these oversamplers

have been summarised in Table 3.4 along with the GAN and CGAN-based C2ST and Botshot

37



CHAPTER 3. SECURITY HARDENING OF BOTNET DETECTORS USING
GENERATIVE ADVERSARIAL NETWORKS

oversampling. The post-augmentation results for the performance evaluation metrics used were

accuracy, recall, precision and F1 score. Figures 3.3, 3.4 and 3.5 show the average performance

of all the classifiers after augmenting the train set with GAN-bots in a 10-fold train-test split for

the ISCX-2014, CIC-IDS2017 and CIC-IDS2018 datasets and testing on the fixed 30% test set.

The following sections will discuss the results in detail in terms of the performance metrics of

the classifiers used:

3.4.1 Accuracy

The accuracy values for both GAN and CGAN based oversampling are almost always greater

than or equal to the no-augmentation values and, in some cases, more than SMOTEs. Specif-

ically, the value of accuracy in the case of ISCX-2014 for GAN-based Botshot is higher than

GAN-based C2ST but equal in the case of CIC-IDS2017 and CIC-IDS2018. As per equa-

tion 3.2, the accuracy is the ratio of the sum of TP and TN to the total number of samples

(TP+TN+FP+FN) in the confusion matrix, so due to the large number of TN (benign samples),

the improvement in post augmentation results may not be significantly more accurate. So the

decisive metrics could be recall and precision.

3.4.2 Recall

The recall improvement is the highest value proposition of this research work because the ef-

fects of adversarial evasions need to be mitigated. However, the recall could not be improved

significantly for all classifiers for the three datasets. In fact, for NB and KNN, the recall de-

teriorated adversely, especially in the case of the ISCX-2014 dataset. This behaviour of the

classifiers is specific to their inherent properties, the explanation of which is beyond the scope of

this research. In the case of CIC-IDS2017, the recall was improved compared to the benchmark

for all the GAN and CGAN-based oversampling methods. This proves the effectiveness of the

Botshot as compared to C2ST as well. The values for recall in almost all cases for Botshot-based

GAN/CGAN oversampling is greater than or equal to C2ST-based GAN/CGAN oversampling
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except in the case of CGAN(Botshot) with recall equal to 98.65% as compared to 98.61% of

CGAN(C2ST) for CIC-IDS2017 dataset. It can be confidently inferred that Botshot is com-

petitive not only with the SMOTE based oversamplers in the case of CIC-IDS2017 and CIC-

IDS2018 datasets but, in some instances, better for particular classifiers like XGB, which almost

always shows improvement in recall for almost all the oversampling techniques as compared to

the benchmark. This information can significantly help us choose the suitable classifier to be

used in Botshot in future works.

3.4.3 Precision

The minimisation of false positives is specified as the property of a classifier being precise in

its classification decisions. The precision values for almost all the classifiers have significantly

higher values as compared to the SMOTE based techniques, which gives us strong confidence

in estimating Botshot for reducing the FP except for NB, which has the worst performance in

the case of all the three datasets. However, the precision value for GAN(Botshot) is higher than

GAN(C2ST) and equal in the case of CGAN for the ISCX-2014 dataset. Similarly, the value for

CGAN(Botshot) is higher than CGAN(C2ST) but lower than GAN(C2ST) for GAN(Botshot)

for the CIC-IDS2017 dataset. One higher precision vote also goes to GAN(Botshot) than

GAN(C2ST), while the values remain the same for CGAN. The improvement in precision was

unexpected since the main objective was to reduce FN and not FP. GAN-based oversampling has

helped the classifiers make better decisions about the benign traffic samples, which is an added

benefit of the proposed technique.

3.4.4 F1

The F1 score is the harmonic mean of the precision and recall, reflecting the combined effect of

both these parameters. It can be observed from the results that F1 in the case of CIC-IDS2017

and CIC-IDS2018 is better for Botshot in the majority of cases as compared to the C2ST-based

GAN/CGAN oversampling and even better than the benchmark in some instances.
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Table 3.4: Results of Data Augmentation for Different Oversampling Techniques: The original
train set was augmented with botnet traffic samples generated from each of the different

synthetic oversampling techniques, and the testing was done on the original test set.
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3.5 Discussion

With the help of the extensive results, the effectiveness of the proposed technique can be empir-

ically estimated. Although the existing works show the effectiveness of GANs, one step further

is proposed by showing that GANs can be used effectively for the security hardening of botnet

detectors against evasion attacks. In light of the results, the discussion can be summarised in

subsections as follows:

3.5.1 Relationship of GAN Loss with C2ST and Botshot

The minimum values of accuracy (for C2ST) and recall (for Botshot) for each classifier during

the GAN training are depicted in Figures 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11 for all the three datasets.

The lines that touch the base (x-axis) represent the minimum values of the accuracy or recall

for the particular classifier on a specific epoch. There are two points worth noticing in these

diagrams. First, the accuracy or recall may not decrease gradually with each training epoch.

The values are stochastic and unpredictable in each epoch for every dataset for both GANs.

This result shows that considering only the GAN loss is not a strong metric for evaluating G

performance. Although, as mentioned in Subsection 3.3.7, the losses converge and remain close

to zero, the adopted evaluation, using C2ST and Botshot, behaves differently. That said, a GAN

may not generate realistic samples even it has converged to a Nash equilibrium. Hence, some

other GAN evaluation techniques should be used as C2ST or Botshot [53, 75]. Second, there will

not always be an epoch that will have both accuracy and recall minimum at the same time. In

fact in some cases the epochs for both these metrics are different as can be seen in case of XGB,

DT and RF in Figure 3.6, DT in Figure 3.7, KNN in Figure 3.8, XGB and DT in Figure 3.9 and

XGB in Figure 3.11. Moreover, in only one case where accuracy and recall were both minima

in the same epoch for all the classifiers in Figure 3.10 reinforces the notion that recall could be a

more effective metric for assessing the similarity between the generated and real samples.
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3.5.2 Comparison of Botshot with Peer Techniques/Works

3.5.2.1 Oversampling

While comparing GAN based oversampling with SMOTEs, a question may arise whether it is

better than its interpolation-based counterpart. The answer can be a definite ’yes’ if a GAN

model is explored with appropriate hyperparameters that can generate more realistic samples

than those proposed in the current work. The accuracy and recall both have values during GAN

evaluation no less than 99% (ideal case is 50%), which means that the GANs generate few

realistic samples of botnet traffic. However, a significant improvement in the final results can

be observed in Table 3.4. Since the SMOTE oversamplers is better in many cases; it can not

be said ’yes’ to the question. For that reason, the research of exploring a suitable GAN for

this purpose is left to future work. For example, the ISCX-2014 dataset could not give us good

results in recall for the Botshot, so one can start with a set of an appropriate classifier, a GAN and

this dataset to improve the detection performance by making necessary exploration of a suitable

GAN model.

3.5.2.2 Blackbox Test and Improvements in Recall

The black-box test could evaluate the aptness of the generated botnet data to be fooled as benign

by the classifiers. The trained classifiers were tested with generated samples added in the test set

in each 70-30 split. The results for the three datasets for recall are illustrated in Figure 3.12. The

results are significantly remarkable if the GAN-based oversampling is compared with the other

synthetic techniques for black-box testing. The recall score drops excessively for GAN-based

techniques inferring that the GAN-generated samples can evade the classifiers more than peer

oversampling techniques.
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Figure 3.13 shows the improvement in the value of recall after adversarial training of gener-

ated data for each oversampling technique. In the case of the best performing classifier (XGB),

the improvement is 98.58%, 98.64% and 99.97% for Botshot being the highest among the peer

techniques. The improvement in recall as compared to the C2ST was lower for ISCX-2014

and CIC-IDS2017 (values marked in red in Figure 3.13) for CGAN(Botshot), which opens fur-

ther research horizons towards exploring more GANs to validate Botshot. It is left as future

work.

The works like [15, 19] are the closest for comparing to BotShot Although, [15] has used the

ISCX dataset used in this thesis but they did not employ the enhanced feature set and there was

no comparison made with the synthetic oversamplers. [19] are using the KDD99 dataset that is

different to used in this thesis although they have used GANs as the oversamplers to improve the

detection performance of the ML classifiers.

3.5.3 Limitation of Botshot

In Figure 3.14, the GAN mimicry of the two distinct features from the ISCX-2014 dataset for

all six classifiers has been demonstrated in the form of contour plots. The graphs show that the

GAN Bots generated by both C2ST and Botshot are trying to follow the distribution of the Real

Bots for the two features ‘Fwd Segment Size Avg’ and ‘Bwd Segment Size Avg’. These two

features were chosen based on the fact that in most of the training iterations, their distribution is

unchanged. The generator generates these two features after a certain number of initial training

iterations. The same principle is valid for the CIC-2017 and CIC-2018 datasets, so their results

were not included. However, it is imperative to know if the generated samples are as valid as

real-life traffic samples since not all the network traffic samples generated by the GANs might

be valid. The encoding/decoding of generated attack samples to relay to the internet to validate

the semantics was not performed . Since this work aims to devise a defence strategy against

adversarial attacks, improving the detection performance with the addition of data generated by

GAN in the ML domain is adequate. Hence, the realistic samples were generated to improve
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detection rather than real traffic samples to fail botnet detectors. This is left as future work to

filter valid samples out of the generated data from GANs.
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Figure 3.14: Contour plot of two random features from the ISCX-2014 dataset: Both GAN
Bots (C2ST) and GAN Bots (Botshot) try to follow the Real Bots distribution.
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3.6 Summary

GANs have proved to be very effective in computer vision-based applications. However, it can

be inferred from this work that GANs are suitable candidates to address multiple challenges

within the cybersecurity domain as well. Significantly, the effects of adversarial evasion attacks

can be mitigated proactively using GANs’ generated traffic augmentation to the original train

sets. The general method to utilise GANs to generate quality samples is based on the loss

functions of generator and discriminator networks. However, the quality of generated data could

be further evaluated using the classifiers under test.

• A technique was proposed to generate improved quality samples to fulfil this objective in

the case of botnet detection.

• The results show that GANs can provide a better alternative to the traditional traffic gen-

eration methods for all the classifiers used. GANs can also balance the datasets, further

enhance the botnet detectors’ security hardening, especially against adversarial evasion

attacks, and decrease false positives.

The behaviours and landscapes of modern botnets need to be explored further with the introduc-

tion of novel traffic features to differentiate botnets from benign traffic. Modern GANs could

be harnessed to enhance the quality of adversarial examples further. The validity of GANs’

generated traffic in terms of semantics could be another extension of this research work. A fur-

ther envisaged research direction could be making the IDS autonomous to be proactively trained

against novel evasion samples using deep reinforcement learning.
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Chapter 4

Evasion Generative Adversarial

Network for Low Data Regimes

4.1 Introduction

Many recent literary works have leveraged generative adversarial networks (GANs) to spawn

unseen evasion samples. The purpose is to annex the generated data with the original train set

for adversarial training to improve the detection performance of machine learning (ML) clas-

sifiers. The quality of generated adversarial samples relies on the adequacy of training data

samples. However, in low data regimes like medical diagnostic imaging and cybersecurity,

the anomaly samples are scarce in number. This chapter proposes a novel GAN design called

Evasion Generative Adversarial Network (EVAGAN) that is more suitable for low data regime

problems that use oversampling for the detection improvement of ML classifiers. EVAGAN

not only can generate evasion samples, but its discriminator can act as an evasion-aware classi-

fier. The Auxiliary Classifier GAN (ACGAN) was considered as a benchmark to evaluate the

performance of EVAGAN on cybersecurity (ISCX-2014, CIC-2017 and CIC2018) botnet and

computer vision (MNIST) datasets. It is demonstrated that EVAGAN outperforms ACGAN for
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unbalanced datasets concerning detection performance, training stability and time complexity.

EVAGAN’s generator quickly learns to generate the low sample class and hardens its discrim-

inator simultaneously. In contrast to ML classifiers that require security hardening after being

adversarially trained by GAN-generated data, EVAGAN renders it needless. The experimental

analysis proves that EVAGAN is an efficient evasion-hardened model for low data regimes for

the selected cybersecurity and computer vision datasets. The implementation of EVAGAN in

the form of python code is available at https: //github.com/rhr407/EVAGAN.

Low data regimes are found in many real-life applications where researchers face data scarcity

problems [76]. The data scarcity pertains to the situation where one class is abundant in data

samples (especially normal behaviour) while the anomaly samples are rare and challenging to

gather [77]. The data scarcity can also be described as a data imbalance problem potentially re-

sulting in decision bias in machine learning (ML) classifiers. The network traffic datasets are one

of the prime examples of data imbalance problems. Since the ML intrusion detection systems

are data-hungry probabilistic models, having more data can improve their performance [65]. The

real attacks can be emulated with dedicated machines in a lab environment using open-source

operating systems like Kali Linux [38, 42]. However, there can be two main disadvantages of

emulating real attacks: First, real data gathering can be expensive, involving multiple hardware

resources like multiple computers and network switches [78]. Second, the emulated attacks may

not accurately represent a real attack scenario. A cost-effective way of gathering the attacks’

data is synthetic generation using AI generative models [53].

As discussed in the previous chapter, generative adversarial networks (GANs) as synthetic over-

samplers have been a voguish research endeavour for low data regimes [65, 79]. Various re-

searchers have demonstrated that GANs are more effective than other synthetic oversamplers like

SMOTE [11, 14, 53, 77]. It is found in numerous studies that due to the adversarial factor; GANs

can better estimate the target probability distribution [14, 77, 80]. In a simple/vanilla GAN, two

different neural networks(generator (G) and discriminator (D)), work antagonistically to learn
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from each other’s experience to converge to Nash equilibrium [22]. As an oversampler, after

being trained to a certain number of epochs, G is used to generate additional data. Depending

on how well a GAN learned the input data probability distribution, the close resembling data is

annexed to the original train set. This process is called data augmentation (DA), which many

researchers have demonstrated to be effective in improving the detection performance of ML

classifiers [19, 81–84].

Since AI-based systems are prone to adversarial evasion attacks, it is imperative to harden the

ML classifiers against adversarial evasions. Black box attackers can use GANs to generate

evasion samples [19, 83, 85]. Therefore, employing GANs can be an effective technique for

proactively designing an evasion-aware classifier resulting from DA. Although DA is effective in

helping the ML classifiers recognise the perturbed data samples,D of a GAN can be extended to

act as a multiclass classifier so that it can be used as an anomaly detector [15, 24, 83]. In this way,

there is no need to use DA asD is trained simultaneously with G. ACGAN is an example of such

a GAN in whichD not only differentiates between fake and real samples but also can be used as

a multiclass classifier [54, 77]. The advantage of extendingD in ACGAN is to improve training

stability and quality of generated samples [54]. In this work, with the help of experimentation, it

has been demonstrated that ACGAN does not perform well in highly unbalanced datasets. So a

novel GAN based on ACGAN called EVAGAN is proposed that outperforms ACGAN in terms

of detection performance, stability in training and time complexity.

The main contributions of this chapter are summarised in the following aspects:

1. A novel GAN model is proposed to design an evasion-aware discriminator as a sophisti-

cated botnet detector.

2. The experiments demonstrate that the existing use of ACGAN to design a sophisticated

classifier can fail in highly unbalanced datasets.

3. It was determined that the EVAGAN outperforms ACGAN in terms of performance de-

tection, stability and time complexity for cybersecurity (CC) botnet and computer vision
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Table 4.1: Main notations

Notation Definition
G Generator
D Discriminator
z Normal distribution from noise space
𝑧 Noise samples

𝑝𝑑𝑎𝑡𝑎 Probability distribution of real samples
𝑝𝑧 Probability distribution of noise samples
X Real data distribution
E Expected value
𝑐𝑚 Minority class
𝑐𝑀 Majority class
𝑦𝑥𝑖 Label of a sample 𝑥𝑖 in X dataset
𝑦𝑟𝑒𝑎𝑙𝑥𝑖

Label of a real sample
𝑦
𝑓 𝑎𝑘𝑒
𝑥𝑖 Label of a fake sample
𝑦
𝑐𝑀
𝑥𝑖 Label of a majority class sample
𝑦
𝑐𝑚
𝑥𝑖 Label of a minority class sample

X𝑀𝑟𝑒𝑎𝑙
Set of real majority class samples

X𝑚 𝑓 𝑎𝑘𝑒
Set of fake/generated samples

X𝑚𝑟𝑒𝑎𝑙
Set of real minority class samples

𝑦
𝑐𝑚𝑟𝑒𝑎𝑙
𝑥𝑖 Label of real minority class samples

(CV) datasets.

4.2 EVAGAN

In this section, the motivation behind the design of EVAGAN is discussed, the structural expla-

nation of its generator and discriminator, and the objective and loss functions. Table 4.1 shows

the main notations used in this chapter.

4.2.1 Motivation

Considering the generator (G) of ACGAN, X 𝑓 𝑎𝑘𝑒 = G(𝑐, 𝑧) where 𝑐 is the class label, G has

to generate the samples of all classes. Hence the number of the samples generated by G may

include 𝐶 = {𝑐1, 𝑐2, 𝑐3, ..., 𝑐𝑛} which may not be a requirement in low data regimes. Since there

is only need to generate a low sample class with labels 𝑐𝑚 instead of all the classes, the generator
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does not need to be aware of the classification performance of D on majority class samples. In

this way, the training time of G is reduced as the diversity seen by G is less complex to generate

a single class sample. Due to this reason, the performance of G can be improved and the D can

be hardened simultaneously with fewer 𝑐𝑚 samples.
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The ratio of the different class labels can vary the performance of G as this is a stochastic

process. However, in most cases, the normal class samples will be more than the anomaly

samples. Note that EVAGAN design is dedicated to binary class problems where the samples

of a minority class are scanty. For using EVAGAN for multiclass cases, each anomaly class

should be considered separately from the normal class to make it a binary classification problem.

However, the concept can be extended to multiclass, which is left to future work.

Figure 4.1 shows the structural difference between ACGAN and EVAGAN. Considering the

challenges mentioned above, the design of ACGAN based on a few simple modifications is

extended. The significance of the modifications in the generator input, discriminator output and

loss functions for EVAGAN is discussed in more detail in section 4.2.

4.2.2 Architecture

The design of EVAGAN is inspired by ACGAN as the desire is to develop a classifier model

that hardens itself on the GAN-generated evasion samples. The main structure of EVAGAN

consists of two neural networks; the generator G and the discriminator D. In contrast to AC-

GAN, EVAGAN’s model is limited to labels from a single class embedded with noise as the

input to the generator (G). The details of G have been explained in subsection 4.2.3. Figure

4.2 shows the detailed architecture of EVAGAN. There are three types of colour-graded arrows

shown in the figure. The red coloured arrows demonstrate the first training step in which only

D is trained. The green arrows depict the second training step for G. The orange arrows show

the involvement of common inputs (minority class labels and noise) and outputs (real/fake and

minority class estimations) for both training steps mentioned previously. These two steps of a

typical GAN training were expressed earlier in subsection 2.3. The discriminator D of EVA-

GAN has three different outputs for the estimation of majority, minority and fake/real classes.

Sigmoid functions have been used for the three outputs, each with binary cross-entropy (BCE)

loss. The details of D are further expressed in subsection 4.2.4. The loss functions have also

been mentioned in respective subsections of G and D.
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Figure 4.2 shows a red outlined box on the right side to illustrate the three different probability

estimations as outputs from D. These three estimations are used to compute the loss of D in

the first step of EVAGAN training. A green outlined box including the real/fake estimation and

minority class estimation computes the 𝐺 𝐿𝑜𝑠𝑠 to be fed back to G in the back-propagation

of the combined model training (second step of EVAGAN training). Note that the output of

D is distributed using three different sigmoid units to separate the probabilities of each class,

i.e. majority, sources (real/fake) and minority. The majority and minority class estimations

could be combined using a single sigmoid function. However, keeping them separate has three

advantages. The first is to avoid the loss of the majority class being fed back to G. Second, it

simplifies the model with no extra training cost. Third, the predictions for the test set samples

can be conveniently separated, which will be discussed in Section 4.4.

4.2.3 Generator

The generator (G) of EVAGAN only takes noise 𝑧 and the single class labels 𝑐𝑚 = 1 as the only

binary classification (normal and anomaly samples) is considered. The labels are embedded in

the input layer of G. The objective function of G has two parts as shown in Equations 4.1 and

4.2.

𝐼G (G) = E[log(D(G(𝑧)))] (4.1)

𝐽G (G) = E[log 𝑃(𝐶 = 𝑐𝑚 |X𝑚 𝑓 𝑎𝑘𝑒
)] (4.2)

Equation 4.1 is the objective function of G similar to Equation 2.2. The goal is to minimise the

log-likelihood of the fake samples being classified as fake by D. In Equation 4.2, 𝐽G (G) is the

objective function of G for improving the log-likelihood of minority class samples coming from

G intoD, where 𝑃 is the output probability fromD. Since G only needs to generate 𝑐𝑚 samples
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so it should only receive the loss of D on the estimation of minority class and the sources, i.e.

the samples being real or fake. The objective function of G is to maximise D loss on the fake

source. At the same time, it will assist in minimisingD loss on 𝑐𝑚 samples. Equation 4.3 shows

the objective function of G.

𝐿G (G) = 𝐽G (G) − 𝐼G (G) (4.3)

The cross-entropy (CE) loss of real and predicted probability distributions 𝑝(𝑥) and 𝑞(𝑥) re-

spectively, can be denoted using Equation 4.4, where x denotes the samples belonging to X

dataset.

𝐶𝐸 (𝑝, 𝑞) = −
∑︁
𝑥𝜖 𝑋

𝑝(𝑥) log 𝑞(𝑥) (4.4)

Let 𝑦𝑥𝑖 be the actual label of sample 𝑥𝑖 in dataset X, 𝑃(𝑆 = 𝑓 𝑎𝑘𝑒 |X𝑚 𝑓 𝑎𝑘𝑒
) be the predicted

probability distribution of generated samples being fake and 𝑃(𝐶 = 𝑐𝑚 |X𝑚 𝑓 𝑎𝑘𝑒
) be the predicted

probability distribution for minority class 𝑐𝑚, both coming from D, then the loss function of G

for 𝑁 samples will be given by the Equation 4.5.

𝐺 𝐿𝑜𝑠𝑠 = − 1
𝑁

𝑁∑︁
𝑖=1
[𝑦 𝑓 𝑎𝑘𝑒𝑥𝑖 (log 𝑃(𝑆 = 𝑓 𝑎𝑘𝑒 |X𝑚 𝑓 𝑎𝑘𝑒

))+

𝑦𝑐𝑚𝑥𝑖 (1 − log 𝑃(𝐶 = 𝑐𝑚 |X𝑚 𝑓 𝑎𝑘𝑒
))]

(4.5)

In Equation 4.5, 𝑦 𝑓 𝑎𝑘𝑒𝑥𝑖 and 𝑦𝑐𝑚𝑥𝑖 are the actual labels for fake and minority classes respectively.

According to Equation 4.5, the goal of G is to minimize the 𝐺 𝐿𝑜𝑠𝑠, so it tends to reduce the

correct estimation of D on fake samples by suppressing the term log 𝑃(𝑆 = 𝑓 𝑎𝑘𝑒 |X𝑚 𝑓 𝑎𝑘𝑒
). For

the second objective, it will try to increase the value of log 𝑃(𝐶 = 𝑐𝑚 |X𝑚 𝑓 𝑎𝑘𝑒
) so that the second

term in the equation can also be suppressed in value.
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4.2.4 Discriminator

For theD model of EVAGAN, the majority and minority class estimations were separated using

two different sigmoid (𝜎) functions as demonstrated in Figure 4.2. The benefit of separating both

estimations is that only minority class estimation can be fed back to G. The other advantage of

this structure is that the estimation of both classes could be separately calculated on test datasets

to compare it with the ACGAN model later done in section 4.4. The objective function ofD has

three parts as given by the Equations 4.6, 4.7 and 4.8. For the minority class terminologies, ’𝑚’,

and for the majority class, ’𝑀’ was used in the following equations.

𝐿𝑀 = E[log 𝑃(𝐶 = 𝑐𝑀 |X𝑀𝑟𝑒𝑎𝑙
)] (4.6)

𝐿𝑆𝑚 = E[𝑙𝑜𝑔𝑃(𝑆 = 𝑟𝑒𝑎𝑙 |X𝑚𝑟𝑒𝑎𝑙
)] +

E[ 𝑙𝑜𝑔𝑃(𝑆 = 𝑓 𝑎𝑘𝑒 |X𝑚 𝑓 𝑎𝑘𝑒
)]

(4.7)

𝐿𝑚 = E[log 𝑃(𝐶 = 𝑐𝑚 |X𝑚𝑟𝑒𝑎𝑙
)] +

E[log 𝑃(𝐶 = 𝑐𝑚 |X𝑚 𝑓 𝑎𝑘𝑒
)]

(4.8)

The first goal of D is to correctly estimate the majority class distribution from the real samples

only as G does not generate the majority class samples. Equation 4.6 denotes the log-likelihood

for the real majority class samples. Equation 4.7 represents the source log-likelihood for the

real and fake minority class samples. Equation 4.8 summarises the real and fake log-likelihoods

from D for minority class samples. Hence, the objective function of D can be represented as

the sum of the three log-likelihoods to be maximised by D as given by Equation 4.9

𝐿D (D) = 𝐿𝑀 + 𝐿𝑆𝑚 + 𝐿𝑚 (4.9)
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The loss function ofD can be derived using Equation 4.1 and 4.2, given by Equation 4.10.

𝐷 𝐿𝑜𝑠𝑠 = − 1
𝑁

𝑁∑︁
𝑖=1
[𝑦𝑐𝑀𝑥𝑖 (log 𝑃(𝑆 = 𝑐𝑀 |X𝑀𝑟𝑒𝑎𝑙

))+

𝑦𝑟𝑒𝑎𝑙𝑥𝑖
(log 𝑃(𝑆 = 𝑟𝑒𝑎𝑙 |X𝑚𝑟𝑒𝑎𝑙

))+

(1 − 𝑦𝑟𝑒𝑎𝑙𝑥𝑖
) (1 − log 𝑃(𝑆 = 𝑟𝑒𝑎𝑙 |X𝑚𝑟𝑒𝑎𝑙

))+

𝑦
𝑐𝑚𝑟𝑒𝑎𝑙
𝑥𝑖 (log 𝑃(𝐶 = 𝑐𝑚 |X𝑚𝑟𝑒𝑎𝑙

))+

(1 − 𝑦𝑐𝑚𝑟𝑒𝑎𝑙
𝑥𝑖 ) (1 − log 𝑃(𝐶 = 𝑐𝑚 |X𝑚𝑟𝑒𝑎𝑙

))]

(4.10)

In Equation 4.10, the loss ofD has been derived from three different binary cross-entropy losses

for majority class, sources and minority class estimations. Note that the loss on 𝑐𝑀 was ignored

for being fake because no majority class samples are being generated by G.

4.3 Implementation Details

4.3.1 Experimental Setup

The experiments were performed on a GPU workstation, AMD Ryzen threadripper 1950x with

a 16-core processor and GeForce GTC 1070 Ti (8GB) graphics card, running ubuntu 20.04.

Keras, TensorFlow, Sklearn and Numpy libraries were used in the Jupyter notebook and visual

studio code (VSCode). The source code of EVAGAN has been provided on GitHub under MIT

license1.

4.3.2 Data Preparation

For experimentation, CC botnet and CV MNIST datasets were used. The quantitative analysis

of EVAGAN was performed on CC datasets. ISCX-2014, CIC-2017 and CIC-2018 CC datasets

were employed as previously used in Chapter 3. The reader may refer to the previous chapter for

1https: //github.com/rhr407/EVAGAN
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more details on the feature set selections as given in 3.2 and the benign vs botnet samples distri-

bution mentioned in Table 3.1. The qualitative analysis was performed using visual inspection.

For this purpose, the MNIST handwriting digits dataset was used.

4.3.3 CV Dataset

4.3.3.1 MNIST Dataset

The MNIST dataset is a simplified collection of handwritten digits ranging from 0 to 9 for train-

ing and testing various ML algorithms [86]. The purpose of using this dataset was to evaluate the

performance of EVAGAN against ACGAN in terms of the visual quality of the images generated

in balanced and unbalanced scenarios.

4.3.4 Model Comparison of EVAGAN with ACGAN

For comparison, four different variants of GANs were constructed, respectively ACGAN CC,

EVAGAN CC, ACGAN CV, and EVAGAN CV. ACGAN CC and EVAGAN CC were trained

and tested on CC datasets, and ACGAN CV and EVAGAN CV used CV datasets. The imple-

mentation details of each version in terms of hyperparameters can be found in Table 4.2.

4.3.4.1 ACGAN CC & EVAGAN CC

The structure of ACGAN CC and EVAGAN CC was made up of a densely connected feed-

forward neural network (FFNN) for both G andD. The activation functions in hidden layers for

both GANs were rectified linear units (ReLU). The hidden layers were regularised using batch

normalisation, and the optimiser type was Adam with binary cross-entropy (BCE). The differ-

ence between ACGAN CC and EVAGAN CC is in the output layers of D. D of ACGAN CC

outputs two neurons, one for the source probability and the other for the class probability for

two classes (normal and botnet). The activation function is sigmoid for both outputs. The output

layer structure of EVAGAN CC has three neurons, one for the normal class, the second for the

source probability, and the third for the botnet class (minority class). Each of the three outputs
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leverages the sigmoid as the activation function.

4.3.4.2 ACGAN CV & EVAGAN CV

The CV-based GAN architecture is different as it deals with image data compared to tabular

data in CC. The convolutional neural network (CNN) was used instead of FFNN with other lay-

ers specific for image generation or detection. The output layer of D is similar to CC-based

GAN implementations, except the Adam optimiser’s loss function has BCE for source estima-

tions and sparse categorical cross-entropy (SCCE) for class labels. Here, BCE could have been

used; however, minimal changes to the code were made to maintain the integrity of the original

ACGAN. However, in ACGAN CC, BCE was used as the CNN-based code was converter to

FFNN. In this way, ACGAN CC and EVAGAN CC could be kept as similar as possible for a

fair comparison.

70



CHAPTER 4. EVASION GENERATIVE ADVERSARIAL NETWORK FOR LOW DATA
REGIMES

Table 4.2: CC and CV GAN Models
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4.4 Results

This section shows the results of the GAN implementations around two types of datasets: CC

and CV GANs.

4.4.1 CC GANs

The results for quantitative analysis ofD’s performance on generated samples validity (GEN VALIDITY),

fake/generated botnet samples evasion (FAKE BOT EVA), real normal/majority class estima-

tion (REAL NORMAL EST) and real botnet/minority class evasion (REAL BOT EVA) have

been demonstrated in Figure 4.3. The ML classifier results are also shown in this figure for the

three CC datasets for comparison. Equations from 4.11-4.14 represent the mathematical expres-

sions for these performance indicators. The Keras 𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 function was used to compute

the values where the 𝑚𝑜𝑑𝑒𝑙 is D as the prime objective is to devise an intelligent evasion-aware

classifier. Following is a brief detail of each evaluation parameter.

4.4.1.1 GEN VALIDITY

In Equation 4.11, Ĝ(𝑧, 𝑐𝑚) [0] denotes the predicted value for the source being fake or real. The

Keras 𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 function outputs an array, so the average of the first elements in the array

will be the source validity of the generated samples after every epoch. The more this value is

close to ’1’, the more it will be regarded as real.

𝐺𝐸𝑁 𝑉𝐴𝐿𝐼𝐷𝐼𝑇𝑌 =

∑[Ĝ(𝑧, 𝑐𝑚) [0]]
𝑁

(4.11)

4.4.1.2 FAKE BOT EVA

In Equation 4.12, Ĝ(𝑧, 𝑐 𝑚) [1] represents the probability estimation of generated minority/bot-

net class samples. Since the label for the minority/botnet class is ’0’ so ideally, it is expected

that the model will output a value close to ’0’. This estimation was represented as the evasion of
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the generated samples. So the more this value is close to ’0’, the less evasion will be. Note that

this is the second value in the sum of the 𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 function output.

𝐹𝐴𝐾𝐸 𝐵𝑂𝑇 𝐸𝑉𝐴 =

∑[Ĝ(𝑧, 𝑐𝑚) [1]]
𝑁

(4.12)

4.4.1.3 REAL NORMAL EST

In Equation 4.13, X̂𝑛𝑜𝑟𝑚𝑎𝑙𝑡𝑒𝑠𝑡 [2] represents the probability estimation of majority/normal class

samples. Since the majority/normal class label is ’1’, ideally, it is expected that the model will

output a value close to ’1’. Note that this is the third value in the sum of the 𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡

function output for the normal samples from the test set.

𝑅𝐸𝐴𝐿 𝑁𝑂𝑅𝑀𝐴𝐿 𝐸𝑆𝑇 =

∑ [X̂𝑛𝑜𝑟𝑚𝑎𝑙𝑡𝑒𝑠𝑡 [2]]
𝑁

(4.13)

4.4.1.4 REAL BOT EVA

In Equation 4.14, X̂𝑏𝑜𝑡𝑛𝑒𝑡𝑡𝑒𝑠𝑡 [1] represents the probability estimation of the real minority/botnet

class samples. The expectation from the model is to output the value close to ’0’, similar to

FAKE BOT EVA. This is the second value in the sum of the 𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 function output for

the botnet samples from the test set.

𝑅𝐸𝐴𝐿 𝐵𝑂𝑇 𝐸𝑉𝐴 =

∑ [X̂𝑏𝑜𝑡𝑛𝑒𝑡𝑡𝑒𝑠𝑡 [1]]
𝑁

(4.14)

4.4.1.5 Losses

The losses of D for real and fake minority classes and majority/normal class and the loss of G

have been demonstrated in Figure 4.4 for both ACGAN and EVAGAN.

73



CHAPTER 4. EVASION GENERATIVE ADVERSARIAL NETWORK FOR LOW DATA
REGIMES

0
0.

2
0.

4
0.

6
0.

81

E
p

o
ch

s

0
0.

2
0.

4
0.

6
0.

81

E
p

o
ch

s

0
0.

2
0.

4
0.

6
0.

81

E
p

o
ch

s

0
0.

2
0.

4
0.

6
0.

81

E
p

o
ch

s

0
0.

2
0.

4
0.

6
0.

81

E
p

o
ch

s

0
0.

2
0.

4
0.

6
0.

81

E
p

o
ch

s

ACGAN EVAGAN

G
E

N
_V

A
LI

D
IT

Y
F

A
K

E
_B

O
T

_E
V

A
R

E
A

L_
N

O
R

M
A

L_
E

S
T

R
E

A
L_

B
O

T
_E

V
A

IS
C

X
-2

0
1

4
C

IC
-2

0
1

7
C

IC
-2

0
1

8

0
0.

2
0.

4
0.

6
0.

81

0
0.

2
0.

4
0.

6
0.

81

0
0.

2
0.

4
0.

6
0.

81

ML Classifiers

Fi
gu

re
4.

3:
C

C
E

st
im

at
io

ns
:T

he
es

tim
at

io
ns

on
te

st
da

ta
an

d
da

ta
ge

ne
ra

te
d

by
th

e
re

la
tiv

e
G

A
N

s
al

on
g

w
ith

th
e

re
su

lts
of

si
x

di
ff

er
en

t
M

L
-c

la
ss

ifi
er

s

74



CHAPTER 4. EVASION GENERATIVE ADVERSARIAL NETWORK FOR LOW DATA
REGIMES

ACGAN EVAGAN

C
IC
-2
01

7
C
IC
-2
01

8

0
22
44
66
88
11

0
13

2

01234

E
p
o
ch

s

0
22
44
66
88
11

0
13

2

01234

E
p
o
ch

s

D
_L

os
s_

R
ea

l_
B
ot

D
_L

os
s_

F
ak

e_
B
ot

D
_L

os
s_

R
ea

l_
N
or
m
al

G
_L

os
s

IS
C
X
-2
01

4

D
_L

os
s_

R
ea

l
D
_L

os
s_

F
ak

e
G
_L

os
s

0
22
44
66
88
11

0
13

2

01234

E
p
o
ch

s

0
22
44
66
88
11

0
13

2

01234

E
p
o
ch

s

0
22
44
66
88
11

0
13

2

01234

E
p
o
ch

s

0
21
42
63
84
10

5
12

6
14

7

01234

E
p
o
ch

s

Fi
gu

re
4.

4:
C

C
G

A
N

s
L

os
se

s:
T

he
tr

ai
ni

ng
lo

ss
es

fo
rA

C
G

A
N

an
d

E
VA

G
A

N
on

th
re

e
di

ff
er

en
tC

C
da

ta
se

ts

75



CHAPTER 4. EVASION GENERATIVE ADVERSARIAL NETWORK FOR LOW DATA
REGIMES

4.4.2 CV GANs

For ACGAN CV and EVAGAN CV, MNIST handwritten digits dataset was used. Only two

classes of digits, ’0’ and ’1’, were used in ACGAN CV, as due to SCCE, its model does not

accept fewer than two classes. For ECAGAN CV, only the ’0’ digit as the minority class was

used. Since the MNIST data is already balanced, it is desired to undersample the values of the

’0’ digit class to demonstrate the difference in performance. Four different undersampling levels

have been devised in section 4.5. The evaluation parameters were equivalent to those used in

CC GANs. For instance, GEN Validity is the same as GEN VALIDITY; GEN Eva is similar to

FAKE BOT EVA with the minority class from MNIST, i.e. ’0’ in this case. Similarly, ONE Est

is equivalent to REAL NORMAL EST, and ZERO Eva is comparable to REAL BOT EVA in

CC GANs. Figure 4.5 demonstrates the quantitative results for the four undersampling scenarios.

Note that out of four; the first scenario exhibits 0% undersampling. There are three scenarios

with undersampling, 50%, 90% and 99%. For qualitative analysis, the output from Gs of both

ACGAN CV and EVAGAN CV have been demonstrated in Figures 4.7 and 4.8. These results

are also based on the undersampling cases.
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4.5 Discussion

4.5.1 Detection Performance

In Figure 4.3, for the ACGAN CC, the values for the REAL NORMAL EST and REAL BOT EVA

remain close to each other. This implies that D of ACGAN CC cannot discriminate between

the majority and minority classes well due to the imbalance problem in all three CC datasets. D

of ACGAN CC remains confused for the two classes in ISCX-2014 and CIC-2017 datasets. For

the majority class, ACGAN CC performs equally well as EVAGAN CC for CIC-2018 (shown

in the second row of Figure 4.3). However, due to the small number, it regards the minority class

samples as the majority class instances. The second row in Figure 4.3 shows the results of EVA-

GAN CC for the estimations on the test set. It can be observed that as compared to ACGAN CC,

D of EVAGAN CC perfectly differentiates between the majority and minority classes and, after

each epoch, tends to improve its detection performance for all the three CC datasets.

The FAKE BOT EVA was used as an indicator of evasion awareness of D in the case of EVA-

GAN CC only because ACGAN CC generates two classes of data, so G of ACGAN CC would

generate a random number of samples from both classes leading to non-deterministic values of

FAKE BOT EVA. However, the performance of this metric was compared with ML classifiers.

The last row of Figure 4.3 shows the results of the six different ML classifiers for the values

of the majority, minority and generated class samples. It can be inferred that EVAGAN CC

tends to outperform the ML classifiers for all three values after a certain number of epochs. The

ML classifiers for black-box testing perform worst in the case of FAKE BOT EVA as compared

to EVAGAN CC for all three CC datasets. This implies that D of EVAGAN CC is not only

adept at discriminating between real minority samples but can also easily detect the fake mi-

nority samples that ML classifiers are not good at discerning. Another significant advantage of

this D is that it is not needed to employ ML classifiers in CC for learning adversarial evasion.

Researchers use GANs to generate adversarial samples to be augmented with the training set for

retraining ML classifiers to make them evasion-aware. In the case of EVAGAN CC, that time
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could be saved, as D classifier/detector model is trained alongside the GAN training.

It can be further illustrated from Figure 4.3 that the value of GEN VALIDITY in the case of

ACGAN CC seems to remain close to 0.5 for all three CC datasets. It means thatD is confused

in deciding whether the generated samples from G are real or fake. However, in the case of

EVAGAN CC, for all three datasets, G’s performance is improving with each epoch. This im-

plies that D is being fooled and still learning, while in the case of ACGAN CC, D has already

been saturated because G is not generating new samples that can fool D.

4.5.1.1 CV GANs

Figure 4.5 demonstrated the results of different undersampling scenarios to mimic the low data

regimes for the MNIST dataset. Note that the detection performance ofD for both ACGAN CV

and EVAGAN CV for the majority and minority classes remains ideal from the very start. The

reason is that, unlike CC datasets, the CV dataset has many strong features due to which D is

easily able to differentiate between the ’0’ digit and ’1’ digit samples. However, the undersam-

pling effect can be seen for the minority class or digit ’0’ data. In contrast, D of EVAGAN CV

seems to be smart enough to give steady values for all the undersampling cases, especially for

minority class evasion (as depicted in red colour lines). Due to the sufficient number of samples,

the majority class should be detected easily by both GANs. However, in the case of 99% under-

sampling, ACGAN CV exhibits a poor performance even detecting this class. For GEN Validity

(represented by the blue lines), Figure 4.5 shows that in undersampling cases, the performance

of G of ACGAN CV deteriorates in the worst manner and does not show any useful pattern of

learning. This implies that in low data regimes, G is not performing as well as EVAGAN CV

is. However, EVAGAN CV also shows the deterioration in G’s performance, but that is not as

phenomenal as that of ACGAN CV.
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4.5.2 Stability

The Figure 4.4 shows D and G losses for CC GANs. It can be inferred from this diagram that

the values for all the losses seem to be converging. This shows that the GANs are saturating

towards Nash equilibrium. However, in the case of EVAGAN CC, the losses tend to be more

steady with each epoch and achieve the lowest point sooner than ACGAN CC. Similarly, for CV

GANs, the EVAGAN CV losses in all the undersampling cases tend to be more stable compared

to ACGAN CV as demonstrated in Figure 4.6.

4.5.3 Qualitative Performance

It is non-trivial to demonstrate the performance of a GAN in the case of CC datasets [87]. Since

it was not possible to visualise the generated network traffic, so it was desired to validate the

EVAGAN with the help of CV datasets. The rationale for using CV datasets is that if EVA-

GAN outperforms ACGAN in unbalanced scenarios, then it would be equally acceptable for CC

datasets. Since the purpose is not to generate quality traffic for CC, it was needed to design an

evasion-aware anomaly detector. So, evaluating EVAGAN CC for quality traffic generation is

not within the scope of this work.

The previously mentioned undersampling scenarios for CV GANs have been demonstrated in

Figures 4.7 and 4.8. There are two 15 × 10 matrices of pictures in each figure. The number of

images in each matrix equals the total number of epochs, i.e. 150. In each figure, the upper

row belongs to the ACGAN CV output of G, and the lower row corresponds to the output

from G of EVAGAN CV. Note that for ACGAN CV, two classes are output from G, and for

EVAGAN CV, only one ’0’ digit class is generated. For the undersampling scenario, which

contains 50% fewer ’0’ class samples, the deterioration for ACGAN CV starts getting evident,

but EVAGAN CV can generate ’0’ digits. For the case of 90% undersampling, the ACGAN CV

quality miserably deteriorates; however, EVAGAN CV is still generating the ’0’ class samples,

although slightly faded. In the 99% undersampling case, as expected, the ACGAN CV is still
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struggling to generate the minority class digit ’0’, but an interesting case has happened for

EVAGAN CV. Since the number of samples is minuscule, the feedback taken from D by G,

on some accidentally generated ’1’ digit, gave a small value of 𝐺 𝐿𝑜𝑠𝑠. Due to this, G started

generating the majority class ’1’ digit after epoch 47. This situation is called a mode collapse, an

inherent problem in GANs. However, it can be inferred that EVAGAN CV may not perform well

in a highly unbalanced scenario. This is an interesting research direction to investigate further

using other CV datasets. On the other hand, ACGAN CV is also stuck in mode collapse after

epoch 140, where in place of class ’0’, the ’1’ class samples start appearing. However, in the

case of EVAGAN CV, despite mode collapse, the generated samples from class ’1’ are of higher

quality which means that its G is more powerful than that of ACGAN in highly unbalanced

scenarios.
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4.5.4 Time Complexity

The time complexity bar chart has been demonstrated in Figure 4.9, where the y-axis represents

the values of the training time in minutes. The MNIST dataset case with no undersampling was

used to compare the results. The time complexity may vary on different platforms (for instance,

Google Colab); however, the plot in Figure 4.9 shows the results on the workstation that was

previously used (as mentioned in section 4.3). It can be observed that EVAGAN always takes

less time than its counterpart for all four datasets. The reason is that G of EVAGAN, in the cases

of all the datasets, needs to follow lesser diversity compared to ACGAN. Although the batch size

of 256 (given in Table 4.2) is the same for both GANs, the amount of time taken by EVAGAN

is always less. Due to the stochastic nature of the input noise 𝑧 for G, the exact time in minutes

can not be estimated for every training cycle; however, the average time of EVAGAN always

remains less as compared to ACGAN.

A question might arise why ACGAN was not made to generate only the minority class samples.

The answer to this question is that there would be a need to make changes in the structure of

both G and D along with the loss functions. The SCCE loss does not allow us to use less than

two classes, so BCE loss needs to be used with other structural modifications. EVAGAN is the

name of this transformation.
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Figure 4.9: Time Complexity

4.6 Comparison of EVAGAN with Peer Techniques

The EVAGAN model is an enhanced version of ACGAN, dedicated to low data regimes for

learning adversarial evasion examples generated during GAN training. So the most suitable

existing model for the comparison can be ACGAN, the details of which have been explained in

section 4.5 previously. However, this section mentions peer techniques similar to EVAGAN that

indirectly address the adversarial evasion problem. The comparison in the following subsections

has been summarised and then in the form of a Table 4.3.

4.6.1 Data Augmentation

There are several techniques both in CV and CS that propose the data augmentation for enhanc-

ing the ML classifiers’ performance [19, 62, 65, 88–92] . However, EVAGAN itself acts as a

powerful adversarial evasion-aware model in which the discriminator (D) acts as a classifier. So

there is no need to generate evasion samples from a GAN model, augment with the training set

and then train a separate ML classifier. This property of EVAGAN makes it superior to all the

techniques based on data augmentation in terms of time complexity.
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4.6.2 Computer Vision vs Cybersecurity Low Data Regimes

Many works address the problem of low data regimes [93–99]. However, their datasets and

model architectures differ from those used in this work. A few have been mentioned in Table

4.3. Since ML studies are biased towards data, experimenting with other datasets can be a

potential future work.

4.6.3 Architecture Comparison

Authors in [24] proposed a model in which the discriminator acts as a multiclass classifier;

however, their work is not destined towards adversarial evasion generation in low data regimes

as they are considering the normal class samples to train the generator of their GAN. The thesis

work differs in a way that the generator (G) is not fed with normal class samples, which makes

G’s job easier. This saves training time and improves the estimation accuracy of malicious

samples, even being scanty.

4.6.4 Accuracy and Time Complexity

EVAGAN produces ideal results of estimation for both majority and minority classes, as high as

100% for all the datasets used, as mentioned in section 4.4. The comparison has been provided

with ACGAN; however, compared with other similar models, the accuracy is also at par. The ac-

curacy values determined from the literature for some other models addressing similar problems

have been given in Table 4.3. The time complexity compared to the ACGAN model has been

discussed in section 4.4; however; it would be non-trivial to compare with other peer models in

respect of training time as the model architecture and hyperparameters vary enormously. The

experiments for EVAGAN and ACGAN were performed on the same machine as mentioned in

section 4.3, so the claim is made with the time complexity comparison with ACGAN only.
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Table 4.3: Comparison with Peer Works
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4.7 Summary

Adversarial evasion attacks on AI-based systems are a portending threat that needs to be dealt

with using intuitive methods. Adversarial learning is one of the modern techniques to make

ML classifiers proactively adept at detecting adversarial evasion samples. In this chapter, a

novel GAN model called EVAGAN is proposed that generates adversarial evasions in low data

regimes.

• EVAGAN is an enhancement of a well-known model called ACGAN. The purpose of

EVAGAN is to design an evasion-aware classifier for anomaly detection.

• Two types of datasets were used; one from the cybersecurity domain for botnets and the

other from the computer vision called MNIST.

• EVAGAN’s discriminator proves superior to ACGAN in terms of detection performance,

stability, and time complexity.

• At the same time, the qualitative analysis shows that EVAGAN outperforms ACGAN in

unbalanced scenarios.

EVAGAN model has been designed for binary classification problems. Further investigation for

multiclass design is a potential research direction. Experiments with other datasets would be

highly desirable to evaluate EVAGAN for the said parameters further. For the qualitative analy-

sis, handwritten digits other than ’0’ and ’1’ could further validate EVAGAN’s superiority over

ACGAN. A comparison with few-shot learning could be an exciting research direction.
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Chapter 5

Deep Reinforcement Learning-based

Evasion Generative Adversarial

Network

5.1 Introduction

Botnet detectors based on machine learning are potential targets for adversarial evasion attacks.

Several research works employ adversarial training with samples generated from generative ad-

versarial nets (GANs) to make the botnet detectors adept at recognising adversarial evasions.

However, the synthetic evasions may not follow the original semantics of the input samples.

This chapter proposes a novel GAN model leveraged with DRL to explore semantic aware sam-

ples and simultaneously harden its detection. A DRL agent is used to attack the discriminator of

the GAN that acts as a botnet detector. The discriminator is trained on the crafted perturbations

by the agent during the GAN training, which helps the GAN generator converge earlier than the

case without DRL. This model is named as RELEVAGAN, i.e. [”relive a GAN” or deep REin-

forcement Learning-based Evasion Generative Adversarial Network] because, with the help of
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DRL, it minimises the GAN’s job by letting its generator explore the evasion samples within the

semantic limits. During the GAN training, the attacks are conducted to adjust the discriminator

weights for learning crafted perturbations by the agent. RELEVAGAN does not require adver-

sarial training for the ML classifiers since it can act as an adversarial semantic-aware botnet

detection model. The code will be available at https://github.com/rhr407/RELEVAGAN.

RELEVAGAN is an effort toward a unifying model concept that would solve the problem of

data imbalance, provide adversarial semantic awareness and save training time. RELEVAGAN

is equipped with an integrated DRL agent to achieve the said goals. RELEVAGAN name was

chosen for two reasons. First, it is a deep REinforcement Learning-based Evasion Generative

Adversarial Network. Second, it relieves the employed GAN model to make its job easier by let-

ting the generator of the GAN explore the semantic-aware samples, i.e. within certain boundary

conditions. Either way, RELEVAGAN proves to be an improved technique compared to the peer

models like Auxiliary Classifier GAN (ACGAN) and Evasion Generative Adversarial Network

(EVAGAN).

The DRL agent attacks the RELEVAGAN’s discriminator, which acts as a botnet detector. The

attack generation is based on manipulating the real attack samples to evade the botnet detector.

As the RELEVAGAN training proceeds, the agent learns to evade the botnet detector. The

discriminator is adversarially trained on the DRL attacker’s evaded samples and the generator’s

synthetic samples in each training iteration. After a certain number of epochs, the discriminator

becomes hardened against the samples from the DRL agent and the generator. The detection

estimations for the benign, real and generated samples, and the generator training settle to the

desired values in fewer training iterations than the EVAGAN model. The experimental analysis

shows the considerable performance of the RELEVAGAN model against EVAGAN in terms of

detection estimation and stability of training for three different botnet datasets. It is argued that

the learning of GAN follows semantic awareness because GAN is also trained on the attacks

generated by the DRL model.
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The following are the main contributions of this chapter:

1. A novel DRL-based GAN model is proposed to address the problems of data imbalance,

evasion awareness and functionality preservation in synthetic botnet traffic generation.

2. By help of experiments it was demonstrated that DRL plays a role in GAN training for the

detection of synthetic as well as real attacks.

3. Because of the integrated self-learning DRL attacker, the proposed model can be envis-

aged as sustainable against evolving botnet.

4. It was determined that RELEVAGAN outperforms EVAGAN in terms of early conver-

gence of the training.
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5.2 RELEVAGAN

In this section, the motivation behind the design of RELEVAGAN is discussed, especially the

structural explanation of its DRL attacker. As illustrated by Figure 5.1, the DRL attacker has

been introduced in RELEVAGAN. The rest of the architecture is similar to EVAGAN. The im-

pact of using the DRL attacker helps improve the EVAGAN performance, the details of which

will be discussed in section 5.2.

5.2.1 Motivation

GAN-based samples generation follows the probability distribution of the input data samples as

G trains itself based on the feedback from D. G tries to explore the new sample spaces that are

unknown by D so that it can fool D; however, this process can lead to the creation of samples

that may not follow the real malicious semantics. To address this issue, DRL samples can help

G learn the boundaries of the real samples. For this reason, a DRL agent can be leveraged to

explore samples in a defined observation space. D can be trained on these generated samples,

giving the feedback to G in the GAN training. Eventually, G can start learning from the updated

feedback from D and generates the samples within a defined range set by the DRL agent. This

process can help converge G training earlier while at the same time achieving high accuracy in a

lesser number of epochs. Although semantic awareness comes with additional training costs for

the DRL part but motivated by this rationale, the RELEVAGAN is a step further toward a more

intelligent functionality-preserving GAN design.

94



CHAPTER 5. DEEP REINFORCEMENT LEARNING-BASED EVASION GENERATIVE
ADVERSARIAL NETWORK

N O I S E

RE
A

L

G
_L

os
s

G
D

D
_L

os
s

M
in

or
ity

 C
la

ss
La

be
ls

M
aj

or
ity

 C
la

ss
Es

tim
at

io
n

M
in

or
ity

 C
la

ss
Es

tim
at

io
n

Re
al

/F
ak

e
Es

tim
at

io
n

σσσ

FA
K

E

RE
A

L

En
vi

ro
nm

en
t St

at
e 

G
en

er
at

or

A

Re
al

 B
ot

ne
t 

D
at

as
et

 w
ith

 
M

in
or

ity
 an

d 
M

ajo
rit

y 
cla

ss
 

em
be

dd
in

gs
Re

wa
rd

 
(0

~1
)

Ac
tio

n 
Sp

ac
e =

 {
Se

le
cte

d 
Fe

at
ur

es
}

Ac
tio

n

Ev
as

io
ns

 w
ith

 
M

in
or

ity
 cl

as
s 

em
be

dd
in

g

Bo
tn

et
 S

ee
d 

Sa
m

pl
e

GA
N

 T
ra

in
in

g
D

RL
 A

tta
ck

Ev
as

io
n 

Tr
ai

ni
ng

 

RE
A

L

Ev
ad

ed
 

Sa
m

pl
e

S t
+n

S t
+n

a t
+n

S t

Fi
gu

re
5.

2:
R

E
L

E
VA

G
A

N
A

rc
hi

te
ct

ur
e

95



CHAPTER 5. DEEP REINFORCEMENT LEARNING-BASED EVASION GENERATIVE
ADVERSARIAL NETWORK

5.2.2 Architecture

Figure 5.2 shows the architecture of RELEVAGAN. The structure of RELEVAGAN has mainly

two components. One is EVAGAN, from Chapter 4, and the other part is a DRL model. Like

other DRL attackers for evasion generation using a black box attack, [25–27, 69, 70], the pro-

posed DRL agent attacks D of EVAGAN, which acts as a black box classifier. D’s output for

minority class estimation is used as the reward for the agent to adjust its weights and generate

a new action 𝑎𝑡+𝑛 based on some policy 𝜋. The new action is fed to the environment where the

state generator creates a new state taking another seed sample from the real data set. As the

result of a single iteration, the new state and the collected reward are fed back to the agent. As

a result of the positive reward, the evasion samples are fed to D of EVAGAN to adversarially

train it. In this way, D becomes proactively aware of any possible future evasions and ready to

give better feedback to G to train to confine its boundaries for evasion generation. The process

leads to the early convergence of G training.

5.2.3 Environment

The environment in RELEVAGAN consists of mainly two parts:

5.2.3.1 State Generator

The state generator is responsible for three different jobs:

• It takes a botnet seed sample as the current state 𝑆𝑡 from the real botnet dataset and trans-

forms it into a feature vector accepted by D of EVAGAN based on some action index 𝑛

coming from the agent.

• It feeds back the new state 𝑆𝑡+𝑛 to the agent.

• If the sample is evaded by D, the state generator is also responsible for storing and/or

feeding it to D to train in parallel with EVAGAN training adversarially.
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5.2.3.2 Botnet Detector

The target model is D of EVAGAN. In Figure 5.2, the EVAGAN model has been illustrated in

grey-coloured border lines, and the difference has been highlighted in black lines to understand

better where the RELEVAGAN is different from EVAGAN.

5.2.4 Action Space

The following feature set gives the action space through which the agent chooses the most appro-

priate index 𝑛 to gain the maximum reward by evading the target botnet model. These features

have been chosen based on the work in [25] for the three datasets used in this work. The details

of the datasets are mentioned in Section 5.3.

• FlowDuration

• FlowBytes/s

• FlowPackets/s

• FwdPackets/s

• BwdPackets/s

• TotalLengthofFwdPacket

• TotalLengthofBwdPacket

• BwdPackets/s

• SubflowFwdBytes

• FwdHeaderLength

• BwdHeaderLength

• Down/UpRatio

• AveragePacketSize
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To keep the functionality reservation, the change in the feature value is limited to Δ, which is

the minimum value of the particular feature within the data set as given by Equation 5.1.

Δ𝑛 = min
∀𝑚∈𝐹𝑛

𝑋 (𝑚) (5.1)

In Equation 5.1, Δ𝐹𝑛 is the minimum value for all the rows𝑚 of a particular feature 𝐹 and 𝑛 is the

action index coming from the agent as a particular feature number from the action table.

5.2.5 Agent

The agent is a deep neural network with the size of the observation space as input and the number

of actions as the output. The observation space in RELEVAGAN is a complete botnet sample

as a feature vector. The agent is responsible for choosing an action index 𝑛 among the features

in the action table as mentioned in Subsection 5.2.4. Based on this index, a training step is

executed, which feeds back the reward and the new state to the agent.

5.2.6 Reward

The reward in a typical botnet evasion generation model using a DRL black-box attack is the

output of the botnet detector [25, 27], which can be a real number in the range of [0, 1]. In the

proposed case, for the botnet sample, the expected value is ’0’, and for a normal traffic sample,

the output should be ideally ’1’. Hence for a botnet sample to be considered a successful evasion

by a DRL attacker, the threshold is set for the reward to be greater than 0.5. In other terms, if

the sample generated by the DRL attacker is evaded with more than 50% confidence, the reward

will be ’1’ and ’0’ otherwise.

5.2.7 Training

RELEVAGAN training is similar to EVAGAN except for adding a couple of extra steps for the

DRL agent after every training batch. In Algorithm 4, steps 3 and 4 discriminate the training
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between EVAGAN and RELEVAGAN for a defined number of batches. The sequence of the

steps is crucial for understanding the rationale behind RELEVAGAN. Note that G is trained

after the evasion training of D. Since D’s weights are adjusted as per the evasions generated by

the DRL attacker in Step 4, it will feed the 𝐺 𝐿𝑜𝑠𝑠 back toG more cognitively as compared to

the case of EVAGAN training. The DRL attack is executed in every batch of training.

Algorithm 4 RELEVAGAN Training

1: for i = 1, 2, 3, ..., number of batches do
2: Step 1: Train D on real data
3: Step 2: Train D on generated data
4: Step 3: Execute DRL A for generating evasion on batch size
5: Step 4: Train D on A generated evasions
6: Step 5: Train G
7: end for

5.3 Implementation Details

5.3.1 Experimental Setup

As mentioned in Chapter 4, the experiments for the RELEVAGAN were performed on a GPU

workstation, AMD Ryzen threadripper 1950x, equipped with a 16-core processor and an 8GB

memory GeForce GTC 1070 Ti graphics card. The OS used was ubuntu 20.04, running Keras,

TensorFlow, Sklearn and Numpy libraries within the Jupyter notebook. The source code of

RELEVAGAN is also available on GitHub under MIT license1.

5.3.2 Data Preparation

For experimentation, the CIC botnet datasets, ISCX-2014, CIC-2017 and CIC-2018, were used

according to Chapter 3 and 4.

1https://www.github.com/rhr407/RELEVAGAN
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5.3.3 DRL Attacker

For the implementation of the DRL attacker, the OpenAI Gym and gym-malware tool kits [26,

103] were used. Keras-rl and Keras-rl2 libraries were used for the selection of the DQN agent.

Unlike a typical DRL algorithm, a new training session was executed in every batch of the

RELEVAGAN training where the weights of the neural network are not reset to ensure that the

agent is learning in each batch iteration of RELEVAGAN. The reason for keeping the weights

is that it’s non trivial estimate the actual number of training iterations that would traverse the

whole batch of botnet samples for generating manipulations. Hence, the session is reinitialised

after each batch keeping the agent’s neural network unchanged. A single training session in each

batch iteration lasts until the following two cases appear:

• The evasion is successful.

• The number of tries saturates.

In either of the cases mentioned above, a new botnet seed sample is selected until the total

number of samples in a batch is traversed. Each training step takes an action index that selects

the corresponding feature from the botnet seed sample for manipulation. The modified sample

is tried on the trained D using the Keras 𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 function, which gives the estimation

of the botnet sample being from a minority class. This output estimation is used to set the

agent’s reward as mentioned in subsection 5.2.6. As a result of each step, the reward and the

new state (alternatively, the manipulated botnet sample) are returned to the agent. The details of

the hyperparameters of the DRL attacker part have been mentioned in Table 5.1 and Table 5.2

respectively.
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Table 5.1: Hyperparameters of DRL Attacker

Parameter Value
Agent Type DQN

Action Space 13
Policy BoltzmannQPolicy

Double DQN True
Target Model Update 1e-3

Number of turns 13
Number of rounds 256

Table 5.2: Hyperparameters of DRL Neural Network

Parameter Value
Network Type FFNN

Number of Layers 4
Activations ReLU, linear

Neurons in input layer size of observation space
Neurons in layer 1 64
Neurons in layer 2 128

Neurons in output layer number of actions
Layer Regularization 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚

5.4 Results & Discussion

The performance analysis of RELEVAGAN is identical to that of EVAGAN for botnet datasets.

The metrics used were generated samples validity (GEN VALIDITY), fake/generated botnet

samples evasion (FAKE BOT EVA), real normal/majority class estimation (REAL NORMAL EST),

and real botnet/minority class evasion (REAL BOT EVA). Figure 5.3 shows the results for the

estimations of ACGAN, EVAGAN and RELEVAGAN for comparison. The mathematical ex-

pressions for the evaluation metrics have been represented using Equations 5.2-5.5. These esti-

mations were computed using the Keras 𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 function. The details of these metrics

can be found in [104]. Figure 5.4 illustrates the losses of D for real and fake minority classes

and majority/normal classes and of G for ACGAN, EVAGAN and RELEVAGAN.

𝐺𝐸𝑁 𝑉𝐴𝐿𝐼𝐷𝐼𝑇𝑌 =

∑[Ĝ(𝑧, 𝑐𝑚) [0]]
𝑁

(5.2)
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𝐹𝐴𝐾𝐸 𝐵𝑂𝑇 𝐸𝑉𝐴 =

∑[Ĝ(𝑧, 𝑐𝑚) [1]]
𝑁

(5.3)

𝑅𝐸𝐴𝐿 𝑁𝑂𝑅𝑀𝐴𝐿 𝐸𝑆𝑇 =

∑ [X̂𝑛𝑜𝑟𝑚𝑎𝑙𝑡𝑒𝑠𝑡 [2]]
𝑁

(5.4)

𝑅𝐸𝐴𝐿 𝐵𝑂𝑇 𝐸𝑉𝐴 =

∑ [X̂𝑏𝑜𝑡𝑛𝑒𝑡𝑡𝑒𝑠𝑡 [1]]
𝑁

(5.5)
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5.4.1 Detection Performance

The discussion on the performance comparison of ACGAN with EVAGAN has been mentioned

in Chapter 4; however, in Figure 5.3, the estimations for ACGAN have also been included for

a clear comparison. The performance of ACGAN in discerning the minority class deteriorates

in low data regimes, especially in cybersecurity datasets. On the other hand, D of EVAGAN

discerns the difference between the minority of majority classes. However, regarding RELE-

VAGAN, the estimations approach the desired values quicker than EVAGAN after a few initial

unstable values. The RELEVAGAN was pre-trained for the values coming from the real and

generated sources, especially from epochs 0-44. This is the contribution of the DRL attacker

part. The most interesting case occurs for the CIC-2017 dataset, which took only a couple of

epochs to train itself and prepare for both the minority and majority classes. The role of DRL

with EVAGAN demonstrates the value addition, especially for the CIC-2017 dataset. This pat-

tern encourages us to explore further the potential of RELEVAGAN on other datasets, which is

left to future work.

The EVAGAN is being used as the base model, which does not require adversarial training

of dedicated ML classifiers because D of EVAGAN itself works as an evasion-aware botnet

detector. So RELEVAGAN also does not need the adversarial training; however, the evasions

that the DRL attacker produces need to be fed to D. This step imitates the back-propagation

step in GAN training.

GEN VALIDITY also illustrates the early convergence of G, which achieves the Nash equilib-

rium quickly in RELEVAGAN while G of EVAGAN is still learning. Since the main objective

is to improve the detection performance of the model for botnets in low data regimes, there is no

need to let G train for a more significant number of epochs. For example, if a 100% detection

performance is achieved, as in the case of the CIC-2017 dataset, the GAN training can be stoped

after a couple of steps.
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5.4.2 Stability

Figure 5.4 demonstratesD and G losses for ACGAN, EVAGAN and RELEVAGAN. It turns out

that the losses tend to converge for all the GANs. The values for RELEVAGAN tend to achieve

the lowest point sooner than both EVAGAN and ACGAN. The values for D Loss Fake for REL-

EVAGAN are higher than other GANs. This can be because D of RELEVAGAN is struggling

to discriminate between the evasion generated by the DRL and G. The evasion samples coming

from DRL are labelled as ’REAL’, and when similar samples arrive from G, the wrong estima-

tion increases the loss. However, the overall detection performance improves because G now

tends to generate the samples within the semantic constraints. This can be due to mode collapse;

however, the detection performance is better than EVAGAN, so this factor is disregarded.

5.4.3 DRL Attacker Reward/Evasions

Figure 5.5 shows the number of evasions the DRL attacker generated or the reward collected

during the exploration or training phase of RELEVAGAN of the first ten epochs. No evasions

happen after epoch number eight. Note that the highest number of evasions was in the case of the

CIC-2017 dataset, which gives the best results for estimations in Figure 5.3. A similar pattern is

seen in the cases of ISCX-2014 and CIC-2018 datasets, but no evasions for the CIC-2018 dataset

were generated after epoch three. If the number of generated evasions by the DRL attacker is

correlated with the performance of D, it turns out that there is an inverse relationship between

the number of evasions and convergence of the training of RELEVAGAN. Trying the model on

other datasets can give more insights into this relationship.
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Figure 5.5: RELEVAGAN reward and evasions for the three datasets

5.4.4 Time Complexity

Figure 5.6 shows the training time complexity of ACGAN, EVAGAN and RELEVAGAN for the

three datasets. RELEVAGAN training time for 150 epochs is always greater than that of EVA-

GAN because DRL has its own cost. However, the early convergence achieves the maximum

detection performance as manifested in Figure 5.3 for the CIC-2017 dataset. Hence the perfor-

mance of 100% is achieved within the time way less than taken by EVAGAN, but it turns out to

depend on the dataset. As for the case of the ISCX-2014 dataset, the time complexity is even

more than ACGAN’s training time. Hence, the working towards more datasets is considered for

greater insight into the time complexity pattern.
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Figure 5.6: Time complexity

5.5 Comparison of RELEVAGAN with Peer Techniques

The RELEVAGAN model is an enhanced version of EVAGAN, dedicated to low data regimes

for learning adversarial evasion examples generated during GAN training with the additional

support of DRL. So the most suitable existing model for the comparison can be EVAGAN, the

details of which have been explained in section 4.2 previously. However, this section mentions

peer techniques similar to RELEVAGAN that indirectly address the adversarial evasion problem

using DRL while preserving the functionality of the attack operation. Authors in [26, 69, 70]

have provided DRL-based model to attack a malware detector by making changes based on a

DRL agent output as a result of a reward coming out of the classifier. Similar concept has been

applied while designing the DRL attacker in RELEVAGAN. A closer work to RELEVAGAN is

[27] that uses the botnet datasets to generate evasion samples using DRL, however the RELE-

VAGAN is different in a way that it automatically is making the target learn the attack samples

being generated from the DRL agent so the adjacent EVAGAN model learns simultaneously

during training. This synergy makes the generator training faster. The work done by [25] is also

significantly relevant to RELEVAGAN, however they are using adversarial training at the end

of the attack generation while RELEVAGAN learns that attacks immediately after its discovery
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which makes it a proactive approach as compared to the peer work.

5.6 Summary

The semantic-aware adversarial botnet detector is essential for countering modern evasion at-

tacks. In this regard, the detection models must proactively be aware of the possible adversarial

perturbations. Researchers employ DRL to generate adversarial evasion examples to preserve

the original functionality of the botnet/malware samples. The motivation is to generate samples

that could be used later for adversarial training of the ML classifiers. The RELEVAGAN is pro-

posed, which proves to be an adversarial semantic-aware evasion detection model that does not

need exclusive adversarial training.

• The discriminator of RELEVAGAN is based on EVAGAN, which did not consider the

semantic awareness that RELEVAGAN resolves.

• The same three datasets used in Chapter 4 were employed for the better comparison and

coherency.

• The results demonstrate the supremacy of RELEVAGAN to EVAGAN in early conver-

gence of the detection model training.

Testing RELEVAGAN’s performance against other cybersecurity datasets is highly encouraged

for future research. Few-shot learning could also be tried on the datasets used in this chapter to

compare performance.
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Chapter 6

Conclusion and Future Work

6.1 Summary of Contributions

Several research works have highlighted the fragility of AI-based detection models. Botnet de-

tectors are no exception when it comes to adversarial evasion attacks. More data is needed to

address the issue of data imbalance in research data sets for the botnet. Synthetic oversampling

can be used to generate data that can help in improving detection performance. GANs, at the

same time, can act as oversamplers and adversarial sample generators to mitigate the effects

of evasion attacks. In this thesis, the research began by keeping GANs in mind as the dual

panacea of the problems mentioned earlier. However, the research was devising a novel model

specialised for botnet detection and other low data regimes. An improved version of the model

was then proposed that addressed another perspective of the multifaceted problem in the ad-

versarial domain of AI in low data regimes. The research was named ”Evasion-Aware Botnet

Detection using AI”. This research is considered a beginning toward designing a sophisticated

botnet detection model, as there is still a long way to go to address the problem of adversarial

evasion attacks completely.

Following is the detail of contributions and the future research direction:
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6.1.1 BotShot

In Chapter 3, GANs were employed to generate improved quality samples to reduce false neg-

atives or, in other terms, improve the detection of evasion samples. GANs proved to be better

than other synthetic oversamplers for botnet traffic generation for all the botnet datasets used

in this research. A novel technique called Botshot was proposed that improved the detection

performance of the GAN-generated adversarial samples that evaded the traditional ML-based

classifiers. The general method to utilise GANs to generate quality samples is based on the loss

functions of generator and discriminator networks. However, the quality of generated data could

be further evaluated using the classifiers under test. The results demonstrated the Botshot’s su-

periority over other synthetic oversamplers in case of a black box attack. The black box test over

GAN-generated samples evaded all the classifiers for the three datasets, making the recall score

as low as 0%. After the AT, the improvement was nearing 100% for all the classifiers under test.

However, in the case of the peer synthetic oversamplers, the improvement was not as signifi-

cant. The classical GAN-based Botshot gave the highest improvement (98.64%) in recall score

in the case of the CIC-2017 dataset. The results encouraged further investigation of other GANs

and botnet datasets for performance improvement against adversarial evasion samples using the

proposed technique.

6.1.2 EVAGAN

In Chapter 4, a novel GAN model called EVAGAN was proposed that efficiently generates

adversarial evasions in low data regimes. The model is an enhanced version of the ACGAN. The

supremacy of EVAGAN or ACGAN has been demonstrated in the results where for binary class

low data regimes, EVAGAN provides 100% detection accuracy as compared to ACGAN and

the traditional ML classifiers. EVAGAN acts as an oversampler for adversarial evasion samples

and an evasion-aware detection model for botnets in low-data regimes. The scope of EVAGAN

is spanned over other domains like computer vision for medical anomaly detection, where data

imbalance is a crucial concern. The results for the computer vision data set, MNIST, demonstrate
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the superiority of EVAGAN over ACGAN in terms of detection performance, stability, and

time complexity. At the same time, the qualitative analysis shows that EVAGAN outperforms

ACGAN in unbalanced scenarios.

GANs have proved to be very effective in computer vision-based applications. However, it can

be inferred from this work that GANs are suitable candidates to address multiple challenges

within the cybersecurity domain as well. Significantly, the effects of adversarial evasion attacks

can be mitigated proactively using GANs’ generated traffic augmentation to the original train

sets. The general method to utilise GANs to generate quality samples is based on the loss

functions of generator and discriminator networks. However, the quality of generated data could

be further evaluated using the classifiers under test.

6.1.3 RELEVAGAN

In Chapter 5, an improved version of EVAGAN was proposed to provide online learning for

adversarial and semantic awareness of the generated samples. A sophisticated botnet detection

model can use deep reinforcement learning to generate adversarial evasion samples to preserve

the original functionality of the botnet/malware samples. When coupled with EVAGAN’s dis-

criminator model, deep reinforcement learning can help the generator of EVAGAN to confine

the exploratory space within semantic limits. The results show that RELEVAGAN can help in

early convergence for botnet detection in low data regimes by incorporating deep reinforcement

learning compared to EVAGAN.

6.2 Threat Model

The schemes proposed in this research are based on the evasion samples generated from the

public datasets. As per the taxonomies of [46, 105, 106] the proposed schemes are prone to

attacks where the attacker has access to the training set and selected features. However, the

chance of a model trained on a known dataset being fooled by the samples generated from the
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same dataset by an adversary is also based on the choice of the internal parameters. The proposed

work can be transformed into a black box model where the internals of the architecture can be

kept confidential without giving access to the oracle to the attacker.

Regarding the adversarial manipulation depth, the universal validation of the model against all

types of known attacks is linearly proportional to the number of unique samples input for train-

ing. As the deep learning has the potential to absorb more training data with the increase in

the model parameters, it is expected to be an open problem to solve. So the more the model

has the knowledge about the new unique features and better optimizing techniques, it has the

potential of being dataset agnostic given the attack semantics of the generated samples remain

within the functional boundaries. However, the possibilities of samples being in evasion space

are intractable for the unknown attacks. A GAN based evasion generation is a semi-supervised

process however, with the use of DRL, we can explore unseen samples and keep on training our

model but again around the known semantic/functionalities of the attacks samples.

6.3 Future Directions

Further research directions can significantly contribute toward an ultimate design of an evasion-

aware botnet detection model. The landscapes can be further spread over other domains as

well.

6.3.1 Novel Features Exploration

Further exploration of modern botnet behaviours is cardinal for improving the detection perfor-

mance of botnet traffic. Since the botnets are evolving with time by exploiting the vulnerabilities

in the existing AI system, a watch on new features is needed.
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6.3.2 Use of Modern GAN models

GANs have proved to be effective in adversarial evasion detection improvement. The mod-

els proposed in this research are based on primitive GAN models. There is considerable room

for incorporating modern concepts in GAN research that can further enhance the proposed re-

search.

6.3.3 Traffic Validation

The generated traffic from the proposed GAN models like EVAGAN and especially RELEVA-

GAN needs to be validated by relaying the RESTful API over the internet. The model could be

further enhanced by discarding the invalid traffic samples and back-propagating the loss to the

proposed models in this research. RELEVAGAN helps in preserving the semantics of the botnet

samples. However, the generated samples in this research were not tested. Future researchers

can first make the TCP/IP packets using the generated feature vectors from the generators of

both EVAGAN and RELEVAGAN and then relay the traffic on the internet.

6.3.4 Multiclass Landscape

Both EVAGAN and RELEVAGAN have been devised based on binary class datasets. The

multiclass design of the proposed models is an exciting research direction where future re-

searchers can expand the discriminator model to output multiple class probabilities instead of

just two.

6.3.5 Comparison with Few-shot and Zero-shot Learning

Few-shot or zero-shot learning could be compared with the proposed research keeping the low

data regime factor in mind where the anomaly samples are scarce. Few or zero-shot learning

could be a strong competitor to EVAGAN and RELEVAGAN for low data regimes.

114



CHAPTER 6. CONCLUSION AND FUTURE WORK

6.3.6 Use of other Cybersecurity Datasets

The work can be expanded further using other cybersecurity data sets in the cybersecurity do-

main for IoT and cyber-physical systems.

6.3.7 Testing the models on Computer Vision Datasets

Only one computer vision data set was used in this research to show the power of EVAGAN;

however, testing the models on other computer vision data sets where data is imbalanced, espe-

cially the medical anomaly detection, is highly recommended.

6.3.8 Testing on Single Board Computers

The proposed solution can be transformed into a portable product that could be used as a filter

for home users to avoid adversarial evasion attacks on the internet. A possible direction for

the embedded software researcher working in AI-based cybersecurity could be using NVIDIA

Jetson single-board computers.
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D Discriminator. 11–15, 18

G Generator. 5, 11–15, 18, 23

ACGAN Auxiliary Classifier Generative Adversarial Network. iv, 59

AT Adversarial Training. iv

DNNs Deep Neural Networks. 1, 21

DRL Deep Reinforcement Learning. iv, v, 1, 5, 9, 20

EVAGAN Evasion Generative Adversarial Network. iv

GAN Generative Adversarial Network. iv, 2, 11

IDSs Intrusion Detection Systems. 1

ML Machine Learning. iv

RELEVAGAN Deep Reinforcement Learning based Generative Adversarial Network. iv, v
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