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Abstract

Image classification is dominated by high-performing deep learning methods,
that typically take on the form of large-scale convolutional neural networks.
Over the past decade, the magnitude of these systems has grown to the point
where a moderately-sized system can consist of millions of trainable parame-
ters. The subsequent impact on the computational load during optimization
and inference is massive, therefore a change in approach is needed to reduce
the scale of this problem. Quantum computing is a modern development
that utilises natural quantum-mechanical principles, in an effort to efficiently
process data in a classically-intractable manner. Furthermore, quantum ma-
chine learning, the application of quantum computing for machine learning
tasks, has seen a surge in interest and development. This makes quantum
computing an appealing area of research to consider for solutions to the
problems faced. Firstly, this thesis investigates the classical-based solution
of transfer learning to reduce the computational load of optimizing deep
learning algorithms. Following this, quantum-based methods are analysed
to determine their effectiveness for the task of image classification. This cul-
minates in the proposal of a novel quantum image classification algorithm.
This thesis makes several contributions of knowledge to the working area.
Firstly, it is demonstrated that a computational speedup can be gained via
quantum routines over classical algorithms for image classification. How-
ever, if a classical approach is preferred, then it is presented that transfer
learning can maintain classification performance whilst negating the costly
optimization of a large proportion of parameters. Secondly, an enhanced un-
derstanding of single-qubit encoding is gained. Experimental results show
that substantial classification accuracy improvements can be made as data
encodings are repeated. In addition, results support that an element of ro-
bustness to environmental noise can be gained for repeated encodings, which
is important to consider in the NISQ era. Finally, a novel quantum image
classification algorithm is proposed, which demonstrates that a lone qubit
is a capable image classifier. Results determine that classification accura-
cies in the 90th percentile can be achieved using a minimum of 6 working
parameters. Overall, this research may have a large impact towards the
development of quantum image classification algorithms, where a plethora
of options for future development are opened as well.
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Chapter 1

Introduction

1.1 Project Background

Image classification is a fundamental area of research within the modern
day field of machine learning (ML). The typical approach to image classifi-
cation tasks include a feature extraction step of some sort, prior to inputting
these features into a classifier and optimization against a cost function [1].
Currently, the most popular approach is to use deep learning (DL) archi-
tectures [2], which aim to combine the steps of feature extraction and clas-
sification into a single, trainable architecture. Many DL architectures fall
into the category of convolutional neural networks (CNNs), which utilize a
mass of kernel operations congested into a series of layers, that output a set
of extracted features for classification using a traditional ’fully-connected’
feed-forward neural network. These network architectures have shown to be
extremely successful at tasks they are trained to, often dubbed at beating
human-level performance [3] at the same time.

Interest and research development towards CNNs have seen a tremen-
dous amount of growth within the past decade alone. Improvements to the
processing capability of graphical processing unit (GPU) systems has had a
direct correlation with the subsequent depth and complexity of CNN archi-
tectures. The ability to compute large volumes of data with modern GPUs
has enabled DL and computer vision (CV) research to be conducted at a
rapid rate. However, not only are classification performance improvements
generally small, they often come at the expense of the introduction of vast
webs of interconnecting convolutional layers and filters that increase the
algorithm complexity and parameter count somewhat.

To put this statement into perspective, consider one of the earliest CNN
architectures, LeNet5 [4]. The LeNet5 architecture had 7 layers total, con-
sisting of 2 sets of convolutional and pooling layers to extract features and
reduce dimensionality, followed by a flattening convolutional layer which
was then proceeded by a string of 2 fully-connected layers and a final soft-
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max classifier. This basic, but powerful architecture was able to achieve
a test-set accuracy over 99.1% on the MNIST handwritten digits dataset
[5], using ∼ 60, 000 trainable parameters. However, in contrast to this, one
of the highest performing state-of-the-art architectures [6] could reach an
extremely strong test-set accuracy of 99.83%, yet required optimization of
∼ 1.4 million parameters. This equates to over 23 times the amount of
parameters that LeNet5 required, for a < 1% classification accuracy im-
provement.

Whilst clearly reaching strong classification accuracy levels is a positive
aspect for computer vision purposes, is gaining that extra small 1-2% of
accuracy always worth the increase in computational overhead and com-
ponents that need optimizing? Whilst some could argue that this tradeoff
may be necessary for certain applications, others may disagree by saying
that CNN methodologies are stagnating and that we should be focusing our
efforts elsewhere, rather than throw more GPU computing power at the
training of algorithms. Nevertheless, it is recognised that developments to
GPU hardware will not be able to continue at this rate of growth indefi-
nitely, therefore we will be required to search for alternative solutions at
some point or another.

The downside of large-scale parametrization for optimization and com-
putation time has been considered to some extent during this period of DL
development. An alternative method attempting to reduce optimization
time has taken advantage of the copious amounts of raw data provided by
large-scale datasets such as the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) dataset [7]. There exists CCN architectures which
have taken advantage of this readily-available data and trained for a large
amount of time using it. The trained weight values are then taken and
saved to an open-access repository or library interface for instant further
use, without having to repeat the full training process. Further develop-
ments or applications have then taken this ’pre-trained’ network, prior to
task-specific training on a specialized dataset of some kind. This practice
has become known as transfer learning [8].

In practical terms, during transfer learning the feature extraction por-
tion of the CNN is left frozen, where only weights contained within the final
few layers are considered for optimization. Whilst this practice still utilizes
the entirety of the DL network for the forward pass, it can reduce compu-
tational load by requiring the calculation of fewer gradients in total during
backpropagation. However, it is still unclear to what extent transfer learning
can maintain classification performance, whilst reducing computational load
during optimization. It is therefore relevant to explore the aspect of whether
transfer learning can be a temporary effective solution to the problems de-
scribed, or whether alternative methods of ML algorithm design should be
investigated.

Quantum computing (QC) is a method of computing that has seen a dra-
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matic growth of interest within recent years. Based on quantum-mechanical
principles of superposition and entanglement, arguably no other field has
seen as much uninformed speculation as this has, not when quantum com-
puting for ML is considered. Whilst the nature of quantum information does
possess an innate parallelism, it can be easy to fall for the narrative that
quantum machine learning (QML) will be the primary solution to all ML
tasks, especially when exponential computational complexity reductions are
often promised. But with that said, it does not mean that QML cannot still
be effective at providing a solution to certain ML tasks, it is simply another
computational tool whose potential is yet to be realized.

With an array of quantum computing based algorithms proposed to date,
[9–12] to name a few, there is a direct need to explore how QC can be
adopted, modified and applied to form a suitable, image-based classification
tool. By doing so, this research aims to create a set of robust, foundational
quantum classifiers that present advantages over classical algorithms, whilst
giving ample opportunities for further investigation and development. It is
hoped that by doing so, we can develop QML algorithms that can improve
performance to given ML tasks over other classical methodologies, as well as
improve our working knowledge of how QML algorithms operate in practice.

1.2 Research Aim & Questions

Following the discussion of certain problems facing image classification and
the interest towards quantum computing, the subsequent direction and aims
for this thesis should be proposed. The aim of this thesis as a whole is to in-
vestigate the transition between classical and quantum computing-
based image classification, in relation to how quantum machine
learning may enhance classification performance or reduce com-
putational complexity. In order to reach this aim, the following research
questions and sub-objectives are proposed:

Research Question 1 To what extent can the application of transfer
learning maintain classification performance of
deep CNNs, whilst reducing computational over-
head from the optimization of large parameter
counts?

Research Question 2 To what extent can a non-gradient based ap-
proach be taken to perform effective quantum
image classification?

Research Question 3 Can effective feature representations of classi-
cal data be created in Hilbert space using low
numbers of quantum bits?
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Research Question 4 Can a novel quantum machine learning clas-
sifier be developed for image classification that
makes efficient use of resources provided?

1.3 Thesis Synopsis & Structure

In order to answer the research questions outlined in section 1.2, this thesis
will be organized in the following format:

Chapter 2 provides a systematic introduction of working background
knowledge for classical and quantum computing terminolo-
gies, to provide an understanding for future chapters. This
chapter will begin by introducing classical deep learning
through feed-forward neural networks, as well as convo-
lutional neural networks. Following this, an overview of
quantum computing will be showcased in order to provide
the knowledge required to understand fundamental differ-
ences between classical and quantum computation. This
aspect of the chapter will begin with the introduction of
the quantum bit, shortly followed by quantum information
representation, how quantum operations are performed and
the application of quantum computing for machine learn-
ing.

Chapter 3 contains a discussion and review of relevant literature sur-
rounding the field of quantum machine learning. Firstly,
an overview of the field is described, which sets the area
and boundaries for the review. Following this, the dis-
cussion starts with quantum-based algorithms and solu-
tions to regression-based tasks. Then, the review extends
to quantum-based classification proposals. Here, various
approaches are considered, such as quantum support vec-
tor machine proposals, quantum k-nearest neighbour algo-
rithms and other proposed methods that rely on a backbone
of variational quantum circuits.

Chapter 4 presents the first working chapter of the thesis, which fo-
cuses towards answering research question 1. This chap-
ter contains a review of state of the art CNNs, tied into
both image classification and object recognition tasks. The
application of transfer learning is conducted to a specific
task using the deep learning methodology YOLOv2. Per-
formance results are then analysed, where a discussion on
the effectiveness of transfer learning as a solution to reduc-
ing computation is provided.

4



Chapter 5 presents an application of quantum computing towards a fa-
cial identification classification task with the intent of an-
swering research question 2. The methodology presented
within this chapter utilises fidelity-based measurements of
similarity combined with a threshold, rather than gradient
based methods of optimization which can be time-consuming.
An analysis of the methodologies performance is given with
respect to various classical ML algorithms, as well as a dis-
cussion in relation to the field as a whole.

Chapter 6 provides a review of quantum information encoding meth-
ods, and showcases an in-depth analysis of the ’data re-
uploading’ methodology, with intent of answering research
question 3. Here, results are obtained that analyse the
method over numerous classification datasets, whilst re-
maining in context of the NISQ era of quantum computing.

Chapter 7 is the final working content chapter of the thesis, with
the aim of completing the final research objective (research
question 4). In this chapter a novel quantum image classi-
fication methodology is presented, that is based on single-
qubit encoding with the advantage of maintaining spatial
relationships between pixels. Experimental results are gath-
ered using multiple datasets, where an analysis is provided
to evaluate the working effectiveness of the proposed method-
ology for image classification in the NISQ era.

Chapter 8 summarises the contributions made in this thesis, including
a discussion of potential future works.

1.4 Publications Made

As a statement of authorship, excerpts of this thesis have been published in
the following peer-reviewed articles as part of the project progression and
development between 2018 - 2021, in order of appearence within this thesis:

1. P. Easom, A. Bouridane, F. Qiang, L. Zhang, C. Downs and R. Jiang,
”In-House Deep Environmental Sentience for Smart Homecare Solu-
tions Toward Ageing Society,” 2020 International Conference on Ma-
chine Learning and Cybernetics (ICMLC), 2020, pp. 261-266, doi:
10.1109/ICMLC51923.2020.9469531.

2. P. Easom-McCaldin, A. Bouridane, A. Belatreche and R. Jiang, 2020.
”Towards building a facial identification system using quantum ma-
chine learning techniques.” Accepted Aug 2020 for publishment in
Journal of Advances in Information Technology (JAIT).
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3. P. Easom-McCaldin, A. Bouridane, A. Belatreche and R. Jiang, ”On
Depth, Robustness and Performance Using the Data Re-Uploading
Single-Qubit Classifier,” in IEEE Access, vol. 9, pp. 65127-65139,
2021, doi: 10.1109/ACCESS.2021.3075492.

4. P. Easom-McCaldin, A. Bouridane, A. Belatreche, R. Jiang and S.
Al-Maadeed, 2021. ”Efficient Quantum Image Classification Using
Single Qubit Encoding.” Submitted Oct 2021 to IEEE Transactions
on Neural Networks and Learning Systems (TNNLS).

1.5 Thesis Contributions

To summarise the content in this thesis, the key contributions made through
the research contained within chapters 3 to 6 are, in order of appearance:

� Transfer learning remains a viable technique to consider if the reduc-
tion of computational load during optimization is a priority. Experi-
mental results demonstrated that a good classification accuracy result
of 91.47% was achieved, whilst removing the optimization requirement
for 76.9% of the total parameterized layers. This is presented through-
out research within chapter 3 and in publication number 1 in section
1.4.

� A fidelity-based approach is capable of effective classification, whilst
removing the costly process of backpropagation for quantum-based im-
age classification. Notably, the implemented method improved compu-
tational complexity over similar classical algorithms through utilising
resource-efficient amplitude encoding. This is presented throughout
research contained within chapter 5 and in publication number 2 in
section 1.4.

� A novel quantum image classifier was proposed based on the single-
qubit encoding scheme. Initial experimental results for the encoding
scheme showed a promising capability to classify complex datasets.
The greatest performance improvements were also determined to oc-
cur within 1-3 data encoding layers. The proposed algorithm modified
this method in order to maintain pixel relationships, which greatly
reduced the parameter count with itent of shortening computational
load during optimization. Experimental results determined that the
proposed method had great potential as a quantum image classifier,
whilst remaining efficient in its use of quantum resources and robust
to certain environmental noise impacts. This finding is presented over
research contained within chapters 5 and 6, as well as within publica-
tions 3 and 4 listed in section 1.4.
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Chapter 2

Background & Literature
Review

In this chapter, the topics of DL and QC are introduced to provide a foun-
dational level of knowledge required to understand concepts that are used
throughout this thesis. The classical-computing aspect of the chapter be-
gins by defining neural network methods, leading up to the introduction
of CNNs. In contrast, the quantum-computing aspect of the chapter begins
with defining how quantum information is represented, followed by quantum-
based operations and various quantum-measurement protocols. In addition
to this, reviews of relevant literature are discussed for both CNN method-
ologies contained within DL, as well as various applications of QC for ML
purposes. This is done to provide a basis for the research that is contained
within this thesis.

2.1 Introduction to Deep Learning

2.1.1 Feed-Forward Neural Networks

In order to introduce DL, it is convenient to begin at the most basic form
of neural network that provides the basis for further explanation, the per-
ceptron. A percepton is a supervised linear binary classifier that uses a
row vector of inputs x = [x1, x2, ..., xN ] ∈ RN , associated weight values
w = [w1, w2, ..., wN ] ∈ RN , and a bias term b ∈ R to produce an output ŷ.
In mathematical terms, the output ŷ can be defined as:

ŷ = xTw + b =

N∑
i=1

xiwi + b (2.1)

The output value ŷ is then fed through a form of activation function to
map the input x to an output value f(x). For a perceptron, a unit-step
function is used to produce a single binary output value, where:
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f(x) =

{
1 if xTw + b ≥ 0

0 Otherwise
(2.2)

The entire process described above of the perceptron can subsequently
be illustrated in figure 2.1 as:

Figure 2.1: The flow of input to output for a perceptron.

Whilst the perceptron is capable of classifying datasets that are linearly
seperable in nature, they are severley limited by datasets that do not comply
with this and are non-linear by nature. In order to overcome these limita-
tions that single perceptrons are susceptible to, multiple perceptrons can
be stacked together to form a series of layers capable of classifying more
complex forms of data. The resulting neural network formed by stacking
perceptrons together is known as a multilayer perceptron network (MLP),
also synonomously labelled as a feedforward neural network (FFNN). An
abstract view of an MLP is displayed in figure 2.2. The simplest form of
MLP network consists of an input layer of perceptrons, also referred to as
neurons, an output layer of perceptrons and an abitrary number of hidden
layers. Each of the hidden layers described can contain any number of per-
ceptrons, however the number of perceptrons contained within the input and
output layers will typically match the number of input features and output
classes respectively.

Given a vector of real-valued inputs x = [x0, x1, ..., xN ] ∈ RN and a
vector of output values ŷ = [y0, y1, ..., yD] ∈ RD, an MLP network f is a
mapping between two Euclidean spaces, i.e. f : R1 → RL. For a MLP
network with an arbitrary number of hidden layers [l1, l2, ..., lL], this can be
defined as a series of mappings connecting the input space to the output
space, i.e.

f1 : Rl1 → Rl2 , f2 : Rl2 → Rl3 , ..., flL−1
: RlL−1 → RlL (2.3)

For a hidden layer of k-neurons, the corresponding weight values are
contained in a matrix W of size k × N , and the bias terms as a vector
b = [b0, b1, ..., bk] ∈ Rk. For L hidden layers, the weight matrices and
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Figure 2.2: An abstract illustration of the layer-wise connections contained within
an MLP.

bias terms are each contained as a set, where Wi = {W1,W2, ...,WL}
and bi = {b1,b2, ...,bL}. Including an activation function σ, the mapping
functions between layers is recursive, and can be defined as:

x = fi(x) = σ(xTWi + bi) (2.4)

Unlike the single perceptron, each neuron within the MLP network uses a
non-linear activation function, to produce a real-valued output dependent to
the input value. Sigmoid activation functions can be used here [13], which
possess a typical ’s’ shaped curve and have a bell-shaped first derivative
curve. However, there are many other activation functions which have uses,
most notably rectified linear units (ReLU) or radial basis functions (RBFs).
The logistic function is an example of a commonly used sigmoid activation
function with upper and lower bounds of 1 and 0, i.e:

f(x) =
1

1 + e−x
→

{
limx→∞ f(x) = 1

limx→−∞ f(x) = 0
(2.5)

Once each mapping has been completed between the input layer and
hidden layers, the final mapping of fL−1(x) produces the vector containing
the model output values ŷ ∈ RD. For a regression task, the mean-squared
error (MSE) loss function could be applied, given model output ŷ for each
observed input and a set of correct output values y. The loss value would
subsequently be calculated as:

E(x) =
1

D

D∑
i=1

(yi − ŷi)
2 (2.6)
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For a classification task, the objective is to predict the probability of
an input x with an associated label from a set of labels yi ∈ {0, 1, ..., C}.
To create a class probability distribution Z from the model outputs ŷ, a
softmax function is applied element-wise to an output layer of C-neurons to
ensure

∑C
i=1 ŷi = 1, i.e.:

Zi = Softmax(ŷi) =
eŷi∑C
j=1 e

ŷj
(2.7)

From here the log of Z can be taken with y being the target label for
input x. This results in the cross-entropy loss value:

E(x,y) = − 1

D

D∑
i=1

log(Zi,yi) (2.8)

For the specific application of MLP networks towards classification of
images, typically single channel greyscale images of an arbitrary bit-depth
are used, however this is not exclusive and is for ease of demonstration.
Individual pixel values can be taken in a sequential fashion from row-to-
row, producing the input vector x = [x1, x2, ..., xP ] ∈ RP , where P is the
number of total pixels, consequently producing a P -dimensional Euclidean
space for the input layer of the MLP network.

For smaller-sized images, this space could be very manageable, where
MLP networks have been shown to be very effective at times [14–16]. How-
ever as image sizes approach the typical resolutions seen in modern-day
image captures, the feasibility and complexity of the computed spaces in-
creases dramatically to the point where for a reasonably-sized ML task, an
MLP network may not be time-effective to optimize.

2.1.2 Convolutional Neural Networks

CNNs are a DL tool that has been popularized within the last decade or
so, due to their capability to solve image-based ML tasks to a degree that
previous ML models were unable to reach [17]. A CNN is made up of 4
main components. First is that of a convolution operation, whose purpose
is to extract features using localized regions of pixels from an input image.
Following this, a form of activation function is imposed to introduce non-
linearity into the model. This is most commonly done in the form of using
a ReLU operation, however any non-linear function such as a sigmoid or
hyperbolic-tangent could be applied here instead. Thirdly, pooling opera-
tions are applied to reduce the subsequent dimensionality of each feature
map created by the previous convolutional operations. These operations
are defined as ’layers’ in a CNN model, where convolution operations com-
bined with their respective activation function form a convolutional layer,
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and are subsequently followed by a pooling layer. These are succesively re-
peated until finally, a fully-connected (FC) portion is applied at the tail-end
of the model, which produces the model output and provides a classifica-
tion result. A fully-connected portion tends to be an implementation of an
arbitrary MLP network of some sort.

In more detail, the following describes a typical convolutional operation
with associated activation function. For the sake of simplicity, we define a
single-channel image X of size W0×H0 (the extension to multiple channels
is fairly trivial), a non-linear activation function σ, and a square convolu-
tional kernel K l for layer l ∈ {1, 2, ..., L} of size k× k which can contain set
values for specific purposes (i.e. vertical edge detection) or can be initialised
as arbitrary weight values to be optimized against a cost function. To per-
form the convolutional operation with applied non-linearity, an element-wise
weighted sum operation is performed whose output is fed through σ, i.e:

xlij = σ

( k−1∑
g=0

k−1∑
h=0

K l
ghx

l−1
(i+g)(j+h)

)
, σ(z) =

{
z : z ≥ 0

0 : z < 0
(2.9)

This is repeated until each area of k × k pixels has been passed by
the kernel K l, consequently known as a filter pass or sliding window. The
resulting output of the convolutional operation xl will therefore be of size
(W0 − k + 1)× (H0 − k + 1).

The next layer to be applied in-sequence is the pooling layer, which takes
a square region of p × p pixels and outputs a single value only. There are
numerous ways in which this operation can be performed, most notably
max-pooling and average-pooling. However, max-pooling is arguably the
most common form of pooling used therefore will be utilised for this section.
For max-pooling, the maximum value for each region of p×p pixels is taken,
and the input matrix xl will be reduced from a size of W1×H1 to W2×H2 ≡
W1
p ×

H1
p .

Once all L convolutional and pooling layers have been applied in a se-
ries to the input x0, the FC portion processes the extracted features and
produces a classification result for the image. As previously stated, the FC
portion is simply an MLP network as described in section 2.1.1, which is
applied to the tail of the series of convolution and pooling layers. Here,
the final input xl is flattened to form a single column vector, prior to being
processed through an MLP of a defined number of layers and neurons. Once
processed, the vector ŷ ∈ R of size C containing a single output value per
possible class is produced. The index corresponding to the maximum value
in ŷ is taken as the observed class for input x0, and the model with kernel
and FC weight parameters can therefore be optimized against a chosen cost
function E(x0,y) with input and true target data.
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2.1.3 Review Of CNN Architectures

In this section, a brief review of literature surrounding prominent CNN ar-
chitectures will be conducted. Alongside this, a short discussion of the suit-
ability of each method for the task application of real-time object detection
for chapter 3 is provided. This is done to ensure our results are consistent
with the intended task and not tailored towards a particular outcome in any
way. This will also be clarified in further detail in chapter 3.

There exists image classification models that could be used for the follow-
ing experiments, which are very capable of producing high accuracy values
in their respective tasks. DL models such as GoogLeNet [18] and ResNet
[19] have both won the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) in 2014 and 2015 respectively. These models performed extremely
well for their time, with ResNet achieving an error rate of 3.6% in the chal-
lenge. Since then, further developments of image classification models have
occured, namely through densely-connected blocks [20], as well as widely-
connected residual inception modules [21]. Whilst the classification perfor-
mance of such methods can be extremely high, they lack the capability for
object detection on their own, so would not be a suitable fit for the role
required in this research.

In alternative developments, efforts have been made to produce DL sys-
tems capable of extracting localized objects from images, rather than cap-
turing the image in its’ entirety. This type of classification, referred to
as object detection, is much more applicable to the task of smart home-
care as relevant objects within the home envrionment can be detected and
measured in relation to the position and movement of the resident. Early
object detection models of R-CNN [22] and its’ extensions, Fast R-CNN [23]
and Faster R-CNN [24] provide a good real-time capability of classification,
whilst maintaining respectable classification accuracy values. The most re-
cent of the three, Faster R-CNN, increased the real-time capability of the
the series to processing 5 frames-per-second (FPS) for an image resolution
of 224x224 pixels, whilst maintaining a mean average-precision (mAP) of
73.2. This was done through the implementation of a region-proposal layer,
which gathered the final feature map produced and subsequently proposed
regional areas for objects.

As a further extension to this, the authors proposed Mask R-CNN [25],
which assumes the role of producing detections at a pixular level, rather
than image-wide. The resulting area detections can then be semantically
segmented and labelled as such to produce a region that is classified as a
particular object. This type of object detection may have potential to be
adapted for use in applications such as dense human pose estimation [26],
that can be further modified towards a fall detection platform. However,
the processing speed of this model is limited in comparison ( 5 FPS) and is
not necessarily suitable for the objectives of this research.
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To account for the shortfalls of many DL models discussed, regression-
based models may provide a suitable middle ground relevant to the task
application. An early regression-based model YOLO [27] provides the capa-
bility of bounding box predictions for the objects detected over a prediction
confidence value, whilst doing so at a respectable rate of classification. In
its’ proposal, YOLO was capable of achieving an mAP of 63.4 on the Pascal
VOC 2007 dataset [28], whilst processing at a rate of 45 FPS for input im-
age resolutions of 448x448 pixels. Following the success of YOLO, YOLOv2
[29] was published shortly afterwards as an improved version, producing a
highest mAP of 78.6 with a processing rate of 40FPS on the VOC 2007
dataset. To do this, YOLOv2 implemented alternative ideas such as batch
normalization, adjusting training and detection image resolutions, and the
introduction of anchor boxes.

2.2 Introduction to Quantum Computing

2.2.1 The Qubit & Quantum Data Representation

To introduce quantum computing, again it is best to start at the lowest form
of data, the quantum bit, or qubit. Where classical data is represented using
bits contained as a state of 0 or 1, a qubit fundamentally represents quantum
data as a 2-dimensional complex vector. Dirac notation is used throughout
to denote a vector in an arbitrary complex vector space, i.e. |ψ〉 ∈ C.

The state space of a qubit, or Hilbert space, is represented using a set
of orthonomal basis states, known as the computational basis states (CBS)
|0〉 or |1〉, where:

|0〉 =

[
1
0

]
|1〉 =

[
0
1

]
(2.10)

When we measure a qubit, it falls into one of the CBS. However, a
unique property within quantum computation is that we are able to define a
quantum state as a superposition, or linear combination of these CBS. This
defines a quantum state of a qubit by combining the CBS with corresponding
amplitude coefficients. As a quantum state is fundamentally a complex
vector, these amplitude coefficients are complex values [30]. Within quantum
computing, we are also bound by the normalization constraint, where the
sum of squares for these amplitudes must equal 1. With this knowledge, we
can ultimately define an arbitrary quantum state |ψ〉 as:

|ψ〉 = α |0〉+ β |1〉 =

[
α
β

]
where |α|2 + |β|2 = 1 : α, β ∈ C (2.11)

The principle of superposition allows us to explore the state space of a
qubit using an endless number of configurable quantum states. This pro-
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vides us with a very powerful tool for representing and processing data in
comparison with classical bits. When it comes to measurement, a qubit will
fall into state |0〉 with probability |α|2 and state |1〉 with probability |β|2.

Figure 2.3: Bloch sphere representation of a qubit, as depicted in [30]

In order to comprehend how the state space of a qubit may function, we
can use a visual model known as a Bloch sphere to represent how a qubit
is geometrically defined. The Bloch sphere model can be seen in fig. 2.3.
However, in order to match this representation, a quantum state must be
redefined using different terms. Given a quantum state |ψ〉 = α |0〉 + β |1〉,
since α, β ∈ C, they can be written in their exponential form reiφ, where r
is the modulus of the complex number and (φ0, φ1) are parameters defining
the extent of rotation. Thus, we can write |ψ〉 as:

|ψ〉 = reiφ0 |0〉+ reiφ1 |1〉 (2.12)

since

|eiφ|2 = 1 → |ψ〉 = eiφ |ψ〉 (2.13)

∴ e−iφ0 |ψ〉 = e−iφ0(r0e
iφ0 |0〉+ r1e

iφ1 |1〉) (2.14)

Eq. 2.13 introduces the global phase factor, which is shown to have no
effect on the observable quantum state. This can then simplify to:

|ψ〉 = r0 |0〉+ r1e
i(φ1−φ0) |1〉 (2.15)

as |r0|2+|r1|2 = 1. Using angle representations, we can deduce r0 = cos θ
and r1 = sin θ. Therefore:

|ψ〉 = cos θ |0〉+ ei(φ1−φ0) sin θ |1〉 (2.16)
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In order to make the resulting quantum state match a complete spherical
representation, it is convenient to define θ to θ/2 so that θ ∈ [0, 2π]. For
tidyness, we can also define φ1−φ0 = ϕ. Ultimately, this leaves us with the
final quantum state representation:

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (2.17)

This state representation allows us to explicitly define a quantum state
as a point anywhere on the Bloch sphere, and thus provides an extremely
useful tool for visualizing the quantum state for a single qubit.

2.2.2 Quantum Information Using Multiple Qubits

As previously stated, we are able to represent a quantum state |ψ〉 as a
superposition of the CBS |0〉 and |1〉, i.e, |ψ〉 = α |0〉+ β |1〉. On its’ own, a
qubit is by definition a very powerful tool for computation. However, how
does this extend to the use of multiple qubits? For a 2-qubit quantum state
|ψ〉, we can express |ψ〉 as an expansion, or tensor product, of the CBS with
corresponding amplitude coefficients for each individual qubit, i.e:

|ψ〉 = (α |0〉+ β |1〉)(γ |0〉+ δ |1〉) (2.18)

which expands to:

|ψ〉 = αγ |00〉+ αδ |01〉+ βγ |10〉+ βδ |11〉 (2.19)

Identical to the quantum state of a single qubit, a quantum state for
multiple qubits also follows the normalization constraint, where |α|2+ |β|2+
|γ|2 + |δ|2 = 1. During measurement, from eq. 2.19 it can be seen that
the quantum state will fall into state |00〉 with probability |αγ|2, |01〉 with
probability |αδ|2, and so on. If we were to measure the probability that
the second qubit would fall into state |1〉, regardless of the state of the first
qubit, then this could be given as |αδ|2 + |βδ|2.

As we extend our range of operations to multiple qubits, we want to
incorporate another primary and unique aspect of quantum computing, en-
tanglement. In short, entanglement allows for two or more qubits to have
a state relationship that is depedent on the state that the other qubits are
in. If we look at an arbitrary 2-qubit quantum state expansion as shown in
eq. 2.19, then we have already seen an example of an entangled quantum
state. If we let α, β, γ, δ 6= 0, then there is no way for that 2 qubit quantum
state to be expressed independently of each others amplitude coefficients. Or
in other words, we cannot express that 2 qubit quantum state as a tensor
product of 2 individual 1 qubit quantum states.

From the previous 2-qubit expansion of the CBS, we can see that for an
entangled quantum state, the amount of possible resulting states increases
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exponentially with the number of qubits used. In other terms, an n-qubit
system can express 2n ampltitude coefficients of information. This is where
a large proportion of power is contained within quantum computing, and is
a compelling reason why quantum computing should be explored.

Pure/Mixed States And Density Matrix Representation

When modelling quantum information and quantum computing, it is impor-
tant to have an awareness of the concepts of pure states and mixed states.
In the simplest terms, a system that is in a pure state is able to be precisely
defined by a single state vector at any one time, whereas a system in a
mixed state is not able to be defined by a single state vector, instead being
an ensemble of different quantum states.

Throughout section 2.2, we have defined different quantum states in ket
form as a superposition of CBS, such as |ψ〉 = α |0〉 + β |1〉 for example. If
a qubit was initialized in an optimal environment to the state of |ψ〉, then
the measurement outcome would be the state of |0〉 with probability |α|2,
and state |1〉 with probability |β|2. Even though this measurement process
is probabilistic, we are certain that the qubit is in the state of |ψ〉 just
prior to measurement, as there were no other influences that could possibly
affect the state of the qubit during that time. Because the qubit is therefore
represented unequivocally as |ψ〉, it can be defined as a pure state.

In mathematical terms, a pure n-qubit quantum state can be defined as:

|ψ〉 =
N∑
i=0

αi |i〉 where N = 2n (2.20)

Unlike pure quantum states, mixed states are unable to be represented
purely as a superposition of orthonormal basis state vectors. Instead, a
mixed state is expressed as a statistical ensemble of multiple pure state out-
comes, each with an associated probability. Again mathematically speaking,
for a set length I of possible pure states |ψi〉 that individually have a pi prob-
ability of occuring, a mixed state can be defined as:

ρ =
I∑
i

pi |ψi〉 〈ψi| (2.21)

This is known as a density matrix [30], and is a useful way of defining
quantum states that can help track how a quantum system evolves over time
when operations are performed. As an example of density matrix represen-
tation of a mixed quantum state, if we consider the following probability
distribution containing two pure quantum states:

|ψ〉 =

{
1√
2
(|0〉+ |1〉) with p = 0.5

1√
2
(|0〉 − |1〉) with p = 0.5

(2.22)
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The density matrix equation formulated in eq. 2.21 can then be followed,
giving:

ρ =
1

2

(
1

2

[
1
1

] [
1 1

])
+

1

2

(
1

2

[
1
−1

] [
1 −1

])
=

1

4

[
1 1
1 1

]
+

1

4

[
1 −1
−1 1

]
ρ =

1

4

[
2 0
0 2

]
=

[
0.5 0
0 0.5

] (2.23)

When using the density matrix representation for quantum states, it is
useful to have an awareness of certain properties associated with density
matrices. A particularly useful property is that of state purity, which can
be obtained by taking the trace of the density matrix squared, i.e. Tr(ρ2).
By doing so, a single value is obtained that determines the purity of the
quantum state [30]. If this value is equal to 1, then the quantum state is
pure, else if this value is less than 1, then it is a mixed state. Consider the
following examples, using |ψ〉 from eq. 2.22 for example 2:

Example 1:

|φ〉 = 0.8 |0〉+ 0.6 |1〉 =

[
0.8
0.6

]
, ρφ = |φ〉 〈φ|

ρφ =

[
0.8
0.6

] [
0.8 0.6

]
=

[
0.64 0.48
0.48 0.36

]
ρ2φ =

[
0.64 0.48
0.48 0.36

]2
=

[
0.64 0.48
0.48 0.36

]
Tr(ρ2φ) = 0.64 + 0.36 = 1 ∴ |φ〉 is a pure state.

Example 2:

ρψ =

[
0.5 0
0 0.5

]
→ ρ2ψ =

[
0.5 0
0 0.5

]2
=

[
0.25 0

0 0.25

]
Tr(ρ2ψ) = 0.25 + 0.25 = 0.5 ∴ |ψ〉 is a mixed state.

(2.24)

2.2.3 Qubit Operations

Single Qubit Operations

Within classical computing, we operate on sets of bits using logic gates, i.e.
a NOT gate, AND gate and so on. Quantum computation is no different
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in the sense that we use quantum gates to perform operations. These gates
generally perform a set of complex reflections and rotations of the state
vector around a respective axis. However, some of these gates are unique
to quantum computation, and allow for highly complex operations to be
performed.

For a single qubit, these quantum gates can be represented as a set of 2x2
unitary matrices. All quantum gate operations must be a unitary matrix,
since unitary matrices preserve the length of the quantum state they are
applied to, and we are bound by the normalization constraint described
earlier. Three of the most basic quantum gates are based on the Pauli
matrices, and are referred to as the X, Y and Z gate. These gates act on a
single qubit only and perform rotations of π radians around their respective
axes. The matrix corresponding to these operations are:

X = σx =

[
0 1
1 0

]
(2.25)

Y = σy =

[
0 −i
i 0

]
(2.26)

Z = σz =

[
1 0
0 −1

]
(2.27)

To represent how these gates affect a quantum state, we can demonstrate
them using a Bloch sphere visualization. If we take a randomly selected

quantum state |ψ〉 =

[
0.8
0.6

]
and apply the Pauli matrices individually, then

by computing basic matrix operations the resulting states will be [30]:

X |ψ〉 =

[
0.6
0.8

]
, Y |ψ〉 =

[
−0.8i
0.6i

]
, Z |ψ〉 =

[
0.8
−0.6

]
(2.28)

Plotting the resulting states using the Bloch sphere results in the follow-
ing diagrams displayed in figure 2.4. Visualizing the operations performed
acts as an extremely useful aid in comprehending what is occuring at a phys-
ical level. In this case, it is clear the operations that the Pauli matrices have
had on the quantum state |ψ〉.

Another primary single-qubit gate is the Hadamard gate. This is a highly
useful quantum gate which places a single qubit into an equal superposition
of the CBS. The Hadamard gate can be represented as:

H =
1√
2

[
1 1
1 −1

]
(2.29)

The effect that the Hadmard gate has is that it will transform |0〉 →
|0〉+|1〉√

2
and |1〉 → |0〉−|1〉√

2
. The resulting states is often be denoted by |+〉
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Figure 2.4: Bloch sphere visualizations displaying resulting transformations of the

state vector |ψ〉 =

[
0.8
0.6

]
when Pauli operators are applied.

and |−〉 respectively, and are another set of basis states that are orthogonal
in the x-basis, rather than |0〉 and |1〉 which are orthogonal in the z-basis.
If we were to apply a Hadamard operation to a arbitrary quantum state
|ψ〉 = α |0〉+ β |1〉, then this would result in:

H |ψ〉 = α |+〉+ β |−〉 = α
|0〉+ |1〉√

2
+ β
|0〉 − |1〉√

2
(2.30)

So far, the single qubit operations that have been performed are static in
nature, and do not allow for much flexibility in their range of rotation. When
the Pauli matrices are deployed using their exponential form, we can define
a set of rotation operators that rotate a state vector around their respective
axis by a defined amount [30]. The corresponding rotation operators can be
seen in equation 2.31.

RX(θ) ≡ e−iσX
θ
2 = cos

(
θ

2

)
I− i sin

(
θ

2

)
σX =

[
cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

) ]

RY (θ) ≡ e−iσY
θ
2 = cos

(
θ

2

)
I− i sin

(
θ

2

)
σY =

[
cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

) ]

RZ(θ) ≡ e−iσZ
θ
2 = cos

(
θ

2

)
I− i sin

(
θ

2

)
σZ =

[
e−i

θ
2 0

0 ei
θ
2

]
(2.31)

As before, it is useful to visualize the operations performed when apply-

ing these rotation operators. If we define a quantum state |ψ〉 =

[
0.8
0.6

]
and

assign a random variable θ = 5π
4 , the resulting rotations in their respective

planes of movement can be seen in figure 2.5.
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Figure 2.5: Bloch sphere visualizations displaying resulting transformations of the

state vector |ψ〉 =

[
0.8
0.6

]
when rotation operators are applied with a rotation extent

of θ = 5π
4 .

For a valid single-qubit gate operation, the only requirement is that it is
a 2x2 unitary matrix. This means that an infinite set of possible gate oper-
ations can be defined, which are denoted as an abitrary unitary operation
U. To realise an arbitrary unitary gate in practice, the ZYZ-decomposition
reduces this unitary matrix into a combination of the previously defined Z
and Y rotation matrices, with individual rotation parameters. For a set of
parameters α, β, γ, δ ∈ <, an abitrary unitary U can be defined as:

U =

ei(α−β2− δ2 ) cos
(γ
2

)
−ei(α−

β
2
+ δ

2
) sin

(γ
2

)
ei(α+

β
2
− δ

2
) sin

(γ
2

)
ei(α+

β
2
+ δ

2
) cos

(γ
2

)
 (2.32)

Which, through typical matrix multiplication, can be decomposed to the
following:

U = eiα

[
e−i

β
2 0

0 ei
β
2

][
cos γ2 − sin γ

2
sin γ

2 cos γ2

][
e−i

δ
2 0

0 ei
δ
2

]
(2.33)

Which is in the form of:

U = eiαRZ(β)RY (γ)RZ(δ) (2.34)

This is an extremely useful decomposition which allows for any possible
single-qubit unitary operation to be decomposed at most into a set of three
rotation gates at circuit level.
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Multi Qubit Operations

In order to introduce entangled states between multiple qubits, we have to
apply quantum gates that introduce the dependency needed between qubits.
In the previous section, it was stated that a single-qubit quantum gate could
be defined as a 2x2 unitary matrix. However, as we involve more qubits,
these matrices also become scaled up in size. For a 2-qubit gate operation,
we can define a arbitrary gate operation as a 4x4 unitary matrix. More
generally, an n qubit operation can be defined as a 2nx2n unitary matrix.

One of the primary 2-qubit gates is the Controlled-NOT, or CNOT gate.
The CNOT gate can be segmented into two portions, consisting of the control
qubit and the target qubit. The CNOT gate conducts an X gate on the
target qubit, depending on the state that the control qubit is in. If the
control qubit is in state |0〉, then the CNOT gate will have no effect, however
if the control qubit is in state |1〉, then the X gate operation will be applied.
The matrix and corresponding effect on the quantum state vector |ψ〉 can
be seen as.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , |ψ〉 =


α
β
γ
δ

 , CNOT |ψ〉 =


α
β
δ
γ

 (2.35)

For a control qubit that is not in a superposition state, the CNOT has
a trivial outcome. However, if the control qubit is in a superposition state,
then the outcome of the CNOT gate can have some unique properties and
results in a highly non-trivial state. As an example, consider a 2-qubit
quantum state |ψ〉 = |00〉. If we apply a Hadamard operation to the first
qubit, then |ψ〉 is transformed to:

|ψ〉 =
1√
2

(|0〉+ |1〉)⊗ |0〉 =
1√
2

(|00〉+ |10〉) = |+0〉 (2.36)

Individually, this state is nothing unusual, however, if we apply a CNOT
gate with the first qubit being the control qubit and the second qubit being
the target qubit, then this results in the following state:

CNOT |ψ〉 = CNOT |+0〉 =
1√
2

(|00〉+ |11〉) (2.37)

The resulting state from this operation is known as a Bell state, and is
an example of a maximally entangled state. If measured, this state has an
equal probability of being measured in state |00〉 or state |11〉. Here, we can
determine the output of both states from knowing the state that the other
is in.
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Occasionally, it is important to be able to exchange quantum states be-
tween two qubits within a circuit, and for this operation we can use another
multi-qubit operation, the SWAP gate.

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , |ψ〉 =


α
β
γ
δ

 , SWAP |ψ〉 =


α
γ
β
δ

 (2.38)

An interesting property of the aforementioned SWAP gate is that this
can be broken down as a representation of three CNOT gates. I.e.

× • •
=

× •

(2.39)

Within quantum computing, often it is required for 3 qubit operations to
be performed. The first 3-qubit gate to be discussed here is the Toffoli gate.
In essence, the Toffoli gate is a doubly-controlled NOT gate (which can also
be referred to as a CCNOT gate), where 2 qubits are the control portions,
with the third qubit being the target. The resulting action of this gate is
that an X operation is performed to the target qubit, providing the 2 control
qubits are in state |1〉. From a circuit perspective, the Toffoli gate (left-hand
side) can be broken down using the Sleator-Weinfurter construction to a
series of CNOTs and controlled-

√
X gates:

• • • •
• = • • Where V 2 = X

V V † V

(2.40)

Whilst this could be broken down further to single and multi-qubit gate
operations, it is not necessarily relevant to this thesis and would mean ex-
planation of additional quantum operations that do not appear in later sec-
tions. For now it is enough to be aware that a Toffoli gate performs a
doubly-controlled NOT operation using 3-qubits.

Moving on, the second 3-qubit gate that will be introduced is the Fredkin
gate, or controlled-SWAP gate (C-SWAP). Simply put, the Fredkin gate
performs a SWAP operation on two qubits, providing the single control
qubit is in state |1〉. Referring back to the 2-qubit SWAP decomposition to 3
CNOT gates displayed in eq. 2.39, the Fredkin gate can also be decomposed
in the same manner, with additional control qubits added. This works out
to be decomposed into three consecutive Toffoli operations, i.e:
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• • • •
× • •

=

× •

(2.41)

2.2.4 Alternative Measurements

Qubit Measurement In Different Bases

Throughout section 2.2, measurement of a qubit has been conducted in the
computational basis, where the state of each qubit will fall into state |0〉
or |1〉 dependent to the probability amplitude coefficient values. Generally,
this is a popular scheme for qubit measurement as it results in a value of 0
or 1, which is convenient for many quantum computing uses whose nature
revolves around binary-type measurements. This type of measurement is
conducted with respect to the z-basis, or sometimes referred to with respect
to the computational basis.

Due to the nature of quantum information representation, the z-basis
is just one of many possible bases that a qubit can be measured against.
Given that a set of desired basis states are orthonormal, then a quantum
state can be measured with respect to the chosen basis. As an example, we
can represent a quantum state |ψ〉 in the x-basis using the x-basis states of:

|+〉 =
|0〉+ |1〉√

2
, |−〉 =

|0〉 − |1〉√
2

(2.42)

Where |ψ〉 = α |+〉+β |−〉. As before, the probability of measuring state
|+〉 is |α|2 and likewise the probability of measuring |−〉 is |α|2. As a further
example, the same principles apply when considering the orthonormal states
in the y-basis, where |ψ〉 = α |+i〉+ β |−i〉. i.e:

|+i〉 =
|0〉+ i |1〉√

2
, |−i〉 =

|0〉 − i |1〉√
2

(2.43)

Projective Measurements And Expectation Values

Following on from measurements conducted in alternative bases, we can also
take a projective measurement, or expectation value of a quantum state with
respect to a valid quantum observable. This is a particularly useful type
of measurement as we are able to gain flexibility in the possible quantum
operations performed, and define a specific output state that we want to
measure against. These can be thought of as the average possible outcome
of all weighted probability measurements, however it is important to note
that this value is not the result of highest probability that you would expect
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to see. Take a single-qubit quantum state |ψ〉 and a Hermitian operator O.
The expectation value of this measurement is given by:

〈O〉 ≡ 〈ψ|O|ψ〉 ≡
∑
i

ai 〈ψ|Pi|ψ〉 ≡
∑
i

ai 〈ψ|i〉 〈i|ψ〉 (2.44)

Where
∑

i ai |i〉〈i| is the spectral decomposition of O with eigenvalues
a, i.e. O =

∑
i ai |i〉〈i|. The furthermost right-hand equation shows that

the expectation value of |ψ〉 with respect to O is the sum of all possible
measurement outcomes (the eigenvalues) weighted by the probability that
this eigenvalue occurs if we are in the quantum state |ψ〉. As an example of
how we take a projective measurement in practice, consider a single-qubit
quantum state |ψ〉 = 1√

2
(|0〉 + |1〉) and the Hermitian operator Z, which

equates to the Pauli-Z gate directly. If we take the spectral decomposition
of Z, this results in:

Z =

[
1 0
0 −1

]
→

{
|0〉〈0| = eigenvector |0〉with eigenvalue 1

|1〉〈1| = eigenvector |1〉with eigenvalue -1
(2.45)

Relaying this information into the projective measurement equation, the
resulting expectation value is:

〈ψ|Z|ψ〉 = 〈ψ|0〉 〈0|ψ〉 − 〈ψ|1〉 〈1|ψ〉

〈ψ|0〉 〈0|ψ〉 =
1

2
, 〈ψ|1〉 〈1|ψ〉 =

1

2

∴ 〈ψ|Z|ψ〉 = (1)
1

2
+ (−1)

1

2
= 0

(2.46)

Fidelity Measurement Between Quantum States

Whilst the measure of fidelity is slightly different to previously discussed
forms of qubit measurement, it is a very useful operation that allows for
us to judge similarity between two quantum states. Analytically speaking,
fidelity is a measure of overlap, or ’closeness’ between two state vectors or
density matrices through the use of an inner product. For a set of two
pure quantum states, |ψ〉 and |φ〉, the measure of fidelity F (|ψ〉 , |φ〉) can be
defined as:

F (|ψ〉 , |φ〉) = | 〈ψ|φ〉 |2 = | 〈φ|ψ〉 |2 (i.e. is symmetric) (2.47)

In simple terms, as the fidelity of two quantum states approaches 1,
the closer they are and as their fidelity value approaches 0, the further
away they are from one another. As an example, the states of |0〉 and |1〉
point in completely opposite directions to one another, therefore they will
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have a fidelity value of 0. If we measure the fidelity between states |0〉 and
1√
2
(|0〉+ |1〉, which are orthogonal to one another, their fidelity will be 1

2 .

Whilst the above example holds true for pure quantum states, the mea-
sure of fidelity does change somewhat when handling mixed quantum states.
Consider two mixed-state density matrices, ρ1 and ρ2, then the measure of
fidelity can be defined as:

F (ρ1, ρ2) =

(
Tr
√√

ρ1ρ2
√
ρ1

)2

(2.48)

However, if we are explicitly measuring the fidelity between a pure quan-
tum state |ψ〉 and an arbitrary density matrix ρ (pure or mixed by nature),
then the equation for fidelity can be reduced down to:

F (|ψ〉 , ρ) =
√
〈ψ|ρ|ψ〉 (2.49)

2.3 Quantum Computing for Machine Learning

2.3.1 Quantum Machine Learning Overview

In the past decade alone, ML has seen a vast array of successful develop-
ments, that have translated successfully across to industrial applications
[31–33]. However, the rise of computational intelligence has not been with-
out its disadvantages. One of the key challenges faced within ML is that
of the growing reliance towards high-powered GPU units, that deliver vast
amounts of processing capability. This is a challenge as modern develop-
ments to GPU capabilities are slowing down, reaching physical limitations.
Therefore, alternative solutions to combat this reliance are needed.

QML is an area of research and development maturing steadily at this
current time. Making use of quantum-mechanical principles, quantum com-
puting is the logical choice for development in the pursuit of effective ML
algorithms that remain efficient in nature. Typically, the broad field of QML
can be split into 4 dinstinctive categories based on how quantum computing
is applied to ML. This is dependent to the form of data considered, as well
as the nature of the task itself. As Aimeur introduces in [34], these four
categories are displayed in figure 2.6.

The category of CC is synonomous with classical ML, where classical
data is fed through a typical ML algorithm (such as MLP, or SVM) and
executed via a classical processor. Although completely classically-based,
this is a category of quantum machine learning for classical ML algorithms
that are quantum-inspired. The bottom left category of QC refers to how
classical computing and classical ML algorithms may benefit quantum-based
methods of computing, such as ML-based quantum error correction [35].
The third category, located in the bottom-right, is QQ, which translates
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Figure 2.6: Categories of quantum machine learning dependent to the format of
information and the processing unit implemented. CC - classical-classical, CQ -
classical-quantum, QC - quantum-classical, QQ - quantum-quantum.

to quantum data processed via a quantum device. A typical process here
may utilise the state of a quantum system as an input, prior to execution.
This has been shown to provide benefits by removing the need for classical-
based interventions which can be slow and costly [36], therefore improving
efficiency when dealing with quantum data.

Finally, the category that lends itself to the focus of this thesis is CQ,
the flow of classical data executed via quantum-based algorithms. This is
arguably the area which has seen the most attention within QML so far [36],
and traditionally follows a framework of some sort of encoding of classical
information to its quantum form, followed by an execution of a designed
quantum circuit routine. For supervised learning tasks, once measurement
occurs the circuit output is fed back through a classical optimization loop,
with the intent of minimizing an associated cost function of some sort. This
makes it most similar to the flow of classical ML due to the availability
of classical datasets, therefore providing an ease of transition for industrial
applications. As image data itself is of classical format, logically this review
of literature will focus within the realms of the CQ arena of QML.

There are several main challenges currently faced within the CQ area of
QML. The first challenge is how we can effectively encode classical data into
its quantum form, whilst ensuring the mapped feature space can maintain
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key information appropriately. The second challenge is how we should design
quantum algorithms so we can perform useful transformations to encoded
data. This is so we are able to extract key features that can be distinguished
between via measurement. A third challenge within QML, although fairly
generic, is where the main advantages lie by transitioning to quantum-based
processing, and how substantial any of these advantages are.

As defined in [37], there are two approaches to QML development within
the realm of CQ, the translational approach and the exploratory approach.
The translational approach focuses towards the conversion of primitive clas-
sical ML methods into some form of quantum equivalent. This is done in the
hope of gaining some form of advantage, be it through improved classifica-
tion capability or complexity reduction. On the other hand, the exploratory
approach attempts to investigate what particular ML tasks may be firmly
suited to the physical characteristics of the quantum system used. As the
realm of this thesis is directed towards the development of quantum-based
image classification, it is therefore suitable to direct the attention of this
review of literature towards the translational approach.

With this in mind, the objective of this review of literature is to provide
a somewhat comprehensive overview of relevant QML methodologies that
have been proposed, as well as to provide insight into the current schools
of thought for the development of QML algorithms for classical data. Al-
though there exists un-supervised methods targeted towards image classi-
fication [38–40], it is often considered a supervised learning task and will
also be thought of as such within this thesis. For classical ML, the category
of supervised learning can be seperated into two distinct sub-categories of
algorithm, regression algorithms and classification algorithms. The aim of a
regression algorithm is to establish a relationship between a set of indepen-
dent variables to a dependent variable. In contrast, the aim of a classification
algorithm is to assign a set of data with one of many defined category la-
bels. Therefore, two sub-areas of review will promptly be conducted towards
proposed quantum regression methods, as well as proposed quantum clas-
sification algorithms. However, firstly is it relevant to introduce a method
of application for quantum computing to machine learning, the variational
circuit model.

2.3.2 Variational Circuit Model

The following section will discuss a particular method of application for
quantum machine learning, based on parameterized circuitry. This section
will be used as a showcase for how a quantum circuit may be optimized, using
the example of an arbitrary unitary gate U . Whilst in the cases shown, U
takes the form of a z-rotational gate, the principles remain the same and
extend to arbitrary quantum circuits as a whole. As seen previously in eq.
2.31, the matrix representation of an RZ gate is written as the following.
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σz =

[
1 0
0 −1

]
, Rz(θ) = e−iσz

θ
2 =

[
e−i

θ
2 0

0 ei
θ
2

]
(2.50)

The matrix on the left hand side represents a fixed rotation around
the Z-axis of π radians. The matrix on the right hand side is the Euler
decomposition of a rotation around the Z-axis, with a rotation extent of θ/2
radians. By parametrizing the extent of rotation, we can then represent a
quantum circuit as a function of its’ parameters θ. Consider a single-qubit
circuit, initialised in state |0〉. A z-rotation gate (denoted by U(θi) where

U(θi) = Rz(θi) = e−iσz
θ
2 is implemented within the circuit with parameter

θ0. This results in the following circuit, which is depicted in Dirac notation
by an initial starting state |0〉 followed by the described unitary operation
U of argument θ and a measurement operation.

|0〉 U(θ) (2.51)

When we measure the expectation value of f(θ) with respect to a her-
mitian observable Â, we can consider the circuit as the equation f(θ) =
〈0|U †(θ)ÂU(θ)|0〉. We can then compute the derivative of U(θ), such that:

∂

∂θ
U(θ) = − i

2
U(θ)σz (2.52)

When ∂
∂θU(θ) is substituted back into f(θ) and we follow the commutator

rule [Â, B̂] = ÂB̂−B̂Â, we can derive ∇θf(θ) in terms of the circuit function
f :

∇θf(θ) =
1

2
[f(θ +

π

2
)− f(θ − π

2
)] (2.53)

This is known as the parameter-shift rule [41]. More generally, the
parameter-shift rule can be defined as:

∇θf(θ) = r[f(θ +
π

4r
)− f(θ − π

4r
)] (2.54)

Where although r has been used in an earlier definition, r is an arbitrary
multiplier in this case. Therefore, in order to calculate the gradient of a cir-
cuit function f containing a single gate with respect to the input parameter,
we require two circuit evaluations.

The above shows the case of evaluating the gradient for a single-gate
quantum circuit. However, as we extend our circuit to multiple gates, the
parameter-shift rule will remain constant throughout. If we consider a single-
qubit quantum circuit initialised in state |0〉, and implement two z-rotation
gates (denoted by U(θi)) with parameters (θ0, θ1) ∈ R. This results in the
following circuit:
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|0〉 U(θ0) U(θ1) (2.55)

Using the parameter-shift rule, each unitary operation can be evaluated
one at a time. By starting with:

f(θ) = 〈0|U †(θ0)U †(θ1)ÂU(θ1)U(θ0)|0〉 (2.56)

in order to evaluate the ∂
∂θ1

, we can absorb θ0 into the initial state of
the circuit |ψ〉, which leaves us with:

∇θ1f(θ) = 〈ψ|∇θ1U †(θ1)ÂU(θ1)|ψ〉 (2.57)

The parameter-shift rule can then be applied to the resulting state, as
with a single-gate circuit. Likewise, in order to evaluate ∂

∂θ0
, the observable

Â can absorb θ1, leaving a resulting state of:

∇θ0f(θ0) = 〈0|∇θ0U †(θ0)B̂U(θ0)|0〉 (2.58)

where B̂ = U †(θ1)ÂU(θ1). Again, this can be evaluated using the
parameter-shift rule. As a more general rule for multi-gate quantum cir-
cuits, we can define the gradient of each gate to be evaluated as:

∇θif(θ) = 〈ψi−1|∇θiU
†(θi)B̂i+1U(θi)|ψi−1〉 (2.59)

where B̂i+1 = U †(θN )...U †(θi+1)ÂU(θi+1)...U(θN ), with N being the
number of gates implemented within the circuit. In essence, to evaluate
a gate at index i, any gate applied before i will be absorbed into the initial
circuit state operation, and any gate will be absorbed into the measure-
ment operator. By cycling through i, ∇θf can be evaluated using successive
parameter-shift operations, thus requiring two circuit executions per gate.

To recap section 2.3.2, by parametrizing the extent of rotations of op-
erators, we are able to represent a quantum circuit as a function of its’
parameters. By following the parameter-shift rule, gradients of parameters
can be calculated dependent to the output measurement. With the inclusion
of an objective function that the circuit outputs can be measured against,
we can then optimize variational circuits to a specific task using gradient
descent, or similar optimization schematics. This is an extremely impor-
tant aspect, and forms the basis for many early developments of quantum
machine learning algorithms.

2.3.3 Quantum-Based Regression

As a very brief recap of the premise of linear regression, for a set of data
x (independent variables) and a second set of data y (dependent variable),
the objective of linear regression is essentially to fit the data to the plane
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y = ax + b. This is done with the intention of minimizing a loss function
containing target outputs ŷ. The following least-squares method is a tried
and tested method of doing so [42–45]:

E(x) =
∑(

y − ŷ
)2

(2.60)

For a linear regression problem, the cost of computation naturally rises
with the rise of task dimensionality. However as linear regression boils down
to a set of matrix operations, quantum computing may provide a logical
choice for improving efficiency of computation as matrix operations are fun-
damental within quantum operations [30].

QPE Rotation Inverse QPE

Ancilla |0〉 R |1〉

Register |0〉⊗n H •

Q
F
T
†

•

Q
F
T • H |0〉

Input |b〉 U U † |x〉

Figure 2.7: Circuit view for the HHL algorithm. Once an input state b is encoded,
quantum phase estimation (QPE) occurs which includes a quantum fourier trans-
form (QFT ). This is followed by controlled rotation operations and an inverse
QPE. Finally, measurement occurs and x can be decoded.

Harrow et al designed an early quantum algorithm in order to solve sys-
tems of linear equations, known as the HHL algorithm [46]. For a linear
system of equations A~x = ~b, the HHL algorithm encodes ~b within the am-
plitudes of an equivalent quantum state. Following this, quantum phase
estimation occurs to estimate the eigenvalues of A, which are then used in
a series of controlled-rotation operations. Finally, a reverse quantum phase
estimation operation is performed prior to measurement, which can sub-
sequently be used to calculate ~x. With this as inspiration, an improved
version of the HHL algorithm was presented as part of a solution to fit a
least-quares regression model [47]. Here, the method consisted of different
subroutines for preparing the quantum state, estimating the closeness of fit
and the subsequent set of slope and bias parameters (a and b seen in eq.
2.60).

In other work, the technique of density matrix exponentiation as ex-
plored in [9] was utilised to determine the eigenvectors and eigenvalues of
an arbitrary density matrix via quantum phase estimation. This was im-
plemented in an alternative quantum linear regression algorithm [48], under
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the notion of a quantum perceptron unit.

Alternatively, Wang states that it may be suitable to consider cases
where the number of data samples is very large in comparison to the number
of independent variables [49]. With this in mind, rather than store the
optimal fitting parameters as a quantum state, like in [47, 48], Wang output
the fitting parameters classically for future usage on unseen data with little
additional cost [49].

Again, extending from the HHL algorithm and that was proposed in [47],
an alternative quantum least squares regression algorithm was proposed in
that runs in O(log(n)) time [50]. In this work a proposition for a quantum
ridge regression method was also included. Furthering this was a quantum
ridge regression algorithm proposed in [51] based on k-fold cross validation
[52], a technique widely used across classical ML [53–55]. This work was
the first to use quantum k-fold cross validation to determine a suitable reg-
ularization parameter. Alongside this, when contained as a quantum state,
the estimated fitting parameters could predict new data exponentially faster
than an equivalent classical method for low-rank design matrices containing
the independent variables x.

As an additional note, it is interesting to point out that the translational
approach to QML is not one-way. A train of thought has emerged within
classical ML research towards development of a new innovative set of algo-
rithms that are quantum-inspired. For example, although linear regression
is a tried-and-tested method within classical ML, [56] takes inspiration from
the HHL algorithm and applies it in a classical setting where stochastic gra-
dient descent (SGD) can be applied for optimization. Like the translational
approach for classical ML to QML, quantum-inspired algorithms attempt to
convert techniques utilized within QML back across to improving classical
methods. Whilst this review will not go into depth with this category of al-
gorithms, it is just an interesting point to state that it may be beneficial to
exchange information and methods between QML and classical ML, rather
than segregate the two fields from one another.

2.3.4 Quantum-Based Classification

Within classical ML, a logical advancement from linear-regression algorithms
is that of a support vector machine (SVM), therefore it makes sense to
discuss proposed QML-based SVM algorithms. Given a set of n-dimensional
data, where n represents the number of features, the primary objective of an
SVM is to determine a n-dimensional hyperplane that maximally-seperates
the set of data into their respective classes.

As an SVM is fundamentally a magnitude of linear algebraic oeprations,
quantum computing may be a natural modelling solution due to the linear
nature of quantum operations. An early Quantum SVM method proposed in
2014 demonstrated the potential for QML, by implementing their algorithm
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in O(logNM) time for both stages of optimization and classification [57]. To
do this, they expressed the SVM as an approximate least-squares problem
as in [44]. Their solution then utilised the density matrix exponentiation as
proposed in [9], followed by the HHL algorithm to describe the subsequent
hyperplane in a quantum state. The classification result is then obtained
from a swap test between the state describing the hyperplane and the state
containing input data.

In other areas, developments have also occured towards proposals of
quantum k-nearest neighbour (k-NN) algorithms. To summarise a k-NN al-
gorithm, a datapoint is classified subsequently as its nearest pre-determined
k datapoints based on a metric of distance. Typically, classical k-NN algo-
rithms use Euclidean distance as a primary measure [58–60], however many
other distance measures can be utilised. As highlighted in [61], the cal-
culation of overlaps for N -dimensions in a quantum manner is much more
efficient in O(logN) time that the classical equivalent of O(N) time.

A particular measure of overlap explained in section 2.2.4 is that of
fidelity. Related to the cosine metric of distance [62], fidelity is a measure
of closeness between two quantum states. To calculate fidelity, a swap test
routine can be conducted. This is implemented within a quantum k-NN
algorithm [63], where the fidelity of input states encoded via amplitude
encoding was calculated to determine a classification result. Rather than
calculate fidelity independently, an oracle was applied to the dataset stored
in a superposition state to calculate fidelities simultaneously.

In another work [64], input data was encoded via amplitude encoding to
form a superposition state. A swap test was then conducted to calculate the
distance between the contained vectors. Following this, the authors searched
for k-nearest distances via a method in [65] that utilises iterations of Grovers
algorithm. This implementation of these quantum subroutines enabled a
computational complexity of O(

√
kM) for k neighbour calculations and M

datapoints over the classical equivalent of O(M log k).
Similarly to this, Adu-Gyamfi proposed a similar methodology where

the dataset of images are first converted to a series of 0s and 1s via a
threshold prior to being encoded into a superposition via basis encoding
[66]. A swap test was then used as a measure of distance, followed by
amplitude estimation and a Grovers search to determine the k most similar
points. Their method improved runtime complexity over existing algorithms
to O(R

√
kM), requiring R oracle operations for amplitude estimation, k

neighbour values and dataset of size M .
As mentioned, other measures of distance may be utilised within a near-

est neighbour based algorithm. Naturally, this can be challenging for QML
algorithms as we are limited to what means of distance that can be com-
puted in a purely quantum manner. Whilst fidelity via a swap test tends
to be a common choice, [67] proposed the use of Hamming distance as a
plausible alternative. Hamming distance is a metric of comparison for two
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binary strings of equal length, and equates to the number of bit positions
that are different in a direct comparison of the strings. To do this, the au-
thors basis-encoded feature vectors of the training set in a binary format
onto a subsequent set of qubits. Following this, a testing data sample was
encoded identically as before, where a unitary operation was applied that
calculated Hamming distances and stored the result in an ancillary qubit.
Once measured, the classification result is obtained. Through an intuitive
calculation of Hamming distance via quantum subroutines, the algorithm
runs in O(n3) time for n-dimensional feature vectors, whilst outperforming
previous algorithms of [61, 68] on a transformed MNIST dataset.

Although the quantum-based methodologies discussed until now do not
specifically utilize variational quantum circuits (VQCs) as their primary
backbone, it is important to relay them to show that VQCs are not the only
application of quantum computing to machine learning. As discussed, many
proposed advantages of quantum-based algorithms occur via naturally faster
vector operations, such as calculation of inner products or state overlaps.
However due to their optimization capability, VQC models have provided
the basis for a wide variety of QML algorithm propositions in more recent
times.

Remaining with the content of quantum SVM algorithms, an alternative
implementation of a quantum SVM in [11] proposed to utilize the natu-
ral high-dimensionality of Hilbert space to represent the feature space for
a classification problem as a quantum state. In order to do this, layers
of parametrized unitary operations and entangling gates inspired by [69,
70] were sequentially performed to an array of qubits that generates the
class seperation hyperplane. As a secondary proposition, the authors also
presented a combined method that used a quantum computer to estimate
the kernel function followed by a classical SVM for classification. However,
within their work the authors pointed out that a quantum advantage could
only be gained for feature maps that are classically hard to estimate.

During a similar timescale, the concept of encoding classical data as a
complex feature Hilbert space has been simultaneously explored by others.
Schuld determined that various mappings of data between Euclidean and
Hilbert feature spaces were analagous to linear, polynomial and cosine ker-
nels [71]. A classically hard to compute kernel could then be created through
efficient quantum estimation of inner products, for example via a swap test.
This could then be fed through a classical SVM, or similar method. A sec-
ondary approach explored was through the representation of the training
model as a quantum state. The circuit that produces the model state could
then by optimized via a hybrid manner against a chosen cost function.

Furthering this, [72] splits the notion of VQC-based quantum classi-
fiers into 4 distinct processes of feature mapping, unitary transformation,
measurement and post-processing. In their methodology, input data was
encoded into an equivalent feature Hilbert space via amplitude encoding.
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Then, a low-depth VQC consisting of various unitary operations was imple-
mented prior to measurement of a single qubit before post-processing using
a threshold to determine a clasification result. The architecture proposed
enabled a low number of trainable weight parameters, which remained poly-
logarithmic in proportion to the dimensionality of the input. Experimental
results also showed that the quantum algorithm performed well on a set of
datasets from the UCI repository [73]. This was in a comparison against
multiple classical MLP networks and SVM classifiers.

Utilising fidelity as a cost function, [74] proposes a setup for VQC that is
analagous to classical MLP networks. In this work, sequential unitary oper-
ations were linked to typical neurons contained within an MLP, with varied
width and depth from the number of input and output qubits dependent on
the encoded data format.

Progressing from classical MLP networks comes CNNs, a part of deep
learning. These types of networks have shown promising results on a variety
of tasks, including image classification [75–77]. However, a large disadvan-
tage to CNNs is that they can often be extremely time consuming to opti-
mise and execute [78–81], which makes quantum-based CNNs a favourable
pursuit to try and reduce this disadvantage.

To date, there have been proposals that use a backbone of VQCs that
transform input data in a manner similar to CNNs prior to measurement.
[12] proposes a quantum CNN architecture that mimicks the traditional
convolutional, pooling and fully-connected sequence via two-qubit unitary
operations applied to the input state as a convolutional operation. This is
followed by measurement of alternate qubits combined for pooling, which
also introduces non-linearity by using the measurement value as the pa-
rameter for an additional applied rotation operation. A unitary operation
covering the remaining qubits then equates to a fully-connected portion. A
fraction of the final qubits are measured to determine a classification out-
put, where unitary operation parameters are then optimized against a cost
function.

In a separate work, [82] proposes a quantum CNN that computes the
forward pass as a product between an input and convolutional kernel via
quantum inner product estimation. Non-linear activation, which is not triv-
ial for quantum computers to implement, is applied using a boolean circuit as
a non-linear function and the inner product output. Rotational operations
and amplitude amplification routines are then performed, to enable higher-
valued pixels to have a higher probability of being measured. Measured pixel
values are then stored in quantum random-access memory (QRAM). QRAM
uses a number of qubits to store an appropriate quantum state, for recall in
future operations. The authors conducted simulations using MNIST data,
where the algorithm was able to optimize in a similar fashion to a classical
CNN architecture. However, the application of QRAM is still a largely dis-
cussed topic due to open questions surrounding its practical and physical
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implementation [83–87].

As the scale and workability of QML algorithms in general is fairly small,
a hybrid approach is often considered as an intermediary step on the path
to purely quantum-based methodologies. Hybrid algorithms implement a
classical and quantum component together, and aim to combine advantages
from each component to form a stronger classifier. A hybrid CNN classifier
was explored in [88], where the introduction of quantum-extracted features,
dubbed quanvolutional layers was explored. In the experiments, a circuit
consisting of 9 qubits with a selection of unitary operations was assigned as
a typical convolutional filter, where a single pixel was basis-encoded onto
one qubit at a time via a threshold. The measurement output was then
produced as a scalar value, and fed into a condensed CNN architecture.

Experimental results on MNIST data suggested that the quantum-extracted
feature maps may provide a slight improvement to classification accuracy
over the traditional classical setup. However there was little to distinguish
between the third method examined where a random non-linearity was ap-
plied prior to execution, therefore it was unclear on any quantum advantage
present over classical non-linear transformations.

In a different work [36], the authors propose numerous applications of
transfer learning situated within the CQ (classical-quantum), QC (quantum-
classical) and QQ (quantum-quantum) categories of QML. Arguably the
largest application of interest at this time is the CQ application. To do this,
the feature extraction portion (all layers minus the fully-connected portion)
of the DL classifier ResNet18 [19] was used to process classical images in their
natural form. The resulting feature maps were then executed via a dressed
VQC consiting of alternating Hadamard, single-axis rotational and CNOT
entangling gates. Expectation values taken in the z-basis then provided real
outputs that correspond to each possible class via a classical linear layer.

Experiments were conducted using the Hymenoptera subset of the Im-
ageNet dataset [7], where accuracy values of 96.7% in a simulated environ-
ment and 95% and 80% in quantum processing unit (QPU) environment
were achieved. A second experiment was also conducted on two seperate
subsets of data within the CIFAR-10 dataset [89] by retraining the network
to the two tasks in turn. Here, the network was able to produce relatively
good classification results of 82.7% and 96.05% to the tasks. The results in
this work do support that knowledge can be transferred concurrently to the
quantum domain through the use of dressed quantum circuits. However, it
is unclear to what extent the notably deep classical feature extraction and
final linear layer had on classification performance.
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2.4 Summary

To summarise the review of relevant literature discussed throughout this
chapter, there have been many developments towards effective QML al-
gorithms. Within this, there appears to be two different objective paths
that research is conducted towards, efficiency-based and performance-based.
Efficiency-based developments tend to focus on reducing computational com-
plexity of the algorithms classical equivalent, or performing a classically-
hard task in a manner that is simple for quantum computers. However,
performance-based developments may focus on improved classification ca-
pability via an appropriate metric such as accuracy or loss.

Quantum-based algorithms that appear to have the largest computa-
tional speedup over classical methods often seem to utilise quantum sub-
routines that are proven to be efficient, whilst varying the format that they
are deployed. A fidelity-based approach is often considered here, where the
naturally-efficient quantum estimation of inner products between states is
used via a swap test in practice. The remainder of the algorithms circuit
operations are considered task-dependently as either an optimizable VQC,
or search-based via a suitable oracle routine.

For performance-based QML algorithms, typical approaches appear to
consider the subsequent feature mapping between Euclidean and Hilbert
space as a key factor in determining the highest performance. Encoding
strategies that are commonly used include basis encoding, amplitude en-
coding and product encoding, which each have different qubit requirements
to encode information fully. Findings of the discussed works support that
quantum algorithms are capable of producing sufficiently complex features
maps via an appropriate encoding method. However, the nature of informa-
tion encoding is dependent to the format of the input data, and an optimal
encoding strategy is largely unknown.

For QML algorithms that are VQC based, the nature of information en-
coding can also have a direct impact towards the depth or scale of the VQC,
and subsequently the number of parameters to be optimized. Therefore, it is
important to investigate potentially lucrative methods of encoding classical
information that can create a highly-complex feature space, whilst minimiz-
ing the demands of the circuit through quantum operations and number of
qubits required.

Overall, the literature discussed within this chapter shows the general
trends appearing within QML developments. In order to tailor the ap-
proaches considered towards the application domain of image classification,
it is appropriate to begin by considering the two key factors summarised
here. Subsequent work within this thesis should investigate the usage of ef-
ficient quantum subroutines, as well as analyse information encoding strate-
gies. This should be done with the intent of improving the complexity of
Hilbert space feature maps whilst minimising quantum resources required.
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With this said, it remains relevant to also investigate classical approaches
to reducing the disadvantage to large-scale parametrization. One such method
of doing so is the formerly mentioned transfer learning, therefore, chapter
3 will first focus on this area of research. This order of presentation is
chosen since the bulk of the research focuses on quantum-based methods,
therefore it is logical to introduce this first prior to progressing to purely
quantum-based methods.
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Chapter 3

Transfer Learning For
In-House Envirionmental
Sentience Based Smart
Homecare

3.1 Introduction

The following chapter investigates the application of transfer learning tech-
niques with a deep CNN architecture for a smart homecare application. This
is done in an attempt to answer the following research question:

Research Question 1: To what extent can the application of transfer
learning maintain classification performance of deep CNNs, whilst reducing
computational overhead from the optimization of large parameter counts?

More specifically, in this chapter, transfer learning is applied to the DL
object recognition architecture YOLOv2, to develop a system specific to
the detection of objects commonly found within a home environment. Ex-
perimental results obtained showed promising classification accuracy values
that are vital for the application domain. The potential for real-time was
also considered, where the system was able to process images of 416x416
pixels at a rate of 10.7 and 2.0 frames-per-second on a GPU and CPU re-
spectively. Overall, the research within this chapter shows that whilst the
application of transfer learning can be effective at producing a high classi-
fication performance with reduced optimization load. However, alternative
algorithmic developments should be pursued to ensure the computational
resources available are used as efficiently as possible.

As previously mentioned, this chapter aims to address the objective out-
lined in research question 1, through the application and analysis of trans-
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fer learning techniques to an active area of research and development. It
is important to target an area of research that provides a fair analysis of
performance, therefore the chosen domain used for this research is smart
home-care since this relies on both a high classification accuracy and a
fast computational speed to be effective. The resulting system relies on
lower computational overheads in order to provide the capability of rapid
re-training dependent to the environment, as well as maintaining high levels
of classification performance. With this said, the rationale for development
in this setting and the resulting system performance is explained in more
detail as the flow of the chapter progresses.

With the ageing global population increasing at a rapid rate, the number
of population aged over 60 is expected to double by 2050 [90]. In 2017, ap-
proximately 1 in 8 people were aged 60 or over [90]. By 2050, this proportion
is expected to increase further to 1 in 5 [90]. As a result of the increasing
disproportion between people aged under and over 60 years of age, care-
home workers may not be able to effectively provide an adequate amount of
support to all residents within those homes, as the demands of the work will
become too great. In the US alone, the predicted costs of medical care are
projected to rise from 3% to 5.5% by 2050 [91]. To counter this, a promising
solution is needed to assist in the care of the elderly population to not only
reduce costs, but increase care efficiency overall globally.

In a survey report conducted by UNISON in 2015 [92], 49% of respon-
dents reported that they did not receive adequate time with each resident,
45% felt that there were not enough staff to deliver appropriate care, and
65% stated that there was care being left undone because of understaffing
problems. The issues faced here need a solution to allow care workers the
capability to provide effective support to each individual person as efficiently
as possible.

Similarly, approximately 28-35% of people aged 65 and over are victims
of a serious fall at least once per year [93]. The likelihood of falling also only
increases as individuals age further. Within this, elderly people residing
within care homes are also much more likely to fall than their community-
dwelling peers. In addition, a particular study [94] also showed that 15% of
people who had fallen remained on the ground for over an hour. In relation
to this issue, serious injury is found to be correlated with the time that a
person remains on the floor unable to get up and back to their feet [93].

With the disproportion between care workers and the number of elderly
people requiring care widening as time progresses, assitance and urgent med-
ical attention when required may not be provided in a suitable timeframe.
With hospitalization costs from fall-related injuries expected to increase in
the US to $240 billion by 2040 [95], the capability to provide efficient care-
giving for elderly persons may help to not only reduce the likelihood of
serious injury, but also reduce medical-related costs associated with them.
In order to achieve this, a form of smart home surveillance [96] is desper-
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ately needed for our ageing society. Whilst it is recognised that the usage
of a smart-home surveillance system can be considered controversial on an
ethical perspective, it should be noted that for the purposes of this work the
ethical arguments for smart-home surveillance are not being discussed. The
setting of smart home-care is being used purely for its algorithmic demands
of high classification accuracy and fast computational speed.

DL is a modern subfield of machine learning, which focuses primarily
towards deep artificial neural networks and their counterparts [97–102]. Re-
cent advancements in the classification power of CNN methodologies have
been substantial, since their introduction in 1998 [4]. As a result of re-
cent improvements in the field of DL and CNN capabilities, the careful
use of these networks has a large potential with many industrial applica-
tions, including those within healthcare and smart-living settings. In recent
works, CNN methodologies have modelled promising solutions for human
behaviour recognition [103], detection of falls in humans [104, 105], as well
as the maintenance of independent living for citizens of senior ages [106].
The applications described here are all extremely important, and provide
foundational aspects for efficient caring of humans.

In this chapter, the aim is to propose the use of DL to model a foundation
capable of being tailored to smart home-care. To do this, the experiments
conducted focus on the detection of common salient objects [107, 108] that
are found within a typical home environment. To stay within the realm of
the relevant research objective, this research is to analyse the applicability
of a DL method for the real-world use case of smart homecare via transfer
learning, with classification performance and rate of processing as the met-
rics discussed. To summarise the key findings of this chapter, experimental
results determine that transfer learning is an effective tool for reducing much
of the computational load during optimization, whilst possessing the capa-
bility to maintain a high level of classification performance.

This chapter is subsequently structured as follows. Firstly, the problem
domain will be introduced, alongside justification for the use of DL as a
potential solution to the problems discussed. Then, a brief review of relevant
literature will be presented that discusses key image classification and object
recognition architecures from recent years. Following this, the methodology
used will be explained, and the setup of the chapters experiments will be
described. Afterwards, the experimental results will be displayed and broken
down for analysis. Finally, a discussion of the obtained experimental results
will be given, where any relevant conclusions and propositions for future
developments will be drawn.
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3.2 Proposed Methodology

Based on the brief review of relevant literature in section 2.1.3, the following
system design and experimental setup makes use of the deep CNN object
detection framework YOLOv2 [29]. To summarise the network schematic,
a total of 24 convolutional layers and 5 max-pooling layers are utilised as
feature extraction. Within convolutional layers, kernel sizes range between
a size of 3x3, 1x1 (linear weighting of pixels) using stride values of 1, where
max-pooling layers utilise a 2x2 kernel size with a stride value of 2. Activa-
tion functions also consist of a leaky ReLU function [27] and are employed
post convolutional operations.

Layer Type Filters Filter Size Stride

Convolutional 32 3x3 1
Max Pooling 1 2x2 2
Convolutional 64 3x3 1
Max Pooling 1 2x2 2
Convolutional 128 3x3 1
Convolutional 64 3x3 1
Convolutional 128 3x3 1
Max Pooling 1 2x2 2
Convolutional 256 3x3 1
Convolutional 128 3x3 1
Convolutional 256 3x3 1
Max Pooling 1 2x2 2
Convolutional 512 3x3 1
Convolutional 256 3x3 1
Convolutional 512 3x3 1
Convolutional 256 3x3 1
Convolutional 512 3x3 1
Max Pooling 1 2x2 2
Convolutional 1024 3x3 1
Convolutional 512 3x3 1
Convolutional 1024 3x3 1
Convolutional 512 3x3 1
Convolutional 1024 3x3 1
Convolutional 1024 3x3 1
Convolutional 1024 3x3 1
Convolutional 1024 3x3 1

Linear 1 1x65 -
Linear 1 1x8 -

Table 3.1: Layerwise descriptions of the YOLOv2 architecture used for experiments
within this chapter.
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Prior to the experiments contained in this chapter, the base version of the
network was pre-trained to the ImageNet 1000 class dataset [7]. To setup the
following experiments and conduct transfer learning, the weights contained
within the initial 20 convolutional layers that make up the bulk of the feature
extraction portion are left frozen, whilst the final 4 convolutional layers
and the fully-connected portion, which consists of 2 linear layers containing
65 and 8 neurons respectively, are initialized with random weight values
sampled from a Gaussian distribution of mean 0 and standard deviation
1. The process of freezing these layers via transfer learning means that
a 20/26 = 76.9% reduction in layers to be optimized is attained, which
subsequently does not take into account unparameterized pooling layers.
The technique of batch normalization is also used throughout optimization,
in order to assist with convergence whilst reducing the requirement for many
alternative regularization methods to be applied [109].

For the data contained within this experiment, the Pascal VOC dataset
[28] made up the majority of the training and test data. In its’ original form,
this dataset consists of a total of 20 individual image classes, however this is
edited to leave 7 classes that are consistent with the aims of the experiment.
This results in a dataset of images containing a person, bottle, chair, dining-
table, potted plant, sofa, tv-monitor. In addition to this, a bespoke subset
of data containing images of lamps was included. This was formed via a
web-scrape of online images, prior to manually filtering and labelling those
that were deemed suitable for the experiment. The combined dataset was
then split accordingly into subsequent training and testing subsets, where
table 3.2 displays the number of object class instances present in each. It
should be noted that these numbers contain the number of instances that
the object is seen, and does not equal the number of images in total. Because
of this, there becomes a natural bias towards certain object classes as they
are more likely to be contained in different ratios towards one another. For
example an image may contain 4-6 chairs but only contain a single dining
table, or a single image may contain a gathering of multiple people, yet no
other objects contained within this list.
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Training And Testing Set Class Instances

Object Class Training Instance Testing Instances Total

Person 17,401 211 17,612
Chair 3056 180 3,236
Bottle 1561 120 1,681

Dining Table 800 140 940
TV Monitor 893 127 1,020

Sofa 841 130 971
Potted Plant 1202 121 1,323

Lamp 486 73 559

Table 3.2: The number of total instances that each class of object appeared, and
the number that appeared in the training and testing subsets of data. Note that
this does not equal the number of images.

3.3 Results

In regards to optimization of the system, this was conducted at a timed basis
of as many epochs possible within 40 hours. This equated to approximately
37 full epochs of the training data. For the selection of hyperparameter
values, SGD [110] was implemented using a momentum value of 0.9, an
initial learning rate of 1x10−5 that decayed by a factor of 5x10−4. In order to
track convergence and classification performance, 4 checkpoints were taken
at random during training which coincided with training iterations 29,000,
69,000, 100,000 and 121,200. For each of these checkpoints, various metrics
of classification performance were measured, where the results can be seen
in table 3.3.

Iteration No. Accuracy Sensitivity Specificity Precision

29,000 59.52% 0.529 0.962 0.672
69,000 91.47% 0.910 0.997 0.975
100,000 87.93% 0.869 0.995 0.945
121,200 88.75% 0.884 0.997 0.976

Table 3.3: The overall classification performance metrics for each of the 4 model
checkpoints saved.

From these results, it is clear that the model checkpoint of 69,000 training
iterations produced the highest overall prediction accuracy value. Whilst
these results support that the system was still converging to a satisfactory
local minima during iteration 29,000, classification performance appears to
drop for checkpoint 3 prior to a slight improvement once more for the final
checkpoint. This behaviour may suggest that perhaps a slight overfitting
occured during optimization, causing the subsequent test-set accuracy values
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to fall slightly. Regardless, The classification performance produced is still
very strong considering the complex nature of the task.

Object Class
Metric Person Chair Bottle Table TV Sofa Plant Lamp Average

True Positives 211 167 115 110 112 119 11 63 126
False Negatives 1 22 6 20 15 15 8 7 12
False Positives 0 7 0 10 0 2 2 3 3
True Negatives 820 842 916 912 920 905 919 966 900

Sensitivity (%) 99.5 88.4 95 84.6 88.2 88.8 93.3 90 91
Specificity (%) 100 99.2 100 98.9 100 99.8 99.8 99.7 99.7
Precision (%) 100 96 100 91.7 100 98.3 98.2 95.5 97.5

Accuracy (%) 99.9 97.2 99.4 97.1 98.6 98.4 99 99 98.6

Table 3.4: An individual breakdown of classification performance per class for the
model checkpoint as 69,000 training iterations.

Table 3.3 displays a class-based overview of classification performance
for the highest performing model. A confusion matrix for each individual
class was determined from the testing subset of data. From here, various
metrics of classification performance were derived, using the typical formu-
lated approach based on the amount of true or false positive and negative
object predictions. For clarity, the equations relating to these metrics are
as follows:

Sensitivity = TP
TP+FN Specificity = TN

TN+FP

Precision = TP
TP+FP Accuracy = TP+TN

TP+TN+FP+FN

Where TP =True Positives, TN =True Negatives, FP =False Positives
and FN =False Negatives. In relation to the results displayed in table 3.3,
it is evident that the best performing class is the detection of people. This
may be due to the number of training instances in relation to other classes,
however only a single mis-prediction is a very promising result. The lowest
performing classes are that of table and chair, with accuracy values of 97.1
and 97.2 respectively. These classes also held the highest number of false
negatives and positives between them in comparison to others. Arguably,
the detection of these objects may be more difficult than others, as they are
often partially hidden in view, or are obstructed by other objects around
them. This may make these objects harder to distinguish than others which
may be more likely to be in full view such as the bottle class for example,
which would likely be directly placed on top of a table etc.

Interestingly, the classification performance for the lamp class is within
the top 50% of classes for accuracy. As the lamp data was much less substan-
tial than other classes, this could be expected to perform to the lower end.
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This supports the idea that transfer learning can improve performance on
unseen classes of data more than if this system was trained completely from
scratch, since the lamp class possesses a lower amount of false predictions
than others. However, in contrast, the number of object instances in the
testing subset was lower for the lamp than others, so this may potentially
create a slight bias in favour of performance for this class Regardless, the
classification performance for each class is still very strong, with high values
of specificity and precision.

The final performance metric that was tested for this system was that
of processing capability once trained. For the entirety of this research, op-
timization was conducted using an MSI GTX 1060 GPU unit, with 4GB
of memory allocated to the working system. Once training had been con-
ducted, the system processing speed via the same GPU unit was measured
using the standard metric of FPS. However, realising that the final appli-
cation may not have the capability of a GPU, the speed of processing was
also measured using an Intel I5 8600k CPU in its’ factory setting. Table 3.3
displays the system speed with the processing unit used.

Processing Unit System Speed (FPS)

CPU 2.0
GPU 10.7

Table 3.5: Rate of image processing values dependent on hardware used. The GPU
used is an MSI GTX 1060 with 4GB of RAM allocated to processing. The CPU
used is an Intel I5 8600k used in its’ factory setting.

As a result of the processing speed tests conducted, as expected the FPS
rate via a GPU unit is much higher than that of a CPU(approximately 5x
higher). Whilst the processing speed via the GPU may still not be considered
real-time, it is still high enough to be very capable within the application of
smart homecare. However, the processing speed of the CPU is just too low
to have the substantial capability for further adaptations within the final
application.

3.4 Discussion

Within this chapter, transfer learning techniques were implemented using
the deep, CNN-based object detection network YOLOv2. The pre-trained
system was retrained to a new task with increased specificity towards detec-
tion of indoor objects commonly found within the home envrionment. From
the experimental results outlined throughout section 3.3, the second model
checkpoint taken at 69,000 training iterations showed to perform the high-
est overall at an accuracy value of 91.47%. Based on the class breakdown
for the 69,000 model, the high sensitivity values would benefit the system
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greatly when applied within a home environment, as objects become nat-
urally obstructed by one another such as example detections seen in figure
3.1.

Figure 3.1: Multiple processed testing-set images that include various objects and
the identified bounding boxes for detected objects.

In its’ current state, the proposed system shows a great deal of potential
to have applications within home care. The accuracy of detection is reliable
enough to have different applications within smart assisted living. With fur-
ther development, locations of detected objects may be able to be processed
relative to one another, where a status could be enabled. For example, if
a person was detected within a certain boundary of another object such as
a chair, then the system status may change to ’sitting down’. This would
naturally extend to a variety of other scenarios, such as drinking, watching
tv or general movement. Sub-categories of movement such as falling over
may also be suggested with further development, where alerts could then
be triggered on a control device. In general, CNNs have been shown to
generalize well to these categories of problems [104, 105], therefore showing
promise for future development.

In relation to the growing demands of health and social care for the
elderly population, additional features within the implemented system could
allow for staff to allocate their time to residents more effectively than before.
Residents that are of a higher priority due to medical and other reasons can
then get the quality care and attention they require. This aspect of efficient
caring is a large factor in not only improving quality of life for others, but
also reducing the cost of care.

On discussion of the computationally expensive training of entire deep
CNNs with many parameters, this was mostly negated through the use of
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transfer learning to just optimization of a handful of layers. The effective-
ness of transfer learning is questionable as to whether the resulting classi-
fication capability will be suitable for its’ end application or not. In the
case of this research, the implementation of transfer learning was success-
ful. The re-initialized end layers of the system were able to converge to a
satisfactory local minimum on previously unseen object data. In doing so,
individual class performances were relatively similar, even with uneven class
representations in training data. Within just 40 hours of optimization, ap-
proximately 37 epochs of the training data could be conducted. With this
timeframe in mind, the resulting classification performance from the appli-
cation of transfer learning was very promising and the experiments objective
was successfully achieved.

However, arguably not all of the performance metrics explored could be
deemed suitable for task. Whilst the rate of processing measured on a GPU
unit was fair, the rate measured via a CPU would simply not be fast enough
for further application in a home environment. Whilst the hardware used to
gather these results most certainly had a large impact, the hardware itself
is not of a low quality by any means. On an industrial scale, the chances
are the hardware will not be state-of-the-art in terms of processing speed,
therefore this should be accounted for when evaluating proposed systems.

To summarise, the application of transfer learning enabled the algorithm
to successfully retrain to the proposed task environment, producing high
classification performance levels whilst reducing the need for optimization
of the full CNN network. However the network implemented is still of a large
scale, which is the common trend within the field of image classification and
object recognition in recent years. Because of this, alternative developments
towards image classification algorithms should be explored to ensure that we
can produce the highest-performing efficient system overall. As DL systems
have overtaken other algorithm developments within classical computing for
image classification, quantum computing remains the natural logical choice
for further pursuit. Investigation of the use of quantum computing for image
classification will not only allow for well-informed insight into the potential
computing power available, but the feasibility for such application on an
industrial level.

3.5 Conclusion

With the growing shortage of quality care available for the ageing global
population, ML and in particular DL has shown promising benefits that
could become a potential solution to not only improve the quality of care
given, but reduce costs simultaneously. However, due to the rising complex-
ity of deep CNN algorithm structures it is not uncommon for the scale of
optimization to update weight values in the millions. Transfer learning is a
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recently explored technique that aims to improve learning capacity and rate
of learning on an unseen task by retraining the latter part of the algorithm
only, rather than its’ entirety.

In this chapter, transfer learning was conducted using the deep CNN
YOLOv2 in conjunction with a bespoke dataset consisting of a subset of
Pascal VOC data and custom-scraped images. This was done to explore the
applicability of DL for a suitable use case of improving smart homecare, as
well as investigate the effectiveness of transfer learning itself. Within the
experiments conducted, the resulting classification accuracy of the developed
system was promising, and is in a prime position for future developments
to occur. However, the largest disadvantage for the system was the rate of
processing itself, with a lowest value of 2 frames-per-second using a CPU.

Overall, the experiments conducted within this chapter show that trans-
fer learning can be a very effective tool for the efficient retraining of deep
CNNs. The need to optimize a full DL architecture from scratch was
negated, leaving only a fraction of the originally large parameter count to be
updated during backpropagation.The resulting classification performance on
the retrained task was also seen to be very promising, with high levels of ac-
curacy and sensitivity. The experimental results explored support the basic
idea for transfer learning, in that classification performance can be main-
tained or even improved inter-task through the use of pre-trained feature
extractors.

However, whilst the use of transfer learning may be effective, the field
of image classification and object recognition is still stagnating with very
large CNN architectures. Investigation towards alternative algorithm devel-
opments should be pursued to ensure that we are utlising the computing
resources available as effectively as possible. Here, whilst the field fo quan-
tum computing and quantum machine learning is in its’ infancy, the natural
efficiency of quantum information through quantum-mechanical properties
may pave the way for a well-rounded image classification methodology.
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Chapter 4

Non Gradient-Based
Quantum Machine Learning
For Facial Identification

4.1 Introduction

The following chapter presents research conducted to the development of
a quantum computing algorithm targeted towards the application of facial
identification in an effort to answer the following research question:

Research Question 2: To what extent can a non-gradient based ap-
proach be taken to perform effective quantum image classification?

To summarise this chapter, a quantum-based algorithm is explored that
uses the quantum subroutine of a SWAP test. This is done to estimate
fidelities of encoded feature vectors corresponding to images in order to de-
termine a classification result via a threshold function. Here, computational
complexity improvements of an exponential scale are able to be achieved in
comparison to a classical SVM and k-NN, whilst sacrificing a small amount
of classification accuracy in exchange. This is done through the efficient
manner of which quantum information is encoded, in comparison to the
computationally expensive methods of SVM and k-NN. Limitations of the
method are also proposed, and areas for future investigation and develop-
ment are considered to potentially improve the capability of the algorithm.

In recent years, QC has become an active area of research with the
promise of many rich, performance enhancing benefits due to natural quantum-
mechanical principles and behaviours. One of the most encouraging areas
for development is QML. With the rise of QML being propelled towards
desired benefits of performance speedups and rich feature spaces, certain
developed quantum algorithms have proposed speedups of exponential fac-

51



tors over many classical algorithms currently used [9].
Facial identification is a highly critical task within ML that has many

useful real-world applications. For humans facial identification is a simple
task, however from a computer vision perspective the task is highly complex.
Nevertheless, through the development and application of ML techniques,
facial identification has been successfully applied to a wide variety of target
domains that assist us in day to day living. Examples of these applica-
tions are plentiful across the modern world, such as biometric analysis [111],
healthcare [112], personal security [113] and marketing [114]. Because of the
high variety in applications, it is critical that we are able to innovate our ap-
proach to tasks such as facial identification in order to overcome drawbacks
and challenges currently faced.

Currently, much of the focus within the noisy, intermediate-scale quan-
tum (NISQ) era of QC and QML has been directed towards classification
using variational circuit methods [12, 36, 69, 88, 115–117]. This is done
as a step towards creating robust quantum neural networks [118, 119] and
advanced quantum deep-learning algorithms [74, 120]. Whilst results of
these developments have been promising, often a costly optimization step is
required, which involves repeated executions of the quantum circuit to per-
form effectively. It is important to consider alternative methods of working
to avoid a similar fate than that of classical deep learning, where the stack-
ing of many layers is often seemingly done with the blind hope of improved
classification performance, but at the expense of greatly increasing the com-
putational effort required. Efforts have also been placed towards the devel-
opment of quantum k-NN algorithms, that can conduct efficient searches of
data stored in superpositions using oracle subroutines [67, 121]. However,
there have not been many works that showcase quantum algorithms applied
in practice to real-world tasks [122–124]. Many of the algorithms proposed
rely on synthetic datasets for analysis [125, 126], or a purely theoretical
works [57, 127–130] that will be difficult to validate until improvements can
be made to the quantum hardware available.

In this chapter, the aim is to explore how we can use quantum ma-
chine learning techniques to build classifiers based on real-world applica-
tions, specifically towards facial identification in this case. Here, a classifier
is built using foundational quantum modules that estimate fidelity between
two individual quantum states. This is done using methods that are not
variational-circuit based, to ensure the lengthy process of optimization can
be negated. By doing so, an initial insight can be gained into how quantum
algorithms may perform at a simple level, as well as gather perspective on
where efforts may be placed to improve upon the initial results obtained
to develop a robust classification system that has potential for real-world
application. To summarise the research contained in this chapter, exper-
imental results show that a fidelity-based approach is capable of effective
classification, whilst removing the need for a resource-heavy optimization

52



process.
The content in this chapter is therefore structured as follows. Firstly,

the domain of the task will be introduced alongside justification for why a
non-gradient based scheme of optimization is followed. Then, a brief review
of common quantum information encodings is discussed. Following this, the
methodology of the system is explained from start to finish. Following this,
the experimental results will be outlined and an analysis will be provided in
relative comparison to commonly used classical ML algorithms, in particular
a support vector machine (SVM) and a k-NN. Finally, conclusions are drawn
and any future directions for investigation and development are considered.

4.2 Methodology

4.2.1 Qubit Encodings

Review Of Quantum Feature Spaces

In classical computing, the fundemental unit of information is the bit. How-
ever, in quantum computing, this unit is known as the qubit. In their most
basic forms and in terms of a single qubit, information is represented in a
two-dimensional complex vector space, known as Hilbert space. When com-
pared, whilst a set of n-bits can represent a single state (e.g. integer up to
2n), a maximally-entangled set of n-qubits can represent 2n states concur-
rently. This capability allows us to represent classical units of information in
a complex, yet very efficient manner. By adapting our encoding of quantum
systems, we can create feature spaces that are not tractable or feasible to
replicate in classical systems.

In order to create these feature spaces, classical information must first be
transformed into its’ quantum equivalent form. Whilst a variety of quantum
representations of classical data and images have been presented [131–134],
two fundamental encoding methodologies are that of Basis Encoding and
Amplitude Encoding. These schemes often form a basis for many other
extensions and niche use cases, therefore it is only logical to define and
explore these further.

Basis Encoding

Basis encoding can be seen as most similar to a binary-style representation
of information in itself. Within basis encoding, the computational basis
states of |0〉 and |1〉 are used to form a bit string that matches the classical
input information. As an example, the 3-bit binary string x = 010 can be
represented by the quantum state |ψ〉 = |x〉 = |010〉. More formally, consider
an N-bit binary string xN = [y1, y2, ..., yN ], where yi ∈ {0, 1}.

To consider this scheme in context, say we haveN -datapoints a0, a1, ..., aN ,
and F-features, f0, f1, ...fF that are binary in nature (e.g. yes/no, or fi ∈
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{0, 1}). In this example dataset containing 2 datapoints of 2 features each,
a0 = [00] and a1 = [10]. From here, we can represent the quantum state for
each datapoint as a superposition of the computational basis states, giving
the following quantum state |A〉, i.e.:

|A〉 =
1√
2

(|00〉+ |10〉) =
1√
N

N∑
n=0

|an〉 (4.1)

Amplitude Encoding

A different approach to the encoding of classical information to its’ quantum
equivalent is through amplitude encoding. Unlike basis encoding, here a
normalized input vector is encoded using the associated amplitudes of a
quantum state. As a simple example, say we have a two-dimensional data-
point x, with two features fi ∈ R, giving x = [f0, f1] = [0.6, 0.8]. Handily,
this is already normalized since |x| =

√
0.62 + 0.82 = 1. Therefore, this data-

point can be directly translated to its’ equivalent quantum state, where each
dimension is associated with an equivalent amplitude, giving the quantum
state |ψ〉 = 0.6 |0〉+ 0.8 |1〉.

As a more generalised example, using amplitude encoding we can embed
a single N = 2n-dimensional datapoint using n-qubits by associating each
dimension with their respective amplitude of the quantum state, i.e.

|A〉 =
N∑
i=0

fi |i〉 (4.2)

In order to extend this to a dataset containing D data-points, then
we simply extend the amplitude encoding scheme multiplicatively by DxN
data-point dimensionality. For a single data-point of N -dimensions, the
amplitude encoding scheme requires n = log2(N) qubits. For a dataset con-
taining D datapoints, this scheme extends to requiring n = log2(D × N)
qubits to fully encode the dataset at one time. In summary, whilst basis
encoding does have applications, amplitude encoding presents a much more
efficient way of encoding classical information in comparison. Therefore, the
amplitude encoding scheme will be used throughout this experiment.

4.2.2 Experimental Setup

Experiment Overview

The overall design of the system used for the following experiments can be
split into three main portions. Firstly, the input data used within the exper-
iment is split categorically into training and testing datasets, before being
pre-processed using classical pre-processing fucntions. Secondly, classical
feature vectors are subsequently encoded onto the quantum circuit using
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an appropriate encoding methodology, and the circuit routine is executed.
Finally, the quantum circuit is measured and the result of measurement is
post-processed classically, where a classification result is obtained. A visual
overview of the system pipeline can be seen in fig. 4.1.

Figure 4.1: A high-level flowchart overview of the implemented system. Firstly, pre-
processing is conducted of the image. Then, the image is encoded into a quantum
state and the quantum circuit is executed. Finally, post processing occurs and a
classification result is obtained.

Data Pre-Processing & Feature Encoding

For the purposes of this experiment, the AT&T face dataset was used. This
dataset consists of 400 images of faces, including a variety of subjects with
images taken using differing photo angles and expressions. On a technical
level, each original image is sized at 92x112 pixels, in a greyscale format
containing 256 grey levels per pixel.

The dataset was consequently split into two portions using an image
split ratio of 3:1. Whilst not used in the conventional sense, I will refer to
the larger portion containing 75% of the face images as the ’train dataset’,
and the other portion as the ’validation dataset’. This ratio was chosen to
provide enough representation for the training data, whilst leaving enough
images for a varied and unbiased validation set. Furthermore, for the pur-
poses of validation, a bespoke dataset consisting of 400 images collected from
various sources of non-facial objects was also included within the validation
dataset portion. Once the two datasets had been finalised, all images were
resized to a size of 8x8, prior to being flattened to each form a 64-dimensional
vector. Due to the nature of quantum embeddings, a 64-dimensional vector
can be fully encoded using 6 qubits only. Some examples of the original
images used throughout can be seen in fig. 4.2.

Once the datasets had been formed and transformed into their column
vector equivalents, an average face vector was created using the training
dataset portion. This was done to create a comparison state that would be
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Figure 4.2: Examples of the original images merged to form the dataset used
throughout the experiment. All images were subsequently resized to 8x8 and flat-
tened to form a singular column vector.

used to classify a result. To do this, average values were taken over each
image in the training dataset per data dimension, i.e:

x =
1

N

N∑
i=0

Ti (4.3)

Where N is the total number of training images used (in this case, 300)
and T is the subsequent image vetor. In order to encode the resulting
single average vector into an equivalent quantum state vector, the amplitude
encoding scheme was used. For the input size of D = 64 dimensions, this
would require log2D = 6 qubits per input state. Following the amplitude
encoding scheme, the input vector X has to be normalized to produce a
valid quantum state |ψ〉, i.e:

X =
x

||x||
−→ |ψ〉 =

D∑
i=0

X |i〉 (4.4)

Now that the image vectors are in their valid quantum forms, two quan-
tum states |ψ〉 and |φ〉 can be created using the single average training vector
and a single image from the validation data respectively. Once amplitude
encoding has been performed on both input state vectors, the system con-
sisting of 13 qubits (6 qubits per input vector + 1 ancilliary qubit) is in the
following state:

|S〉 = |0〉 ⊗ |ψ〉 ⊗ |φ〉 (4.5)
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Circuit Design

After the input state vectors |ψ〉 and |φ〉 have been produced from the train-
ing and validation datasets, the quantum circuit is initialized to the state
shown in 4.5. From here, a comparison between |ψ〉 and |φ〉 needs to occur.
In order to do this, a quantum subroutine known as a swap test is performed.

A swap test computes the fidelity, or inner-products, between two quan-
tum states. By computing the overlap between these states, we can deter-
mine how similar they are in nature. The swap test is the most compu-
tationally expensive portion of the circuit, and requires an ancilliary qubit
which contains the result.

To perform a swap test, firstly a Hadamard operator is applied to the
ancilliary qubit initialized in the |0〉 state. This places the qubit into an
equal superposition of the computational basis states:

|0〉 −→ |0〉+ |1〉√
2

(4.6)

After this, successive C-SWAP operations are performed between pairs
of qubits (with the ancilliary qubit as the control qubit and 1 qubit from
|ψ〉 and |φ〉 being the target qubits), until a C-SWAP operation has been
performed to all pairs of qubits. The final stage of the swap test routine is
the application of a second Hadamard operation to the ancilliary qubit.

Once the swap test routine has been performed, the state of the system
is:

|S〉 =
1√
2

(|0〉 |ψ〉 |φ〉+ |1〉 |ψ〉 |φ〉) (4.7)

As stated previously, the number of qubits required to replicate this
experiment is 13, for 6 qubits per input state and 1 ancilla. In order to
generalise the system for cases where the input dimensionality may vary,
the total number of qubits Q required for a system using D-dimensional
datapoints naturally would be Q = 2 log2D + 1.

Post-Processing & Classification

Once both of the input states |ψ〉 and |φ〉 have been encoded and a swap
test has been performed, the output of the circuit must be measured to give
a value to post-process and subsequently produce a classification result.
Within this system, only the ancilliary qubit is measured, rather than each
individual qubit. During measurement, an expectation value with respect
to the Z-basis is taken to give the fidelity of the two-encoded states.

After the second Hadamard operation is performed, the measurement
output of the ancilliary qubit is as follows, where P (0) is the probability of
the qubit measuring as |0〉:
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P (0) =
1

2
+

1

2
| 〈ψ|φ〉 |2 (4.8)

If the two comparison states |φ〉 and |ψ〉 are orthogonal to each other,
| 〈ψ|φ〉 |2 = 0. If the two comparison states are equal, then | 〈ψ|φ〉 |2 = 1.
Once the ancilliary qubit has been measured and this probability value is
outputted, a classification result can be determined using a threshold value.

If the measured value is higher than the threshold value set, then the
result is that the comparison image is that of an individuals face. If the
measured value is lower than the threshold, then the result is that it is
a non-face image. In order to determine an effective threshold value, re-
peated experiments are conducted using various threshold values, where the
threshold that results in the highest accuracy value is considered optimal.

A visual diagram of the circuit used to implement the methodology de-
scribed is shown in fig. 4.3.

|0〉 • • • • • •

|ψ0〉 ×
|ψ1〉 ×
|ψ2〉 ×
|ψ3〉 ×
|ψ4〉 ×
|ψ5〉 ×

|φ0〉 ×
|φ1〉 ×
|φ2〉 ×
|φ3〉 ×
|φ4〉 ×
|φ5〉 ×

Figure 4.3: Circuit diagram of the system implemented. Two images are encoded
onto states of |ψ〉 and |φ〉, where a swap test routine is executed prior to measure-
ment of an ancilla qubit.

4.3 Results

4.3.1 Quantum Facial Identification Results

In order to demonstrate the potential of the system and produce a high accu-
racy in classification performance, there has to be a substantial difference to
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No. of Qubits Input Vector
Dimensions

Average Fidelity
of Face Images

Average Fidelity
of Non-Face

Images

9 16 0.95434 0.87156

13 64 0.96199 0.82020

17 256 0.86848 0.78061

Table 4.1: Average fidelity values for face/non-face images per varied input image
sizes.

the fidelity values of face and non-face images. To provide a deeper analysis
into the performance of the system, classification performance results were
taken using various input image dimensionalities, and subsequently various
numbers of qubits.

For the purposes of these experiments, the system was developed using
the quantum software library PennyLane [135], and simulated using IBM’s
high-performance simulators [136].

Table 4.1 shows values for the average fidelity of images containing a
face and images that do not contain a face. Various input image sizes are
considered, which subsequently affect the total number of qubits used in the
system and the runtime speed. The maximum number of qubits tested was
17, as it was felt that a much larger and complex system size is beyond the
scope of the experiment and was unecessary.

Here, it can be seen in table 4.1 that a smaller scale of input with 9 total
qubits produced similar fidelity values, whereas a larger input dimensionality
using 13 qubits produced more disparity between fidelity values. However,
the largest input size tested using 17 qubits produced a similarity close to
that of the 9-qubit system.

Overall, these average fidelities suggest that there is a balance that needs
to be considered when designing quantum circuits between the number of
qubits used and the corresponding output. For the smaller system size of
9 qubits and 16 input image dimensions, we are losing important detail
required to determine whether the image is that of a face or not due to the
lack of pixels involved. Whereas, for the largest system size of 17 qubits,
there is too much variability involved in the larger quantum states compared,
thus causing the respective fidelities to drop, as well as becoming more
similar.

To determine the classification performance of the system, various thresh-
old levels were considered to maximise accuracy of classification on the test
dataset consisting of 100 face and 300 non-face images. The threshold val-
ues considered started at a value of 0.7, and were incremented in steps of
0.01 until a final value of 1.0 was reached. A starting threshold of 0.7 was
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Table 4.2: Accuracy and the best performing threshold value per system size used.

No. of Qubits System Accuracy Highest Performing
Threshold

9 0.800 0.971

13 0.906 0.958

17 0.800 0.993

chosen as a smaller threshold would have been too ambiguous to distinguish
between face and non-face images. The best performing results from these
tests are shown in table 4.2.

In fig. 4.4, the relationship between classification accuracy on the test
dataset and the threshold value used can be seen for the 13-qubit system.
Naturally, there will be a single peak in the curve, where the similarity
cut-off would be to determine whether an image is that of a face or not.

Figure 4.4: Curve showing the relationship between the test-set classification accu-
racy per threshold value for the 13-qubit system.

4.3.2 Comparitive Classical Algorithm Results

In order to demonstrate the performance potential of the quantum system
developed, it is important to give some context as to what a realistic result
to expect would be. To do this, the results gathered were compared against
results gathered using the classical machine learning algorithms of an SVM,
as well as a k-NN. These algorithms were chosen as they are tried and
tested methodologies, which have been commonly used in the field of facial
identification [137, 138].
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Table 4.3: Accuracy comparison between the proposed quantum system versus
classical SVM and k-NN algorithms examined.

Algorithm Test Dataset Accuracy

SVM 0.995

k-NN (k=2) 0.945

Quantum 0.906

For the purposes of the following experiments, the previous datasets used
were merged, before being split 75% training data to 25% testing data. In
total, this amounted to 300 training images per class, and 100 testing images
per class of face or non-face. Algorithm specific, the SVM used consisted of
155 support vectors and used a Gaussian kernel. For the k-NN algorithms,
various k-neighbour values were chosen, ranging between 1-20.

From the results in table 4.3, it can be seen that the classical algo-
rithms do perform to a slightly better level of accuracy that that of the
proposed quantum methodology. However, it could be argued that the pro-
posed methodology does still perform to a fair performance level. As shown
in fig. 4.5, classification accuracy for various values of k also remain within
90− 95% boundary.

Figure 4.5: Classification accuracy on the test dataset portion for the k-NN algo-
rithm used, with varied k-neighbour values.

4.3.3 Computational Complexity Analysis

Whilst the early results presented previously are promising towards the use
of quantum computing for facial identification purposes, a key aspect which
should be considered is the complexity of any algorithm created. A key
aspect driving the development of quantum algorithms for machine learn-
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Table 4.4: Computational complexity comparison between quantum and classical
algorithms used throughout these experiments.

Algorithm Complexity

SVM O(I2D + I3)

k-NN (k=2) O(DI)

Quantum O(I log2(D))

ing purposes is the potential benefit to the computational complexity in
comparison to current classical methodologies. In order to display a fair
comparison of the showcased quantum method to classical algorithms, the
computational complexity must also be compared alongside the previous
accuracy metric.

Table 4.4 shows a comparison of the relevant computational complexi-
ties for each methodology used throughout this experiment, where D is the
dimensionality of each input vector and I is the total number of images
used. Here, it can be seen that the proposed quantum method achieves ex-
ponential speedups in areas over the compared classical methods analysed.
This is due to the efficient representation of quantum information from the
nature of the quantum embedding used (amplitude embedding being log2
naturally).

4.4 Discussion

From the experimental results explored, the quantum algorithm developed
within this chapter classified the data to a slightly lower initial level of
accuracy compared to the classical ML algorithms of SVM and k-NN. How-
ever, there was a certain degree of optimization occuring within the clas-
sical methods. For the SVM, the margin of seperation for the seperating
hyperplane is maximised, and for the k-NN the optimal k-neighbor value
within the allocated range is located. Whilst the optimum threshold was
found for the quantum algorithm, this is most similar to the optimization
of the k-NN (where accuracy decreased rapidly after k= 2) and is not of
the same level of complexity as the SVM. Therefore, it could be argued
that comparison against the SVM was unfair but regardless a good indica-
tion of realistic classification performance expectations from the dataset was
provided. Once computational complexity of each algorithm is considered,
the speedup potential benefit of quantum computing via efficient quantum
information representation is realised.

The experimental results obtained in this research suggest that the de-
signing of quantum algorithms should be balanced in the sense of detail and
variability. This was supported by results in table 4.1 which showed the
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middle system size to have the highest classification performance. There-
fore, we should aim to utilise enough qubits to create a sufficiently complex
feature space that can contain a high level of information. However, the
amount of qubits used should not become too many to the point of creating
an uncontrollable level of variability within the contained quantum state,
hence limiting our output measurement potential.

Whilst the early experimental results gathered for the quantum algo-
rithm are promising, they are not without their limitations. Additional
studies should be conducted into the robustness of the algorithm itself in
relation to fidelity estimations and qubit cohesion in NISQ environments.
Alongside this, classification performance should be analysed when a variety
of image perspecives are included, such as varied ratios and lighting settings.
Whilst the non-facial data did include these aspects, the facial training data
was of a limited format. Therefore, the system may struggle to determine
between a face and similarly shaped objects, subsequently affecting the ro-
bustness of the methodology.

Alternatively, other methods that could be considered include altering
the pre-processing portion of classification. Here, various pre-processing
steps, or different methods of qubit encoding could be explored. Different
methods of quantum information encoding in particular may be a promis-
ing avenue for further investigation. Whilst Amplitude encoding is fairly
efficient in nature, requiring log2 qubits for state dimensions D, different
schematics may create a more efficient or enriched feature space that can
limit the problem of qubit variability described.

As a whole, the results achieved by the quantum computing algorithm
explored are promising in comparison to the classical ML methods tested,
but only once computational complexity is considered. Although there exists
quantum systems large enough to process the number of qubits used in these
experiments, it is questionable whether the functionality of these qubits
will be at a cohesive enough level for the system to function at a good
performance rate. Once improvements are made to quantum hardware,
specifically towards qubit cohesion, methods such as the one explored in
this chapter may become much more realistic and feasible to use as part of
real-world application domains.

4.5 Conclusion

In this chapter, the concept of quantum computing applied to the widely-
used machine learning domain of facial identification was explored. By per-
forming Amplitude encoding, high-dimensional feature vectors could be en-
coded into their equivalent quantum state, creating a highly-complex Hilbert
space. Using a quantum SWAP test subroutine, the fidelity between two
quantum states could be measured effectively. An image could then be
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classified appropriately as either a face or non-face in conjunction with a
threshold function.

Initial experimental results of the developed system show promise which
can only hope to be improved upon with further investigation and develop-
ment. Whilst the examined classical algorithms of SVM and k-NN classified
the dataset to a higher standard than the quantum algorithm, the com-
putational compelxity of the quantum algorithm outperformed them both.
By efficient representation of quantum information, speedups of exponential
scale could be achieved, with a slight trade-off of decreased classification
accuracy. Considering the NISQ era of quantum computing, this trade-off
could be considered fair and justified. As advances to quantum hardware
are made over time, it is hoped that the initial performance benchmarks
produced here can be improved, and that the real-world applicability of the
algorithm could be realized.

Finally, it is suggested that alternative methods of encoding should be
investigated in order to expand upon the findings of this chapter. This
should be done to determine whether rich feature spaces can be created in
a qubit-efficient manner of encoding to minimize the limitations discussed
within this chapter.
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Chapter 5

On Depth, Robustness And
Performance Of
Classification Via
Single-Qubit Encoding

5.1 Introduction

The following chapter presents an investigation into the capability of single-
qubit encoding, a method proposed for information encoding and classifica-
tion using a single qubit only. This is conducted following research presented
in chapter 4 in an effort to answer the following research question:

Research Question 3: Can effective feature representations of classi-
cal data be created in Hilbert space using low numbers of quantum bits?

VQCs are currently an area of large interest within QML [12, 36, 69,
72, 88, 115, 139–141] and provide a natural progression point for the de-
velopment of QML algorithms due to their optimization capability. VQCs
often appear to be initialised using circuit structures and designs that are
seemingly chosen at random, or have very little justification as to why [142].
Whilst this may work fine in certain scenarios, we need to look at what
aspects of these circuits improve classification performance, and whether
specific features such as depth to VQCs, are most beneficial to doing do.

Two measures of circuit capability, referred to as ‘expressability’ and
‘entangling capability’ were initially explored in [142]. This was furthered
in [143], where the resulting performance of these circuits were compared
in a classification task setting. These studies ultimately suggest that ex-
pressability and classification performance of VQCs will begin to plateau
at a point, however this point is not absolute and may change dependent
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to the circuit used. A particular encoding and classification strategy that
has shown to be promising for an individual qubit is the concept of data re-
uploading, introduced in [125]. Here, layers of parametrized unitary gates
are repeated to embed classical input data into Hilbert space. As a mini-
mum, only a single qubit is required for classification, making the promising
methodology appealing to pursue further as a whole.

A critical aspect that should be explored when using data re-uploading is
the correlation between circuit parameters and performance. A parameter
here could be considered as system depth (i.e. the number of uploading
layers used). The original proposal of data re-uploading partially explored
this parameter, where added depth to the circuit did show a subsequent
increase to classification performance prior to saturating. However, arguably
there was not enough evidence in their results to support that increasing
circuit depth, or other parameters they varied such as the number of qubits,
or the use of entangling layers is always necessary to consistently improve
upon classification performance.

Many QML algorithms are designed and tested within a noise-less simu-
lated environment. Whilst these simulations can be effective in determining
optimal performance, they leave an important factor out of how the exper-
imental results of the proposed system may translate across to a real-world
task through a QPU where environmental noise is present. An analysis
in [144] took this into account, showcasing results processed using a QPU.
However, little insight was provided into showing any correlation between
circuit parameters and performance.

Ultimately, effective use of each qubit is especially important at the cur-
rent NISQ era of quantum computation, as we are fairly limited by qubit
cohesion and connectivity in QPUs. Many quantum algorithms rely on mod-
erate to large numbers of cohesive qubits to compute or encode input data.
This is not necessarily a practical method to use at the current time, which
the results displayed within chapter 4 highlight. Alongside this, it is espe-
cially important that we can maximise the working potential of each qubit
used during computation, so that if a methodology is extended to multiple
qubits, this is done in an efficient manner. Doing so will not only allow us to
understand the computational power that a single qubit possesses, but also
provide valuable insight into effective VQC design where each qubit can be
maximally used. Because of the reasons outlined here, this research focuses
on the use and application of a single qubit only.

Overall, there are important aspects that have not been necessarily ex-
amined in recent works that explore data re-uploading [143, 144]. This
includes the investigation of the correlation between system parameters and
classification performance (using classification metrics of loss and accuracy),
as well as how the influence of envrionmental noise affects said performance.
These are aspects which should be examined together in order to gain a full
understanding of the methodology, as well as how this may translate to the
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wider field. Therefore, the aim of this chapter is to determine any correla-
tions present between circuit parameters and classification performance, as
well as determine how this performance may translate to application within
noisy quantum environments, using a single qubit only.

Ultimately, the contribution of this research is through an analysis of
classification performance using the data re-uploading single-qubit classi-
fier. The aim of the experimental results in this chapter are to identify key
trends within system design which can not only aid classification perfor-
mance, but also improve robustness of training within noisy environments.
The research presented here will improve our understanding of performance
using the data re-uploading methodology, as well as how we can adapt VQC
design to maximise the effectiveness of each available qubit, dependent to
the environmental noise levels present.

In order to achieve these aims, previous work will be bridged through
an analysis of classification performance using varied circuit depths, applied
to artificially-generated datasets of incrementing difficulty. The resulting
embeddings will be examined where necessary, to give an indication of how
they will change dependent to the input and design of the VQC. This will
aid the search in determining effective embeddings of classical data, that
produce enriched feature spaces capable of higher-performing standards of
classification. In addition, this will determine whether the methodology
remains viable as the dimensionality of the task increases simultaneously.

Alongside this, a case study will be conducted using MNIST data to
provide a realistic indication of how the methodology may translate across to
a scenario where non-artificial data is being used. The inclusion of this case
study will help to negate any biases that may have unknowingly occurred
due to the inclusion of artificially-generated datasets. In addition to the
previous points, the methodology will be tested using a simulated noisy
quantum environment. Doing so will help identify any design considerations
that may assist convergence during training, thus allowing for higher levels
of classification accuracy to be achieved in a shorter timeframe.

The findings of this research relate to an in-depth analysis of the data re-
uploading methodology. In this chapter, any correlation between increased
system depth supporting improved classification performance is identified
and quantified. The experimental results gathered and analysis performed
also supports that increasing system depth can boost stability during train-
ing in quantum environments where environmental noise is present, leading
to better overall classification performance.

The structure of this chapter is as follows. Firstly, the methodology of
data re-uploading is briefly introduced to provide the background knowledge
required. Then, an outline of the experimental setup and configuration
will be described, followed by the presentation of the experimental results.
Afterwards, an analysis of the experimental results will be conducted, where
key aspects and trends can be identified in order to form any conclusions
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and propose areas for further investigation or development.

5.2 Methodology

Within the field of Machine Learning, data is often presented, or transformed
to the form of a column vector prior to being processed. Naturally, this ties
in favourably with quantum computing, which by nature deals with column
vectors primarily. Data re-uploading is a methodology in which we can
encode these vectors and create a feature Hilbert space using successive
unitary operations that act on each dimension of the input. For any SU(2)
operation, U (i.e. a 2 × 2 unitary matrix with determinant 1), we are able
to decompose the operation into the following [145]:

U = eiαRZ(β)RY (γ)RZ(δ) (5.1)

Where α ∈ R is the global phase factor and β, γ, δ ∈ R are the Euler
angles that define each rotation around the Z, Y and Z axis respectively.
From here, we can define the Euler angles as:

β = θi + xi · φi (5.2)

γ = θi+1 + xi+1 · φi+1 (5.3)

δ = θi+2 + xi+2 · φi+2 (5.4)

With θ and φ being weight parameters fed into our optimization protocol,
and xi being the value of the input x at dimension i. these trainable weights
define the extent to which the state of the qubit is rotated, with respect to
the value of the input. From these parameter definitions, we can utilize a
maximum of three input dimensions per unitary operation performed.

From here, the input vector can be cycles through, encoding a set of
three data dimension values at a time until the input vector has been fully
encoded. In the proposed methodology, this is referred to as a full ’upload
layer’ of the data. By repeating this embedding of input data and adding
successive uploading layers, a highly-complex feature Hilbert space can be
created in an attempt to improve the learning capacity of the algorithm,
and thus boost classification performance.

After the input vector has been uploaded to the specified number of
times, then the fidelity of the encoded quantum state can be measured with
respect to a target state. For each task, a set of target states are chosen
which are maximally distanced for each other. As an example, for a binary
classification task, these target states could be configured to be state |0〉 for
each datapoint contained within class 0, and |1〉 for each datapoint contained
within class 1.
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The loss function that is used throughout this research is based on the
weighted fidelity loss function defined in [125], however we exclude the ind-
vidual class weightings. Defined in eq. 5.5, the loss function aims to min-
imize the fidelity (distance) F of datapoints between their encoded state
F (~θ, ~xd, ~φ) and their respective target states Fc( ~xd), where θ and φ are pa-
rameters to be optimized, x is the input data, d is the datapoint from train-
ing/validation dataset of size D and c is the current class of total number
of classes used C.

1

2

D∑
d=1

C∑
c=1

(
F (~θ, ~xd, ~φ)− Fc( ~xd)

)2
(5.5)

A full detailed description of the data re-uploading methodology can be
found in its proposal in [125], however, for simplicity an abstract overview
can be seen in fig. 5.1.

Figure 5.1: An abstract overview of the data re-uploading process from i-
dimensional datapoint to measurement. Firstly, the input datapoint is recognized
as a single column vector x. Then, each input dimension is ’uploaded’ by an arbi-
tray unitary gate U , which uses a weighted sum of 2 rotational parameters (θ, φ)
per dimension. This process is repeated until each datapoint dimension has been
encoded, where the qubit is finally measured with respect to a target state.

5.3 Results

5.3.1 Experimental Setup

Barren Plateau Problem

As a preface to the description of the following experiments, it is relevant
to address the barren plateau problem that is largely present when training
VQCs, as well as the effect that this has if not considered. Barren plateaus
are areas of near-zero gradient within the loss landscape that, if not consid-
ered, can substantially affect the training of VQCs and not allow for stable
convergence to a satisfactory local minimum in a sufficient number of epochs.

The problem of barren platueas was first addressed in [146], where several
approaches have since been considered to avoid or minimize the effect of this
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problem, such as local cost functions [147, 148], evaluating initialized weights
[149], or the use of quantum natural gradient [150, 151].

For the following experiments, the problem of barren plateaus is con-
sidered by initializing 10 randomized weight sets, where all weight sets are
initialized using a Gaussian distribution with a mean of 0 and a standard
deviation of 0.1. These values were chosen from results gathered in pre-
liminary experiments, as they produced more consistency between training
samples compared to other weight initialization values considered.

For each weight set, a single epoch was conducted on the test dataset
portion. The parameter set that corresponded to the lowest test set loss
value in this initial epoch was then used thereafter for the remainder of
the training for that experiment. Whilst this helped to avoid the problem of
barren platueas in our experiments, it should be acknowledged that this was
a temporary solution to the problem only, and alternative measures should
be analyzed for a capable long-term solution to the barren platuea problem.

Experimentation Plan

To outline the following results, the concepts targeted within these exper-
iments will be addressed in order. Firstly, to consider how depth affects
classification performance of the data re-uploading scheme, the number of
layers used within the system will be incremented from 1 to 10. Alongside
this, the dimensionality of the input data will be varied, starting from 3
dimensions up to 15 in increments of 3. This simulates increased difficulty
of the classification task, which will determine whether any trends remain
consistent when this difficulty is increased. In addition, this will also be
extended from binary classification tasks to multi-class classification tasks
(with 3 classes), in order to provide reasonable assumption to how this per-
formance may translate to other potential tasks.

Secondly, within QPUs, quantum noise from external factors (e.g. influ-
ence from the environment) can negatively impact the output of the quan-
tum system executed. To account for this, simulated noise will be intro-
duced, with varying levels of noise strength, in order to determine the ro-
bustness of the system in comparison to the amount of depth implemented.

Thirdly, to account for any bias that may have been created from the
use of synthetic datasets until this point, a case study consisting of a subset
of the MNIST dataset will be analysed. This will also give a fair indication
of the performance that the methodology may bring when used towards a
real-world task scenario.

For all of the following experiments, the PennyLane library [135] in con-
junction with the PyTorch optimization protocol was used to develop the ex-
perimental framework. For non-noisy simulation environments, the Qulacs
[152] qubit simulator external plugin was used within the PennyLane inter-
face. For noisy simulation environments, the mixed-state simulator native
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to the PennyLane library was implemented. For reproducibility purposes,
all relevant randomization seeds were set to zero, unless otherwise stated.

For all artificially-generated datasets, these were generated natively within
the scikit-learn library [153]. This allowed for much greater flexibility in
defining the data and feature creation parameters used appropriately. For
each dataset, unless otherwise states, these creation parameters were set to
include 2 informative features, 1 redundant feature, 1 cluster per class, a
class separation of 1 and a random generation seed of 1234.

5.3.2 Layer Correlation Analysis

For the following results, artificial datasets were generate, consisting of 500
train and 1500 test images split evenly between the number of classes used.
30 epochs of training were conducted per experiment, using the SGD op-
timization protocol with a learning rate of 10−2, unless otherwise stated.
These hyperparameters were chosen from conducting preliminary experi-
ments, where more stability was seen on average during convergence in
comparison to higher learning rates, whilst also reducing the amount of
optimization epochs needed to converge in comparison to lower rates of
learning.

Figure 5.2: Charts displaying training-set loss results of a binary classification task,
using layer depths N = 1..10 per each dataset dimension D ∈ {3, 6, 9, 12, 15}.

Fig. 5.2 to 5.5 displays results of a binary classification task, where the
depth of the system (i.e. number of layers) is varied from 1 to 10. The
dimensionality of the dataset used is also increased from 3 dimensions to 15
dimensions, in intervals of 3. The generally expected behaviour here would
be for the overvall trend of classification performance per layer over each
dimension to worsen, due to the scaling of difficulty of the task, with each
individual dimensional groups’ performance improving as layers are added,
giving increased learning capacity to the system.

The chart displaying test set loss in fig. 5.3 is fairly consistent with
this behaviour until 12 dimensions are reached. From here, the behaviour
almost reverses, where the performance of the system does not improve with
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Figure 5.3: Charts displaying testing-set loss results of a binary classification task,
using layer depths N = 1..10 per each dataset dimension D ∈ {3, 6, 9, 12, 15}.

additional depth until after 6 layers, where it appears to plateau.
Focusing on 3-dimensional loss results, fairly consistent performance in-

creases can be seen with added depth until 7 layers, where performance
starts to regress and worsen thereafter. This behaviour is not unique and
happens on more than one occasion. Regardless of the slight regression
within the loss value, the system still classifies the vast majority of the test
dataset correctly, and does not change throughout the different depth values
implemented.

Figure 5.4: Charts displaying training-set accuracy results of a binary classification
task, using layer depths N = 1..10 per each dataset dimension D ∈ {3, 6, 9, 12, 15}.

To follow with the loss values displayed in figures 5.2 and 5.3, figure 5.4
displays the classification accuracy values for the training data on the final
epoch. Whilst there is some suggesion of improvement for 3-dimensional
and 9-dimensional data as depth is increased, this is also contrasted with
6-dimensional data which loses accuracy towards the upper depth values.
However, with this said, the classification accuracy for all of these exper-
iments was high regardless, with very minor changes if any. Therefore, it
may be of more value to focus the analysis on loss rather than accuracy for
this set of results due to the loss equating to confidence in the classification.

As with figure 5.4, there is no clear correlation between depth and classifi-
cation accuracy on the testing set of data. Whilst there exists some evidence
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Figure 5.5: Charts displaying testing-set accuracys results of a binary classification
task, using layer depths N = 1..10 per each dataset dimension D ∈ {3, 6, 9, 12, 15}.

to implicate a performance improvement, such as 6-dimensional data, there
is also evidence to contrast this, such as with 9-dimensional data. Therefore,
it may also be of more value to focus primarily on loss results for this set of
testing data to provide more insightful analysis.

In order to classify a datapoint, the target state that the datapoint is
closest to (i.e. has the highest fidelity value towards) will become its result-
ing class. For a binary classification task, these target states are located on
opposing spaces of the bloch sphere, where states |0〉 and |1〉 have been used
for simplicity. With this knowledge, two distinct distributions of datapoints
(one cluster per class) should appear within each hemisphere of the Bloch
sphere. As the cost function used aims to minimize the fidelity between
datapoints and their respective target classes, the distributions seen should
become progressively smaller and more defined as the loss value decreases
during training. As this scheme is extended to multiple classes, the tar-
get states become a set of maximally-spaced state vectors, where the same
principles are followed regarding the highest state fidelity is the associated
class for each datapoint. In essence, this will mean that the respective class
boundaries will become reduced in size as more classes are included for a
single qubit.

Figure 5.6 displays embeddings of test set data visualized using the Bloch
sphere, with layer depths of 1 (subfigures 5.6(a) and 5.6(d)), 7 (subfigures
5.6(b) and 5.6(e)) and 10 (subfigures 5.6(c) and 5.6(f)) at epoch 30. Regard-
less of the number of layers used for these experiments, it can be seen that
the system still classifies the vast majority of datapoints correctly (green
point equals a correct classification result), minus a few clear outliers that
are heavily nested inside the opposing class cluster.

Whilst the majority of datapoints were classified correctly in figure 5.6
regardless of system depth, an advantage of increased depth shown is for the
increased complexity of embedding. In this case, a system depth of a single
layer produced a linear embedding, where the distribution of datapoints is
narrow along a particular rotational line. As the system depth is increased
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(a) 1 Layer (b) 7 Layers (c) 10 Layers

(d) 1 Layer (e) 7 Layers (f) 10 Layers

Figure 5.6: Bloch sphere visualizations of test set embeddings at epoch 30 with
varied system depth. Subfigures 5.6(a), 5.6(b) and 5.6(c) show correctly classified
points (green) versus incorrectly classified points (red). Subfigures 5.6(d), 5.6(e)
and 5.6(f) show the distribution of classes, using a colour to indicate a target class
value.

up to 10 layers, the distribution of datapoints becomes much more rotated
and distorted. In this case, this allowed for rotations to occur in the test set
embeddings, thus forming a more complex feature space. This is highlighted
more easily in subfigures 5.6(d), 5.6(e) and 5.6(f)

In the case of the dataset used for this experiment, it could be argued
that only a simpler complexity of embedding was required to seperate the
datapoints into their respective class boundaries and classify them to a high
degree of accuracy. However, for a dataset that is not so seperable with an
intense overlap between class clusters of datapoints, the advantage brought
by increased system depth may become much more apparent.

Figure 5.7 displays results of a binary classification task using the sec-
ondary dataset that contains an extreme overlap between class datapoint
clusters, more so than the data used previously for the experimental results
shown in figures 5.2 - 5.5 and 5.6. This dataset, also displayed in figure 5.7,
was generated using creation parameters of 3 informative features, 4 clus-
ters and a class seperation of 2, all defined within sci-kit learn. In total, this
dataset consists of 500 training set and 1500 test set images, split evenly be-
tween the 2 classes. Each experiment was trained for 10 total epochs, using
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(a) Euclidean space view of the 3-dimensional
dataset used, containing a considerable over-
lap between class clusters.

(b) Charts displaying test set loss (left) and test set accuracy (right)
at epoch 10, with varied system depth between 1-10 layers.

Figure 5.7: Figure displaying a visual distribution of the second dataset and asso-
ciated experimental results.

SGD optimization protocol and a manually tuned learning rate of 10−3, to
avoid overfitting in this case.

As previously seen, improvements in classification performance occur as
the system depth is increased. However, these improvements are sharpest
within the first few layers, and any improvement appears to saturate after
approximately 3 layers are used. In comparison to previous results, these
increases in classificatino performance with additional depth are at a smaller
scale. In addition, there are a much higher proportion of misclassified points
using a lower number of layers, when compared to previous experimental
results gathered and displayed in figures 5.2 - 5.5.

If we look to the embeddings of the test set data used, displayed in
figure 5.8, the embedding capability of a single uploading layer is much more
rigid and restricted in comparison to a depth of 10 layers, which allows for
a greater degree of flexibility in its’ mapping of datapoints. This greater
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Figure 5.8: Bloch sphere visualizations displaying embedding of the test set dat-
apoints associated with the dataset displayed in figure 5.7. The top row displays
correctly classified points (green) and incorrectly classified points (red). The bot-
tom row displays the distribution of individual classes (yellow and blue coloured
points corresponding to class states |0〉 and |1〉 respectively). Left to right on both
rows displays results using a system depth of 1 and 10 layers respectively.

embedding flexibility results in the system being able to seperate each class
much more effectively than with a lower embedding flexibility.

In the case of the experimental results displayed in figures 5.2 - 5.5, a
system depth of a single layer, requiring 6 parameters in total, was sufficient
to classify the dataset to a high standard. Whilst increasing system depth
generally improved the confidence of these scores up until 7 layers, the ad-
ditional layers were unecessary to determine much better performance, and
ultimately just increased compelxity.

For the secondary 3-dimensional dataset with a severe overlapping be-
tween class data clusters (displayed in figure 5.7), a much more complex
level of embedding was needed to classify the dataset to a high standard.
This was not sufficiently found until a system depth of 3 layers and on-
wards, where the performance increases between layers 1, 2 and 3 for results
in figure 5.7 are also much larger in proportion to those shown previously in
figures 5.2 - 5.5.

As mentioned previously, when the nature of the task is extended to mul-
tiple classes for a single qubit, the respective class boundaries will become
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smaller as the number of classes used grows larger. Because of this, for a
multi-class classification task, higher levels of embedding flexibility may be
required to efectively seperate and map each datapoint into their respective
class region, more so than a binary classification task.

Figure 5.9: Training-set loss results of a 3-class classification task, using varied
system depths N = 1..10 per each dataset dimension D ∈ {3, 6, 9, 12, 15}.

Figures 5.9 - 5.12 display 4 charts with results gathered from a 3-class
classification task, consisting of the default data generation scheme described
earlier in section 5.3.1.

Figure 5.10: Testing-set loss results of a 3-class classification task, using varied
system depths N = 1..10 per each dataset dimension D ∈ {3, 6, 9, 12, 15}.

Looking at the general behaviour displayed between depth and data
dimensionality in figure 5.9 and 5.10, instantly it can be seen that there is
a correlation between system depth and loss values. The correlation shown
with these results is also arguably more stronger than that of the initialy
gathered set of results displayed in figures 5.2 - 5.5.

Whilst performance improvements can be seen with added system depth,
these improvements do saturate and begin to plateau at a point. On aver-
age, the sharpest performance improvements occur between 1-3 layers, but
quickly plateau thereafter. As seen before, there are cases where perfor-
mance begins to regress, such as test set performance using 15-dimensional
data as an example in figure 5.10. However, as there is a spike at the corre-
sponding train set classification accuracy in figure 5.11, it is unclear whether
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Figure 5.11: Training-set accuracy results of a 3-class classification task, using
varied system depths N = 1..10 per each dataset dimension D ∈ {3, 6, 9, 12, 15}.

aspects of these performance regressions are due to a slight overfitting to-
wards the training data.

Figure 5.12: Testing-set results of a 3-class classification task, using varied system
depths N = 1..10 per each dataset dimension D ∈ {3, 6, 9, 12, 15}.

In figures 5.2 - 5.5, the classification accuracy using a single layer was
much higher in proportion to successive layers than in the case of results
shown in figures 5.9 - 5.12. This suggests that the dataset here was much
harder to classify to a high standrad, and the complexity of embedding was
a key feature in determining classification performance overall.

Upon a closer review of the experimental results gathered, there are cases
where test set classification performance begins to regress. This is apparent
with 6-dimensional and 9-dimensional dataset results, where a spike occurs
when a system depth of 6 layers is used. When inspecting the corresponding
embeddings displayed in figure 5.13, it can be seen that the embeddings
associated with layers 5 (figure 5.13(d)) and 7 (figure 5.13(f)) are very similar
in nature. However, the datapoint distribution formed using 6 layers (figure
5.13(e)) is much closer together, meaning that the datapoints will be further
away from their respective target state, thus producing a small increase in
loss and a drop in classification accuracy near to where all three class state
boundaries intersect. This is evidenced in the more prominent scattering
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(a) 5 Layers (b) 6 Layers (c) 7 Layers

(d) 5 Layers (e) 6 Layers (f) 7 Layers

Figure 5.13: Bloch sphere visualizations displaying subsequent test set embeddings
of the 6-dimensional dataset used to gather experimental results shown in figures 5.9
- 5.12. Subfigures 5.13(a) - 5.13(c) show visualizations of correctly classified data-
points (green) versus incorrectly classified datapoints (red) at epoch 30. Subfigures
5.13(d) - 5.13(f) show visualizations of the distribution of datapoint embeddings
with corresponding class values (one colour per class).

of incorrectly classified points (red in colour) shown for figure 5.13(b) when
compared to figures 5.13(a) and 5.13(c).

Figure 5.14 displays test set loss results gathered using a system depth
of 5,6 and 7 layers, and the 6-dimensional dataset used in figures 5.9 - 5.12.
Here, it can be identified that a system depth of 6 layers has a much slower
convergence rate in comparison to system depths of 5 or 7 layers in this
case. However, where the loss curves for 5 and 7 layers appear to plateau,
the loss curve for 6 layers is still steadily decreasing. This implies that the
initial weight distribution for 6 layers may have been initialized in a region
of lower gradient than that of the initial weight selection for layers 5 and
7. Subsequently, this would cause a delay in convergence, similar to the
behaviour shown in figure 5.14. If system training were to be continued for
a number of epochs following this, then it could be argued that the loss
curves would meet at roughly the same boundary between loss values of
0.10− 0.11.

Whilst weight initialization may be a factor in the drop of performance
in this case, it is difficult to state that this factor cause performance drops
in other cases throughout the other experiments conducted. As an exam-
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Figure 5.14: Plot showing test set loss results per epoch, using 6-dimensional data
and a system depth of 5, 6 and 7 layers.

ple, there are cases of performance regression occuring (i.e. test set per-
formance using 15-dimensional data at 10 layers displayed in figureS 5.9 -
5.12), however, there is also a drop in the corresponding train set classifica-
tion performance. This suggests that there may have been a slight overfit
to the training data, causing a drop in classification performance which is
not related to the mapping of data or initializion of weights.

Overall, the previous experimental results support the notion that in-
creasing system dept does generally improve upon classification performance
on average, with the biggest improvements usually occuring between system
depth increments of 1, 2 and 3 layers. By visualizing the differences between
depth increments, a clear advantage shown by increased depth is the ability
to produce much more complex mappings of data.

However, in case, increased system depth does not necessarily equate
to improved performance. This implies that an optimal depth is data de-
pendent, where depending on the complexity of the task, more layers are
needed to effectively seperate each class cluster towards their respective tar-
get states. Due to the innate randomness of the weight initialization scheme
incorporated, it is hard to justify the impact that this, or other reasons,
had on classification performance, i.e., whether any drops in performance
were related to suboptimal initial weight choices, slight overfitting to train-
ing data or purely from the system depth specified. It could be argued that
fixing the initial weightings could provide additional insight into the corre-
lation between depth and classification performance, however this may have
negatively affected the upper classification performance benchmark if not
chosen suitably.
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5.3.3 Introduction Of Noise

Amplitude Damping Noise

To simulate the effect of noise during training in a QPU environment, am-
plitude damping channels are implemented within the system after each uni-
tary gate operation. Whilst there are many quantum noise channels which
could be used to simulate environmental noise (i.e. bit-flips, de-phasing
and de-polarizing channels), amplitude damping channels were implemented
to provide a realistic noise model, that is also frequently used in the field
to model environmental noise [154, 155]. Amplitude damping is a model
of qubit energy relaxation through interactions with the environment over
time. The result Q, with decay probability γ ∈ [0, 1] of Kraus operators K
acting on the density matrix ρ is:

Qγ(ρ) = K0ρK
†
0 + K1ρK

†
1 (5.6)

Where:

K0 =

[
1 0
0
√

1− γ

]
, K1 =

[
0
√
γ

0 0

]
(5.7)

The effect that the amplitude damping channel has on the qubits’ density
matrix can be defined as:

Qγ(ρ) =

(
ρ00 + γρ11

√
1− γρ01√

1− γρ10 (1− γ)ρ11

)
(5.8)

For all experiments using simulated noise, amplitude damping is imple-
mented within the mized state simulator available through the PennyLane
library. More information on the amplitude damping channel can be found
at [30].

Noise Effect Analysis

For the following experiments, artificially-generated datasets of 3 and 15
dimensions were initialized, with a train to test image split of 50 to 150
datapoints per class. For each dataset dimensionality, the noise magnitude
was incremented from 0 to 1, in intervals of 0.1. The system depth was
also increased in various intervals. Each training instance consisted of 30
epochs of the data, using SGD for optimization and a learning rate f 10−2.
In each experiment, final loss values were taken at epoch 30, and the change
between these values per noise magnitude λ was subsequently recorded.

As instances of simulated noise was implemented after each parametrized
unitary operation, naturally the occurences of noise will increase in propor-
tion to the defined system depth and task dimensionality. Therefore, the
recorded change in loss is measured in proportion to the occurences of noise
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in the experiment setup. This is done to avoid any unfair advantages that
a system with lesser depth may possess, since noise would naturally be im-
plemented less than a system with higher depth.

Figure 5.15: Plot displaying the porportional change in final training loss values
over various noise strength intervals λ for N layers. The final training loss values
are gathered from a binary classification task, using 3-dimensional data.

Within figure 5.15, it can be seen that for the lower system depths of 1
and 3, the increases to the final training loss values are much bigger in com-
parison to the larger system depths as noise magnitude increases. However,
as the number of layers is increased, this rate of change does begin to satu-
rate. In this case, the visible drop-off in training loss to the right-hand side
can be justified. For a binary classification task with chosen target states of
|0〉 and |1〉, as noise magnitude increases, the distribution of datapoints will
be drawn closer towards the |0〉 state. If the noise magnitude is extremely
strong, then the datapoints corresponding to target state |1〉 will be very far
away, unable to be drawn further away at all. As the loss value is calculated
using the measure of fidelity between states, this explains the corresponding
drop off.

Again, as shown in figure 5.16, the rate of increase in loss is much larger
for a lower system depth used, even with the higher dataset dimensionality
of 15. In this case, a drop can again be seen to the right-hand side of the
chart, as a result of the decrease in fidelity between datapoints and their
target states slowing down.

The results displayed in figures 5.15 and 5.16 suggest that using a system
of larger depth may perhaps bring an advantage of robustness against the
influence of noise during optimization. Whilst the benefits of this did appear
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Figure 5.16: Plot displaying the porportional change in final training loss values
over various noise strength intervals λ for N layers. The final training loss values
are gathered from a binary classification task, using 15-dimensional data.

to saturate as a system depth of 10 was approached, these results do suggest
that using additional layers may allow for a better quality of training by
resisting the influence of environmental noise, ensuring that the system can
converge more stably during optimization.

Figure 5.17 displays the proportional change to training loss for a 3-
class classification task using 3-dimensional data. Here, a much sharper
classification performance regression can be seen for a single layer as noise
magnitude increases. Regardless of the noise increments, 7 and 10 layers
show a fairly stable level of increase in loss, only showing signs of divergence
from λ = 0.8 onwards.

In contrast to previous results, there is a diverging behaviour to the
right-hand side of the charts. As the results in figure 5.17 were produced
from a 3-class classification task, the maximally-distanced target class states
are distributed more heavily away from the |0〉 state in our setup. because
datapoints are drawn closer towards the |0〉 state as noise magnitude is
increased, the associated loss value will increase at a higher rate than that
of a binary classification task due to a larger cumulative distance between
each datapoint and its’ target class state.

Similar behaviour can be seen in figure 5.18, showing results from a 3-
class classification task using 15-dimensional data. Here, the system depths
of 7 and 10 show consistently lower changes in comparison to lower depths
of 1 and 3. However, again there is a much larger difference between 1 layer
and 3 layers than 7 and 10 layers. This implies that whilst additional layers
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Figure 5.17: Plot displaying the porportional change in final training loss values
over various noise strength intervals λ for N layers. The final training loss values
are gathered from a 3-class classification task, using 3-dimensional data.

may provide added robustness against the effects of noise during training,
this benefit does saturate as subsequently more layers are introduced to the
system.

Overall, the results displayed throughout section 5.3.3 support the notion
of an advantage of robustness against noise during training, as additional lay-
ers are implemeneted to the system. Whilst plots showed a higher variance
of training loss between noise magnitude intervals using 15-dimensional data
(shown in figures 5.16 and 5.18) over 3-dimensional data (shown in figures
5.15 and 5.17), a higher depth consistently showed more stability through-
out experiments, rather than the diverging behaviour seen in lower system
depths.

However, similar to the results seen throughout section 5.3.2, any ad-
vantage of rubustness during optimization appeared to plateau as depth
increased. The sharpest of improvements could be seen between system
depths of 1 layer and 3 layers. The differences seen between system depths
of 7 layers and 10 layers were minimal, and arguably not worth the increase
in complexity and optimization time that the additional layers would bring.

5.3.4 MNIST Case Study Application

Previously, experiments have been conducted using artificially-generated
datasets. Whilst this is acceptable for examining specific details surround-
ing classification performance of an algorithm, it does not always provide a
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Figure 5.18: Plot displaying the porportional change in final training loss values
over various noise strength intervals λ for N layers. The final training loss values
are gathered from a 3-class classification task, using 15-dimensional data.

realistic representation of how the algorithm may perform when applied to
non-artificial data.

For this reason, the experiments conducted throughout section 5.3.4 will
be using a portion of the MNIST dataset. For the experimental setup a
subset of MNIST data was used, which consists of 200 images per class for
the training portion and 100 images per class for the testing portion. Prior
to use, each image is normalized and downsampled to a size of 9x9 using
a bilinear interpolation scheme, in order to reduce the overhead processing
time required. Whilst doing this means that the results cannot be directly
interpreted to unchanged MNIST data, however the change is minor enough
that the results still provide a good indication.

For the hyperparameter selection, a system depth of a single layer was
used to again reduce the amount of processing required. For optimization,
the Adam [156] optimizer was implemented using a learning rate of 10−4.
Each individual experiment was optimized over the course of 30 epochs, with
test set data results recorded at the end of each training epoch.

In order to give a representation of the impact of environmental noise
on non-artificial data, the same scheme for noise introduction outlined in
section 5.3.3 was implemented here. For these experiments, noise magnitude
values were incremented from 0 to 0.5 in intervals of 0.1, giving a total of 6
experiments per each classification task.

Looking at the results of a binary classification task (using digit classes
of 0 and 1) displayed on the left-hand side in figure 5.19, it can be easily
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(a) Binary Data Test-Set Loss

(b) Binary Data Test-Set Accuracy

Figure 5.19: Figure displaying results from a binary (classes 0 and 1) experiments
using downsampled MNIST data with varied noise magnitude levels λ and a system
depth of 1 layer.

seen that the experiment with zero noise performed to an excellent standard
within 5 epochs. As the noise magnitude is increased, the system is still able
to classify the test dataset to an excellent standard between noise magni-
tudes of λ = 0.1 and λ = 0.2. However, the loss value begins to converge to
0.15, making this a more realistic level to interpret than the loss result with
zero noise influence.

For results with λ = 0.2, a delay in accuracy increase can be seen, where
improvements do not occur until approximately epoch 19. As the loss value
is decreasing at a satisfactory rate, this delay can be justified from the
distribution of all datapoints residing in a single class state region only until
this time. Once a noise magnitude of 0.4 is reached, the system is unable
to produce any effective encoding of data and performance is at a minimum
throughout.

By looking at the results using 3 classes (digit classes of 0, 1 and 2)
displayed on the right-hand side of figure 5.20, the performance is further
decreased than when classifying 2 classes only, with a max test-set accuracy
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(a) Multi-Class Data Test-Set Loss

(b) Test-Set Accuracy

Figure 5.20: Figure displaying results from a multi-class classification (classes 0, 1
and 2) experiments using downsampled MNIST data with varied noise magnitude
levels λ and a system depth of 1 layer.

of 88.7% with zero noise influence. As noise is increased to a value of λ = 0.1,
similar levels of performance are reached, with a final test set accuracy value
of 88%, however convergence is notably much slower than when no noise is
present.

As noise becomes stronger to λ = 0.2, classification performance begins
to plateau after epoch 15, despite a sharp improvement between the period
of epochs 11-15. Similar to binary classification results, once the level of
noise reaches a magnitude of λ = 0.3, the system is unable to perform at a
level better than random, since all datapoints will be collected and contained
in a single target region.

Overall, the results shown in this section using MNIST data are very
promising within the binary classification task, for noise levels up to λ = 0.2,
even with the increase in time for convergence. When extended to a 3-class
classification task, classification performance did have a substantial drop,
however the target state boundaries are also smaller as additional classes
are used.
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For both tasks, as noise magnitude levels reach higher values, the system
struggles to cope with the influence brought and is unable to converge to
a level different than random guesses. These results were with a single
uploading layer only, where previous results show adding additional system
depth may provide the robustness and complexity of embedding needed to
classify the datapoints to a higher standard of accuracy.

5.4 Discussion

The aim of this research is to bridge knowledge between previous works by
determining any correlation between system depth and performance using
the data re-uploading methodology, as well as measure robustness of the
system when using different depth values and finally provide an indication
of how the methodology may perform using data that is not of a synthetic
nature.

From the experimental results obtained throughout this chapter, a gen-
eral trend has been identified where increasing circuit depth does tend to
improve upon previous classification performance. However, the sharpest
improvements to performance seem to occur between 1-3 uploading layers.
After approximately 3 layers were introduced, any performance increases
were often not as distinctive, where the increased depth generally added
complexity to the system with little reward in performance.

In some cases, it can be seen that increasing the system depth did not
relate to improved classification performance. For example, this occured in
the case of 10 uploading layers trained using 15-dimensional data, which is
displayed in figures 5.9 - 5.12. In some of these cases, the behaviour can be
justified as a slight overfitting to the training data used, or perhaps from
other factors such as the initial weight selection. In these cases, it is hard
to determine whether any regression in performance occured solely from the
selected system depth, or from the influence of other factors.

A significant advantage that is shown with an increased system depth
is the allowance for more complex embeddings of classical data to Hilbert
space. Lower circuit depths with a subsequently lower total number of pa-
rameters were fairly rigid in their embedding capability, therefore restricting
the freedom of movement needed in order to effectively separate the over-
lapping datapoint clusters.

When examining from a perspective of environmental noise, the results
obtained support that a higher system depth can be linked to robustness of
noise during training. In comparison to lower system depths, higher depths
had consistently smaller proportional changes an the level of noise magni-
tude increased, therefore providing a more stable platform to optimize from.
However, similar to experimental results regarding general classification per-
formance, this advantage of robustness did saturate as additional layers were
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implemented, with the sharpest robustness improvements generally occuring
between 1-3 uploading layers.

In the case of experimental results using MNIST data, the data re-
uploading methodology showed promising binary classification results using
only a single layer of 162 total parameters. As the levels of noise increased
here, a good condition of performance was still achieved with lower noise
levels, but was unable to converge after a noise magnitude of λ = 0.3. Whilst
the results gathered using MNIST data may not be state-of-the-art, it should
be considered that this performance was achieved using a single layer and a
single qubit only. Therefore, these experimental results are fairly promising
in relation to the early state that QML is in. As the methodology expands
to using multiple qubits with increased depth, then this initial performance
can only hope to be improved upon and extended to higher numbers of
classes.

Within the wider field of QML, insights gathered from the experimental
results are able to be linked to other relevant works directed towards VQC
design and implementation. In [142], expressability of a qubit was deter-
mined by its ability to navigate the Bloch sphere, which was also analysed
in [143]. The experimental results contained in this chapter also support
the idea that increased embedding complexity, which relates to the express-
ability of a qubit, can allow for the necessary complexity of feature spaces
required to separate entangled clusters of datapoints. Therefore, by im-
proving the complexity of embedding, or expressability of a VQC, we are
able to provide a much higher capability to classify difficult, overlapping
datapoint clusters to a good level of performance compared to if this was
not considered in our VQC design. However, once a sufficient level of em-
bedding complexity, or expressability has been reached, then implementing
additional depth may just increase computational complexity and demand
with little improvements to classification performance in return.

From the research presented in this chapter, there are some limitations
and areas for future exploration that should be addressed alongside the
described contributions. Whilst the experimental results obtained showed
trends appearing, it was hard to justify in cases whether performance dif-
ferences were influenced by other factors such as initial weight distributions
or not. Whilst the weight initialisation strategy implemented was kept con-
stant throughout, it was not necessarily an optimal choice. Currently, there
have been some efforts to address weight initialisation strategies within a
VQC, in particular to avoid barren plateaus [149]. However, it still remains
an open question of whether there are any optimal initialisation strategies
that may benefit the training of VQCs, and specifically when using the data
re-uploading methodology.

When using the data re-uploading methodology with a single qubit only,
as we increase the number of the classes used the corresponding class re-
gion within the Bloch sphere becomes proportionally reduced in area. In
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the original proposal of the methodology [125], the authors presented the
use of multiple qubits, which naturally introduces a larger state boundary
size per class than when using a single qubit only. In order to do this, en-
tangling layers of controlled-Z (CZ) gates were introduced to provide the
dependency required between qubit states. However, this also leaves room
to investigate the effects from various alternate implementations of entangle-
ment measures, and whether there is an optimal setup for the introduction
of multiple qubits.

5.5 Conclusion

In this chapter, a thorough analysis of the data re-uploading methodology
was conducted, using the computational power of a single qubit only. Multi-
ple values of circuit depth were used throughout the experiments in order to
provide an indication of how this parameter within the system setup affects
classification performance.

Here, the experimental results gathered support that increasing depth
does improve classification performance of the algorithm, where the sharpest
of improvements occur between approximately 1-3 uploading layers used. A
clear advantage displayed is that the complexity of data embedding improved
alongside increased depth, which allowed for highly overlapping datapoint
clusters to separate much more effectively. However, these results also sug-
gest that once a sufficient level of embedding complexity is found, then
additional depth may just increase the complexity and computational load
with little reward of performance benefit in return.

In the case of experiments simulated within an noisy quantum environ-
ment, the results suggest that higher depth values may allow for improved
stability during optimization. However, regardless of this extreme levels of
noise will continue to have large consequences, due to the nature of the
algorithm and how predictions are obtained.

Overall, via the experiments conducted within this chapter, it has been
shown that a single qubit only is required to create a sufficiently complex
feature space capable of classifying complex data correctly. In comparison
to research conducted in chapter 4, the requirement for a single qubit only
presents a much larger advantage for coherent results over many qubits, and
is therefore a promising method of information encoding and classification
to pursue further.

A potentially limiting factor considered with this method is that because
singular data dimensionalities are being encoded independent of one another,
then this method may perform to a lower standard for classification tasks
where data relationships are important, such as image classification. With
this said, results of the case study conducted on MNIST data were indeed
promising. However, as MNIST data can be classified to a high standard us-
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ing a classical MLP network which is the most analagous algorithm to data
re-uploading, it is hard to justify whether this will translate to tasks that
require pixel relationships to be maintained. How pixels are encoded using
single-qubit encoding should be investigated and adapted further to main-
tain these relationships between pixels and progress development towards
effective quantum image classification.
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Chapter 6

Efficient Quantum Image
Classification Via Single
Qubit Encoding

Abstract

6.1 Introduction

The following chapter presents the proposition of a quantum image classifi-
cation methodology that is targeted towards maintaining minimal resources
and parameters in order to reduce algorithm complexity. This is conducted
following research presented in chapter 5 in an effort to answer the following
research question:

Research Question 4: Can a novel quantum machine learning classi-
fier be developed for image classification that makes efficient use of resources
provided?

The processing capability of readily-available GPU units has enabled a
chain of strong-performing DL methodologies [19, 20, 157–162] to dominate
the field of image classification, boasting high levels of classification accuracy
that can be fine-tuned to a specific task. The result of this is that ML has
been able to become integrated within society for many social and industrial
uses, e.g., healthcare [163–166], public-safety [167–169] and assisted-living
[170–173].

Whilst the current state of DL provides algorithms that can classify
complex datasets to a high standard, further improvements are becoming
more and more marginal, and are often at the expense of adding many addi-
tional parameters. This monumental increase in parameter counts acceler-
ated by GPU capability is not necessarily a negative when the highest-levels
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of performance are required. However, in order to progress towards effective
ML algorithms, the current tradeoffs of requiring additional parameters for
marginal gains may not be the most appropriate course of action. The story
of deep learning has shown that, by focusing on the development of methods
which have a more efficient usage of parameters, a foundation can be pro-
vided to build upon and progress towards the highest-performance levels of
classification whilst keeping efficiency of training and execution a primary
factor.

In chapter 5, experimental results determined that a single qubit alone
could classify sufficiently complex datasets to a high degree of accuracy. This
makes the method of single-qubit encoding particularly appealing to pursue
in an effort to address the challenges described. Therefore, the aim of this
chapter is to progress the thorough research conducted towards single-qubit
classifiers and propose an architecture that makes efficient use of assigned
parameters, as well as improving scalability to higher-dimensional image
classification tasks. To do this, the initial experiments contained in this
chapter showcase results conducted on lower-level image-classification tasks,
following the natural progression of dataset complexity. These experiments
are also conducted using noisy and non noisy simulation environments, in
order to provide a reasonable expectation of how the method will perform
in the current NISQ era.

The findings from experimental results show that as low as 6 parameters
is enough to form a suitably complex feature space, capable of classifying
image data to a high degree of accuracy. Alongside this, the experimental
results show a factor of robustness against the phase damping environmen-
tal noise channel to some extent. To summarise, the key contributions of
this chapter are two fold: (i) a method is proposed that maintains spatial
relationships of pixels through the use of parametrized filters and (ii) the
proposed method is adapted to process images in their natural form thus
not requiring a costly image flattening pre-processing step.

The structure of the rest of this chapter is as follows. Firstly, related
research is discussed, leading to the derivation of the proposed method via
single-qubit encoding principles. Then, the setup of the experiments is de-
scribed in relation to the current capabilities of QML classifiers. Afterwards,
the gathered experimental results will be described, where an analysis will be
provided. Finally, a discussion of the results and analysis will be conducted
in relation to the scope of the field, where potential avenues for future work
and extensions to the method may apply.
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6.2 Methodology

6.2.1 Related Work

In its current state, NISQ QML algorithms tend to use a backbone of VQCs,
where many single-qubit and multi-qubit gates are applied using a set of pa-
rameters over a number of qubits [10, 11, 69, 115, 139, 141, 144]. Some
of these VQC algorithms are presented as a hybrid approach to computa-
tion, working in conjunction with typical classical processes to determine
a classification result. Hybrid approaches of computation may provide an
opportunity to utilize the power of quantum computing with re-determined
methods, e.g., classically extracted features fed through a VQC [36], or vice-
versa with quantum-extracted features [88]. However, it may not always be
clear to distinguish the impact that quantum processes have on correspond-
ing classification results.

Motivated once more by the success of CNN methods, recent works have
proposed fully quantum architectures, mimicking the traditional convolutional-
pooling layer series by applying successive unitary operations followed by
qubit measurement [12, 82].

Whilst many proposed methods described previously have had promising
results and show positivity towards the development of effective quantum
classifiers using many qubits, it is important to remain in context with the
current NISQ era of quantum computation and understand that minimizing
the number of qubits required should be a primary concern when designing
quantum algorithms. This is because qubit coherence is not necessarily at
the desired standard yet to rely on complex, multi-qubit operations, where
a small error could vastly impact the states of other qubits utilized. By
focusing development towards smaller scale, efficient methods using minimal
qubits, a solid foundation can be built to progress from in the quest for
effective QML image classification algorithms.

In an effort to find efficient, yet effective data encoding schemes, recent
works [142, 143, 154] have analyzed a variety of QVC structures to deter-
mine the ability of the encoding to navigate the Bloch sphere, capability of
entanglement between qubits, as well as robustness when realized in a noisy
quantum environment. A particular method has achieved promising clas-
sification results whilst only requiring the use of a single qubit to function
[125]. This was furthered in [174], where the single-qubit classifier was still
found to remain effective for a multitude of tasks, even in noisy quantum
environments.

In summary, a qubit is an extremely powerful computational tool, such
that the development towards quantum classification methods should have
a primary focus to maximize the usage of each qubit prior to increasing the
amount of them. By doing so, a solid foundation can be built to progress
forwards from in an effort to create effective, robust quantum classifiers,
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similarly to the rise of state-of-the-art DL methodologies dominating many
classical ML problems.

6.2.2 Single-Qubit Encoding

To preface the description of the proposed methodology, it is relevant to
discuss a particular method of quantum information encoding, known as
single-qubit encoding. For many ML tasks, data is often presented in the
form of a column vector. Traditionally, this D-dimensional vector of classical
data could be encoded by initializing a 2D qubit quantum state as a binary
string equivalent (basis encoding) if applicable, or through translating data
dimensions into their corresponding probability amplitudes of a superposi-
tion state (amplitude encoding). Whilst these data encoding schemes have
been employed within other works [47, 57, 175], they are often very costly or
impractical to implement, and can become susceptible to error-prone quan-
tum operations. Therefore, these encoding schemes may not always be an
efficient means of minimizing usage of qubits.

Single-qubit encoding, developed in [125], is a strategy of encoding a
vector of classical data into a feature Hilbert space using a succession of
unitary operations acting on each input data dimension applied on a sin-
gle qubit only. For any arbitrary special unitary group of degree 2 SU(2)
matrix operation U (a 2x2 unitary matrix of determinant 1), the correspond-
ing operation is able to be decomposed into the following three rotational
operations [30]:

U = eiαRZ(β)RY (γ)RZ(δ) (6.1)

With a global phase factor α, Euler angles β, γ, δ ∈ R that define the
extent of rotation (R) around the Z, Y and Z axes respectively. Within this
method of encoding, the Euler angles are parameterized further and defined
as:

β = θi + xi · φi
γ = θi+1 + xi+1 · φi+1

δ = θi+2 + xi+2 · φi+2

(6.2)

Where θ and φ are trainable weight parameters assigned to xi, the value
of input vector x at dimension i. Therefore, the extent of rotation β, γ and
δ is with respect to the weighted value of the input. This is defined in the
same manner as in section 5.2 Using the previous parameter definitions, a
maximum of three input dimensions can be encoded per unitary operation
applied.

From here, the input vector will be continually cycled through, encoding
a series of three-dimensional values at a time, until the entirety of the input
has been encoded. This is known as a full ’upload layer’ of the input data.
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As an example, for an input vector of 144 dimensions, each dimension will
have an associated θ and φ variable. Therefore, for this example a total of
288 parameters are required to encode the information fully.

6.2.3 Proposed Methodology

With analogies to classical feed-forward neural networks, single-qubit encod-
ing is an effective way of creating a highly complex feature space through
repeated upload layers of input data. However, as information is encoded at
a singular-pixel level, it may be at a disadvantage for tasks where it is im-
portant to utilize spatial information of pixels, such as image classification.
This step of incorporating local regions of pixels is a fundamental aspect of
convolutional layers used within DL, where the typical approach is to use
a filter, or ’sliding window’, that gathers a square region of FxF pixels. In
classical ML, a kernel operation would be applied to result in a value for
that region of pixels.

Figure 6.1: An overview of the proposed methodology, which shows the filter-pass
followed by encoding and measurement.

The first step in the proposed methodoloy is to adopt a similar approach
to this. Rather than flatten an image into the form of a column vector
as a pre-processing step, the original shape of the image is maintained. A
filter of size FxF is then passed over the image, partitioning the image
into a distinct grid of FxF squares. Each square region of pixels is then
flattened in turn and encoded onto the qubit using the described single-
qubit encoding scheme with pixel values (xi), as well as respective filter
weights as parameters (θi, φi). This process is repeated until the filter has
passed over the entire image, where measurement is conducted with respect
to a target state provided. The number of square pixel regions to encode
and the number of unitary operations required j is determined by the size
of the filter FxF , as well as the stride value S used.

By adopting this approach, pixel information can be encoded in such
a manner where spatial relationships between pixels are maintained. To
clarify, rather than assigning a set of trainable parameters to each square
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FxF region of pixels, a set of 6 weight parameters are assigned to the filter
itself, which correspond to θ and φ in equation 2. By doing so, the same set
of 6 parameters will repeatedly be applied to every series of 3 pixels that
the filter has extracted. This method reduces the number of parameters
required to just 6 per filter.

Whilst it is acknowledged that multiple unique sets of 6 parameters could
be localized to each FxF region, the aim of this research is to demonstrate
that it is possible to produce reasonable results with the fewest parameters,
therefore all experiments contained within this chapter will be conducted
using a system setup of a single filter with 6 parameters in total, as dis-
played in figure 6.1. However, both setups discussed offer a slightly different
approach towards image classification with advantages and disadvantages
for each. This may open various avenues for future work to explore, hence
why it is included in this section.

6.2.4 Classification Pipeline And Loss Calculation

So far, the proposed encoding strategy has been defined in section 6.2.3,
however the flow from input to classification output has not been made
evident. To do this, a fidelity-based approach of measurement is adopted as
seen in [125], where the overall objective is to minimize the fidelity between
a set of data encodings and their respective target states. For a binary
classification task, given a set size D of images with corresponding class
values in 0, 1, a respective target state of |0〉 or |1〉 is assigned to each image.
Any number of classes can be incorporated using this approach, providing
that the target states are maximally-distanced from each other.

From here, the proposed encoding strategy is adopted until all pixel
values have been encoded onto the qubit. Once at this point, measurement
occurs where the fidelity of the qubit is extracted against each target class
state in turn. In short, fidelity F is a measurement of similarity, or closeness
between two quantum states, where 0 ≤ F ≤ 1. The higher the fiedlity of
two quantum states, the more similar they are in direction. The highest
class fidelity value given is then considered to be the result of classification.
The following loss function is then applied, which is based on that utilized
in [125]:

1

2D

D∑
m=1

C∑
c=1

((
F
(
xd, θ, φ

)
− Fc

)2)
(6.3)

Where D is the set size of images used, C is the number of classes,
F (x, θ, φ)d is the measured fidelity of the current datapoint (image within
the dataset) d with respect to class c and Fc is the expected fidelity value
to be measured. To clarify, a datapoint of class 0 has a target state of |0〉,
with expected fidelity values of 1 and 0 for class values 0 and 1, respectively.
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If the qubit was in state |0〉, then the fidelity measurement would equal 1.
If the qubit was in state |1〉, then the fidelity measurement would equal 0.

Say the qubit was in a state of |ψ〉 = |0〉+|1〉√
2

, then the fidelity measurement

is given by:

F (xd, θ, φ)c = | 〈ψc|ψ(xd, θ, φ)〉 |2 (6.4)

Which for c = 0, F (xd, θ, φ)c = 0.5. Expected fidelity values can also
be found using equation 6.4 by cycling through each class value with one
another.

To display the classification process in full, algorithm 1 showcases the
classification process from input to output. In short, for each image, filters
are passed over extracting square regions of pixels at a time. Following this,
unitary operations are performed to the qubit in turn using pixel values
from each region with filter weights as parameters. This is repeated until
all pixels have been encoded, where fidelity measurements are taken with
respect to the class states. To ensure clarity for the statements in lines 12
and 19, the value in line 12 relates to the three required values per unitary
gate β, γ and δ, where if x is not a multiple of 3, then a placeholder value of
0 is applied, which has no additional effect on qubit rotation. Line 19 refers
to the successive application of unitary operations, where the cycling of i in
multiples of 3 allow for the 3 unitary operation values β, γ and δ to be given
in turn.
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Algorithm 1: Proposed Methodology Process

Input: Dataset D, Filters Nf , Class States C, Parameters
β, γ, δ ∈ N(µ = 0, σ2 = 0.1)

1 , Array of pixel values x Output: Qubit fidelities Q

2 for image d ∈ D: do // Image of height H and width W

3 for filter f ∈ Nf do // Filter of size FxF and stride S

4 while pixel row drow < dheight H do // Cycle Filter Regions

5 while pixel column dcol < dwidth W do
6 for filter row frow = 1, ..., F do // Group Pixel Regions

7 for filter column fcol = 1, ..., F do
8 r = (drow + frow) ; c = (dcol + fcol)
9 if r < H and c < W then

10 x append value at pixel (r, c) ∈ d
11 else
12 x append 0

13 if len(x) % 3 ! = 0 then // % = modulo operation

14 x append 0

15 dcol → dcol + S

16 drow → drow + S

17

18 for filter f ∈ Nf do // Quantum Circuit Application

19 for ψc ∈ C do // Cycle Class States

20 for i = 1 : 3 : xmax do // Apply weights in sets of 3

21 β = θ1 + xi · φ1
22 γ = θ2 + xi+1 · φ2
23 δ = θ3 + xi+2 · φ3
24 Apply U(β, γ, δ)

25 Measure Qubit Fidelity F (xd, θ, φ)c w.r.t ψc
26 Qd append F (xd, θ, φ)c

6.3 Results

6.3.1 Experimental Setup And Overview

In this section, the experiments conducted using the methodology described
throughout section 6.2 will be presented, where an initial analysis will be
conducted into the results obtained. The first set of experiments will be
conducted using a subset of the MNIST dataset, for both binary and 3-
class classification tasks. The MNIST dataset [176] is often considered an
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initial benchmark for many ML systems targeting image classification as
their primary task. Due to the early nature of QML algorithms, we feel
that using the MNIST data provides a suitable challenge to showcase the
lowest performance boundary of the system using minimal parameters.

Following this, as a step up in difficulty our experiments will be con-
ducted using a subset of the FMNIST dataset [177] for binary and 3-class
classification tasks. FMNIST data is often considered a subsequently more
challenging task following the MNIST data, so will pose an appropriate
challenge for the low-parameter system to tackle effectively. Thirdly, the
methodology will be applied to a face identification task, using a custom
dataset consisting of AT&T face images [178], as well as a collection of
images taken at random from the CIFAR10 dataset [89].

Finally, it is important to consider the impact that environmental noise
has on the capability of the algorithm presented. Given that the following
experiments are conducted in a simulation environment, the noise implemen-
tation will also be simulated, but makes appropriate use of various noise and
distortion channels to produce realistic results to interprit.

To provide general details of the experimental setup and implementation,
the framework for these experiments was developed using the PennyLane li-
brary [135], which also incorporated usage of the PyTorch interface [179].
For non-noisy simulations, the Qulacs [152] qubit simulator was used as
a plugin to PennyLane. For simulations that introduce noise, the Penny-
Lane native mixed-state simulator was used. For reproducibility, all relevant
pseudo-random number generation seeds were set to zero.

For initialization, all weights were formed using a Gaussian distribution
with a mean of 0, and standard deviation of 0.1. As a side-note in reference
to the general barren-plateau problem largely present in training QVC and
similar quantum algorithms [146], it is relevant to address the consideration
taken towards this. Whilst it is acknowledged that there have been some pro-
posals towards overcoming the problem of barren-plateaus, namely through
localized cost-functions [147] usage of quantum natural gradients [150], and
evaluations of initial weight selections [149], no specific approaches to re-
duce their occurrence were incorporated. Optimization of experiments was
conducted as normal, where if a barren plateau was seen to be present,
then training would be reconducted using a new distribution of weights.
This is not necessarily an optimal method to remove the problem of barren
plateaus, however there is no common practice known as of yet to overcome
this problem currently, therefore it was felt that this course of action was
appropriate for now.

6.3.2 MNIST Dataset Results

For the following results, a subset of the MNIST dataset was used. This
subset consisted of 500 training images per class used and 250 test images
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Table 6.1: Final classification performance values at epoch 30 for various filter sizes
using binary MNIST data.

Filter Size Train Loss Train
Accuracy

Test Loss Test
Accuracy

3x3 0.06280 0.932 0.06090 0.946

4x4 0.05012 0.951 0.04739 0.958

5x5 0.07104 0.920 0.08148 0.912

per class used. For each experiment, 30 epochs of optimization were con-
ducted using the Adam [156] optimizer with a learning rate of 10−4 . These
hyperparameter values were selected from a small group of initial experi-
ments conducted in order to find a suitable choice of learning rate for the
number of epochs used. 30 epochs of optimization was also selected from
initial experimets as satisfactory convergence could be reached within the
timeframe, whilst not requiring extremely long training periods.

The results displayed in table 6.1 show classification performance values
from experiments conducted using binary MNIST data of classes 0 and 1,
with a varied filter size. Here, the train set and test set accuracy achieved
was 0.951 and 0.958 respectively for a filter size of 4x4. The second-best
performing filter size was 3x3, followed by 5x5 in third.

Figure 6.2: Test set loss and accuracy results of a binary classification task, con-
ducted with a single filter of varied size on a subset of MNIST data with classes 0
and 1.

Upon inspection of the test set loss and accuracy curves displayed in
figure 6.2, it can be seen the behaviour of the curve for the 3x3 filter is dif-
ferent to that of 4x4 and 5x5. Here, the curve for the 3x3 filter experiment
begins at a more favorablestandard of classification performance, but any
improvements occur slowly and gradually over the course of training. The
latter experiments of filter sizes 4x4 and 5x5 begin in a more unfavorable
position with lower loss and accuracy values, however the initial improve-
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Table 6.2: Final classification performance values at epoch 30 for various filter sizes
using 3-class MNIST data.

Filter Size Train Loss Train
Accuracy

Test Loss Test
Accuracy

3x3 0.13127 0.723 0.13337 0.721

4x4 0.18036 0.629 0.17281 0.627

5x5 0.13160 0.670 0.13181 0.659

ments to classification performance are very sharp and quickly plateau by
approximately epoch 5. The behaviour exhibited here suggests that whilst
the initial weight distribution for the 3x3 filter experiment may classify the
dataset to a higher standard to begin with, the starting weight distribution
may also be present in a region of lower gradient within the loss landscape.

The slower yet fairly consistent optimization curve supports this, as the
system could be steadily attempting to maneuver out of this lower-gradient
region. It is unclear whether, given enough training epochs, the experiment
using a filter size of 3x3 will overtake the 4x4 filter experiment. However, the
3x3 filter curve does appear to plateau at approximately 22 epochs, therefore
this would suggest that the system had settled into a local minimum, and is
unable to improve further. Regardless of considerations towards optimal and
suboptimal weight distributions and barren plateau regions within the loss
landscape, the system is still able to consistently classify the testing portion
of the dataset to a high degree of accuracy in the 90% bracket within 5
epochs.

Table 6.2 shows final performance values taken at epoch 30 from experi-
ments conducted on multiclass (3-class) MNIST data using classes 0, 1 and
2 and a varied filter size. Within this, a filter size of 3x3 produced the best
classification performance overall, followed by the 5x5 filter and 4x4 filter
respectively. Whilst the results achieved here may not be state-of-the-art,
there are some points which must be considered in context of this research.
The first is that classification is being conducted using fidelity measurements
of a set of maximally-spaced target state vectors. As only a single qubit is
being examined, the distance between class states becomes smaller as more
classes are considered. As the loss function implemented aims to minimize
the distance between embedded datapoints to their target class state, this
naturally becomes more difficult to achieve with an increased number of
classes, providing the dataset is not easily separable.

If the dataset is not easily separable, then the low parameter count
implemented here may not be able to provide an embedding capability that
is complex enough to account for this. As charts displaying train set loss and
accuracy in figure 6.3 show, this lower embedding complexity thus equates
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(a) Train-Set Loss

(b) Train-Set Accuracy

Figure 6.3: Train-set loss and accuracy results of the experiment using 3-class
(classes 0, 1 and 2) MNIST data with varied filter sizes.

to a plateau, or extremely marginal improvements in both loss and accuracy
over time. For additional clarity, the inset box for the train-set loss chart in
figure 6.3 displays the 3x3 filter line just below the 5x5 filter line.

In order to demonstrate this, figure 6.4 displays embeddings of train
set data during epoch 30 from each experiment as datapoints on the Bloch
sphere. This is done to assist in our understanding of how the embed-
ding capability of the current system setup, combined with reduced class
area from adding classes affects classification performance. Here, the clear-
est difference between embeddings is that the 5x5 filter (figures 6.4(c) and
6.4(f))produced a much denser embedding of all datapoints in this case.
In contrast, embeddings from a 3x3 (figures 6.4(a) and 6.4(d)) and 4x4 fil-
ter (figures 6.4(b) and 6.4(e)) were fairly similar in that the datapoints are
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(a) 3x3 Filter (b) 4x4 Filter (c) 5x5 Filter

(d) 3x3 Filter (e) 4x4 Filter (f) 5x5 Filter

Figure 6.4: Visualization of Bloch sphere embeddings at epoch 30 for 3-class MNIST
training-set images. Point colours for (a) - (c) correspond to the images respective
class, whereas for (d) - (f), green and red points represent correctly and incorrectly
classified datapoints respectively. For all Bloch spheres, the three central arrows
represent the target state vector for that class.

more widely distributed towards their respective target states overall, with
the 3x3 filter experiment arguably showing the most distinctive distributions
of datapoints per class. However, despite these differences, the loss value
of the 3x3 experiment is very slightly below the 5x5 filter experiment. Yet,
when accuracy is considered, this 0.00033 difference in loss equates to over
5% drop in accuracy.

This can be justified by looking at the position of the colour groups of
datapoints for the 5x5 experiment in figure 6.4(c). Looking at which classifi-
cations are correct (green points on the bottom row), it can be seen that the
majority of these correspond to the distinct clusters of blue and green data-
point groups in the plot above (equating to various image classes). However,
there is a large section towards the bottom left where there is a significant
overlap between the blue and yellow class clusters. This shows that the
embedding capability here was not strong enough to separate these clusters
as effectively as the 3x3 filter experiment, where the datapoint clusters were
spread more widely yet remained fairly compact.

Whilst the 4x4 filter experiment produced the poorest classification per-
formance results overall, the resulting embeddings show that this experi-
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Table 6.3: Final classification performance values at epoch 30 for various filter sizes
using binary FMNIST data.

Filter Size Train Loss Train
Accuracy

Test Loss Test
Accuracy

3x3 0.11616 0.884 0.10844 0.895

4x4 0.12951 0.824 0.16690 0.790

5x5 0.17981 0.726 0.25194 0.575

ment struggled to form a significant class cluster consisting of the yellow
datapoints, and so had many incorrectly classified images as a result, as de-
picted in figure 6.4(b). Had the 4x4 filter experiment been more successful
in doing this, then it could be argued that the final embeddings of the image
data would act similarly to the 3x3 experiment, thus producing a stronger
classification accuracy.

Overall, the multiclass MNIST experimental results show that the system
is capable of classifying the majority of datapoints in their correct classes
with just 6 parameters. However, perhaps this classification and embedding
capability could be improved by further experiments and analysis into the
system design, i.e., including additional filters.

6.3.3 FMNIST Dataset Results

For the following results, a subset of the FMNIST dataset was used. This
subset consisted of 250 training images per class used and 100 test images
per class used, both sampled at random from the entire dataset. For each
experiment, 30 epochs of optimization were conducted using the Adam op-
timizer with a learning rate of 10−3. These hyperparameter values were
selected as a result of conducting a small group of initial experiments to
find a suitable choice of learning rate for the number of epochs used.

Table 6.3 displays classification performance values from experiments
conducted using varied filter sizes. From these results, a filter size of 3x3
was the best performing filter size, reaching a test set accuracy close to 90%.
Unlike results using binary MNIST data, classification accuracy regresses as
the filter size is increased.

When inspecting the train set and test set loss curves displayed in fig-
ure 6.5, the behaviour of all three experiments appears to contradict one
another to some extent. Whilst the 3x3 filter size experiment initially per-
forms worse than the others, it shows a very rapid decrease in loss, followed
by a sharp plateau. In contrast to this, the 4x4 experiment shows a slow
and gradual decrease in loss, and the 5x5 experiment displays very little
convergence and plateaus close to the initial loss value after epoch 1. The
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Figure 6.5: Train set and test set loss curves relating to experimental results dis-
played in table 3. The experimental data consisted of a subset of the FMNIST
dataset using image classes of 0 and 1.

charts displayed in figure 6.5 appear to suggest that the embedding capacity
of the algorithm in its current state is perhaps not complex enough to be
able to optimize effectivelyto the training data provided. The difference in
loss values at epoch 1 is likely caused from the initial weight distributions
for each experiment being in more advantageous starting positions.

The sharp decrease in loss that follows for the first 2-3 epochs could then
be explained by the system attempting to separate the cluster of datapoints
formed at the start to their respective target states. However, the com-
plexity of embedding that a single filter provides is perhaps not too great,
meaning that the datapoints which are of a fairly similar nature are unable
to be separated further into two opposing class clusters. This results in the
overall distribution of datapoints on the Bloch sphere being left virtually un-
changed, hence a plateau in the loss value itself. In addition, the 4x4 filter
experiment could be in an area of lower gradient within the loss landscape,
resulting in the behaviour displayed and described earlier being drawn out
over a longer period of time.

In order to visualize this, figure 6.6 displays various Bloch sphere embed-
dings of train set data at epoch 1, 2 and 30 with point colour corresponding
to class value. For the left-hand Bloch sphere plot at epoch 1, the distribu-
tion of datapoints is fairly dense towards to top hemisphere close to state
|0〉, the target class state for class 0. As the loss function implemented refers
to the fidelity, or measure of distance between the datapoints and their re-
spective target classes, the fact that many datapoints of class 1 are far away
from their target state of |1〉 will cause the loss value to increase.

Following a single epoch of training, the second set of embeddings for
epoch 2 are more evenly distributed between the two hemispheres. Visually,
as the datapoints are embedded closer towards their target state on average,
this is equated to the prior considerable drop in loss value. However, between
epoch 2 and 30 the system is unable to separate the two clusters of datapoints
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Figure 6.6: Visualizations of Bloch sphere embeddings of datapoints corresponding
to dataset images for the experiment conducted using a 3x3 filter size. Left to
right Bloch spheres show train set data embeddings taken over epoch 1, epoch 2
and epoch 30. Point colours correspond to the images respective class, where blue
points represent class 0, and green points represent class 1.

and embed them closer towards their respective target states. In particular,
there is an area along the right-hand side of the Bloch sphere that contains
an overlap of the two class clusters of datapoints.

Because the system is unable to separate the datapoints located within
this area, the overall shape of embeddings is simply shifted around equally,
meaning any decrease in loss for a particular class is mirrored by an increase
for the opposing class. This causes the overall loss value to be left fairly
unchanged, hence the plateau described earlier. If the complexity of embed-
ding was higher, then perhaps the system could separate the class clusters
of datapoints much more effectively, resulting in a continued convergence of
loss towards a lower value and a higher accuracy in time.

With these points considered, even with the suggested lowest level of
embedding complexity that the system offered within this experiment, a
test set classification accuracy close to 90% was achieved. In the context
of this research, this is a promising achievement, which can only hope to
be improved upon if the embedding capability, followed by the subsequent
learning capacity of the algorithm was increased through additional research
and analysis.

6.3.4 Facial Identification And Facial Recognition Results

The following subsection consists of two experimental setups. The first set
of results consists of a bespoke dataset that was created and consists of im-
ages from the AT&T face dataset with a random selection of images taken
from the CIFAR10 dataset. The objective of this experiment is to determine
whether a provided image is that of a face (class 0), or non-face (class 1).
A training set of 300 images per class was used, and a testing set of 100
images per class was used. For each experiment, 30 epochs of optimization
were conducted, using the Adam optimizer with a learning rate of 10−3. As
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Table 6.4: Final classification performance values at epoch 30 for various filter sizes
using custom facial identification data.

Filter Size Train Loss Train
Accuracy

Test Loss Test
Accuracy

3x3 0.14685 0.808 0.15141 0.825

4x4 0.17433 0.763 0.17231 0.745

5x5 0.17580 0.752 0.16917 0.780

with all experiments, all hyperparameter values were selected by conduct-
ing a small group of initial experiments in order to find a suitable choice
of learning rate for the number of epochs used. As before, 30 optimiza-
tion epochs allowed for satisfactory convergence without excessively lengthy
training periods.

Experimental results with loss and accuracy as classification performance
metrics can be seen in table 6.4. As with previous multiclass MNIST and
FMNIST experimental results, the filter size of 3x3 produces the highest
performance overall.

Figure 6.7: Train set loss results of a facial identification task, using a single filter
with varied size between experiments. The dataset consisted of a AT&T face image
data, combined with a selection of images taken from the CIFAR10 dataset.

When viewing the graph of training set loss, displayed in figure 6.7,
the loss values for 4x4 and 5x5 filter size experiments are very similar, and
appear to plateau at the same epoch. However, the loss curve for the 3x3
filter experiment does not appear to plateau in this experiment over the
number of optimization epochs conducted.

By visualizing the associated image embeddings figure 6.8, it can be seen
that at epoch 10, the two class distributions are heavily overlapped at the
border between the two classification regions (the two hemispheres in the
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Figure 6.8: Bloch sphere visualizations of train set image embeddings for the 3x3
filter experiment in figure 6.7. The left-hand sphere shows embeddings during
epoch 10, whereas the right-hand sphere shows embeddings during epoch 30. Point
colours correspond to the class of the embedded image, with blue for class 0 and
green for class 1.

case of binary classification). As optimization continues by epoch 30 it can
be seen by the right-hand Bloch sphere that whilst the datapoint clusters
are still overlapping around the central axis, they are being drawn away
from each other slowly.

This equates to the slow but gradual decrease in loss seen throughout
training for the 3x3 filter experiment, where datapoints are becoming closer
to their respective target states, just at a slow pace. This behaviour suggests
that because many datapoints are located close to the boundary between
the two class regions, even a small separation between the two interlinked
clusters could produce a relatively large increase in accuracy. However, it
is also unclear where the natural limit of the system is in this case, and a
plateau could be reached at any moment.

Regardless of any speculative analysis, the results achieved here are once
again promising, and support the aims of this research by showing that
a good classification result can be achieved with few parameters needed,
providing a foundational algorithm with potential for further development
and improvement.

The following results are from the second experimental setup within this
subsection. The objective of this experiment was to perform a facial recog-
nition task, using different individuals from the AT&T dataset. Due to the
small size of individual class subsets within the dataset, it felt appropriate to
include these results as an additional small-scale experiment, following the
previous facial identification experimental results that used a larger scale of
data. Here, a training set of 7 images per class and a testing set of 3 images
per class was used, with two classes of image in total.

For the results displayed in table 6.9, the classification accuracy for the
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Table 6.5: Final classification performance values at epoch 30 for various filter sizes
using binary AT&T facial image data.

Filter Size Train Loss Train
Accuracy

Test Loss Test
Accuracy

3x3 0.23605 0.643 0.11310 0.833

4x4 0.23500 0.571 0.24201 0.500

5x5 0.23895 0.429 0.33591 0.500

training set of data was fairly poor for all experiments. Whilst the testing
set accuracy was fair for the experiment using a 3x3 filter size, the other
experiments produced an even guess for each class. The unusual set of results
achieved here could suggest that there was simply a too small scale of data
to truly learn an existing representation between the opposing classes.

Figure 6.9: Loss result curves for a binary face recognition task conducted using
AT&T face image data.

This is again supported by result graphs shown in figure 6.9, as the
training loss for each experiment appears to plateau at very similar values,
determining that the system had perhaps reached its’ natural limit with the
data provided. In contrast to this, interestingly the curve for testing set
loss continues to decrease regardless of the previously mentioned plateau.
This could be explained by the initial weight distributions affecting the end
embedding result for the test set data. In other words, the graph would
suggest that the experiment using a 3x3 filter size was initialized with a
more optimal selection of weight values than the others, therefore allowing
the subsequent embeddings of test data datapoints to be on average more
in their respective class regions.

Another point that should be considered is the nature of the task itself.
Whilst the aspect of small-scale data has been mentioned, an important step
within many facial recognition methods is the feature extraction step. This
step allows algorithms to extrapolate key characteristics of an individuals

111



face to aid in classification. As a feature extraction step was not introduced
within this methodology, then combined with the small amounts of data
provided, the system struggled to learn any representation and difference
between the two individuals. Better results may have been achieved if a fea-
ture extraction pre-processing step was introduced, however this is beyond
the scope of this research and is a topic to be explored if the algorithm was
specifically applied to a facial recognition task.

6.3.5 Environmental Noise Impact

In the current NISQ era of quantum computing, it is important to consider
the effect that environmental noise has during optimization of quantum al-
gorithms. There are two approaches to analyzing the effect of environmental
noise. The first is running the algorithm directly through a quantum pro-
cessing unit (QPU), and the second is by recreating environmental noise
using a noisy qubit simulator. Both approaches have advantages and dis-
advantages to them, but either provide a reasonable insight into how the
algorithm may perform in the NISQ era. Due to the ability to monitor the
effect of noise more closely, our implementation was conducted using the
second approach by simulating environmental noise.

In order to recreate instances of environmental noise, there are various
noise channels which can be applied to simulate different effects of noise
occurring on quantum information. As an example, various noise simula-
tion channels available include de-phasing, bit-flip and amplitude damping
channels to name a few. For the purposes of this section, the environmental
noise channels that will be implemented are amplitude damping and phase
damping. These models of noise were chosen as they are realistic models
of noise, and are implemented within other relevant works in the field [154,
155].

Amplitude damping models energy relaxation within a qubit that occurs
through interactions with the environment over time. More information on
the amplitude damping channel can be found in [30, 174]. Phase damping
is a model of environmental noise that affects the representation of quan-
tum information, without changes being made to the status of excitation
or energy within the qubit itself. Phase damping can be modelled by the
following Kraus operators, where λ ∈ [0, 1] is the probability of qubit phase
damping:

K0 =

[
1 0

0
√

1− λ

]
, k1 =

[
0 0

0
√
λ

]
(6.5)

The application of Kraus operator K0 does not affect the |0〉 portion of
the quantum state, however negatively impacts the |1〉 portion by reducing
its amplitude. This is the same operator that is used as a part of amplitude
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damping also, however the second Kraus operator K1 is different. The ap-
plication of K1 affects the qubit by removing the |0〉 portion of the quantum
state completely, as well as reducing the amplitude of the |1〉 portion along-
side this. More information the phase damping channel can also be found
in section 5.3.3 and [30].

For the following results, a subset of the MNIST dataset was used. This
subset consisted of 250 training images per class used and 100 test images per
class used. For each experiment, 30 epochs of optimization were conducted
using the Adam optimizer with a learning rate of 10−4. These hyperparam-
eter values were selected as they were used throughout previous experiments
conducted with MNIST data, and so consistency between experiments was
desired.

The behaviour that is expected within these groups of experiments is that
as the noise magnitude λ is increased, the general loss value would increase
and the accuracy value would decrease in comparison to each experiment
contained within the task nature (i.e., binary or multiclass classification
task). However, as described previously within this chapter, it would be
expected for a like-for-like value to produce a lower performance score as
more classes are introduced to the task.

Figure 6.10: Final loss and classification accuracy values obtained through various
binary (2C) and 3-class (3C) experiments conducted in a noisy simulation envi-
ronment using the amplitude damping channel. The experiments were conducted
using a subset of the MNIST dataset (classes of 0, 1 and 2), a single filter of size
3x3, and λ values of 0.05 and 0.1. For clarity, the experiment with zero noise is a
direct reference to the experimental result displayed in table 6.1 and figure 6.2.

Charts displayed in figure 6.10 show experimental results obtained with
the implementation of amplitude damping channels after each unitary op-
eration, using qubit decay probabilities of 0.05 and 0.1 compared against
previously gathered results with zero noise influence. The values for train
set and test set loss and accuracy were taken after 30 epochs of optimization
had been conducted.

The results displayed in figure 6.10 appear to follow the behaviour that is
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expected to some extent. For binary class experiments, a sharp decrease in
loss is seen when noise is introduced, before a very slight loss once the noise
magnitude is doubled. This does not translate across to accuracy values
however, where the classification accuracy with λ = 0.1 is higher than that
with λ = 0.05. This suggests that decay within the excitation status of
the qubit affects the classification performance somewhat. However, once
the impact of this is present, further reductions in performance are not in
proportion to the magnitude of qubit decay.

The experiments using 3 classes of data also support this, as there is a
significant increase in loss and decrease in accuracy as noise is introduced.
However, these values appear to be very similar for λ = 0.05 and λ = 0.1,
at an approximate loss of 0.184 and approximate accuracy of 45%. Overall,
the system is affected to an extent by the introduction of qubit decay via
an amplitude damping channel. Whilst initially this drop in performance is
quite significant, the impact of noise with a greater magnitude is reduced.

Figure 6.11: Final loss and classification accuracy values obtained through binary
(2C) and 3-class (3C) experiments conducted in a noisy simulation environment
using the phase damping channel. The experiments were conducted using a subset
of MNIST data (classes of 0, 1 and 2), a single filter of size 3x3, and λ values of
0.05 and 0.1. For clarity, the experiment with zero noise is a direct reference to the
experimental result displayed in table 6.1 and figure 6.2.

Figure 6.11 displays experimental result charts obtained through imple-
mentation of a phase damping channel after each unitary operation, using
qubit damping probabilities of 0.05 and 0.1 as a comparison against the pre-
viously obtained result with zero noise influence. The values for train set
and test set loss and accuracy were taken after 30 epochs of optimization
had been conducted.

From the charts displayed in figure 6.11, the expected is followed for the
most part. As the noise value λ increases, the loss values also increase for
each task in turn. Similar to the behaviour exhibited by the loss values,
the final classification accuracy values also follow the behaviour that would
be expected somewhat. Within this, the only experiment which does not
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follow this pattern is where λ = 0.05 when using 3 classes (the green bar).
Here there is a spike to the loss value, however the accuracy obtained is still
comparable to similar experimental setups.

An explanation for this behaviour is that the embedding that the method
has performed on the dataset results in datapoints being scattered around
the borders between the three class regions. Even if a datapoint lies just
within that class zone, it will be classified as such yet may still possess a
larger distance between the ideal target state and itself. Over the course of
the entire dataset for that epoch, this can equate to a larger value of loss for
many datapoints located close to these boundaries, therefore it is difficult
to label this experiment as an outlier and instead could be thought of as a
difference in embedding.

Starting from experiments conducted with zero noise, there is a large
initial increase in loss as noise is introduced to the simulation. However,
as the noise value is doubled to 0.10, the increase in loss does not increase
proportionally. Interestingly, whilst there is a large increase in loss here,
this does not translate across to the classification accuracy values where the
performance is comparable overall. As before, this could be explained by
a more optimal distribution of initial weightings for the experiments with
λ = 0.05, embedding datapoints within their correct class region more often
than with zero noise. Or, another implication suggested here is that the
system may exhibit a small amount of robustness against a lower-level of
phase damping impact within the qubit.

Regardless of whether the loss value increases, suggesting the classifica-
tion confidence is lower overall, the accuracy is maintained until noise mag-
nitude is increased. To support this, the effect that phase damping has was
even less for classification accuracy of the 3-class task, where performance
is comparable within approximately 10% and 5% for train set and test set
respectively as λ was increased. This is a promising factor to consider, as
an innate robustness towards any kind of environmental noise can aid in
optimization. In a case that the system was in a state capable of achieving
90+% classification accuracy on a 3+ class task using a single qubit, then
any robustness held will be supportive to optimization if applied in a noisy
quantum environment.

6.4 Discussion

To summarize the findings discussed in section 6.3 in its entirety, initial
experimental results have been displayed that are obtained using a variety
of datasets and applications from image classification to facial recognition.
Overall, promising results have been achieved, given the purposes of the
research and the system setup conditions posed. However, there are also
key areas which would perhaps greatly benefit from further development
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and enable the performance of the system to be enhanced further.
In the case of binary classification experiments conducted using the

MNIST data, the accuracy values obtained are not necessarily as high as
the leading deep learning methodologies. However, the fact that the pro-
posed method was able to reach test set accuracy scores in the 90% region
within 5 epochs is promising in itself. Whilst realizing that the experiments
conducted here only contained a subset of the MNIST data, and not the
full dataset, it can be expected that the classification performance of the
method will naturally drop slightly as the number of classes are increased,
as well as the size of the dataset.

This was noticed following experiments conducted using 3 classes of the
MNIST data, where classification accuracy stagnated at a lower value, and
was unable to reach the high accuracy levels that would be desired in an
image classification algorithm, such as well within the 90th percentile. It is
to be noted that only a single filter containing 6 parameters was implemented
over the course of this chapter, therefore complexity of the system can be
increased by adding any number of filters to the experimental framework.

Noting that the MNIST dataset can sometimes be considered basic, or
not truly representative of the classification capability of an algorithm, ex-
periments were conducted using a subset of the Fashion-MNIST dataset to
increase the ‘difficulty’ of the classification task. Again, the system showed
promising results, reaching its highest classification accuracy values very
close to 90% for a filter size of 3x3. In the context of this research these
results are considered good, and show potential for the method to be en-
hanced further. As the complexity of embedding is increased, these results
could be improved upon, allowing for the plateau in loss to be reduced to a
much lower value.

In order to further demonstrate the initial capability of the proposed
method, experiments using a bespoke dataset consisting of AT&T facial im-
age data combined with CIFAR10 images were conducted. As with previous
experiments, the results were not state-of-the-art, but considered promising
and good in the context of the research and the experimental framework
used. When applied to an additional secondary task of facial recognition
using AT&T facial image data only, the system was unable to meet a sat-
isfactory convergence to the data provided. As described previously, this
is likely due to the small-scale data provided giving a lack of representa-
tion across the dataset, meaning the methodology was unable to learn and
optimize effectively.

As the system was introduced to different environmental noise channels,
initial results modelled using an amplitude damping channel suggest that
noise greatly influences the qubit and reduces classification performance.
However, when modelled using a phase damping channel, initial results ap-
pear to suggest a lack of impact or a slight robustness against the effect
that phase damping has by manipulating the datapoint embeddings. As
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noise levels were increased higher, a subsequent drop in classification accu-
racy could be seen.

Whilst this could be seen as a negative point considering the current
NISQ era of quantum computation, it is common to see this drop in clas-
sification performances across many quantum algorithms when noise is in-
troduced [144]. With further development, it is hoped that any potential
robustness can realized, or improved upon to enhance performance when
applied in noisy environments. A speculative suggestion here may be to
investigate whether applying additional filters may mimic the effect of data
re-uploading, which is suggested to improve expressivity within the qubit
[180], and thus may provide some robustness to noisy environments with
additional layers, in particular the amplitude damping channel [174]. Ex-
ploring modifications such as this may aid in the robustness of the proposed
method, and perhaps decrease any drop in classification such as that seen
in figure 9 within noisy environments.

To once again put the experiments conducted into perspective, the clas-
sification performance for each set of experimental results was able to be
achieved using just 6 parameters in total. As the field of deep learning has
progressed from relatively shallow [4] to very deep networks consisting of
many thousands of parameters [6], it should be considered here that the
research being presented is proposed as a foundation, or starting point to
progress forwards from. As has occurred for many modern ML algorithms,
modifications and adaptations need to occur to improve upon previous per-
formance and meet the task at hand. To that extent, there are a few notable
ways where this research could be extended to provide additional insight and
analysis into the feasibility of the algorithm as a quantum image classifier.

Firstly, an aspect well noted throughout this chapter is that of the low
number of filters, and subsequently parameters optimized in this implemen-
tation. Whilst the point of this research was to showcase the potential with
this few a number, it also opens a channel for further developments to remain
efficient. Here, an analysis could be performed using additional numbers of
filters to determine any difference in classification performance, and resulting
embedding capability. In addition, a usage of localized weights as described
in section 6.2 may continue to provide an advantage of maintaining spatial
relationships between pixel values, without needing to increase the overall
amount of implemented filters.

Following this, a secondary route for extension could envisage considering
the inclusion of colorized images, to match a traditional image classification
task specification more closely than focusing on greyscale images primarily.
Within this, avenues to assign colour channels to individual qubits, as well
as analyzing the effect of various entanglement operations between qubits
may allow for a better understanding of how the methodology may extend
to modern day tasks that include large-scale, colour images.

Finally, it is well noted that a significant limitation of a single qubit is the
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capability to classify many classes of data. As more classes of data are added,
the subsequent area within the Bloch sphere that corresponds to each class
is reduced. The effects of this reduction are much greater when there are a
lower number of classes to begin with, however the ability to embed many
datapoints into a very small section of the Bloch sphere will be difficult.
Therefore, naturally we will be required to investigate the use of multiple
qubits in order to contain sufficiently sized class boundaries when many
classes are used. However, the point at which a single qubit is unable to cope
with the number of classes is unknown. This point will also be undoubtedly
affected by other factors such as the dimensionality or complexity of the
data, as well as by factors that affect embedding complexity, such as re-
uploading of data encodings seen in [125, 174].

6.5 Conclusion

In this chapter, a framework for efficient quantum image classification was
proposed, requiring a minimum value of 6 parameters using a single qubit
only. Multiple experiments were conducted using datasets of changing na-
ture and difficulty to explore a variety of experimental results, and depth to
our analysis. Initially, the results discussed throughout are promising, and
display potential for the methodology to perform highly using a low number
of parameters. The system was consistently able to achieve classification
accuracy values within the 80th and 90th percentile in a short optimization
timeframe within 30 training epochs.

However, when our experimental setup was applied to a noisy quantum
simulation using amplitude damping and phase damping channels, classifica-
tion accuracy was greatly reduced by the impact of qubit decay through am-
plitude damping. However, experimental results suggested a limited amount
of robustness for classification performance against the impact of the phase
damping channel by changes to the phase value of the qubit.

With experimental results considered, the proposed methodology pro-
vides a solid foundation to progress forwards to develop and build upon the
success seen here using the bare minimum parameter and qubit count. As
outlined in section 6.4, considerations for future research include an inves-
tigation into implementing additional filters, to determine whether classifi-
cation performance can be improved upon and robustness similar to other
works can be achieved. Alongside this, there are various opportunities to
extend the foundational methodology proposed here towards modern-day
image classification tasks that utilize high-resolution, colour images. These
opportunities could examine the use of localized pixel weighting rather than
individual filter weights, as well as investigate the effect of applying multiple
qubits and entanglement measures to the system framework.

Overall, by extending the research presented in chapter 5, a QML-based
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image classification algorithm is presented, that greatly reduces the required
parameter count from previous research, whilst maintaining pixel relation-
ships that can assist in classification. It is interesting to find that a relatively
high standard of classification can be performed with such few parameters
and qubits, even within noisy quantum environments. This is a particularly
important factor to consider in the NISQ era, which can make the proposed
method of classification more favourable to employ over alternative QML
algorithms that require many cohesive qubits, or large variational circuit
structures of many parameters.
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Chapter 7

Conclusion

7.1 Summary Of Thesis

Image classification is a highly-sensitive and challenging domain that gath-
ers a tremendous amount of interest and development within ML research.
However, major challenges that have arisen within the past decade include
a growing complexity of deep CNN algorithms, stemming from the reliance
on high-powered GPU units that are capable of processing large quantities
of data quickly. As time has passed, hardware improvements are slowing
down, meaning that we are edging closer to realising the potential of cen-
tral and graphics processing units (CPU and GPU respectively). Therefore
an alternative solution to implementing deeper or wider CNNs resulting in
more weight parameters needs to be sought after.

QML is a growing field that aims to utilise natural quantum-mechanical
principles within ML in order to provide an advantage of some sort over
current classical ML algorithms. Although QML can be divided into 4
sub-categories, the CQ (classical-quantum) category is arguably the closest
derivation to classical ML in the sense of the data and algorithm framework
used. Typically, CQ algorithms consist of a process to encode classical data
into its quantum form, followed by execution of a defined quantum circuit,
followed by measurement and post-processing.

This thesis investigated the transition from classical-based to quantum-
based solutions to counter the growing complexity problem faced within deep
learning-based image classification. Typically, for very deep classical CNNs
the vast majority of parameters lie within the feature extraction portion that
contains the convolutional and pooling layers. Therefore, the first and only
classical-based solution that was examined was the technique of transfer
learning. Experimental results showed that, for a deep object detection
framework with a CNN foundation, a high-level of classification accuracy
could be maintained via transfer learning, reducing the computational load
that training completely from scratch brings. However, it was noted that
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deep CNNs still require large quantities of computational power to process,
therefore development towards more resource-efficient algorithms should be
pursued.

After a review of previous literature, it is highlighted that there are 2
primary performance advantages that can be gained from quantum-based
algorithms. The first performance advantage comes from operations that are
naturally faster to compute quantumly versus classically, for example inner
product estimations via a swap test subroutine or an unstructured search
via Grovers algorithm. The second advantage to be gained is the formation
of a naturally complex feature Hilbert space that is difficult to simulate clas-
sically. However, it remains an open question as to whether there exists an
optimal strategy of encoding which is both sufficiently complex, yet remains
efficient to do so.

Subsequent research addressed the first point by investigating a fidelity-
based approach of classifiation directed towards the nature of images specifi-
cally. Fidelity is an approach often highlighted in literature as it is naturally
efficient to calculate, therefore providing a computational speedup advan-
tage. Typically, fidelity is implemented alongside a minimum search sub-
routine for a quantum k-nearest neighbour type algorithm. Therefore, the
question remains as to the classification capability that fidelity calculation
can have when implemented independently of other operations.

In order to address the second point, a review of various encoding strate-
gies was conducted where a proposed scheme of single-qubit encoding was
highlighted. This encoding strategy, which also incorporated a fidelity-based
approach for measurement, was analysed in detail. Extending upon the in-
depth analysis of single-qubit encoding, a novel quantum image classification
methodology was proposed with the intent of remaining efficient in nature
whilst maintaining a high embedding complexity.

To summarise, the key contributions of this thesis include in order of
impact:

� The proposal of a novel quantum image classification algorithm based
on efficient single-qubit encoding. The proposed algorithm maintained
spatial relationships between pixels, whilst reducing the parameter
count to a lower bound of 6, therefore improving efficiency.

� An enhanced understanding of single-qubit encoding towards the cre-
ation of complex yet robust feature spaces was gained. It was deter-
mined that depth values of 1-3 encoding layers provided the highest
classification performance for the computation required. It was also
demonstrated that improved robustness to environmental noise could
be achieved with subsequent layers added.

� The demonstration of computational speedup gained via quantum op-
erations versus similar classical methods. It was demonstrated that
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reasonable classification performance could be achieved via fidelity es-
timation alone. In addition, a computational speedup was reported
over classical SVM and k-NN algorithms.

7.2 Research Findings And Discussion

This section presents the findings of research conducted within this thesis,
and proposes concluding remarks in relation to the research objectives and
questions outlined in section 1.2:

Research Question 1 To what extent can the application of transfer learn-
ing maintain classification performance of deep CNNs,
whilst reducing computational overhead from the
optimization of large parameter counts?

Chapter 3 aims to answer research question 1, and is the only work-
ing chapter that is completely classical-based in its computational format.
Within this chapter, the transfer learning was implemented using the DL ar-
chitecture YOLOv2. This leaves only the final fully-connected portion to be
optimized to previously unseen data, rather than the entire parameter base
of the architecture. Naturally this reduces the optimization time required
per epoch, however it is questionable whether the application of transfer
learning can maintain a high level of classification performance.

To investigate this, a set of experiments were conducted specifically to-
wards an indoor-based object detection task. The experimental results gath-
ered determined that a high level of classification accuracy was achieved ap-
proximately half-way through the alloted optimization timeframe, prior to a
slight regression in performance. This is a positive insight towards transfer
learning by requiring a lower epoch number to optimize fully, rather than
training completely from scratch which may take a larger number of epochs
to achieve a similar result.

The experimental results also showed that a high extent of classification
performance could be maintained via the use of transfer learning. Over-
all, the implementation of this technique meant that a large proportion of
transformation layers (i.e. convolutional/pooling layers), and subsequently
a large share of the parameter count could be left frozen, negating the need
for computationally expensive backpropagation operations whilst keeping a
fair level of classification performance.

Research Question 2 To what extent can a non-gradient based approach
be taken to perform effective quantum image clas-
sification?

A methodology was presented in chapter 4 that utilised a fidelity-based
approach to classification in order to address this research question. A
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fidelity-based approach was chosen with the intention of improving compu-
tational speed, as it is a naturally efficient calculation for quantum comput-
ers to process and avoided time-consuming optimization of parameter sets.
Experimental results demonstrated that a reasonable level of classification
accuracy could be achieved, with very little in terms of quantum circuit oper-
ations. Alongside this, the methodology achieved a computational speedup
over classical ML algorithms of an SVM and k-NN. Additional experimental
results contained within the study suggest that qubit management may be
a key factor in determining effectiveness of the developed algorithm.

The research conducted here demonstrates that a non-gradient based
classification approach using fidelity estimation is able to produce effective
classification capability to a certain extent. An advantage of taking this
approach for classification is the removal of the need for parameter opti-
mization, which can be extremely time consuming for even moderately sized
systems. Alongside this, the additional implementation of an oracle routine,
which was often seen throughout many works that utilise the metric of fi-
delity, was disregarded. Although this meant that a single circuit execution
was required per image compared, it negated the storage of an entire dataset
in a superposition state, requiring many qubits. Arguably, for very small
datasets containing few small-sized images, few qubits may be required to
store the complete set of data. However, for the context of NISQ quantum
computation it was felt that this trade-off was appropriate to reduce the
possibility of errors that can occur as a result of poor qubit cohesion.

Research Question 3 Can effective feature representations of classical
data be created in Hilbert space using low numbers
of quantum bits?

In order to address this research question, the modern development of
single-qubit encoding was analysed in a classification setting. Experimen-
tal results determined that the sharpest of classification improvements were
gained when depth values of 1-3 uploading layers were implemented. How-
ever, the implementation of additional layers did not provide a substantive
classification performance improvement. Alongside this, experiments were
conducted within a noisy simulation environment through the addition of
the amplitude damping noise channel. Here, experimental results suggested
that a level of robustness could be gained by the implementation of increased
depth from additional uploading layers. As before, the sharpest robustness
advantages could be gained when 1-3 uploading layers were used.

The research conducted here determines that an effective feature repre-
sentation can be created with a single qubit implemented only. For much of
the literature surrounding quantum machine learning algorithms, typically
a basis or amplitude encoding approach is taken to embed classical data into
Hilbert space. Although logarithmically efficient in nature, the capability
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to encode data through parametrized rotations onto a single qubit is partic-
ularly useful for minimizing the amount of quantum resources required for
execution.

Research Question 4 Can a novel quantum machine learning classifier
be developed for image classification that makes
efficient use of resources provided?

In order to address research question 4, a novel QML classifier was de-
veloped in a manner tailored towards image classification tasks. Inspired
by convolutional operations, the encoding strategy was adapted in order to
maintain spatial relationships between pixels, therefore assigning each filter
with a small set of 6 parameters only. For analysis of the effectiveness of
the proposed algorithm, a group of experiments were conducted using var-
ious image datasets. For all experiments, a single filter was implemented
that required a set of 6 parameters in total. The experimental results con-
tained within chapter 6 showed promising classification capabilities for the
proposed algorithm. Alongside this, the proposed algorithm demonstrated
an extent of robustness against the implementation of the phase damping
environmental noise channel.

The experimental results obtained determine that effective quantum-
based image classification is capable of being performed, whilst making ef-
fective use of low resources available with a single qubit. Although the
experimental results obtained are not state-of-the-art for the data used,
considering the low parameter count and that each pixel was to be encoded
once only the initial classification capability is extremely promising.

7.3 Reflection And Recommendation For Future
Work

Overall, the research contained within this thesis has many implications that
have been discussed previously. Naturally, this opens up various routes for
future research, therefore to finalise this section it is relevant to outline and
discuss these considerations towards avenues for future development.

� A limitation that should be noted for the method implemented in
chapter 4 is how the inclusion of multi-class data is conducted. A sug-
gestion made is to perhaps include a circuit execution per data class,
therefore classifying in a one-versus-all manner. However, it remains
an open question as to how this can be extended to tasks of a larger
scale and difficulty. Therefore, future development of this method may
be directed towards how difficult image data may be classified in this
manner. For image classes that are very inconsistent in object fea-
tures such as location within the image, aspect ratio, or contrast, then
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fidelity as a classification tool may prove more challenging than for
images like the format used here. Therefore, further investigation to-
wards these areas may enhance the overall capability and robustness
of the algorithm itself.

� The quantum image classification algorithm proposed in chapter 6
presents a vast array of avenues for further investigation and devel-
opment. Firstly, the experimental setup implemented a single filter
only of 6 weight parameters. This was done intentionally to show the
baseline capability with as minimal parameterization and operations
as possible. However, investigation towards benefits that the imple-
mentation of additional filters could bring may enhance the working
knowledge of the proposed algorithm.

� Finally, it remains an open question as to how the colour values of each
pixel may be encoded. A suggestion to how this may be performed
could be via a multi-qubit implementation, such as assigning values
for a particular colour to an individual qubit then encoded as default.
Another supporting factor for a multi-qubit approach is the extension
to tasks that involve a higher number of classes. Additional qubits
would allow for a greater dimension of Hilbert space, therefore pro-
viding a greater area for each individual class boundaries. However,
the way in which the extension to multiple qubits is implemented in
practice is largely undecided. Logically, there would need to be some
form of entanglement to provide an element of dependency between
the implemented qubits. This aspect opens up a secondary area for
investigation, to analyse whether a particular entanglement setup may
provide advantages over others.

7.4 Concluding Statement

This thesis implemented, analysed and developed a set of classical-based
and quantum-based machine learning techniques and algorithms targeted
towards the domain of image classification. The underlying intentions of
this thesis are to improving the efficiency of image classification algorithms,
whilst maintaining a high degree of classification accuracy. The following
concluding remarks summarise the key research points as a whole:

� Transfer learning remains a viable technique to consider in order to re-
duce computational load during optimization of deep CNNs for image
classification and object detection. Experimental results demonstrated
that a good classification accuracy result of 91.47% was achieved,
whilst removing the optimization requirement for 76.9% of the total
parameterized layers.
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� The removal of costly backpropagation was considered for quantum-
based image classification via the implementation of a fidelity-based
routine. Classification was based on similarity between a dataset in-
stance and a defined comparison vector. Experimental results deter-
mined that fidelity alone produced a classification accuracy of 90.6%
for the defined dataset. Notably, the implemented method improved
computational complexity over similar classical algorithms through
utilising resource-efficient amplitude encoding.

� A novel quantum image classifier was proposed based on the single-
qubit encoding scheme. Initial analysis of single-qubit encoding showed
it possessed the capability to encode classical data into a suitably-
complex feature space. The greatest performance improvements were
also seen to occur within 1-3 data encoding layers. The proposed sys-
tem modified the structure of single-qubit encoding, in order to main-
tain pixel relationships and greatly reduce the parameter count, with
itent of shortening computational load during optimization. Experi-
mental results determined that the proposed method had great poten-
tial as a quantum image classification tool, whilst remaining efficient
in its use of quantum resources and robust to certain environmental
noise impacts.
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[11] Vojtěch Havĺıček et al. Supervised learning with quantum-enhanced
feature spaces. Tech. rep. 7747. 2019, pp. 209–212. doi: 10.1038/
s41586-019-0980-2. arXiv: 1804.11326.

[12] Iris Cong, Soonwon Choi, and Mikhail D. Lukin. Quantum convo-
lutional neural networks. Tech. rep. 12. 2019, pp. 1273–1278. doi:
10.1038/s41567-019-0648-8. arXiv: 1810.03787.

[13] “Sigmoid Activation Function in Selecting the Best Model of Arti-
ficial Neural Networks”. In: Journal of Physics: Conference Series
1471.1 (2020), p. 12010. issn: 17426596. doi: 10.1088/1742-6596/
1471/1/012010.

[14] Wei Jiang et al. “Multilayer Perceptron Neural Network for Surface
Water Extraction in Landsat 8 OLI Satellite Images”. In: Remote
Sensing 2018, Vol. 10, Page 755 10.5 (May 2018), p. 755. doi: 10.
3390/RS10050755. url: https://www.mdpi.com/2072-4292/10/5/
755/htm%20https://www.mdpi.com/2072-4292/10/5/755.
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