
Northumbria Research Link

Citation: Wang, Pingfan (2024) Concept drift detection using machine learning in data
stream. Doctoral thesis, Northumbria University.

This version was downloaded from Northumbria Research Link:
https://nrl.northumbria.ac.uk/id/eprint/51691/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

http://nrl.northumbria.ac.uk/policies.html

CONCEPT DRIFT DETECTION
USING MACHINE LEARNING IN

DATA STREAM

PINGFAN WANG

PhD

2023

CONCEPT DRIFT DETECTION
USING MACHINE LEARNING IN

DATA STREAM

PINGFAN WANG

A thesis submitted in partial fulfilment of

the requirements of the University of

Northumbria at Newcastle for the degree of

Doctor of Philosophy

Faculty of Faculty of Engineering and

Environment

December 2023

Abstract

Machine learning applications in streaming data often grapple with dynamic changes in data distri-

bution, particularly concept drift, where shifts in classification boundaries undermine the model’s

performance. This challenge is further complicated by the inherent complexity of data streams,

the underutilization of deep neural networks in addressing the issue, and a lack of comprehensive

understanding of the concept drift.

Data streams are non-stationary and complex by nature, which poses significant challenges to

concept drift detection. Deep neural networks, despite their immense predictive power, are rarely

employed in this context due to their high computational costs. Current detection methods typ-

ically concentrate on pinpointing when a concept drift occurs, neglecting to explore the detailed

information about the concept drift. This dearth of information, such as the concept drift’s on-

set, duration, severity, or endpoint, could be invaluable for a more nuanced understanding of the

phenomenon.

To mitigate these issues, this thesis introduces several innovative methods:

Drift Detection Method with False Positive rate for Multi-label classification (DDM-FP-M): This

novel approach extends the existing Drift Detection Method (DDM) to multi-label classification

data streams. It incorporates a unique mechanism to adjust for false positives, enhancing the

adaptability and accuracy of drift detection in complex data stream scenarios.

Noise Tolerant Drift Detection Method (NTDDM): NTDDM introduces a two-step process to

discern true drifts from noise-induced false positives. It refines drift detection by filtering out mis-

leading signals through subsampling and statistical detection methods, improving the reliability of

drift detection in noisy data environments. The efficacy of this method is further validated through

three newly proposed performance metrics specifically designed for concept drift detection.

Incremental Weighted Performance Drift Detection Method (IWPDDM): This method employs

prediction confidence derived from the incremental learning of ensemble models to detect concept

drift. It represents a shift in focus towards the model’s own response to concept drift, rather than

solely relying on the model’s output. It creates an indicator using weighted prediction confidence

from these models, ensuring stable and accurate drift detection, a significant improvement over

traditional methods.

i

Abstract

Model-centric Transfer Learning (MCDD) Framework: Recognizing the limited use of deep neu-

ral networks in concept drift detection due to computational constraints, this thesis proposes the

MCDD framework. This approach relies solely on the model’s intrinsic changes to detect con-

cept drift, making it a model-centric method. Our experiments demonstrate that mere changes in

the model itself can accurately reflect concept drift. This framework strategically utilizes transfer

learning to freeze parts of the network, significantly reducing computational needs while enhanc-

ing drift detection performance.

Quadruple-based Approach for Understanding Concept Drift in Data Streams (QuadCDD): The

QuadCDD framework aims to provide a holistic understanding of concept drift. Most existing

methods focus only on detecting the start point of concept drift, yet there is much information

about concept drift that remains unexplored, such as its endpoint, severity, and type. This lack

of information greatly reduces the specificity of adaptation strategies. The QuadCDD framework

goes beyond merely identifying the onset of drift, equipping models with comprehensive informa-

tion for more effective adjustments and a deeper understanding of the drift dynamics.

In conclusion, this thesis addresses a critical issue in machine learning on data streams. It pro-

vides practical and innovative concept drift detection algorithms, contributing significantly to both

scientific research and practical applications in the field.

ii

Contents

Abstract i

Acronyms xiv

Acknowledgements xvii

Declaration xix

List of publications xx

1 Introduction 1

1.1 Background . 1

1.2 Research Questions and Objectives . 4

1.3 Research Contributions . 7

1.4 Thesis Structure . 9

2 Literature Review 13

2.1 Data Stream Mining . 13

2.1.1 Evolving Data Stream . 13

2.1.2 Data Stream Mining . 15

2.1.3 Background and Concepts . 16

2.1.4 Data Stream Mining Techniques . 18

2.1.5 Challenges . 20

2.2 Concept Drift . 21

2.2.1 Definition of Concept Drift . 21

2.2.2 Types of Concept Drift . 23

2.2.3 Concept Drift Applications . 26

2.3 Concept Drift Detection . 27

2.3.1 Performance-based . 28

2.3.2 Distribution-based Drift Detection . 29

2.3.3 Evolving System . 30

2.3.4 Multiple Hypothesis Test Drift Detection Method 32

iii

2.3.5 Deep Neural Network . 33

3 Concept Drift Detection in Data Stream with Multi-label 35

3.1 Introduction . 35

3.2 Drift Detection Method (DDM) . 36

3.3 Drift Detection Method with False Positive Rate for multi-label Classification

(DDM-FP-M) . 37

3.3.1 False Positive Rate Calculation for Multi-label Classification 37

3.3.2 DDM-FP-M . 38

3.4 Experiment and Result Analysis . 41

3.4.1 Datasets and Experiment Setting . 41

3.4.2 Experiment Result Analysis . 42

3.5 Summary . 44

4 Concept Drift Detection in Noisy Data Stream 45

4.1 Introduction . 45

4.2 Problem Statement . 47

4.2.1 Introduction of Noise . 47

4.2.2 Definition of Noise . 47

4.2.3 Difference between Noise and Concept Drift 48

4.3 Proposed Noise Tolerant Drift Detection Method 50

4.3.1 Design of NTDDM . 51

4.3.2 Detection . 52

4.3.3 Validation . 54

4.4 Experiment and Result Analysis . 56

4.4.1 Datasets and Experiment Set-up . 57

4.4.2 Measures for the Experimental Results 58

4.4.3 Experiments on Real-world Dataset . 65

4.5 Summary . 68

5 Concept Drift Detection by Tracking Weighted Prediction Confidence of Incremental

Learning 69

iv

5.1 Introduction . 70

5.1.1 Prediction Stability . 71

5.2 Weighted Prediction Confidence . 72

5.2.1 Design of IWPDDM . 72

5.3 Incremental Vote-based Ensemble Learning Step 73

5.4 Detection and Validation Step . 75

5.5 Experiment and Evaluation . 76

5.6 Datasets and Drift Detection Methods . 76

5.7 Experiment Result and Evaluation . 76

5.8 Summary . 78

6 Concept Drift Detection by Model-centric Transfer Learning Framework 79

6.1 Introduction . 80

6.2 Methodology . 82

6.2.1 Model Initialization and Pre-training . 83

6.2.2 Transfer Learning . 84

6.2.3 Model-Centric Concept Drift Detection (MCDD) 86

6.3 Experiments . 90

6.3.1 Datasets and Concept Drift Description 90

6.3.2 Baseline Methods . 93

6.3.3 Evaluation Metrics . 94

6.3.4 Experiment Setup . 95

6.3.5 Comparison Results on Benchmark Datasets 96

6.4 Summary . 108

7 Concept Drift Understanding by Quadruple-based Approach: QuadCDD 109

7.1 Introduction . 110

7.2 Quadruple and QuadCDD Framework . 112

7.2.1 Quadruple Representation of Concept Drift 113

7.2.2 QuadCDD framework . 118

7.3 Experiment and Evaluation . 124

7.3.1 Dataset and Experiment Settings . 124

v

7.3.2 Concept Drift Detection Experiment and Evaluation 127

7.3.3 Understanding Concept Drift . 128

7.3.4 Decision-Making in Response to Concept Drift 131

7.4 Summary . 135

8 Conclusion and Future Research 136

8.1 Conclusions . 136

8.2 Limitations . 138

8.3 Future Research . 139

References 141

vi

List of Figures

1.1 The impact of data with concept drift on the performance of the model trained

with historical data deteriorates over time. 2

1.2 Concept drift in mobile phone usage (data used in figure are for demonstration

only). (Lu et al., 2019) . 2

1.3 Thesis structure and relationship between chapters 10

2.1 Illustration of the three sources of concept drift. (Lu et al., 2019) 23

2.2 Four types of concept drift . 25

3.1 The confusion matrix for multi label classification. 38

3.2 The arrangement of sensors in the Intel Berkeley Research lab(Xu et al., 2019) . 41

3.3 The drift detection result from DDM and DDM-FP-M method 43

4.1 Visualization of class noise (left) and attribute noise (right), each shadowed ellipse

represents a class Xs1 and Xs2 . 48

4.2 Design of NTDDM, two process modules are Detection and Validation, data stream

input in Detection firstly, potential drift found in Detection will trigger the Vali-

dation. True drift will be reported if Validation confirms it, otherwise suspend

Validation and return to Detection since the potential drift is a false drift. 52

4.3 Validation with spare sliding time window. 56

4.4 Illustration of the measures. x-axis represents time. ts is start time point, tg is

drift time point, tf and tl are the first and last detected drift point. lt is the time

range from start to drift point. Then EDR, is our defined time range(l × λ) which

represents the reasonable time range for detected drift point collection, te. FEDP

represents the time range from drift point tg to first drift point in te. LDP represents

the time range from drift point tg to the last detected drift point. These two time

ranges are to evaluate if the detection method could detect the drift in a reasonable

time range. 59

vii

4.5 The histograms of the detected drift time points by the seven detection methods

on dataset SEA. The noise levels are 0, 0.05, 0.15 and 0.2 respectively. X-axis

represents the time point, the red bars denote the drift point tg, whereas the blue

bars are the histogram of detected drift points summarized over 100 independent

experiments. The ideal case is that all detected drift points concentrate on EDR

in Figure 4.4, the EDDR indicates the degree of concentration in EDR of the

detected points. 1:NTDDM, 2: DDM, 3: ADWIN, 4:EDDM, 5:PH, 6:HDDM A,

7:HDDM W . 62

4.6 The heatmap for the Friedman test and Nemenyi post hoc test on result of EDDR,

each data represents the p-value of statistical difference and is calculated in pairs.

The red coloured squares corresponding the statistically significant differences,

the squares in the other colors represents less significant differences. 63

4.7 FEDP and LDP on SEA dataset. (a) FEDP with noise level = 0 (b) FEDP with

noise level = 0.2 (c) LDP with noise level = 0 (d) LDP with noise level = 0.2. . . 64

4.8 Data visualization of real-world posture data, x and y axis represents the result of

data, axis of time represents the time range of the data stream. 66

4.9 Boxplot visualization of the value of FEDP and LDP on Posture dataset, (a) FEDP

on Posture dataset without noise (b) LDP on Posture dataset without noise (c)

FEDP on Posture dataset with noise (d) LDP on Posture dataset with noise. The

methods from left to right are 1:NTDDM, 2: DDM, 3: ADWIN, 4:EDDM, 5:PH,

6:HDDM A, 7:HDDM W. 67

5.1 Design of IWPDDM, include three steps, incremental vote-based ensemble learn-

ing, detection and validation respectively. In step 1, weighted indicator will be up-

dated and monitored. Once corresponding statistical thresholds are reached, step

2 and 3 will be triggered successively. When validation step validate a concept

drift, signal for predictor reset will be sent, and drift will be reported synchronous. 72

5.2 Drift detection delay result, x-axis represents the methods used for comparison

and y-axis is the drift detection delay. From the boxplot, our proposed IWPDDM

method has the lowest delay among all the drift detection methods 78

viii

6.1 Flowchart of the Model-Centric Transfer Learning Framework on Concept Drift

Detection. 83

6.2 Flowchat of Transfer Learning, there are three steps. First, merging model B with

weights from pre-trained model A. Then, Model B performs training with data

with concept drift. Lastly, the weights (green neurons in red dashed box) from last

layer form the Weight Stream. 85

6.3 Long and short time windows, its goal is to detect real drift while filtering out false

drift. In this case, the real drift point starts at 500 with a duration of 1. But there is

more than one potential drift detected by the long time window. Then short time

window will be initialized and validate whether the potential drift is true drift or

false drift. 87

6.4 Different concepts in abrupt drift and incremental drift. 92

6.5 Three types of concept drift: abrupt concept drift, early abrupt concept drift and

incremental concept drift. The left represents the concept change, and the right

represents the decision boundary change caused by concept drift. 93

6.6 Result of feasibility verification experiments of the framework on abrupt and In-

cremental drift (ps: drift start point, d: duration of drift) 97

6.7 Comparison of average rank (lower is better) of methods w.r.t. performance across

datasets. MCDD-RNN and MCDD-FCN outperforms all methods. 99

6.8 Abrupt drift detection result on 6 datasets, it is apparent that our proposed method

(last two in each subfigure) has the most concentrated detected concept drifts near

the real drift point at 500 (red dashed line), whereas other methods perform well

but are rather discrete. 100

6.9 Early abrupt drift detection result on 6 datasets, it is apparent that our proposed

method (last two in each subfigure) has the most concentrated detected concept

drifts near the real drift point at 100 (red dashed line). However, the drift points

detected by other methods are relatively discrete. 102

6.10 Incremental drift detection result on 6 datasets. Our proposed method (last two

in each subfigure) has the most concentrated detected concept drifts near the real

drift point at 100 (red dashed line). 103

ix

6.11 MCDD-FCN and MCDD-RNN drift detection result on datasets with incremental

concept drift after adjusting parameter . 105

6.12 Comparison of average rank (lower is better) of methods w.r.t. performance across

datasets. MCDD-RNN and MCDD-FCN based method have very close perfor-

mance and outperform other methods. 105

6.13 ROC Curves for MCDD Performance under Different Concept Drift Scenarios

with Class Imbalance. 107

7.1 Illustration of Quadruple with Distinct Types of Concept Drift in Multiple Data

Streams. The green and red dots represent the start and end of concept drift, re-

spectively. The x-axis represents data points in a time series format, while the

y-axis denotes two different concepts. The dashed line represents the concept

change, with the type varying based on the duration and severity of the concept drift.111

7.2 Illustration of the quadruple in various data streams with distinct types of concept

drift. 114

7.3 The invariant Drift Type Dt remains unchanged despite the presence of diverse

internal concept drift patterns. The green and red dots represent the starting and

ending points of the concept drift within the data stream, while the dashed line

denotes the distinct shape of the concept change. It is important to note that the

value of Dt is solely determined by the start and end points, resulting in all these

shapes having the same Dt value. 117

7.4 The workflow of our proposed QuadCDD framework, consist of four phase, Pre-

training, adapative fine-tune, detection and Decision-making 118

7.5 Quadruple Understanding on Cricle Datasets, the first three plots shows the Bland-

Altman plot of the parameters, the red dash line indicates the mean of the residuals,

and the two blue dash line indicates the mean ± 1.96 standard deviations. The last

plot is the violin plot visualized the binary classification. 129

x

7.6 Effect of Concept Drift on Model Accuracy Across 11 Data Streams. Each data

stream consists of two concepts: the first concept remains constant from 0 to point

500, which is consistent across all data streams. The second concept exhibits

varying levels of drift severity, indicated by the slope of the decision boundary

(a straight line for the Circle dataset). The initial slope for the first concept is

set to −∞, while the slopes for the subsequent concepts range from -1000 to

1000 (indicated in the legend at the right side). This figure illustrates that larger

differences in slope lead to more significant declines in model accuracy. The trend

becomes particularly evident after point 1000, emphasizing the impact of concept

drift on model performance. 132

7.7 Comparison of accuracy for the three strategies: Accoriginal represents the accu-

racy rate of the trained model without any action taken in response to concept

drift, Accincremental illustrates the performance when incremental learning is ap-

plied based on quadruple-informed decisions, and Accre-train indicates the decision

to re-train the model. The figure reveals that Accoriginal experiences a sharp decline

in accuracy, while Accincremental maintains relatively high and stable performance

until index -5. In most situations, Accre-train demonstrates consistently high accuracy.133

7.8 Accuracy before and after decision-making based on QuadCDD 134

xi

List of Tables

3.1 The result from two group of experiments . 42

3.2 The further analysis on experiment result . 42

4.1 Notation and abbreviations . 50

4.2 Description of the datasets. 57

4.3 Algorithm parameters or threshold description 58

4.4 Sample of detected drift points from experiments 59

4.5 Effective Detected Drift Rate(%) on 16 datasets from 7 methods, NTDDM per-

form best 13 out of 16 datasets. 61

4.6 LDP on four artificial datasets . 65

4.7 EDDR on real-world dataset, NTDDM has the highest value. 66

4.8 The average values for 100 trials: FEDP and LDP on Posture dataset with and

without noise . 67

5.1 Description of the datasets . 76

5.2 Methods parameters . 77

5.3 Drift detection accuracy (%) . 77

6.1 Notation and abbreviations . 80

6.2 Description of Artificial and Real-world Datasets. 0-Abrupt concept drift, 1-Early

abrupt concept drift, and 2-Incremental concept drift 91

6.3 Three different types of concept drift with drift point and duration (time point) . . 92

6.4 Algorithm parameters or threshold description 94

6.5 Function used to construction of the neural network 95

6.6 Hyper-parameters used for proposed framework 95

6.7 EDDR result on 6 datasets from 11 methods, the unit is time point.The higher the

EDDR value, the better the performance of detection method. Our two methods

have the highest average EDDR value among other methods, and also the highest

on each drift. 98

6.8 FEDP on abrupt drift . 101

6.9 LDP on abrupt drift . 101

xii

6.10 FEDP on early abrupt drift . 102

6.11 LDP on early abrupt drift . 103

6.12 FEDP on incremental concept drift . 104

6.13 LDP on incremental concept drift . 104

6.14 Details of Data Class Imbalance (Expressed as the Percentage of Instances in Class

0): This study comprises multiple datasets, each with a distinct type of concept

drift and containing 100 data streams. 106

6.15 Data Quality and Noise Characteristics of Artificial and Real-World Datasets. . . 107

7.1 Function used to construction of the neural network 124

7.2 Hyper-parameters used for proposed framework 125

7.3 Algorithm parameters or threshold description 127

7.4 Concept drift detection delay, denoted by
∣∣∣Ds − D̂s

∣∣∣, where Ds represents the

ground truth of the concept drift start point, and D̂s represents the detected drift

start point. A smaller difference between these two variables indicates a stronger

detection ability of the concept drift detection method. 128

7.5 The table presents the percentage of data points falling within the Bland-Altman

lines for various categories of concept drift, including Circle, Sine, Hyperplane,

RandomRBF, Posture, and Powersupply. The displayed values correspond to the

measurements Ds, De, and Dv associated with each category, along with the aver-

age values across all categories. Notably, a significant majority of the data points

(within the range of 95% ± 1.96 standard deviation) demonstrate a high level of

agreement with the Bland-Altman analysis. 130

7.6 Residual Analysis of Concept Drift. The table presents the absolute residual values

denoted by Ds, De, and Dv for different categories of concept drift. Ds and De

are measured in units of 1000 data points, while Dv is measured in percentages. . 130

7.7 Dt results, The Dt is either 0 or 1 based on Equation. 7.4. 131

7.8 Accuracy rate (%) comparison on six datasets, the first column is the accuracy

rate without reaction to the concept, the second column is the accuracy rate after

decision-making with our proposed QuadCDD framework 134

xiii

Acronyms

ADWIN ADaptive WINdowing 28, 34

AI Artificial Intelligence 27

AUC Area Under the Receiver Operating Characteristic Curve 71

CDANs Conditional Domain Adversarial Networks 34

CI-CUSUM Computational Intelligence-based CUSUM test 32

CM Competence Model-based Drift Detection 30

DAOD Distribution Alignment with Open Difference 34

DDM Drift Detection Method 8, 11, 20, 28, 36

DDM-FP-M Drift Detection method with False Positive rate for multi label classification 36

DEML Dynamic Extreme Learning Machine 28

e-Detector Ensemble of Detectors 32

EDDM Early Drift Detection Method 20, 28

EDDR Effective Detected Drift Rate 58, 60

EDE Equal Density Estimation 30

EDR Effective detected drift rate 58

EFS Evolving Fuzzy System 30

eGAUSS+ Evolving Gaussian Clustering 31

ELM Extreme Learning Machine 28

eT2RFNN Evolving Type-2 Recurrent Fuzzy Neural Network 31

xiv

FEDP First Effective Detected Point 58, 62

FP-Growth Frequent Pattern Growth 19

FPR False Positive rate 36

HBOS Histogram-based Outlier Score 19

HCDTs Hierarchical Change-Detection Tests 32

HDDM Heoffding’s inequality based Drift Detection Method 28

HHT-AG Hierarchical Hypothesis Testing with Attribute-wise ”Goodness-of-fit” 33

HHT-CU Hierarchical Hypothesis Testing with Classification Uncertainty 33

HLFR Hierarchical Linear Four Rate 32

IoT Internet of Things 15, 35, 36

ITA Information-Theoretic Approach 30

IV-Jac Information Value and Jaccard similarity 32

IWPDDM Incremental weighted performance drift detection method 71

JIT Just-In-Time Adaptive Classifiers 32

KS Kolmogorov–Smirnov Test 29

KS test Kolmogorov–Smirnov two-sample test 54

LDD-DSDA Local Drift Degree-based Density Synchronized Drift Adaptation 30

LDP Last Detected Point 58

LFR Linear Four Rate drift detection 32, 33

LLDD Learning with Local Drift Detection 28

LOF Local Outlier Factor 19

LSDD-CDT Least Squares Density Difference-based Change Detection Test 30

LSDD-INC Incremental version of Least Squares Density Difference-based Change Detection Test 30

MCDD Model-centric framework for concept drift detection 79, 81

xv

Meta-ADD Active Drift Detection based on Meta learning 34

NTDDM Noise Tolerant Drift Detection Method 45, 50

OB-EFS Online Bagged EFS 30

OOD Out-of-distribution 34

PAC Probably Approximately Correct 34

PCA-CD Principal Component Analysis-based Change Detection Framework 30

PH Page-Hinkley 28

PS Prediction stability 73

QuadCDD Quadruple-based Approach for Understanding Concept Drift 109

RD Relativized Discrepancy 29

ROC Receiver Operating Characteristic 106

SAND Semi-Supervised Adaptive Novel Class Detection 29

SCD Statistical Change Detection 30

SEOA Selective ensemble-based online adaptive deep neural network 33

SGD Stochastic gradient descent 95

TSMSD-EWMA Two-Stage Multivariate Shift-Detection based on EWMA 33

UOSDA Unsupervised Open Set Domain Adaptation 34

xvi

Acknowledgements

My PhD journey has been quite unusual. In the second term of my PhD, around the Spring Festival

of 2020, the COVID-19 pandemic swept the world. For the following one to two years, I was

mostly at home, hardly even remembering where my office desk was. I feel extremely fortunate

to have successfully completed my PhD thesis and to be now sitting in the office, typing these

words.

I would like to express my deepest gratitude to my two advisors, Professor Nanlin Jin and Professor

Wai Lok Woo. Professor Nanlin Jin was the one who initially recruited me as a PhD student

and provided substantial help during the early stages of my research, including various academic

guidance and invaluable suggestions. This has greatly facilitated my research journey, enabling

me to fully delve into the topics I’m passionate about. After leaving Northumbria University about

two years later, Professor Nanlin Jin continued to serve as my external supervisor and provided

precious advice on my research. During the latter part of my PhD research, Professor Wai Lok

Woo acted as the main advisor and offered substantial assistance. His expertise in the field of

deep learning facilitated professional guidance in an unfamiliar area. I am also very thankful to

Professor Wai Lok Woo for letting me deeply participate in several collaborative research projects,

which not only enhanced my academic resume but also alleviated my financial constraints during

the latter part of my PhD journey. I can say that without these two professional and incredibly

supportive advisors, it would have been very difficult for me to graduate at this point in time.

Secondly, I am very grateful to my colleagues at the Department of Computer and Information

Sciences at Northumbria University. I have gained a lot of research experience and advice from

them, for which I am very grateful. I would like to express my special thanks to Dr. Jeremy

Ellman, who served as a member of my annual progress review panel and collaborated as a course

teacher for three years. Even after his retirement, he was still willing to review my PhD thesis,

for which I am extremely grateful. During my PhD research, I received help from colleagues

in the same field, including Professor Hang Yu from Shanghai University, Dr. Yue Zhao from

the University of Southern California, and Dr. Yiliao Song from the University of Technology

Sydney. I also want to express my gratitude to Dr. Haixun Xie, Dr. Shan Shan, Mr. Jialou Wang,

Ms. Manli Zhu, and Mr. Anthony Ashwin Peter Chazhoor for our daily discussions. I am also

very grateful for the enthusiastic help from Dr. Kay Rogage and Dr. Baqar Rizvi in my teaching

xvii

work at Northumbria University. I would like to thank all friends in ”Ke Ji Yu Tang” for their

advice and experience sharing in the same field, which greatly alleviated my mental stress during

my PhD journey.

In the past few months, in my teaching work at Coventry University, I am very grateful to Dr.

Shan Shan for introducing me to this job opportunity, and I also very much appreciate Professor

Muhammad Kamal for his support of my work. I also want to express my special thanks to Dr.

Selman Karagoz and Dr. Umar Farooq for their advice and guidance in teaching.

Finally, I would like to thank my family who have always supported me. It is their decades of

selfless love and support that have allowed me to remain in the campus engaged in pure study and

research. Of course, I must thank my wife, who has witnessed my entire PhD journey, my first

academic conference, my first rejected paper, my first accepted paper, and all kinds of ”firsts”.

You have changed my attitude towards life and study, making me better. In the future, I hope my

first time wearing a doctoral gown, the first time holding a doctoral degree, and many more firsts

will have your participation!

xviii

Declaration

I declare that the work contained in this thesis has not been submitted for any other award and

that it is all my own work. I also confirm that this work fully acknowledges opinions, ideas and

contributions from the work of others.

Any ethical clearance for the research presented in this thesis has been approved. Approval has

been sought and granted by the Faculty Ethics Committee on 04/02/2020.

I declare that the Word Count of this thesis is 35132 words.

Name: Pingfan Wang

Date: 5 December 2023

xix

List of publications

P. Wang, H. Yu, N. Jin, and W. Woo, QuadCDD: A Quadruple-based Approach for Understanding

Concept Drift in Data Streams, Expert Systems with Applications, Volume 238, Part E, 2024,

122114, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2023.122114.

P. Wang, N. Jin, D. Davies, and W. L. Woo, ”Model-centric transfer learning framework for

concept drift detection,” Knowledge-Based Systems, vol. 275, pp. 110705, 2023.

doi: 10.1016/j.knosys.2023.110705.

P. Wang, N. Jin, W. L. Woo, J. R. Woodward, and D. Davies, ”Noise tolerant drift detection

method for data stream mining,” Information Sciences, vol. 609, pp. 1318-1333, 2022. doi:

10.1016/j.ins.2022.07.065.

P. Wang, W. Woo, N. Jin, and D. Davies, ”Concept Drift Detection by Tracking Weighted Predic-

tion Confidence of Incremental Learning,” in Proceedings of the 2022 4th International Confer-

ence on Image, Video and Signal Processing (IVSP ’22), New York, NY, USA, 2022, pp. 218-223,

doi: 10.1145/3531232.3531264.

P. Wang, N. Jin and G. Fehringer, ”Concept drift detection with False Positive rate for multi-label

classification in IoT data stream,” 2020 International Conference on UK-China Emerging Tech-

nologies (UCET), Glasgow, UK, 2020, pp. 1-4, doi: 10.1109/UCET51115.2020.9205421.

P. Wang, S. McGrath, and N. Jin, ”A hybrid decision-making system using image analysis by

deep learning and IoT sensor data to detect human falls,” in Proc. 1st International ’Alan Turing’

Conference on Decision Support and Recommender Systems (DSRS-Turing’19), London, United

Kingdom, 21-22nd November 2019, ISBN: 978-1-5262-0820-0.

xx

Chapter 1

Introduction

1.1 Background

As our society becomes increasingly digital, governments and corporations are grappling with the

challenge of handling massive volumes of data that continuously stream from various sources. The

insights gleaned from such data are often instrumental in making strategic decisions and predicting

future trends. However, the dynamic nature of this data, due to the constant emergence of new

markets, customer behaviors, and products, presents a significant challenge known as concept

drift.

Concept drift refers to the unpredictable changes in the statistical properties of the target variable

that a predictive model is designed to estimate (Iwashita and Papa, 2019). When concept drift

occurs, patterns that the model learned from past data may no longer apply to new data, leading to

a decline in predictive accuracy and the potential for misinformed decisions, as shown in Figure

1.1. Concept drift has been implicated as a primary factor causing decreased effectiveness in data-

driven information systems, such as decision support systems and early warning systems (Xu and

Wilson, 2021). As a result, ensuring the reliability of data-driven predictions in an ever-changing

big data landscape has become a paramount concern.

The omnipresence of concept drift in real-world scenarios is exemplified by changing behavior

patterns in mobile phone usage. Over the past two decades, the primary use of mobile phones has

shifted from simple voice communication to a variety of applications including internet browsing,

1

1.1. Background

Figure 1.1: The impact of data with concept drift on the performance of the model trained with
historical data deteriorates over time.

photography, and social networking, as illustrated in Figure 1.2.

The modification of behavioral patterns in real-world settings is invariably dynamic and continu-

ous. Decision-making informed by concept drift detection results could yield substantial benefits

for industry leaders or furnish critical insights for decision-makers. Proactive response to the po-

tential implications arising from concept drift can establish a dominant position in the intensely

competitive business landscape. For instance, drifts in user preferences towards folding screen or

5G mobile phones could be interpreted as instances of concept drift. Recognizing and leveraging

these shifts could serve as an effective marketing strategy in the design and production of mobile

Figure 1.2: Concept drift in mobile phone usage (data used in figure are for demonstration only).
(Lu et al., 2019)

2

1.1. Background

devices.

Recent advancements in concept drift research have addressed complex issues such as accurately

detecting concept drift in noisy and unstructured datasets, quantitatively understanding concept

drift in an explainable manner, and effectively adapting to drift through the application of relevant

knowledge (Dongre and Malik, 2014). These endeavors aim to equip prediction and decision-

making systems with the ability to adapt to the uncertainties of a perpetually changing environ-

ment. The incorporation of concept drift techniques into fields such as data science, artificial

intelligence, pattern recognition, and data stream mining has significantly elevated the capabilities

of traditional machine learning approaches (Iwashita and Papa, 2019). These advancements en-

hance the efficacy of analogy and knowledge reasoning, paving the way for adaptive data-driven

prediction and decision-making systems. In the era of big data, where data types and distributions

inherently involve uncertainty, managing concept drift represents a significant challenge.

Traditional machine learning consists of two main stages: training/learning and prediction. How-

ever, research in learning under concept drift introduces three additional components: concept

drift detection (identifying when drift occurs), drift understanding (comprehending the nature and

scope of the drift), and drift adaptation (responding to the occurrence of drift) (Lu et al., 2019).

The accurate detection of drift is pivotal for these methods to be effective. Insensitive drift detec-

tors may fail to recognize and respond to drift in a timely manner, thus hindering the adaptation

process (Liu, Song, Zhang and Lu, 2017). Conversely, overly sensitive detectors may trigger too

many unnecessary model updates, leading to computational overhead and potentially compromis-

ing the model’s generalization capability.

The challenge of concept drift detection is further complicated by the presence of noise. Noise can

trigger false reports from the concept drift detection method, leading to unnecessary adaptations

and computational costs (Harel et al., 2014). Existing drift detection methods often assume that the

input is a noise-free data stream. However, in real-world applications, for example, data streams

generating from the internet of things are normally contaminated with noise.

Furthermore, despite the competitive performance of deep neural networks in complex machine

learning tasks compared to conventional machine learning models, their application in the field

of concept drift detection remains largely unexplored (Ryan et al., 2019). This study, therefore,

3

1.2. Research Questions and Objectives

aims to address the detection of concept drift in complex data streams, contributing to the broader

goal of developing more robust and competitive concept drift detection methods with improved

accuracy, reduced delay, and enhanced robustness.

1.2 Research Questions and Objectives

The domain of data stream mining is characterized by an incessant flow of data, inherently posing

the challenge of concept drift - a phenomenon where the statistical properties of the target variable,

which the model aims to predict, evolve over time. This is a critical aspect to consider in real-world

dynamic environments where change is the only constant. This thesis addresses two primary

challenges in understanding concept drift in data streams: the temporal identification of concept

drift (When) and the characterization of its specifics (What).

The ”When” component emphasizes the ability of a drift detection method to pinpoint the exact

time of drift occurrence, a fundamental function of any drift detection method.

The ”What” component delves into the nature of the concept drift, providing a more comprehen-

sive picture. It focuses not only on the time of drift occurrence but also on its endpoint, duration,

and severity. By achieving a more profound understanding of the concept drift, we can develop

more appropriate responses to it.

Based on these two research challenges, this research aims to develop a set of concept drift de-

tection algorithms for learning with streaming data and will answer the following five research

questions.

Research Question 1: How can we detect concept drift in multi-label data streams and enhance

its drift detection performance?

Concept drift inherently occurs in data streams, yet the drift detection performance is often con-

strained by the properties of these data streams. A significant portion of existing literature concen-

trates on concept drift detection within the context of binary classification problems. How can we

extend and adapt the indicators designed for binary classification problems to serve as effective

indicators for multi-label classification problems?

Research Question 2: How can we accurately detect concept drift in the presence of noise-

4

1.2. Research Questions and Objectives

induced false drift within data streams?

Concept drift detection methods identify changes or ”drifts” in data streams. Existing detection

methods often assume that the input is a noise-free data stream. However, real-world applica-

tions, such as those involving data streams generating from the Internet of Things, are typically

contaminated with noise (i.e., class noise and/or attribute noise). Furthermore, no current drift

detection method provides quantitative information about the impact of different types of noise

and strategies to filter out false drift caused by such noise.

Research Question 3: How can changes within the machine learning model itself serve as an

indicator for drift detection, as opposed to relying on model performance?

The extraction of meaningful information from data streams holds considerable significance in a

wide array of real-world applications, especially in the field of big data. Nonetheless, conventional

machine learning models often encounter unique obstacles when processing data streams. These

challenges stem from the inherent attributes of data streams, such as their potential for limitless

real-time data volume and the changing nature of data, often termed as concept drift. Existing

concept drift detection methods largely depend on the model’s performance as an indicator, ne-

glecting the changes within the model itself. A more beneficial approach could entail deepening

the exploration and understanding of changes within the model, which may provide more insight-

ful indicators for drift detection.

Research Question 4: How to apply deep neural networks to concept drift detection while avoid-

ing excessive computational requirements?

Several concept drift detection methods have been proposed to address issues caused by real con-

cept drift. The goal is to detect drift after its occurrence and then adjust the model based on the

detection results to adapt to the new data stream. However, existing methods usually monitor only

the model’s output performance changes to determine whether drift has occurred. These models

are usually based on conventional machine learning. But contemporary data streams often have

more complex structures. Deep learning models, which are robust and have strong fitting abili-

ties, haven’t been widely applied in the field of concept drift detection. However, the challenge is

that deep learning typically requires more computational resources and time, which could lead to

delays that are unfavorable for timely drift detection.

5

1.2. Research Questions and Objectives

Research Question 5: How can we gain a more comprehensive understanding of concept drift

beyond simply determining its start time?

Concept drift, a common phenomenon in data streams, requires both detection and deep under-

standing, as it implies that the statistical properties of a target variable, which the model aims to

predict, change over time in unpredictable ways. Current detection methods predominantly aim

to identify the drift start time but often lack a comprehensive understanding of data streams. This

results in a loss of essential drift information, such as drift end time, drift duration, and drift sever-

ity. Therefore, how can we develop methods that provide a more holistic understanding of concept

drift?

Objective 1: To develop a novel concept drift detection method which extends the indicator design

for binary classification to broader scenarios for drift detection.

This objective corresponds to research question 1. Existing concept drift detection methods mainly

rely on the error of the model as an indicator for drift detection. For those indicators, designed for

binary classification problems are rarely used. The major limitation of these methods is that they

less discover potential of not design for multi-label indicator for concept drift detection.

Objective 2: To develop a novel noise-tolerant method for concept drift detection.

This objective corresponds to research question 2. Existing drift detection methods often assume

that the input is a noise-free data stream. However, in real-world applications, for example, data

streams generating from the Internet of Things are normally contaminated with noise (noise, i.e.,

class noise and/or attribute noise). Noise can significantly hinder the performance of data mining

models. Noise has an adverse impact on both the interpretation of the data, and reduction in the

performance of the machine learning model. However, the majority of existing drift detection

methods assume no noise.

Objective 3: To develop an indicator based on prediction stability of the incremental learning

model for concept drift.

This objective corresponds to research question 3. Traditional drift detection methodologies pre-

dominantly concentrate on monitoring the output of models trained on historical data, typically

represented by error rates. However, before the change happens on the back-end of the model,

6

1.3. Research Contributions

which is the output of the model, the model itself will change before the output. However, few

works have been done to utilize the model itself for drift detection. Instead of detecting concept

drift by monitoring the output of concept drift, this study proposes a model prediction stability-

based concept drift detection method, which could detect the drift by monitoring the change in the

model itself.

Objective 4: To develop a deep neural network-based drift detection method, where the computa-

tional restriction is solved by transfer learning.

This objective corresponds to research question 4. Existing works usually only monitor the out-

put performance changes of the model to judge whether drift occurs. These models are usually

conventional machine learning models, but today’s data streams have more complex structures.

Compared with traditional machine learning, the deep learning model with stronger fitting abil-

ity and robustness has not been applied in the field of concept drift detection as far as we know.

However, the problem is that deep learning usually requires more computing resources and time.

Under the same computing resources, the processing time is slower than that of conventional shal-

low models with simple structures. Excessive delay is not conducive to drift detection.

Objective 5: To develop a novel quadruple-based method for understanding concept drift.

This objective corresponds to research question 5. Existing detection methods predominantly aim

to identify the drift start time, which lack comprehensive understanding of data streams, leading to

a loss of drift information. The proposed method should offer a more detailed analysis of concept

drift through the use of quadruples, encompassing drift start, drift end, drift severity, and drift type.

In addition, the concept drift detection method is largely reliant on conventional machine learning

methods, however, the ability of the deep neural network is rarely discovered. The main reason is

that the timing requirement for the concept drift is important, however, the deep neural network

usually requires significant computational resources, therefore minimizing the consumption of

computational resources and processing time is critical for concept drift detection.

1.3 Research Contributions

This thesis presents a comprehensive analysis of concept drift detection problems from multiple

perspectives. The main contributions of this study are succinctly summarized as follows:

7

1.3. Research Contributions

1) A novel drift detection method for multi-label data stream classification.

A novel drift detection method is proposed for handling multi-label data streams. This method

extends the Drift Detection Method (DDM) with an additional false positive rate indicator. The

proposed method effectively detects concept drift in multi-label classification data streams and

offers approximately 50% performance improvement compared to the widely used DDM. (Chapter

3)

2) Introduction of three performance indicators to evaluate drift detection performance.

Three performance indicators are proposed to evaluate the effectiveness of drift detection. These

indicators are designed to determine whether drift detection is conducted within a reasonable time

frame and to estimate the duration until the known drift starting point. This approach provides

a more comprehensive evaluation of drift detection performance, as opposed to relying solely on

drift delay, which only provides a narrow view of the performance. By using these three indicators,

we can gain a better understanding of the overall performance of drift detection. (Chapter 4)

3) A Novel Noise-Tolerant Concept Drift Detection Method for Data Stream Mining.

A novel noise-tolerant drift detection method is proposed to identify concept drift within noisy

data streams. The study begins by providing a quantitative definition and evaluation of noise.

To address the issue of false concept drift, the method employs a two-step detection and valida-

tion function. This function identifies drifts and filters out false drifts induced by noise. In the

validation step, a sparse sliding time window is introduced to further eliminate false drift and ex-

pedite the detection process. The proposed method demonstrates superior detection performance

compared to existing methods. (Chapter 4)

4) A Concept Drift Detection Method Based on Tracking Weighted Prediction Confidence of In-

cremental Learning.

A novel model prediction stability-based indicator is proposed. Instead of relying solely on the

performance of the model as a drift detection indicator, this indicator combines model performance

with model prediction stability to detect drift. Additionally, an incremental ensemble learning

method based on a voting mechanism is used to continuously update the value of the indicator.

This method exhibits significant capabilities for drift detection. (Chapter 5)

8

1.4. Thesis Structure

5) A Model-Centric Transfer Learning Framework for Concept Drift Detection.

A novel model-centric transfer learning framework is proposed for drift detection. This framework

uses a deep neural network to detect drift by monitoring changes in the network parameters. It ap-

plies transfer learning to speed up the drift detection process and reduce computational complexity

by freezing parts of the network. To further minimize false positive detections, a method using

long and short time windows is introduced to distinguish actual drift from potential detected drift.

Experiments on real-world and artificial datasets demonstrate the effectiveness of the proposed

framework. (Chapter 6)

6) A Quadruple-Based Approach for Understanding Concept Drift in Data Streams.

A novel Quadruple-based Approach for Understanding Concept Drift in Data Streams (QuadCDD)

framework is proposed. This framework not only detects and predicts the starting point of concept

drift, but also provides a detailed analysis of concept drift using quadruples, which encompass

drift start, drift end, drift severity, and drift type. The framework employs quadruples to facilitate

informed decision-making and appropriate actions to handle various concept drifts, thereby effec-

tively maintaining high and stable performance in data streams with concept drift. Experimental

results validate the effectiveness of the QuadCDD framework in accurately detecting and under-

standing concept drifts, as well as in preserving the stability and performance of models in the

presence of these drifts. (Chapter 7)

1.4 Thesis Structure

The logical structure of this thesis (the chapters and the corresponding research questions) and the

relationship between the chapters are shown in Figure 1.3. The main contents of each chapter are

summarized as follows:

CHAPTER 2 reviews the existing literature on data stream mining and concept drift detection

methods, thereby identifying notable gaps in the current body of research. This chapter introduces

the fundamental problem of concept drift and lays out the foundational procedures for adapting to

concept drift. It further provides a comprehensive categorization of existing algorithms, organized

according to their unique implementation details. The chapter culminates in an insightful discus-

sion on the limitations inherent to the algorithms reviewed, setting the stage for the innovative

9

1.4. Thesis Structure

Figure 1.3: Thesis structure and relationship between chapters

10

1.4. Thesis Structure

solutions presented in subsequent chapters.

CHAPTER 3 introduces a method for detecting concept drift in multi-label data streams. This

method enhances the capabilities of the DDM, enabling it to perform concept drift detection in

multi-label data streams while accounting for the false positive rate. This innovative approach

directly addresses the Research Question 1 and achieves the Objective 1. The primary contribution

lies in broadening the application of the DDM to more complex scenarios, specifically in contexts

where data streams are multi-labeled. As a result, this method achieves a higher degree of accuracy

in drift detection.

CHAPTER 4 presents a concept drift detection method for noisy data streams. Initially, the types

and quantitative definitions of noise are introduced. Subsequently, three metrics for evaluating

the performance of concept drift detection are proposed. The proposed drift detection method is

then tested on data streams that contain both concept drift and varying levels of noise. Finally, the

performance of drift detection is evaluated using the proposed metrics. This innovative approach

directly addresses the Research Question 2 and achieves the Objective 2. The principal contribu-

tion is the enhancement of the concept drift detection method, enabling it to effectively identify

drifts within a noisy environment. This refined approach significantly reduces the impact of false

drifts triggered by noise, thereby improving the overall accuracy and reliability of the detection

process.

CHAPTER 5 introduces a concept drift detection method that employs a conventional machine

learning approach for classification models. This method detects drift when there is a significant

change in prediction confidence. The change in prediction confidence in the machine learning

model is monitored and used as an indicator of concept drift. This innovative approach directly

addresses the Research Question 3 and achieves the Objective 3. The key advancement is exploit-

ing the inherent characteristics of the model for drift detection, rather than predominantly relying

on the model’s outputs. This method provides a more comprehensive and potentially more precise

approach to identifying shifts in data patterns.

CHAPTER 6 presents a model-centric framework for concept drift detection. This framework

utilizes a deep neural network to detect drift by monitoring changes within the network, as reflected

by the parameters within the nodes. Additionally, a transfer learning strategy is adopted to reduce

11

1.4. Thesis Structure

computational costs and maintain a low delay in drift detection. This innovative approach directly

addresses the Research Question 4 and achieves the Objective 4. The primary contribution of

this research is the pioneering application of deep neural networks to concept drift detection.

The utilization of transfer learning results in a substantial reduction of computational overhead,

underscoring the efficiency of this approach. Furthermore, the improved detection performance

attests to the potency of deep neural networks in managing complex data dynamics.

CHAPTER 7 presents a novel quadruple-based Approach for Understanding Concept Drift in

Data Streams (QuadCDD) framework that not only detects and predicts the concept drift start

point but also offers a more detailed analysis of concept drift through the use of quadruples, en-

compassing drift start, drift end, drift severity, and drift type. Our framework employs quadruples

to enable informed decision-making and adopt appropriate actions to handle various concept drifts,

effectively maintaining high and stable performance in data streams with concept drift. This in-

novative approach directly addresses the Research Question 5 and achieves the Objective 5. The

principal contribution of this research lies in fostering a more comprehensive understanding of

concept drift. This enriched perspective enables further refinements to be more targeted and effi-

cient, paving the way for more effective strategies in handling data stream dynamics and changes

over time.

CHAPTER 8 summarizes the findings of this thesis and points to directions for future work.

12

Chapter 2

Literature Review

This chapter focuses on using concept drift detection methods to detect concept drift for real-time

data streams. This chapter reviews related research in this area that has recognized the signif-

icance of this problem or provided solutions to this problem. Section 2.1 introduces the data

stream mining. Then, the concept drift problem is introduced including its definition, types, and

applications in Section 2.2. Concept drift detection techniques are comprehensively reviewed in

Section 2.3.

2.1 Data Stream Mining

This part provides a comprehensive overview of data stream mining, which serves as the founda-

tion for developing an in-depth understanding of the concept drift problem.

2.1.1 Evolving Data Stream

Data streams, characterized by a relentless flow of information that can often occur in real time,

mark a departure from traditional static datasets (Krawczyk et al., 2015). Where traditional data

processing relies on storing and then analyzing data, data streams necessitate on-the-fly analysis.

This fundamental shift is emblematic of our age, where information flows without pause, reflecting

various real-world scenarios such as financial transactions, social media interactions, sensor data

in industrial applications, and intricate web server logs.

Within the realm of computer science, particularly in data stream mining, the endeavor to dis-

13

2.1. Data Stream Mining

till knowledge structures represented in models and patterns from this continuous data is both

ambitious and complex. It necessitates the creation of algorithms capable of processing and scru-

tinizing data as it emerges, often without the ability to store all of it or even to process it more than

once.

This nature of data streams presents formidable challenges that define the cutting edge of data

science (Wares et al., 2019):

Efficiency: Algorithms must be robust and lean, adept at keeping pace with the rapid flow of

data, and economical in their use of memory. The limits imposed by a data size that could pos-

sibly be infinite further complicate this situation, making it necessary to combine mathematical

sophistication with computational prowess.

Adaptability: The notion of concept drift is central to the understanding of data streams. As

underlying patterns in data shift over time, algorithms must not just detect but adapt to these

changes. This requires a nuanced understanding of statistical variations and an ability to recalibrate

models dynamically.

Noise and Outliers Handling: The inherent noise and outliers within data streams can distort the

quality of extracted knowledge. Building mechanisms to identify and minimize the impact of these

anomalous elements is a multifaceted problem that combines aspects of statistical theory, machine

learning, and practical engineering.

Despite these complexities, the exploration of data stream mining is far from an academic curios-

ity. It is a critical component of modern data analysis. In a world that increasingly operates in real-

time, the capacity to extract immediate insights can translate into tangible advantages. Whether in

financial markets, where milliseconds can mean millions, or in healthcare, where real-time analy-

sis of patient data can save lives, the applications are as profound as they are pervasive.

Furthermore, the alignment of data stream mining with emerging technologies like the Internet of

Things (IoT) opens new horizons. Whether in smart cities, where sensor data can be harnessed

for more efficient urban planning, or in manufacturing, where real-time analytics can optimize

production, the applications are virtually limitless.

In academia, the study of data stream mining serves as a rich platform for research, inspiring

14

2.1. Data Stream Mining

new methodologies, theories, and applications. It offers fertile ground for multidisciplinary col-

laboration, linking computer science with mathematics, engineering, business, and social sci-

ences.

In conclusion, data stream mining represents a vibrant intersection of theoretical complexity and

practical applicability. Its challenges are formidable, yet the pursuit of solutions to these chal-

lenges is unlocking new frontiers in real-time data analysis, transforming industries, and enriching

our understanding of the very nature of information. As scholars, practitioners, and innovators,

our continued exploration of this field promises to shape not just the future of computer science,

but the fabric of our data-driven world.

2.1.2 Data Stream Mining

Data stream mining has recently emerged as a crucial research domain within computer science,

encapsulating the evolving demands and complexities of the modern, data-driven technological

landscape (Gaber, 2012). With an exponential growth in data generation from various sources like

sensors, social media, financial systems, and more, traditional data mining methods have shown

limitations. In response, data stream mining has positioned itself at the intersection of real-time

analysis and Big Data processing, making it essential for many contemporary applications such as

fraud detection, trend analysis, and Internet of Things (IoT) monitoring.

The principle underlying data stream mining is the continuous analysis of data as it is generated.

Unlike traditional data processing methods where information is collected, stored, and then ana-

lyzed, data stream mining requires handling data sequentially and continuously. This necessitates

a new paradigm in algorithm design, as data must be processed in the exact order it arrives, often

without the possibility of revisiting past elements.

Two central classifications within data streams are static (or stationary) and evolving streams (Ma-

sud et al., 2009). Static streams are characterized by a uniform underlying pattern, consistent over

time. Evolving streams, on the other hand, can undergo changes, altering how the data is analyzed

and interpreted. This dynamic behavior is often referred to as concept drift, and addressing it

effectively is a foundational challenge in data stream mining.

Adapting existing machine learning and data mining techniques to the demands of data streams

15

2.1. Data Stream Mining

is complex. Traditional algorithms are typically designed for batch processing, treating data as a

whole. However, data streams, due to their inherent nature, require what’s often termed one-pass

learning. It demands the creation of specialized algorithms, which can work with ever-changing

data without losing sight of shifts in underlying patterns. This area opens up fertile ground for

research, with ongoing developments in areas like online learning and adaptive modeling.

The practical constraints imposed by data streams further complicate matters. The sheer volume

and velocity of data can be overwhelming, leading to potential hardware limitations. Memory

management becomes particularly challenging, as the infinite nature of data streams makes con-

tinuous storage impractical. Algorithms must thus be crafted with computational efficiency in

mind, balancing speed with memory constraints.

In conclusion, data stream mining stands as an intricate, multifaceted discipline within computer

science. It is a field marked by continuous innovation, driven by the ever-increasing complexity

of our data-centric world. The theoretical challenges, coupled with the practical considerations,

make it a dynamic area of study, rich in academic exploration, and vital in real-world application.

Its role in shaping our understanding of real-time data processing is central to our ongoing journey

towards harnessing the power of information in an increasingly interconnected and fast-paced

world.

2.1.3 Background and Concepts

Data stream mining is an intricate field that expands the boundaries of the conventional data min-

ing concept, which is traditionally focused on static databases (Dubuc et al., 2021). Unlike its

traditional counterpart, data stream mining deals with data that is continuously produced at a rapid

rate, often necessitating real-time processing and analysis. In this complex field, there are several

key concepts including data streams, concept drift, real-time analytics, among others, that offer an

understanding of its foundational theory and unique challenges.

A data stream is defined as a sequence of digitally encoded coherent signals used to transmit or

receive information that is currently being transmitted. These data streams are ubiquitous in our

digital age and originate from a myriad of sources including online transactions, IoT devices, so-

cial media, network logs, sensors and many more. Their inherent nature—high-speed, infinite

length, and sequential order—introduces a set of unique challenges. Data stream mining algo-

16

2.1. Data Stream Mining

rithms must not only manage these characteristics, but also make intelligent decisions on the fly

without compromising the speed and accuracy of their predictions.

Concept drift is a key concept that is inextricably linked to data stream mining (Lu et al., 2019). It

refers to the phenomenon where the statistical properties of the target variable, which the predictive

model is attempting to estimate, evolve over time in unexpected ways. In a real-world setting,

it’s common for the underlying concept of data to shift due to various factors such as changing

consumer behaviors, market conditions, seasonal variations, among others. These changes often

result in the model’s predictive performance degrading over time, as the assumptions upon which

the model was originally trained no longer hold. The ability to detect and swiftly adapt to concept

drift is crucial for maintaining the relevance and accuracy of the data stream mining models.

Real-time analytics is another critical concept within this field. It pertains to the process of using

various tools and techniques to extract actionable insights from data as it enters the system, without

any significant delay. In today’s fast-paced digital economy where data is continually generated,

the ability to analyze and interpret data in real-time can provide businesses and organizations with

a significant competitive advantage. It allows them to react quickly to changing circumstances,

anticipate future trends, make timely decisions, and ultimately deliver better outcomes.

In addition to the aforementioned key concepts, there are other notions that are worth understand-

ing in the context of data stream mining. One such concept is data pre-processing, which includes

techniques used to clean and prepare the incoming stream data for analysis. Given the noisy and

unpredictable nature of real-time data, pre-processing can be a vital step to enhance the quality of

the data and thus, the reliability of the analytics.

Another relevant concept is the sliding window model. It represents a specific strategy to manage

the potentially infinite length of data streams. The idea is to only consider a window of the most

recent data items for analysis, effectively discarding older information (Yu et al., 2019). The

size of the window and the mechanism of its movement (whether it’s sliding or expanding) can

significantly impact the performance of the mining process.

Also, the use of summary statistics and data structures to capture relevant information about the

data stream is another noteworthy approach (Lu et al., 2019). The continuous and rapid generation

of data in streams makes it impractical to store all the data points. Summary statistics like count,

17

2.1. Data Stream Mining

sum, mean, variance, min, max, etc., can provide concise and computationally efficient summaries

of the data stream.

In the context of concept drift, it’s important to understand the different types of drifts such as

sudden, incremental, gradual, and recurring. Each type of drift represents a different way in which

the underlying concept can change, and they each require different strategies for detection and

adaptation.

Lastly, ensemble methods (Krawczyk et al., 2017) are often used in data stream mining to im-

prove predictive performance and robustness against concept drift. Ensemble methods combine

the predictions of multiple base learners to make a final prediction, and they have been found

to be particularly effective at dealing with concept drift since different learners can specialize in

different regions or periods of the concept space.

In conclusion, a comprehensive understanding of these concepts forms the backbone of data

stream mining and provides the essential framework to tackle the inherent complexities and evolv-

ing nature of continuous data streams. The rapid advancements in technology and data genera-

tion only heighten the relevance and necessity for continued exploration and research within this

field.

2.1.4 Data Stream Mining Techniques

Data stream mining techniques span a diverse spectrum of methods that are specifically devised

to manage continuous, voluminous, and high-speed data. These techniques, each having its dis-

tinct features and applications, are designed to extract actionable insights and make predictions

using streaming data. They include Classification, Clustering, Frequent Pattern Mining, Anomaly

Detection, and Concept Drift Detection among others.

Classification is a fundamental technique in data stream mining that involves assigning data el-

ements to pre-specified classes or categories (Zyblewski et al., 2021). Notable for its usage in

various fields such as spam detection, sentiment analysis, and customer segmentation, it requires

robust algorithms capable of handling immense volumes of data and adapt to concept drift. One

such notable algorithm is the Hoeffding Tree algorithm, admired for its efficiency in managing

large datasets with limited computational resources. The classification in data stream mining gen-

18

2.1. Data Stream Mining

erally follows a two-step process: model construction using training data and model usage to

classify new data. Handling the continuous influx of data and adapting to its changing nature over

time are core necessities for these classification algorithms.

Clustering, another pivotal technique, involves grouping data elements based on their similarity

(Liu, Song, Zhang and Lu, 2017). This process is indispensable in various applications such

as customer segmentation, image segmentation, anomaly detection, and social network analysis.

Given the dynamic nature of streaming data, clustering poses unique challenges, necessitating the

use of techniques that can continuously update and adapt the cluster formation as new data comes

in. One of the well-known clustering algorithms for data streams is StreamKM++ (Ackermann

et al., 2010).

Frequent Pattern Mining, a critical process in data stream mining, entails identifying patterns or

itemsets that appear frequently within the data stream. These could include sub-sequences or

substructures. Given the high-speed, continuous nature of data streams, it becomes crucial for the

algorithms to not only identify these frequent patterns but also to update them efficiently as new

data enters the stream. Frequent Pattern Growth (FP-Growth) and Apriori are some of the widely-

used algorithms for frequent pattern mining in data streams (Kaur and Jagdev, 2017).

Anomaly Detection, an important method in data stream mining, identifies data elements that

deviate significantly from the normal behavior. This technique finds its applications in various

domains such as credit card fraud detection, network intrusion detection, and health monitoring

systems. The high-speed, high-volume characteristics of data streams make anomaly detection a

complex task. Algorithms need to identify anomalies in real-time and be capable of adapting to

changes in the data. Local Outlier Factor (LOF) and Histogram-based Outlier Score (HBOS) are

among the popular anomaly detection algorithms in the realm of data stream mining (Alghushairy

et al., 2020).

Lastly, Concept Drift Detection plays an integral role in data stream mining. This technique fo-

cuses on identifying and adapting to the changes in the underlying data distribution over time -

a common occurrence in data streams. The process becomes crucial as changes or ’drifts’ can

significantly impact the predictive performance of the mining models. Algorithms designed for

concept drift detection need to not only identify these changes in real-time but also adapt the min-

19

2.1. Data Stream Mining

ing process accordingly to maintain the accuracy and relevance of the model. DDM and Early Drift

Detection Method (EDDM) are among the commonly-used algorithms for concept drift detection

(Lu et al., 2019).

2.1.5 Challenges

Despite the transformative potential of data stream mining, it is riddled with a variety of chal-

lenges. Concept drift, one of the main challenges, refers to changes in the underlying patterns in

the data over time. This phenomenon necessitates the development and deployment of adaptive

algorithms capable of adjusting to the ever-changing nature of data streams.

High-speed data streams are another significant challenge. The vast volume and high velocity of

data streams require scalable frameworks and sophisticated algorithms capable of processing these

streams without causing a bottleneck in the system. This implies that the algorithms should not

only be able to handle the fast-paced nature of the data streams but also provide accurate results

in real-time.

Additionally, the potentially infinite length of data streams presents a considerable challenge.

Given that data streams can theoretically extend indefinitely, algorithms and techniques designed

for data stream mining must be equipped to handle the unbounded size and varying speed of ar-

riving instances from a data stream. Efficient data summarization techniques such as sampling,

sketching, or windowing can be used to circumvent this problem by providing a manageable snap-

shot of the data stream at any given point in time.

Resource constraints further compound these challenges. The continuous nature of data streams

imposes strict restrictions on the learning algorithms, particularly in terms of memory usage and

processing time. Algorithms are expected to induce a model incrementally, keep up with the speed

of arriving instances, and use only a constant amount of memory, even as the volume of data

increases. To mitigate these issues, incremental learning methods like batch-incremental learning,

and distributed processing frameworks are often employed.

Other challenges include handling the noisy nature of data streams, dealing with missing or de-

layed data, and maintaining privacy and security in the face of real-time data processing.

The complexity of these challenges underscores the need for continued research and innovation in

20

2.2. Concept Drift

the field of data stream mining. While many strategies have been proposed and are currently in

use, the evolving nature of data streams and their applications continue to pose new problems and

require innovative solutions. Researchers are continuously striving to develop new methods and

enhance existing approaches to keep up with these dynamic challenges and maximize the potential

benefits of data stream mining.

2.2 Concept Drift

Concept drift is a particularly important factor in data stream mining. In this section, the concept

drift problem and corresponding state-of-the-art solutions will be reviewed.

2.2.1 Definition of Concept Drift

Concept drift refers to the phenomenon of changing data distribution. The problem of concept

drift arises in a data stream when newly arrived data instances may exhibit a different pattern

from the previous data. Standard machine learning approaches are built on a static assumption of

independent and identically distributed (i.i.d) data and therefore are not suitable for learning data

streams once the data distribution has experienced unpredictable changes.

A widely accepted definition of concept drift is pt+1(X, y) ̸= pt(X, y). According to the proper-

ties of probability, concept drift can be decomposed into two parts whereby p(X, y) = p(y|X)×

p(X). Real drift refers to the changes in the posterior probabilities, i.e., changes in p(y|X), and

virtual drift denotes the changes in p(X). Existing research mainly focuses on the real concept

drift problem.

However, limited research explains the term “concept”. A concept is formally defined as a many-

to-one mapping function X → y. Many machine learning algorithms require a many-to-many

mapping from X to y, which leads to the preferred definition of a concept as the distribution of

a classification task, i.e., Concept = P (X, y). Generally, a concept can be considered as a data

pattern.

Concept drift significantly hinders off-line predictive performance. Unlike noise series, concept

drift is influenced by hidden changes in the context. The influence of hidden context changes

results in biased estimation of the target output, and the error can be depicted by hidden context.

21

2.2. Concept Drift

For example, in rain forecast, the prediction of rainfalls based on atmospheric factors may change

radically in different periods. Studies on concept drift attempt, as far as possible, to learn data

without these hidden variables, because hidden variables are difficult to observe and in many

situations are unknown based on the current knowledge.

Online prediction tasks become particularly difficult if real concept drift occurs, i.e., the changes

in P (y|X). The feature variables can be immediately observed and easily collected. They are used

as the input of the predictor to estimate the target output, which is difficult to collect. The virtual

drift (i.e., P (x) changes) can be omitted if X is independent of the model parameters.

The notion of concept drift is multifaceted, with several terms and definitions attributed to it in the

literature. Some authors have referred to this phenomenon as ”dataset shift” or ”concept shift,”

and various related terminologies have been proposed. In certain research works, concept drift

has been designated as one specific subcategory of dataset shift. Dataset shift itself has been

subdivided into three primary components: covariate shift, prior probability shift, and concept

shift. While these definitions have helped delineate the scope of various research topics, there is a

recognized association of concept drift with covariate shift and prior probability shift.

An increasing body of literature has gravitated towards defining the problem of concept drift using

the mathematical expression: ∃t : Pt(X, y) ̸= Pt+1(X, y). This definition succinctly captures the

essence of concept drift, encompassing the temporal variations in the joint probability distribution

of the features X and the target variable y. The present survey also adheres to this definition,

allowing for a consistent interpretation across different contexts.

Concept drift at time t signifies a shift in the joint probability distribution of X and y at that

particular time. The expression Pt(X, y) can be broken down into two components: Pt(X, y) =

Pt(X)× Pt(y|X). Consequently, three sources of drift can trigger concept drift:

Source I: Characterized by Pt(X) ̸= Pt+1(X) while Pt(y|X) = Pt+1(y|X). In this scenario, the

focus lies on the drift in Pt(X), while Pt(y|X) remains static. Often termed as ”virtual drift,” this

form does not induce changes to the decision boundary.

Source II: Defined by Pt(y|X) ̸= Pt+1(y|X) while Pt(X) = Pt+1(X). Here, the drift causes

alterations to the decision boundary, potentially leading to decrements in learning accuracy. This

is commonly referred to as ”real drift.”

22

2.2. Concept Drift

Source III: This represents a fusion of Source I and Source II, where both Pt(X) ̸= Pt+1(X) and

Pt(y|X) ̸= Pt+1(y|X). It embodies a multifaceted drift encompassing changes in both Pt(y|X)

and Pt(X), reflecting intricate dynamics within the learning environment.

Figure 2.1: Illustration of the three sources of concept drift. (Lu et al., 2019)

The visual representation in Figure 2.1 elucidates the distinctions among these three sources within

a two-dimensional feature space. Source I pertains to the drift in feature space, while Source II

involves changes in the decision boundary. In practical applications, it is not uncommon for Source

I and Source II to occur in conjunction, resulting in the more complex Source III.

These distinctions offer critical insights into the dynamic nature of learning in non-stationary

environments. They also pave the way for the design of robust algorithms that can recognize and

adapt to these different forms of drift, fostering resilience and accuracy in predictive modeling

across various domains.

2.2.2 Types of Concept Drift

Concept drift is a crucial factor to consider in data stream mining, as it refers to the dynamic

changes in the underlying relationships or distributions within the data over time. The concept

drift in data streams can be typically categorized into four principal types as illustrated in Figure

2.2. Each type has its unique characteristics, manifestations, and requires specific techniques to

handle effectively. These types include Abrupt (or Sudden) Drift, Incremental Drift, Gradual Drift,

and Recurring Drift (Lu et al., 2019).

Abrupt(or Sudden) Drift: As the name suggests, sudden drift is characterized by an abrupt shift

from one concept to another, effectively transforming the underlying pattern. This type of drift

represents an instantaneous change, with the former pattern being replaced completely by a new

23

2.2. Concept Drift

one without any transitional phase. A prominent example of sudden drift could be observed in the

stock market, where sudden and unpredictable events, such as policy changes or major announce-

ments from influential companies, could trigger a swift change in the market trends. For instance,

a major breakthrough in battery technology could lead to an unexpected surge in the demand for

electric vehicles, thus causing a sudden shift in the auto industry’s market trends.

Incremental Drift: In contrast to the sudden drift, incremental drift reflects a gradual transition

from one concept or pattern to another. This type of drift is often marked by a series of intermedi-

ary patterns that appear during the transition, effectively representing a phase of constant change.

An illustration of incremental drift could be the slow transformation of a user’s online browsing

behavior over time due to evolving interests, growing knowledge, or changing needs. Such a grad-

ual shift might be influenced by various factors, including age, lifestyle changes, or exposure to

new information or technologies.

Gradual Drift: Gradual drift signifies a scenario where the emergence of a new pattern is fre-

quently interspersed with reversion to the previous pattern. However, over time, the frequency of

reverting back to the old pattern decreases, thereby indicating a slow but definitive change in the

data concept. A pertinent example of gradual drift can be seen in public health, where the preva-

lence of a certain disease in a population might gradually decrease over time due to improved

treatment methods or health policies. Nonetheless, there might be intermittent spikes in the dis-

ease prevalence due to seasonal factors, unexpected outbreaks, or emergence of new strains, which

epitomize the fluctuations characterizing the gradual drift.

Recurring Drift: Recurring drift represents a unique case where previously observed patterns or

concepts re-emerge in the data. This type of drift is common in cyclical or seasonal data, where

the same trends or patterns are expected to occur periodically. Examples of recurring drift can

be frequently observed in various domains such as economics, transportation, and meteorology.

For instance, seasonal employment trends where certain industries hire more employees during

specific periods (e.g., retail industry during holiday seasons), daily rush hour traffic patterns in

urban areas, and seasonal weather patterns (e.g., patterns of rainfall or temperature variations

across different seasons) all illustrate recurring drifts.

It’s worth highlighting the nuanced difference between incremental drift and gradual drift. Incre-

24

2.2. Concept Drift

mental drift specifically refers to scenarios where individual data instances progressively modify

their values over time, leading to an overall shift in the data concept. Conversely, gradual drift

signifies changes that involve fluctuations in the class distribution of the preceding data, causing

an overall pattern shift interspersed with occasional reversions to the previous pattern.

Each of these types of concept drift poses its unique set of challenges and complexities in data

stream mining. Accordingly, they require specialized handling strategies and tailored algorithmic

approaches to effectively analyze the data streams under the influence of these drifts. A deep

understanding of the type of concept drift occurring in a data stream is pivotal to the selection

of the most fitting data mining techniques and algorithms, ensuring that the analytical results are

reliable, relevant, and valuable.

Figure 2.2: Four types of concept drift

Existing concept drift-related studies handle the concept drift problem in a general way by assum-

ing the existence of sudden non-reoccurring drift, regardless of the type of drift. Especially, Song

et al. summarize four types of drift into two categories: 1) permanent drift includes sudden or

gradual drift that once drift occurs the concept will change to another concept and never turn back

(e.g., replacement of sensors); 2) alternate drift includes gradual drift and reoccurring concept that

the concept switches between several alternate patterns.

And most of the existing concept drift detection methods only focus on the start of the concept

drift. But actually the drift start point is only part of the information of different type of concept

drift. The length, end and severity of drift is rarely discovered.

25

2.2. Concept Drift

2.2.3 Concept Drift Applications

In recent years, the field of artificial intelligence (AI) has witnessed a fascinating and complex

phenomenon known as concept drift. This intricate process, marked by alterations in decision

boundaries within a data stream over a period, has emerged as a critical element in modern machine

learning and predictive modeling. It mirrors the shifts in underlying data patterns, reflecting the

dynamism and complexity of the world’s ever-changing informational landscape.

Concept drift detection is not a mere academic exercise; it’s a vital tool for applications where

data changes dynamically, and where real-time or near-real-time analysis is needed. Such anal-

ysis plays a pivotal role in various domains, ranging from machine learning, data mining, pre-

dictive analytics to healthcare, finance, and beyond. The applications are as diverse as they are

impactful, demonstrating the universality and importance of concept drift detection in modern data

science.

Several methods are employed to identify concept drift, each with its distinctive characteristics and

applications. These include statistical approaches that apply mathematical rigor, statistical process

control methods that ensure quality and consistency, temporal window-based strategies that offer

flexibility in monitoring data streams, and deep neural network-constructed methodologies that

bring the power of deep learning into the fold. Each technique has its unique merits, capable of

managing specific types of drift and model conditions. These methods’ diversity underscores the

multifaceted nature of concept drift and the need for a tailored approach in addressing it.

Understanding and implementing these techniques require a deep dive into the theoretical foun-

dations and practical applications of concept drift detection. Academics, researchers, and practi-

tioners must familiarize themselves with these detection methods to adopt the best-suited measure

for each specific drift type and model. Expanding knowledge through careful study, hands-on ex-

perimentation, and engagement with relevant literature will aid in this endeavor, fostering a more

nuanced understanding of the subject.

Real-world applications of concept drift detection are numerous and growing. In the fast-paced

world of mobile application stores, concept drift detection plays a vital role. Through the use of

classification models and specialized detectors, it’s possible to monitor shifts in underlying data

patterns in real or near-real time. This continuous monitoring is essential in today’s world, where

26

2.3. Concept Drift Detection

trends shift rapidly, user behavior changes, and technology evolves at a breakneck pace.

But the significance of concept drift detection extends well beyond the digital realm. In traditional

industries such as finance, where market trends, customer behavior, and economic landscapes are

in constant flux, concept drift detection stands as a bulwark against uncertainty. It enables financial

models to adapt to changes swiftly and efficiently, ensuring accuracy and reliability.

In healthcare, another domain that experiences constant change, concept drift detection holds great

promise. As patient information changes due to the progression of diseases, the effects of treat-

ment, or changes in medical understanding, the ability to detect and adapt to these changes is

paramount. Concept drift detection provides a method to ensure that medical diagnostic and prog-

nostic models maintain their accuracy, even as the landscape of medical knowledge and patient

care evolves.

The educational field, too, can benefit from concept drift detection, where personalized learning

paths and dynamic curriculum adjustments can be tailored based on individual student progress

and changes in educational standards. This demonstrates the wide-ranging impact and potential

applications that extend across various domains of human endeavor.

In summary, concept drift detection is more than a technical term; it’s a foundational principle that

ensures the continuous accuracy and efficiency of machine learning models amidst shifting deci-

sion boundaries. Its importance resonates across various industries, reflecting the ever-changing

nature of data and the need for models that can adapt accordingly. As the field of Artificial In-

telligence (AI) continues to advance and expand, the study and implementation of concept drift

detection will undoubtedly remain a vital area of research and application, reinforcing its posi-

tion as an indispensable tool in modern data science. Its multifaceted applications and intricate

complexities make it a compelling subject for continued exploration and innovation.

2.3 Concept Drift Detection

The concept drift detection refers to methods for determining the occurrence of drift. Drifts are

frequently caused by changes in the environment, which might lower the accuracy of a machine

learning model that had previously been fitted. Usually, these drifts affect the way the machine

learning model performs or the statistical characteristic both before and after the drift. There has

27

2.3. Concept Drift Detection

been some works done for learning with drift in review (Lu et al., 2019) and (Krawczyk et al.,

2017). These approaches may be broadly split into four categories: performance-based, data

distribution-based, evolving system and multiple hypothesis drift detection methods. In addition,

we looked into a variety of current studies of data stream mining on neural networks.

2.3.1 Performance-based

The performance-based drift detection approach focuses on monitoring changes in a machine

learning model’s performance. If there is a statistically significant rise or reduction, concept drift

is detected. The most popular technique is the DDM (Gama et al., 2004), which measures the

total forecast error rate to determine if drift has occurred. In contrast to the DDM, the EDDM

(Baena-Garcıa et al., 2006) detects drift by measuring the distance between two adjacent predic-

tion mistakes. It cannot function until 30 prediction mistakes have occurred, which is problematic

when drift develops rapidly.

Similar applications have been made to drift detection using Heoffding’s inequality based Drift

Detection Method (HDDM) (Frı́as-Blanco et al., 2015), which uses Hoeffding’s inequality to

determine the crucial area of a drift. In addition, the ADaptive WINdowing (ADWIN) (Bifet

and Gavalda, 2007) approach detects drift by measuring the difference between two adaptive size

windows. Page-Hinkley (PH) (Li et al., 2020) finds the drift by comparing the observed values to

their historical mean.

Dynamic Extreme Learning Machine (DEML) does not change the DDM detection algorithm

but uses a novel base learner, which is a single hidden layer feedback neural network called Ex-

treme Learning Machine (ELM) to improve the adaptation process after a drift has been con-

firmed.

Learning with Local Drift Detection (LLDD) method is an error rate-based drift detection algo-

rithm that has been adopted and applied in concept drift detection. It modifies the overall drift

detection problem by dividing it into a set of decision tree node-based drift detection problems.

This means that LLDD monitors the performance of the learning system by tracking changes in

the online error rate of base classifiers at the decision tree node level. If an increase or decrease

of the error rate is proven to be statistically significant, an upgrade process (drift alarm) will be

triggered.

28

2.3. Concept Drift Detection

2.3.2 Distribution-based Drift Detection

Distribution-based drift detection constitutes a significant category of drift detection algorithms.

These algorithms employ a distance function or metric to quantify the dissimilarity between the

distribution of historical data and new data. If this dissimilarity is statistically significant, the

system triggers a process to upgrade the learning model.

Similar to performance-based drift detection methods, distribution-based methods discover drift

when a statistically significant dissimilarity occurs. A key advantage of distribution-based meth-

ods is their ability to process both labelled and unlabelled data.

The Kolmogorov–Smirnov Test (KS) , commonly used in this context, determines if two distribu-

tions derived from two sample sets are equal. When employed as a static drift detector (Sobolewski

and Wozniak, 2013), the KS test is applicable to unlabelled data. A modified version of the KS

test has been proposed to detect drift progressively, enabling more effective processing of large

volumes of stream data (dos Reis et al., 2016).

In addition to the KS test, clustering techniques are also popular in this field. For instance, the

K-nearest neighbours algorithm is used to generate data clusters for density estimation (Liu et al.,

2018). The Semi-Supervised Adaptive Novel Class Detection (SAND) framework (Haque et al.,

2016) builds clusters and uses them to decide if incoming data belong to the original cluster; if

not, the new cluster is considered a new drift. These approaches utilise unsupervised and semi-

supervised learning, but they are more resource-intensive than performance-based approaches in

terms of computing capacity.

These algorithms address concept drift at its root source, which is distribution drift. They can

accurately identify the time of drift and provide information about the location of the drift. How-

ever, these algorithms typically incur a higher computational cost and require users to predefine

the historical time window and new data window.

A common strategy is to use two sliding windows with a fixed historical time window and a mov-

ing new data window. The first formal treatment of change detection in data streams proposed the

use of total variation as a natural notion of distance between distributions. This approach provided

practical guidance for designing a distance function for distribution discrepancy analysis and pro-

posed a family of distances called Relativized Discrepancy (RD). The significance level of the

29

2.3. Concept Drift Detection

distance according to the number of data instances was presented, and bounds on the probabilities

of missed detections and false alarms were theoretically proven.

Another typical density-based drift detection algorithm is the Information-Theoretic Approach

(ITA). This algorithm uses a kdqTree to partition the historical and new data into a set of bins and

uses Kullback-Leibler divergence to quantify the density difference in each bin. The algorithm

applies a bootstrapping hypothesis test and confirms concept drift when the estimated probability

is less than a certain significance level.

Other similar distribution-based drift detection methods include Statistical Change Detection (SCD)

for multi-dimensional data, Competence Model-based Drift Detection (CM), a prototype-based

classification model for evolving data streams called SyncStream, Principal Component Analysis-

based Change Detection Framework (PCA-CD), Equal Density Estimation (EDE), Least Squares

Density Difference-based Change Detection Test (LSDD-CDT), Incremental version of LSDD-

CDT (Incremental version of Least Squares Density Difference-based Change Detection Test

(LSDD-INC)), and Local Drift Degree-based Density Synchronized Drift Adaptation (LDD-DSDA).

Above methods are discussed in (Feng, 2019).

2.3.3 Evolving System

The processing of data streams with concept drift can be approached in several ways, primarily

through explicit and implicit methods. The explicit method involves rebuilding or retraining the

machine learning model after concept drift is detected and reported.

Evolving systems are capable of processing data streams with concept drift in an online and in-

cremental manner. A wide range of work has been done with evolving systems. For instance,

the Evolving Fuzzy System (EFS) with concept fuzzy rule age and gradual forgetting mechanism

has been used to handle concept drift (Lughofer and Angelov, 2011). Similar works (Andonovski

et al., 2021) have utilized EFS with nonlinear Wiener-Hammerstein processes, demonstrating ex-

cellent performance in data stream situations.

The Online Bagged EFS (OB-EFS) has been proposed with two variants to tackle data streams

with concept drift, performing better than the single EFS model (Lughofer et al., 2021). The

negative effects of gradual drifts are autonomously compensated by the generalized fuzzy rules

30

2.3. Concept Drift Detection

with an incremental rule splitting concept, capable of performing in a fully online and single pass

manner (Lughofer et al., 2018).

The Evolving Type-2 Recurrent Fuzzy Neural Network (eT2RFNN) with generalized interval

type-2 rule has been developed to handle concept drift and uncertainties in large real-world data

streams. This approach is especially effective in tackling high dimensional scenarios with an on-

line feature selection technique (Pratama et al., 2017).

A new merging approach based on cluster volume for incrementally Evolving Gaussian Clustering

(eGAUSS+) has been proposed for achieving more efficient data stream clustering, demonstrating

a great ability to process high-dimensional data sets (Škrjanc, 2020). Gaussian related incremental

learning methods on data streams have shown good performance in non-stationary environments

(Leite et al., 2020).

A local model network in Takagi-Sugeno form has been used in the online identification of dif-

ferent processes from the data stream, showing great potential in handling significant nonlinearity

(Blažič and Škrjanc, 2020). For data streams with sparse labeled samples, active learning can serve

as a supportive component to assign labels to unlabeled samples (Lughofer, 2017). In (Lughofer

et al., 2016), semi-supervised and fully unsupervised approaches are proposed for drift detection

in classification issues of data stream mining.

Recent surveys on evolving systems and data stream learning can be found in (Leite and Gomide,

2020), which contains a wide range of system components, real-time applications, and application

examples. Furthermore, (Škrjanc, Iglesias, Sanchis, Leite, Lughofer and Gomide, 2019) provides

a systematic overview of evolving systems, focusing on rule-based and neuro-fuzzy based systems

in machine learning on data streams. These surveys provide a comprehensive understanding of the

current state of the art in evolving systems and their application in data stream mining.

In conclusion, evolving systems offer a promising approach to handle concept drift in data stream

mining. They provide a flexible and adaptive framework that can adjust to changes in the data

distribution, making them suitable for dealing with the dynamic nature of data streams. However,

more research is needed to further improve their performance and adaptability, especially in the

face of complex and high-dimensional data streams.

31

2.3. Concept Drift Detection

2.3.4 Multiple Hypothesis Test Drift Detection Method

Multiple hypothesis test drift detection algorithms employ techniques similar to those mentioned

in the previous categories. The novelty of these algorithms lies in their use of multiple hypothesis

tests to detect concept drift in different ways. These algorithms can be categorized into two groups:

parallel multiple hypothesis tests and hierarchical multiple hypothesis tests.

Parallel Multiple Hypothesis Tests

Parallel multiple hypothesis drift detection algorithms utilize multiple hypothesis tests in parallel

to detect concept drift. The Just-In-Time Adaptive Classifiers (JIT) (Alippi et al., 2013) is one

of the first algorithms that set multiple drift detection hypotheses in this manner. JIT extends the

CUSUM chart, known as the Computational Intelligence-based CUSUM test (CI-CUSUM), to

detect changes in the mean of the features of interest by learning systems.

Other implementations of parallel multiple hypothesis tests include the Linear Four Rate drift

detection (LFR) (Yu et al., 2019), which tracks changes in True Positive rate (TP), True Negative

rate (TN), False Positive rate (FP), and False Negative rate (FN) in an online manner. The three-

layer drift detection based on Information Value and Jaccard similarity (IV-Jac) aims to address

label drift, feature space drift, and decision boundary drift individually. The Ensemble of Detectors

(e-Detector) detects concept drift via an ensemble of heterogeneous drift detectors.

Hierarchical Multiple Hypothesis Tests

Hierarchical drift detection is a newer category of drift detection that employs a multiple verifica-

tion schema. Algorithms in this category typically detect drift using an existing method, known as

the detection layer, and then apply an additional hypothesis test, known as the validation layer, to

obtain a second validation of the detected drift in a hierarchical manner.

The Hierarchical Change-Detection Tests (HCDTs) (Alippi et al., 2017) is one of the first attempts

to address concept drift using a hierarchical architecture. The detection layer can be any existing

drift detection method that has a low drift delay rate and low computational burden. The validation

layer is activated and deactivated based on the results returned by the detection layer.

Other hierarchical drift detection algorithms include the Hierarchical Linear Four Rate (HLFR)

32

2.3. Concept Drift Detection

(Yu and Abraham, 2017), which applies the LFR (Wang and Abraham, 2015) algorithm as

the detection layer, and the Two-Stage Multivariate Shift-Detection based on EWMA (TSMSD-

EWMA). The Hierarchical Hypothesis Testing with Classification Uncertainty (HHT-CU) (Yu

et al., 2018) and Hierarchical Hypothesis Testing with Attribute-wise ”Goodness-of-fit” (HHT-

AG) (Yu et al., 2018) are two drift detection algorithms based on a request and reverify strat-

egy.

In conclusion, multiple hypothesis test drift detection algorithms provide a flexible and robust

approach to detect concept drift in data streams. They offer the ability to detect drift in different

ways, which can be beneficial in dealing with complex and dynamic data streams. However, more

research is needed to further improve their performance and adaptability, especially in the face of

high-dimensional and non-stationary data streams.

2.3.5 Deep Neural Network

To the best of our knowledge, there has been no explicit utilization of deep neural networks for

concept drift detection in the existing literature. Few research works explore deep neural network

learning under concept drift but not on drift detection. These are limited to discover the causes of

a drift and its properties, such as start time and duration. In the paper (Korycki and Krawczyk,

2021), the author employs a reactive subspace buffer to track virtual drift induced by class drift,

which may be regarded as a cluster-based method for learning under concept drift. The research

paper (Liu et al., 2019) introduces a recurrent neural network to data stream learning, and incor-

porates the modified DDM approach to deal with concept drift, resulting in improved prediction

performance.

The idea of the paper (Guo et al., 2021) is the proposed selective ensemble-based online adaptive

deep neural network (SEOA), which monitors the fluctuation of the base learner to identify when

a certain level of fluctuation has been reached. It demonstrates robustness and generalizability to

the unstable data stream learning. In (Kauschke et al., 2019), neural network patching is applied

to deep neural network to adapt non-stationary environment with concept drift. The idea is to

leverage the inner layers of the previously trained network and its output to train a patch. It could

adapt quickly as the concept drifts, while preserving long-term learning potential. In (Priya and

Uthra, 2021), author seeks to address both class imbalance and concept drift in data streams. It

33

2.3. Concept Drift Detection

incorporates the ADWIN. Among various datasets, its precision is higher. Using meta learning

theory and a prototype neural network, the method Active Drift Detection based on Meta learning

(Meta-ADD) (Yu et al., 2022) is presented for concept drift identification; it can recognise many

types of concept drift. The cluster or distribution based drift detection approach is incorporated

with federal learning (Manias et al., 2021) system to detect concept drift. And their investigation

was able to detect various levels of drift.

In (Baier et al., 2021), the author primarily employs the concept of monte carlo dropout and

considers the uncertainty accompanying the deep network structure during the prediction process

to be the input rather than the prediction outcome. Several studies have successfully leveraged

deep learning techniques to manage environments prone to concept drift (Hamad et al., 2021)

(Hu et al., 2021). The body of research associated with thermal detection can be viewed as an

application of concept drift detection (Luo et al., 2019) (Gao et al., 2016).

The researchers investigate Unsupervised Open Set Domain Adaptation (UOSDA) (Fang et al.,

2020) by presenting the inaugural learning bound and introducing a pioneering algorithm termed

Distribution Alignment with Open Difference (DAOD), which exhibits exceptional performance

on benchmark datasets. Furthermore, the scholars delve into the Probably Approximately Cor-

rect (PAC) learning theory concerning out-of-distribution (OOD) detection, ascertaining essential

prerequisites for learnability and delineating learnability in realistic situations (Fang et al., 2022).

The researchers also put forward conditional adversarial domain adaptation, a framework that

augments domain alignment in multimodal distributions by leveraging discriminative data derived

from classifier predictions.

The proposed Conditional Domain Adversarial Networks (CDANs) utilize multilinear and en-

tropy conditioning approaches, surpassing contemporary techniques on five benchmark datasets

(Long et al., 2018). These studies (Tengtrairat et al., 2022) (Zhang et al., 2022) (Hamad et al.,

2022) (Alkassar et al., 2021) also demonstrate that effective management of concept drift can

significantly enhance the performance of the model.

34

Chapter 3

Concept Drift Detection in Data Stream

with Multi-label

Machine learning as a significant component of the Industrial Internet of Things (IIoT), has been

widely applied in many fields. Then the continuously generated data from the various sensors are

collected and stored, also known as data stream. Therefore, the detection method for concept drift

is needed to alert the requirement to maintain or replace some components in advance, so as to

avoid or mitigate the risk of malfunction of the IoT system. The majority of existing literature

focus on concept drift detection on binary classification. To fill this gap, here we propose an algo-

rithm to detect multi-class. Moreover to improve the performance of detection, we also introduce

an algorithm which integrates the existing error rate which is widely used with our newly proposed

False Positive rate. The new method is called Drift Detection Method with False Positive rate for

multi-label classification (DDM-FP-M). The DDM-FP-M firstly define the false positive rate cal-

culation method in multi-label classification, then integrates it with Drift Detection method with

False Positive rate (DDM-FP). The performance of the proposed method is evaluated through Intel

Lab data and is found to outperform the Drift Detection method (DDM) over 50% cases.

3.1 Introduction

With the growing advancement of IoT in recent years, gadgets are interconnected with one another

to screen and control adequately and proficiently. Enormous machine conditions are collected con-

35

3.2. Drift Detection Method (DDM)

tinuously and in time, and are uploaded to the sensor administration system, in which production

managers can adopt cyber-physical systems to control all operations of each machine ideally in

real time (Lin et al., 2019). As the center parts, sensor systems assume a huge job in keen ob-

serving and administrations in IoT. In practice, machine components get ageing over time. If

they were not replaced in time, enormous defective or low-quality products would be manufac-

tured, and machines would perform abnormally or be damaged. Therefore, concept drift detection

method in analysing such data is needed to make alert when an abnormal situation occurs (Bifet

et al., 2010).

We propose a Drift Detection method with False Positive rate for multi label classification (DDM-

FP-M). Firstly, we introduce the False Positive rate (FPR) for multi label classification, where

the FPR is extended to broader application area. Then we integrate FPR into DDM-FP method

to detect a drift and generate the warning and drift level in DDM-FP-M. Finally, to ascertain if

the warning and drift thresholds have been met, we utilize a trained classifier integrated with the

DDM-FP-M method for effective monitoring. Results indicate that our method not only success-

fully detects concept drift, but also tends to detect it earlier than the traditional DDM.

The main contribution of this chapter are the extend of False positive rate for drift detection, and

the new method for concept drift detection for multi label classification. Meanwhile, the DDM-

FP-M can usually detect the concept drift ahead of the widely used method, DDM. In this way, we

may handle and react to the concept drift in time, and improve the performance of the data stream

mining with concept drift.

3.2 Drift Detection Method (DDM)

The DDM is a classical method to detect drifts in data stream mining (Gama et al., 2004). It

is based on the statistical theories of Probably Approximately Correct learning and prequential

probability (Dawid and Vovk, 1999). When the class distribution of samples remains stationary,

the error rate will decrease. Given the confidence level for warning of detecting drift to be 95%,

the warning will be issued when the following condition is met:

pi + si ≥ pmin + 2× smin (3.1)

36

3.3. Drift Detection Method with False Positive Rate for multi-label Classification (DDM-FP-M)

where i is the ith new sample in the testing data set, pi is the probability of misclassification, si

is the standard deviation given by si =
√

pi(1− pi)/i, pmin is the minimum probability found

during training, and smin is the minimum standard deviation found during training.

pi + si ≥ pmin + 3× smin (3.2)

Similarly, Equation 3.1 indicates the warning level, which the confidence level is set to 95%. When

the Equation 3.2 is satisfied the drift level is reached and drift is detected.

3.3 Drift Detection Method with False Positive Rate for multi-label

Classification (DDM-FP-M)

In this section, we propose DDM-FP-M method for concept drift detection in multi label classifi-

cation. We address the issue of concept drift detection in multi-label classification. To clarify our

work, it should be noted that in our approach, each output has only one label, but this label can

belong to a category that includes two or more classes. This is distinct from scenarios where there

could be more than one output label per instance.

3.3.1 False Positive Rate Calculation for Multi-label Classification

In binary classification, the confusion matrix is a 2 × 2 matrix , and True Positive (TP), False

Negative (FN), False Positive (FP) and True Negative (TN) can be got easily, so the False Positive

Rate (FPR) value is equal to FPR = FP/(FP + TN) (Flach, 2012).

The False Positive Rate (FPR), a crucial parameter traditionally conceived for binary classification

problems, essentially quantifies the proportion of false alarms. However, this measure encounters

an inherent limitation when we extrapolate its application to multi-label classification paradigms.

In these intricate scenarios, a global FPR value is not directly computable, but we are confined to

calculating individual class-specific FPR values.

According to Figure 3.1, there are N(N > 2) classes in total, the confusion matrix of multi label

classification consists of the actual and predict values of each class.

We take class A1 as a sample, the FPR value of class A1 equal to:

37

3.3. Drift Detection Method with False Positive Rate for multi-label Classification (DDM-FP-M)

Figure 3.1: The confusion matrix for multi label classification.

FPRA1 =
FPA1

FPA1 + TNA1

(3.3)

3.3.2 DDM-FP-M

In the pursuit of improving the performance of concept drift detection in multi-label classification,

we introduce a novel method called DDM-FP-M. This technique uniquely blends both error rate

and false positive rate (FPR) to detect concept drift with higher precision. Below, we elucidate the

mathematical formulation and the strategic process underpinning this method.

Step 1: The first crucial step in DDM-FP-M is to calculate the false positive rate for multi-

label classification, tailored to incorporate the complexity and specificities of multi-label scenar-

ios.

Based on Equation 3.3, For FP and TN value of class A1, the calculation is:

FPA1 =

n∑
i=1

Ni1 −N11 (3.4)

Equation 3.4 indicates how many instances of FP of class A1 that do not belong to A1 but are

predicted to be A1.

TNA1 =

n∑
i=1

n∑
j=1

Nij −
n∑

i=1

Ni1 −
n∑

j=1

N1j +N11 (3.5)

38

3.3. Drift Detection Method with False Positive Rate for multi-label Classification (DDM-FP-M)

Equation 3.5 indicates how many instances of TN of class A1 that do not belong to A1 but are not

predicted to be A1.

Step 2: The FPR for class A1, as expressed in Equation 3.6, is derived from the FP and TN

values:

FPRA1 =

∑n
i=1Ni1 −N11∑n

i=1

∑n
j=1Nij −

∑n
j=1N1j

(3.6)

Step 3: For incorporating the FPR into the DDM-FP-M algorithm, we employ the arithmetic mean

of all FPR values, denoted as FPRv̄, and formulated in Equation 3.7:

FPRv̄ =

∑n
k=1 FPAk

n

=

n∑
k=1

∑n
i=1Nik −Nkk∑n

i=1

∑n
j=1Nij −

∑n
j=1Nkj

× 1

n

(3.7)

Step 4: Upon integrating the calculated FPR into the Drift Detection Method, we instantiate the

DDM-FP-M technique. The innovative inclusion of FPRv̄ as per Equation 3.7 offers a sophisti-

cated refinement to the conventional DDM approach.

When the instance i is coming by sequence:

pi + fprv̄−i ≤ pmin + fprv̄−min (3.8)

Equation 3.8 is the update mechanism of pmin and fprv̄−min, when equation is satisfied, pmin =

pi, fprv̄−min = fprv̄−i .

pi + fprv̄−i ≥ pmin + 2× fprv̄−min (3.9)

pi + fprv̄−i ≥ pmin + 3× fprv̄−min (3.10)

Drawing a parallel to the conventional DDM methodology, DDM-FP-M encompasses these dual

thresholds. Here, pi symbolizes the misclassification probability. Diverging from the traditional

39

3.3. Drift Detection Method with False Positive Rate for multi-label Classification (DDM-FP-M)

DDM, in our advanced model, the standard deviation of pi is replaced by FPRv̄. Thus, Equation

3.9 delineates the warning threshold, whereas Equation 3.10 demarcates the drift threshold.

From Algorithm 1, the DDM-FP-M is similar to DDM method, which has two thresholds, warning

and drift respectively. The establishment of these two thresholds is based on the 3 sigma rule.

We use two standard deviations to represent the warning threshold, indicating that there is only

a 5% probability that the drift reaches this warning level. The drift threshold is set higher; we

define the occurrence of drift using three standard deviations, which corresponds to 1% probability.

Additionally, for the error rate, we continue the approach used in DDM, representing it through

the cumulative error rate.

Algorithm 1 DDM-FP-M
Require: Current error rate, er; Current false positive rate average value, fprv̄; Current minimum

of error rate, ermin; Current minimum of false positive rate average value ,fprv̄−min;
Ensure: warning threshold or drift threshold;

1: minimum of error rate initialised as error rate
2: minimum of false positive rate initialised as false positive rate
3: Warning flag = False
4: Drift flag = False
5: concept status = None
6: if er + fprv̄ ≤ erm + fprv̄−min then
7: ermin ← er, fprv̄−min ← fprv̄
8: end if
9: if er + fprv̄ ≥ ermin + 2× fprv̄−min then

10: Warning flag = True
11: else
12: Warning flag = False
13: end if
14: if er + fprv̄ ≥ ermin + 3× fprv̄−min then
15: Drift flag = True
16: else
17: Drift flag = False
18: end if
19: if Warning flag == True and Drift flag == False then
20: concept status = warning threshold
21: end if
22: if Warning flag == True and Drift flag == True then
23: concept status = drift threshold
24: end if
25: return concept status;

40

3.4. Experiment and Result Analysis

3.4 Experiment and Result Analysis

This section primarily focuses on the illustration and evaluation of the newly devised methodol-

ogy, DDM-FP-M, within the context of real-world data streams pertinent to an IoT monitoring

platform. This platform serves as an ideal example to emphasize the applicability and effec-

tiveness of our proposed method, given the inherent dynamism and non-stationarity in IoT data

streams.

3.4.1 Datasets and Experiment Setting

The dataset for this research study is sourced from the TinyDB, an in-network query processing

system built on the robust TinyOS platform. The arrangement of the sensors utilized in this exper-

iment within the Intel Berkeley Research lab is depicted in Figure 3.2. A total of 54 sensors were

deployed, collecting timestamped topological data entailing attributes such as humidity, tempera-

ture, light, and voltage, at an interval of 31 seconds. The data collection phase spanned over 37

days.

Figure 3.2: The arrangement of sensors in the Intel Berkeley Research lab(Xu et al., 2019)

Each data instance in this dataset comprises four attributes - temperature, humidity, lighting,

and velocity. Furthermore, a class attribute segregates these instances into four distinct classes

(Liu, Feng, Wu, Hou and Han, 2017). For our experimental framework, we selected the initial

1,000,000 samples from the dataset and subdivided them into 100 groups, each containing 10,000

instances.

To facilitate a comprehensive comparison, we designed two sets of experiments on this split

dataset. The DDM and our proposed DDM-FP-M methods were applied to these two dataset

41

3.4. Experiment and Result Analysis

groups, thus enabling us to demonstrate the performance of the newly conceived DDM-FP-M

in relation to the traditional DDM. This comparative approach allows us to showcase the en-

hancements brought forth by DDM-FP-M and its potential applicability in complex, multi-label

classification tasks in dynamic environments such as IoT data streams.

3.4.2 Experiment Result Analysis

The summary of the result from two groups is shown in Table 3.1. There are data structure errors

in instance 950000 and 980000 when take the second group test, so there are 198 groups of result

in total.

Table 3.1: The result from two group of experiments

Instance early than DDM DDM fail fail Both fail Roughly equal
overall 198 102 26 26 17 35
first group 101 52 19 20 13 18
second group 97 50 7 6 4 17

Table 3.2: The further analysis on experiment result

earlier than DDM DDM fail fail Both fail roughly equal
overall 51.51% 13.13% 13.13% 8.59% 17.68%
first group 51.49% 18.81% 19.80% 12.87% 17.82%
second group 51.55% 7.72% 6.19% 4.12% 17.52%

Table 3.2 is the further analysis based on Table 3.1, except from the column Instance. The column

DDM-FP-M early than DDM indicates the perception of DDM-FP-M method detect drift early

than DDM in overall scope, so as to rest of columns in Table 3.2.

As the Table 3.2 shows, the results in the columns DDM fail and DDM-FP-M fail indicate a

prediction failure rate of 13.13% for both methods. It suggests both methods have the same ability

to detect the drift in the IoT data stream. Specifically, the DDM method perform slightly better

than DDM-FP-M in first group test. In contrast, the DDM-FP-M method performed better in the

second group test.

On the other hand, there is a column both fail in Table 3.2, which has two means, one is there

is no concept drift. Another is that the concept drift in this period belongs to gradual concept

drift and the drift amplitude is so slight that detection method cannot detect it. Meanwhile, the

failure rates from both groups show the number of training instance has significant influence on

42

3.4. Experiment and Result Analysis

the performance of prediction.

From the analysis of detection fail rate, we infer that DDM-FP-M and DDM method both can

effectively detect the concept drift and have some similar performance.

Figure 3.3: The drift detection result from DDM and DDM-FP-M method

For the comparison of detection of DDM and DDM-FP-M, we could find columns DDM-FP-M

earlier than DDM in Table 3.2, the first column, which means the DDM-FM-M can detect the

concept drift earlier than DDM method. The result from overall or any single group are both

equal to around 51.5%, which proves the consistent better performance of proposed DDM-FP-M

method.

For example, in Figure 3.3. At the instance of 159, the error rate is 33.2% and the FPR is 11.3%,

warning level reached because it reaches the warning threshold according to Equation 3.9 of

DDM-FP-M, however, the DDM found the warning threshold until time of 195. For the find-

ing of the drift threshold, DDM-FP-M first detect the drift at instance of 955 based on Equation

3.10. However, the DDM detect the drift until instance of 1866, which is far later than DDM-FP-

M.

Besides, last column in Table 3.2 called roughly equal, which means the result from the DDM-

FP-M is just slightly later than DDM method (we define the tolerance interval is 20% based on

43

3.5. Summary

the result from DDM method). For instance, in the experiment [start: 990000, training: 500, test:

4000], the instance point that DDM detect drift is 925, the DDM-FP-M is at instance point 946,

DDM just early than DDM-FP-M for 21 instances, which maintain the tolerance interval. These

instance accounts for 17.68% of all instance.

Combining the two findings that DDM-FP-M early than DMM and roughly equal, we can find out

that around 70% (DDM-FP-M early than DDM: 51.51% + roughly equal: 17.68%) probability

that the performance of the DDM-FP-M is superior to or similar to the DDM algorithm.

Based on the experiment result on data from Intel Lab, the DDM-FP-M and DDM method can

applied to concept drift detection. However, considering the detection performance, the DDM-

FP-M can always detect concept drifts faster than the DDM method.

3.5 Summary

With the development of the IoT, deployment of the massive number of sensors in many practi-

cal applications could continuously collect environmental data. Hence, the way that effectively

and efficiently processing within reality the data streaming methods are dealing with incoming

streams, not pre-collected data. Here we executed the methods as if the data were generating

while running the algorithms. The incoming streams have the same sequence and value that has

been collected for research in literature and available in the public domain. Data stream be consid-

ered a significant role in the development of the IoT. However, the concept drift happened in the

data stream challenges data processing, control and system management. Especially in healthcare

data area, which has quite rich data and usually contains human survival-related information. In

this chapter, we propose a novel concept drift detection method based on DDM, Drift Detection

Method. The proposed method can effectively detect the concept drift by monitoring the statistic

indicator of the learner trained on the data stream, but also can detect the concept drift earlier than

the DDM method through the combination of the accuracy and FPR of the trained learner. By cal-

culating and observing the change of the two error rates and FPR, to determine if the warning and

drift level is reached. Experimental result in Intel Lab data shows that our method can effectively

detect the concept drift and the time that drift detected is earlier than the DDM method. Therefore,

our method has better performance than the DDM method on concept drift detection.

44

Chapter 4

Concept Drift Detection in Noisy Data

Stream

Drift detection methods identify changes in data streams. Such changes are called concept drifts.

Existing drift detection methods often assume that the input is a noise-free data stream. However,

in real world applications, for example, data streams generating from internet of things are nor-

mally contaminated with noise. (noise, i.e. class noise and/or attribute noise). In this work, we

propose a Noise Tolerant Drift Detection Method (NTDDM), which is based on two-step detec-

tion and validation function to detect drifts, and filters out the false drifts caused by the noise. The

NTDDM is compared with six well-known drift detection methods and tested on four benchmarks

having different levels. Three performance indicators are proposed to determine whether the drift

detection is made within a reasonable time, and the length of time to the known drift starting point.

The comparative studies demonstrate that NTDDM outperforms the existing methods, over these

performance indicators. Our proposed method has achieved a statistically significant improve-

ment on drift detection compared to the methods in experiment. The proposed NTDDM makes it

possible to efficiently and effectively detect drift in a noisy data stream.

4.1 Introduction

Concept drift detection methods aim to identify if and when data patterns within the stream alter

(Gama et al., 2004), (Baena-Garcıa et al., 2006), (Bifet and Gavalda, 2007), necessitating con-

45

4.1. Introduction

tinual updating of detection models. A data stream originating from a stationary environment,

characterized by a fixed probability distribution, is void of drift (Ditzler et al., 2015).

Concept drift mitigation primarily leverages two strategies, active and passive (Gama et al., 2014).

Active strategies monitor the data stream, issuing a warning upon drift detection (Lu et al., 2019),

while passive strategies do not explicitly raise warnings. This research focuses on the active strat-

egy.

Consider a data stream consisting of n samples, represented as H1,n = [h1, · · · , hn], where each

sample hi = (Xi, yi) is a data point comprising a d-dimensional feature vector Xi and a class label

yi. Typically, the data stream follows a joint distribution D1,t(X, y). Concept drift is said to occur

at time point t+ 1 when D1,t(X, y) ̸= Dt+1,∞(X, y) (Lu et al., 2016), (Liu et al., 2020).

Concept drift can be categorized into real and virtual drift based on Bayesian theory (Souza et al.,

2020). Real drift arises when Pt(y|X) ̸= Pt+1(y|X) while Pt(X) = Pt+1(X), indicating a

change in conditional probability. Conversely, virtual drift transpires when Pt(X) ̸= Pt+1(X)

while Pt(y|X) = Pt+1(y|X), marking a shift in marginal probability. Our research focuses on

real concept drift, as it directly impacts the decision boundary (Lu et al., 2019), (Gama et al.,

2014), (Wang et al., 2018).

On the other hand, noise can significantly hinder the performance of data mining models (Pang

et al., 2021). Noise has an adverse impact on the both interpretation of the data, and reduction

in the performance of the machine learning model (Mahan et al., 2021). However, the majority

existing drift detection methods assume no noise. This introduces new challenges to the data

stream mining model (Lu et al., 2019), which this work addresses.

Clearly, drift detection becomes more complex when noise is present in the data stream. Noise

will mask the true signal and degrade the performance of machine learning models. This may

mistakenly trigger a drift detection, miss an antual drift, or delay the drift detection time. However,

few efforts have been made to detect drifts while noise exists in data stream. We address this issue

with a noise-tolerant detection method. Our contributions are:

1. Incorporating two types of noise into the data stream with concept drift, so that data con-

tained concept drift and one of two kinds of noise.

46

4.2. Problem Statement

2. Presenting a noise tolerant drift detection method to detect the drift in noisy data streams.

3. Proposing sparse sliding window strategy that could mainly reduce the false drift detection,

where the statistical test is used to compare the differences between the data stream before

and after the drift happens.

4. Proposing three measures for drift detection, to evaluate the performance of detection accu-

racy and timeliness.

The rest of section is organized as follows: Section 4.2 discusses the problem statement and the

definition of the two kinds of noise. The proposed method is presented in Section 4.3. Experiments

and results are discussed in Section 4.4. Finally, in Section 4.5, the summary is provided.

4.2 Problem Statement

4.2.1 Introduction of Noise

Noise is an unavoidable problem in real-world data. Real-world data, which forms part of the

training data, suffers from noise. Noise could reduce the performance of the system, e.g. decrease

in accuracy, or a delay in decision-making. The majority of the drift detection methods assume

the data stream is noise free. Data acquisition and collection inevitably contain noise.

4.2.2 Definition of Noise

Noise is divided into two categories, class noise and attribute noise (Luengo et al., 2021). A data

sample could be represented by hi = (Xi, yi), where Xi is the set of attributes and yi is the label

at time point i. Noisy data could be part of a collection of n data samples (h1, · · · , hn). For the

noisy data, the noise could be on attributes or label, even on both meanwhile. In order to introduce

two types of noise precisely, we only consider independent noise.

Here we define Xs = (Xs1 , Xs2) as a set of data samples X , where Xs1 and Xs2 represent the

subset of data samples where the corresponding labels are y1 and y2, respectively. We also define

the label mapping function M(·) as yi = M(Xsi). From Figure 4.1, there are two sub-figures

which have two data samples collections, i.e. Xs1 square and Xs2 triangle, corresponding to two

different classes.

47

4.2. Problem Statement

Figure 4.1: Visualization of class noise (left) and attribute noise (right), each shadowed ellipse
represents a class Xs1 and Xs2 .

However, there are also some abnormal data samples in Figure 4.1 (left) where have similar at-

tribute distribution but has been mislabelled. This situation corresponds to class noise. Class noise

alters the observed labels assigned to instances, e.g. misclassifications, assigned with false label,

shown on Equation4.1:

M(X) ̸= M(Xsi), X ∈ Xsi (4.1)

On the other hand, attribute noise is the case that data sample with label which is significantly

different from corresponding Xs, e.g. data samples colored by red in Figure 4.1 (right). Attribute

noise affects the observed values of the attribute, e.g. erroneous attribute values, missing attribute

values, or redundant attribute values, etc. As shown in Equation 4.2, data with attribute noise has

the same class label as the adjacent class, but it does not belong to its current class since it is

significantly different from the current distribution:

M(X) = M(Xsi), X ̸∈ Xsi (4.2)

4.2.3 Difference between Noise and Concept Drift

The notions of noise and concept drift both play significant roles in the field of machine learning

and predictive modeling. While they share similarities, particularly in their potential to reduce the

accuracy of predictive models, they fundamentally differ in their underlying causes and effects.

48

4.2. Problem Statement

Here, we delve into their distinctions and implications.

Nature of Changes:

Concept Drift: This phenomenon occurs when there is a shift in the underlying distribution of the

data over time, leading to a change in the decision boundary. Such changes impact the relationship

between the input features and the target variable. Concept drift can be mathematically represented

as P (yt+1|Xt+1) ̸= P (yt|Xt), given that P (Xt+1) = P (Xt). This expression encapsulates the

drift in the conditional probability of the target variable y given the input features X .

Noise: Unlike concept drift, noise does not represent a systematic change in the data distribution.

Instead, it refers to random variations or errors that can occur in the data collection, transmission,

or processing stages. Noise does not lead to alterations in the decision boundary, and it does not

follow a specific pattern.

Temporal Aspect:

Concept Drift: It is characterized by a specific drift point, after which the alterations occur. The

changes can be gradual, abrupt, or incremental, depending on the underlying dynamics of the envi-

ronment. The detection and adaptation to concept drift require specialized techniques to maintain

the model’s predictive performance.

Noise: Noise, on the other hand, is typically persistent and randomly distributed throughout the

data. It lacks a specific temporal pattern or point of change and is an inherent challenge in various

data-intensive applications.

Impact on Modeling:

Concept Drift: The presence of concept drift necessitates continual monitoring and adaptation of

the model. Failure to recognize and respond to drift can lead to a significant degradation in the

predictive accuracy and reliability of the model.

Noise: Noise contributes to a decrease in model accuracy but does not necessitate continual adap-

tation in the same way as concept drift. Rather, techniques for noise reduction and robust modeling

can mitigate its impact.

In summary, while both noise and concept drift pose challenges to predictive modeling, they differ

in their underlying nature, impact, and the strategies needed to mitigate their effects. Understand-

49

4.3. Proposed Noise Tolerant Drift Detection Method

ing these differences is vital for the design, deployment, and maintenance of effective and robust

predictive models in dynamic and noisy environments.

4.3 Proposed Noise Tolerant Drift Detection Method

We firstly give the notation to be used in this section in Table 4.1.

Table 4.1: Notation and abbreviations

Symbol Description

H1,n data stream H1,n = [h1, · · · , hn]

starts at time point 1 and end at n

hi single data sample at time point i in H , hi = (Xi, yi)

Di,t distribution of the data stream from time point i to t

σ standard deviation

p probability

w time window

ts the starting time of data stream

tg the starting time of drift

te
effective detected drift point which

falls into EDR

tf first effective detected point

tl last detected point

Si i-th independent experiment

Oi detection output, Oi = [o1, o2, ..., on] in one trial

lt time from start point ts to the starting time of drift tg

γ threshold of the EDR

EDR effective detected range, [Lt, Lt ∗ (1 + γ)]

FEDP time span between tg and tf

LDP distance between tg and tl

We propose a NTDDM to address the problem of data with noise for drift detection. NTDDM is

50

4.3. Proposed Noise Tolerant Drift Detection Method

designed to have two steps: detection and validation. The first step is aimed to detect the potential

drift since the drift could manifest as the change of the performance of the trained machine learn-

ing model. Hence, we use precision as the indicator to monitor this change. Precision is more

sensitive and meaningful to locate the drift compared to other comprehensive indicators, e.g., ac-

curacy (used by DDM), F1-score and AUC, etc (Klinkenberg et al., 1998) (Halstead et al., 2021).

The second step is designed to filter out the detected potential drift points which are impacted by

the noise. We apply the modified KS two-sample test on potential drift points after subsampling.

The subsample used here is to further mitigate the impact of noise. Lastly, the output of the pro-

posed method is the filtered detected concept drift and the experiments show that our method has

effectively detected the drift and is more robust to noise compared to other methods. Section 4.3.1

provides the overview of NTDDM method. Section 4.3.2 proposes Detection to detect potential

drifts, and Section 4.3.3 proposes Validation to validate if the potential drift is true.

4.3.1 Design of NTDDM

The design of the proposed NTDDM is shown in Figure 4.2, and Algorithm 2. Here the Detection

(line 2-6) is executed at real time and continuously monitor the performance of classifier for input

data. When the change reaches a predefined threshold, a potential drift is reported.

Validation (line 8-15) will be triggered once a potential drift is detected in the detection stage.

Validation determines if the detected drift is real or not. After completing the Validation, the

NTDDM returns to the detection to continuously monitor and detect the potential drift (line 17),

or raise a real drift flag and then restart the detection (line 12). The outputs of NTDDM are the

drift starting time T.

51

4.3. Proposed Noise Tolerant Drift Detection Method

Figure 4.2: Design of NTDDM, two process modules are Detection and Validation, data stream
input in Detection firstly, potential drift found in Detection will trigger the Validation. True drift
will be reported if Validation confirms it, otherwise suspend Validation and return to Detection
since the potential drift is a false drift.

Algorithm 2 Proposed NTDDM

Require: data stream H1,t where i→ +∞, incremental trained classifier f
Ensure: Confirmed drift time point T

1: for i in [0,+∞) do
2: Perform Detection (detail in Algorithm 3)
3: if drift threshold reached at T then
4: Potential drift is detected by Detection
5: Current time point T store in buffer, used as drift point when potential drift is validated.
6: Validation is triggered
7: end if
8: Perform Validation (detailed in Section 4.3.3)
9: Continue to collect windows-size data

10: Calculate dissimilarity between two sub-windows (Figure4.3)
11: if Current potential drift is real drift then
12: Report real drift and corresponding time point
13: else
14: Current potential drift is false drift
15: Validation suspend and waiting to be triggered
16: end if
17: Continue Detection
18: end for

4.3.2 Detection

Algorithm 3 shows the proposed detection function. Line 1 initializes the boolean Drift flag

with False, representing no potential drift detected. Line 2-4 initializes the value of p, σ, pmax

and σmax. Line 6-7 then defines the updating rules of the pmax and σmax, values of them will

be updated and saved on two registers. Line 10-11 describes the trigger for Drift flag, the

52

4.3. Proposed Noise Tolerant Drift Detection Method

Drift flag will become true when condition in line 10 is satisfied. Line 13-15 explains how the

validation is triggered after Drift flag becomes true. Meanwhile, the current time point T is

recorded for the use of validation.

Algorithm 3 Detection steps

Require: Current precision value pi and its deviation σi, Current maximum of precision value
pmax and corresponding deviation σmax, time point T

Ensure: potential drift time point
1: Drift flag = False
2: if pmax and σmax equal to None then
3: pmax ←− pi
4: σmax ←− σi
5: else
6: if pi − σi > pmax − σmax then
7: pmax, σmax = pi, σi
8: end if
9: end if

10: if pi − σi < pmax − 2× σmax then
11: Drift flag = True
12: end if
13: if Drift flag = True then
14: activate the validation
15: save current time point T for validation
16: end if

In above pi is the precision which is defined in Equation 4.3, and measures the quality of the

classifications (Jain et al., 2020). Here we introduce precision as the indicator of drift detection.

Similar to accuracy of classifier, precision value will change accordingly when drift occurs. In

this work, the precision values are calculated incrementally, applicable to both binary and multi-

class(Virtanen et al., 2020).

precision =
TP

TP + FP
(4.3)

In Equation 4.3 True Positive (TP) represents an outcome where the model correctly predicts

the positive class, and False Positive (FP) represents an outcome where the model incorrectly

predicts the positive class. Precision means the proportion of positive identifications was actually

correct predicted. It remains stable until the drift occurs (Yu et al., 2019). Since in a stationary

environment, the predicted result will maintain a relatively stable high accuracy. It can be deducted

that the TP value will increase and the FP value will remain at a relative small value. As the noise

53

4.3. Proposed Noise Tolerant Drift Detection Method

increases, the precision falls. Moreover, in our experiments, through testing different indicators,

we found that precision is the most sensitive measure for detecting concept drift. The value of

precision pi corresponding to the standard deviation as σi = sqrt(pi(1− pi)).

When the performance of the learned classifier is unchanged for the new data, i.e. there is no drift,

then the term pi − 2 × σi should be always lower than pmax − σmax. The weighting parameter

α depends on the confidence level. The drift detection method manages two registers during the

training of the machine learning model, pmax and smax. Every time a new example (Xi, yi) is

processed, those values are updated when pi − σi is larger than pmax − σmax, corresponding to

line 6-7 in Algorithm 2.

4.3.3 Validation

The detection is used to detect the potential drifts in the noisy data stream, which is then followed

by the Validation to validate if the potential drifts are real or not. In practice, some potential drifts

are caused by noise and not due to a change in the data stream distribution. To filter out the poten-

tial drifts, a statistical test is employed in the validation function. Validation takes incrementally

generated precision values as input. There are several approaches that can be used to determine

whether two sets of data input from the same distribution. Here we choose Kolmogorov–Smirnov

two-sample test (KS test) (Jr., 1951). It is a non-parametric test and makes no assumption about

the distribution of data. In addition, its relaxed restriction on the sample size is an advantage for

fast drift detection. These properties fit the purpose of the proposed validation function.

Kolmogorov–Smirnov (KS) two sample test

Suppose there are two sets of one-dimensional data Dm and Dn, where each set contains the same

number of samples, i.e. m = n. We aim to compare the difference between two sets of data. There

are multiple ways to achieve this goal, for example KS test and Kullback-Leibler (KL) divergence

Shaker and Lughofer (2014). We selected the Kolmogorov-Smirnov two-sample test due to its

lightweight, non-parametric nature, ideal for one-dimensional data analysis. However, the KL

divergence will be preferred in multi-dimensional situation. The KS test is able to reject the null

hypothesis that Dm and Dn are generated from the same distribution. The KS test requires the

data to be independent and identically distributed. The null hypothesis is verified if the following

54

4.3. Proposed Noise Tolerant Drift Detection Method

condition is satisfied:

Dn,m > c(α)

√
|Dn|+ |Dm|
|Dn||Dm |

(4.4)

where the value of c(α) is obtained from Statistical Table Wei et al. (2020), which is a pre-

calculated table. Here |Dn| is the number of data in Dn and |Dm| is the number of data in Dm.

Dn,m is the KS statistic value, and is defined as follows:

Dn,m = max
x
|F1,n(x)− F2,m(x)| (4.5)

where max represents the maximum value of the set of distances between F1,n and F2,m, and F1,n

is the empirical distribution function, defined as below:

F1,n(x) =
1

n

n∑
i=1

I[−∞,x](Xi) (4.6)

where I[−∞,x](Xi) is indicator function, defined as follows. F2,m is defined similarly in Equation

4.6.

I[−∞,x](Xi) =

1 Xi ⩽ x

0 Xi > x
(4.7)

For the experiments in Section 4.4, we set α to 0.001, and |D1| and |D2| are set to k in NTDDM,

KS test is able to compare the difference between two distribution based on cumulative distribution

function. Therefore, the null hypothesis will be rejected when the p− value < 0.001.

Proposed new spare sliding time window strategy

The validation examines the data within a sliding time window. We use the setup of the experi-

ments in Section 4.4 as an example. To perform this function, we have a fixed size (2w) sliding

window to capture two sets of consecutive data before and after a potential drift, as shown in Fig-

ure 4.3. In this example, the length of the time window is 2w. Here the detection function detects

a potential drift at time T .

55

4.4. Experiment and Result Analysis

Figure 4.3: Validation with spare sliding time window.

The sliding window will continue to collect additional data, the subsampling is applied on each

sub-window. Then the dissimilarity between two sub-windows will be compared. Lastly, the

real drift will be confirmed if the difference is statistically significant. The additional w/2 data,

although it will introduce a delay time to validate a drift, it affords a lower detection false posi-

tive.

Specifically, we do not take all the data collected by the sliding window. The reason is that a slight

change in a short period of time will cause the validation function to generate false Drift flag.

To avoid this, we use a strategy that randomly selects w/2 instances from each of the sub-windows.

This not only satisfies the requirement of continuous data, but also reduces the chances of a false

Drift flag. The datasets collected by the sliding window correspond to the data before and after

the detection of the potential drifts respectively. If the data stream is stationary, the p − value

should be larger than 0.001.

4.4 Experiment and Result Analysis

This section compares the proposed NTDDM with the six existing drift detection methods, over

four benchmark datasets and one real-world dataset. These datasets have different noise levels,

which could be adjusted via noise setting parameters. Section 4.4.1 describes the four benchmark

datasets. Section 4.4.2 introduces the summary of the measures used to evaluate the performance

of NTDDM and analyze the experimental results, comparing the seven drift detection methods.

The real-world dataset experiments and evaluation are introduced in Section 4.4.3.

56

4.4. Experiment and Result Analysis

4.4.1 Datasets and Experiment Set-up

Four benchmark datasets widely used in drift detection literature are selected for experiment and

evaluation, namely SEA, SINE, AGRAWAL, and LED. They are available at the public stream

data mining platform skmultiflow (Montiel et al., 2018). Descriptions of the datasets are in Table

4.2. Each dataset in Table 4.2 consists of 1000 data points, corresponding to 1000 time points. At

the 500th time point, a drift occurs. For each of these datasets, 100 distinct versions are generated

. To compare the performance of drift detection methods, we test them on each dataset for 100

trials, which are initialized with different random seeds.

Table 4.2: Description of the datasets.

Dataset No. of attributes No. of classes Level of noise Type of noise

Sea 0 3 2 0 class noise

Sea 0.05 3 2 0.05 class noise

Sea 0.1 3 2 0.1 class noise

Sea 0.15 3 2 0.15 class noise

Sea 0.2 3 2 0.2 class noise

Agrawal 0 9 2 0 class noise

Agrawal 0.05 9 2 0.05 class noise

Agrawal 0.1 9 2 0.1 class noise

Agrawal 0.15 9 2 0.15 class noise

Agrawal 0.2 9 2 0.2 class noise

Sine False 2 2 NO attribute noise

Sine True 4 2 YES attribute noise

Led 0.05 24 7 0.05 attribute noise

Led 0.1 24 7 0.1 attribute noise

Led 0.15 24 7 0.15 attribute noise

Led 0.2 24 7 0.2 attribute noise

Six drift detection methods are accessible in skmultiflow (Montiel et al., 2018). We use the param-

eters recommended by skmultiflow for each drift detection method. We adjust the parameters of

ADWIN for better performance. The detailed values or thresholds are shown in Table 4.3. The α

and β of DDM, HDDM, HDDM A and HDDM W represent the warning and drift threshold. AD-

WIN, and PH follow a similar way but only have a drift threshold marked with δ. λ in HDDM W

represents the weight given the data, more recent data has less weight.

57

4.4. Experiment and Result Analysis

Table 4.3: Algorithm parameters or threshold description

Algorithms Parameters(Thresholds)

NTDDM α = 0.01, p value = 0.001

DDM α = 0.05, β = 0.01

Adwin δ = 0.05

EDDM α = 0.9, β = 0.95

PH δ = 0.005

HDDM A α = 0.005, β = 0.001

HDDM W α = 0.005, β = 0.001, λ = 0.05

4.4.2 Measures for the Experimental Results

Here Si, i ∈ [1, 100] represents 100 experimental trials on each dataset. The Oi represents the out-

put of drift detection method in i-th trial, which is the list of detected drift points, [o1, o2, · · · , on],

n ≥ 0. The detection method detects no drift when n = 0.

Detection delay is common for performance comparison (Lu et al., 2019). Based on this, we

propose three measures for comparison:

• Effective Detected Drift Rate (EDDR): the proportion of experimental trials where a de-

tected drift time point falls into the Effective detected drift rate (EDR).

• Distance to First Effective Detected Point (FEDP): whether a drift detection method can

detect a drift point early enough.

• Distance to Last Detected Point (LDP): this is to evaluate if the drift detection method

could stop in time, instead of repeating the true Drift flag.

58

4.4. Experiment and Result Analysis

Figure 4.4: Illustration of the measures. x-axis represents time. ts is start time point, tg is drift
time point, tf and tl are the first and last detected drift point. lt is the time range from start to drift
point. Then EDR, is our defined time range(l× λ) which represents the reasonable time range for
detected drift point collection, te. FEDP represents the time range from drift point tg to first drift
point in te. LDP represents the time range from drift point tg to the last detected drift point. These
two time ranges are to evaluate if the detection method could detect the drift in a reasonable time
range.

We use an example to explain the terms in Figure 4.4. There are 5 groups of outputs on Table 4.4,

which are the experimental results obtained from five tested methods on the same dataset.

Table 4.4: Sample of detected drift points from experiments

Methods Output

NTDDM [581]

DDM [39, 605]

Adwin null

EDDM [332,560,681,863]

PH [725]

Based on our experiment setting, the start point of data stream ts is from 0, drift point tg is 500,

and the EDR is between [500, 700]. Taking the output of NTDDM as an example, the detected

point 581 is te, as it falls within EDR. At the same time, it also corresponds to tf and tl, since only

one drift point is detected by NTDDM. However for Adwin, it detects no drift point, so the size

of O is 0. On the other hand, the EDDM detects drifts at [332, 560, 681, 863], tf is 560, and tl is

59

4.4. Experiment and Result Analysis

863, then FEDP is 60 and the LDP is 363.

Effective Detected Drift Rate

EDDR is used to measure the efficiency of drift detection methods. In some cases, a detection

method may not be able to detect any drift at all (see ADWIN in Figure 4.5). Alternatively, a

large number of false drift will be detected when noise level is high, e.g.(see EDDM in Figure

4.5).

The term Effective Detection Range (EDR), is considered as the effective and reasonable range for

drift detection, therefore the detected drift points within the EDR are defined as effective detected

point te. lt in Figure 4.4 as the length from the start point ts to the drift point tg, and λ is the

threshold for the length of EDR. Therefore, the EDR is defined as [lt, lt ∗ (1 + λ)].

If the detected concept drift is outside the EDR, this shows that the concept drift is detected too

late. Ideally, there should be only one detected concept drift within the EDR. However, due to the

sensitivity of detector, it will not detect the concept drift only once. Due to noise, they will also

cause the detector to falsely report the concept drift. To account for both conditions, we propose

that there should only be a limited number of detected drift points within EDR. In this study, we

propose to set the number of detection to be 3, which is motivated by the experimental observation

from all the datasets investigated in this work.

The EDDR is used as the indicator to evaluate if the method could detect drift within a reasonable

time, as shown below:

EDDR =

∑N
i=1Ei

N
(4.8)

In Equation 4.8, N is the number of trials on one dataset, Ei as an indicator, represents if the drift

detection method performs successfully in ith trial. For example, O is the list of detected drift

points in one trial, O = [o1, o2, · · · , on]. Ei is defined in Equation 4.9 as:

Ei =

1 ∃oi ∈ EDR and 1 ≤ |O| ≤ 3

0 otherwise
(4.9)

60

4.4. Experiment and Result Analysis

When Ei equals to 0, the following two conditions must be met at the same time, (1) At least one

sample o in O is within EDR, (2) the number of elements in O must be between 1 and 3. The first

condition shows at least one effective drift has been detected, while the second condition limits

the number of false drifts.

The results of EDDR are shown in Table 4.5, the proposed NTDDM shows best detection perfor-

mance on 13 out of 16 datasets. The corresponding visualization on the SEA dataset is shown in

Figure 4.5. It is clear that drift points detected by NTDDM are concentrated next to the drift point

tg (red bar), even in the higher noise level. However, for other methods, the ability of detection

declines significantly. It is observed that either the number of detection drifts greatly reduced,

e.g. ADWIN (3rd), HDDM A (6th), or a large number of false drifts reported, e.g. EDDM (4th),

HDDM W.

Table 4.5: Effective Detected Drift Rate(%) on 16 datasets from 7 methods, NTDDM perform best
13 out of 16 datasets.

DDM ADWIM EDDM PH HDDM A HDDM W NTDDM

Sea 0 75 10 85 1 10 67 85

Sea 0.05 51 3 60 1 4 62 74

Sea 0.1 25 1 32 3 2 54 74

Sea 0.15 9 1 31 1 2 41 69

Sea 0.2 6 0 28 0 0 30 49

Agrawal 0 31 5 50 30 29 53 55

Agrawal 0.05 31 2 52 31 35 55 39

Agrawal 0.1 33 2 58 36 38 39 47

Agrawal 0.15 38 3 46 42 48 47 50

Agrawal 0.2 43 5 49 46 52 50 53

Sine 0 70 39 64 48 57 80 83

Sine 1 75 34 72 45 67 79 82

Led 0.05 61 75 73 0 0 27 71

Led 0.1 84 78 88 93 95 87 95

Led 0.15 84 93 87 94 93 89 94

Led 0.2 84 91 90 93 91 89 94

Average 50± 25.8 27.6± 34.6 60.3± 20.1 35.2± 33.1 38.9± 33.6 59.3± 19.9 69.6± 18.0

We have applied Friedman test and Nemenyi post hoc test on groups of results. The p−value from

Friedman test is much smaller than 0.05, therefore the null hypothesis that there is no significant

difference between those methods is rejected.

61

4.4. Experiment and Result Analysis

Figure 4.5: The histograms of the detected drift time points by the seven detection methods on
dataset SEA. The noise levels are 0, 0.05, 0.15 and 0.2 respectively. X-axis represents the time
point, the red bars denote the drift point tg, whereas the blue bars are the histogram of detected
drift points summarized over 100 independent experiments. The ideal case is that all detected drift
points concentrate on EDR in Figure 4.4, the EDDR indicates the degree of concentration in
EDR of the detected points.
1:NTDDM, 2: DDM, 3: ADWIN, 4:EDDM, 5:PH, 6:HDDM A, 7:HDDM W

We then use Nemenyi to do post hoc test on pair-wise generated p-value. The result is visualized

with heatmap Figure 4.6. It is clear that our method NTDDM is significantly better than DDM,

ADWIN, PH and HDDM A. Then for EDDM and HDDM W, we compare the EDDR with them

separately, and combined with average value in Table 4.5. It is apparent that our method shows

higher EDDR than these two in most datasets.

Distance to First Effective Detected Point

Ideally, concept drifts should be detected quickly. Some detection methods detect multiple drifts

when there is only actually one occurrence. We measure the first effective detected point, tf that

falls into EDR. We then use the distance FEDP between the tg and tf to evaluate NTDDM how

promptly it can detect drift. Smaller FEDP represents the better drift detection performance.

62

4.4. Experiment and Result Analysis

Figure 4.6: The heatmap for the Friedman test and Nemenyi post hoc test on result of EDDR, each
data represents the p-value of statistical difference and is calculated in pairs. The red coloured
squares corresponding the statistically significant differences, the squares in the other colors rep-
resents less significant differences.

We take the experiments on SEA dataset as an example. When the noise level are 0% and 20%,

the results of FEDP are shown in the violin figures of Figure 4.7 (a) and Figure 4.7 (b). From the

plots, the mean of FEDP from NTDDM is the smallest compared to other methods. This suggests

that the proposed NTDDM can detect drift most quickly.

Distance to Last Detected Point

We take the same set of the experiments result as in the Section 4.4.2. Their LDP values are shown

in Figure 4.7 (c) and Figure 4.7 (d). It is clear, on average, that NTDDM has obtained the smallest

distance to Last Detected Point. Again, this suggests that the proposed NTDDM perform best in

detecting drifts quickly.

LDP values on four artificial datasets are shown in Table 4.6, it is clear that our proposed NTDDM

has the best performance among the rest of the methods. It is worth mentioning that EDDM and

63

4.4. Experiment and Result Analysis

(a)

(b)

(c)

(d)

Figure 4.7: FEDP and LDP on SEA dataset. (a) FEDP with noise level = 0 (b) FEDP with noise
level = 0.2 (c) LDP with noise level = 0 (d) LDP with noise level = 0.2.

HDDM W which perform great in FEDP have quite large latency. The reason is that drift points

detected by these two methods are spread across the whole range.

64

4.4. Experiment and Result Analysis

Table 4.6: LDP on four artificial datasets

DDM ADWIN EDDM PH HDDM A HDDM W NTDDM

SEA 113.53 320.33 416.34 325.18 298.34 255.21 89.91

AGRAWAL 224.21 430.12 430.64 183.65 181.25 455.58 164.35

SINE 81.12 301.68 389.52 188.03 78.15 425.11 76.15

LED 102.51 331.52 374.41 133.55 108.12 454.95 93.53

Average 107.84 345.91 402.72 207.60 166.46 397.71 87.98

4.4.3 Experiments on Real-world Dataset

To further evaluate the performance of NTDDM, we use a real world dataset Posture (Kaluža et al.,

2010). The posture dataset collected data at 0.1s intervals, u, from sensors on left/right ankle right,

belt and chest (Kaluža et al., 2010), each data instance is combined with 3 features and 1 class

label, the features represent the spatial location and the class label represents the corresponding

posture type. The posture type (class label) has been noted by a human observer. Figure 4.8 shows

the posture data. The patterns of posture data are clearly different, before and after 500 u. Given

the posture data, an ideal detection method should be able to detect such a change soon after 500

u. In many applications, the causes of such a change are unknown. However, in our controlled

environment we know the cause of the abrupt change. A detected drift can be used to advise the

need to investigate the causes. We select the data stream whose posture changes from sitting to

walking, which we want to detect the change.

65

4.4. Experiment and Result Analysis

Figure 4.8: Data visualization of real-world posture data, x and y axis represents the result of data,
axis of time represents the time range of the data stream.

This dataset contains data stream with noise and without noise. The noise level in the data stream

with noise is unknown. The drift starting time tg at 500 u. We ran 100 trials for each set of

experiments. The result analysis and evaluation are based on three measures defined in Section

4.4.2.

Effective Detected Drift Rate

Table 4.7 shows that the NTDDM performs among the best in its ability to detect drifts when

either no noise or noise level = 0.1, where the noise level is the noise variance as a fraction of

signal variance.

Table 4.7: EDDR on real-world dataset, NTDDM has the highest value.

DDM ADWIN EDDM PH HDDM A HDDM W NTDDM

No Noise 93 90 73 71 73 33 97

Noise(10%) 84 70 81 52 74 35 97

Distance to First Effective Detected Point

Table 4.8 lists the average result of FEDP on two sets of experiments, from 100 trials. Figure 4.9

shows the boxplots of the FEDP. From the result it is seen that FEDP of NTDDM is just slightly

66

4.4. Experiment and Result Analysis

larger than EDDM and HDDM W, which also demonstrated in sub-figure (a) and (b) in Figure

4.9. This suggest that our proposed NTDDM is the best in FEDP.

Table 4.8: The average values for 100 trials: FEDP and LDP on Posture dataset with and without
noise

No Noise Noise (10%)

FEDP LDP FEDP LDP

NTDDM 41.02 65.84 42.08 82.98

DDM 69.94 94.13 62.30 107.81

ADWIN 85.86 306.04 76.52 328.61

EDDM 43.77 245.87 42.35 289.34

PH 126.02 165.32 102.17 201.94

HDDM A 48.07 118.93 57.25 156.39

HDDM W 46.54 329.25 44.38 357.77

Figure 4.9: Boxplot visualization of the value of FEDP and LDP on Posture dataset, (a) FEDP
on Posture dataset without noise (b) LDP on Posture dataset without noise (c) FEDP on Posture
dataset with noise (d) LDP on Posture dataset with noise. The methods from left to right are
1:NTDDM, 2: DDM, 3: ADWIN, 4:EDDM, 5:PH, 6:HDDM A, 7:HDDM W.

67

4.5. Summary

Distance to Last Detected Point

The result of LDP is shown in Table 4.8, and in Figure 4.9. It is visually apparent that NTDDM

obtains the best performance, detected the drift points within EDR. In summary, the experiments

on the real world dataset show that the proposed NTDDM performs the best overall.

4.5 Summary

This chapter presents a noise tolerant drift detection method for data stream mining. It addresses

the challenge of detecting drifts when noise is present in the data. The proposed NTDDM method

introduces a detection function to detect the potential drift, and is then validated to determine

whether it is caused by noise or not. The comparative studies have shown that the NTDDM

method performs the best compared to the six established detection methods. Our work fills the

research gap with a drift detection method designed specifically for data streams with noise. For

many real-world applications where noise in data stream is present, our proposed Noise Tolerant

Drift Detection Method will provide efficient, effective drift detection for better monitoring and

decision support.

68

Chapter 5

Concept Drift Detection by Tracking

Weighted Prediction Confidence of

Incremental Learning

Data stream mining is great significant in many real-world scenarios, especially in the big data

area. However, conventional machine learning algorithms are incapable to process because of

its two characteristics (1) potential unlimited number of data is generated in real-time way, it

is impossible to store all the data (2) evolving over time, namely, concept drift, will influence the

performance of predictor trained on previous data. Concept drift detection method could detect and

locate the concept drift in data stream. However, existing methods only utilize the prediction result

as indicator. In this article, we propose a weighted concept drift indicator based on incremental

ensemble learning to detect the concept. The indicator not only considers the prediction result, but

the change of prediction stability of predictor with occurs of concept drift. Also, an incremental

ensemble learning based on vote mechanism is especially used to get constantly updated value of

indicator. Based on the experiment result on both benchmark and real-world dataset, our method

could effectively detect concept drift and outperform other existing methods.

69

5.1. Introduction

5.1 Introduction

The data stream is now very widely distributed in many real-world scenarios, especially in big data

era. Such areas include IoT sensors network, social network and traffic information stream (Zy-

blewski et al., 2021). There are two common characteristics in these areas. The first is unlimited

amount of data in the stream and limited memory cannot store all of them. Therefore, data stream

mining must be operated online, process the newly input and discard the old data. The second is

dynamic evolving environment of data stream, it will bring the concept drift problem. Concept

drift means machine learning model trained on past data will be inaccurate, since the decision

boundaries of the model has been changed (Lu et al., 2019). For example, a naı̈ve bayes model

applied on electricity price to do future price prediction. When new renewable energies (con-

cept drift) added to the grid, the accuracy of the original prediction model will obviously reduce.

Conventional machine learning algorithm always suffer from concept drift. There are two main

strategies to deal with concept drift, active and passive (Gama et al., 2014). The active strategy

will monitor the performance of model trained on data stream, and report a concept drift while

pre-defined threshold is reached. On the other hand, passive strategy only self-update to adapt the

concept drift rather than report it actively.

In this work, we focus on active concept drift detection strategy, aiming to detect the drift more

accurately and with less delay. Similar to the concept drift process, there are two kinds of con-

cept drift in a data stream, real and virtual (Lu et al., 2016). Given a data stream of length n,

denoted as D(1,n) = [d1, . . . , dn], where dn = (Xn, yn) represents a single data sample in the

data stream D(1,n). Xn and yn are the feature and class label, respectively. If there is no con-

cept drift in the data stream, then its joint distribution JD(1,n)(X, y) will remain stable. How-

ever, when concept drift happens at time t + 1, JD(1,t)(X, y) ̸= JD(t,∞)(X, y), denoted as

∃t, Pt(X, y) ̸= Pt+1(X, y), where Pt represents the joint distribution of (X, y) at time t (Liu

et al., 2020).

Based on Bayes’ theory, P (X, y) = P (X) × P (y|X). Real concept drift refers to Pt(y|X) ̸=

Pt+1(y|X) when Pt(X) = Pt+1(X), indicating a change in conditional probability (Wang et al.,

2018). Virtual concept drift is the opposite, Pt(X) ̸= Pt+1(X) when Pt(y|X) = Pt+1(y|X),

which only indicates a change in marginal probability. We focus on real concept drift.

70

5.1. Introduction

In this section, we propose an incremental weighted performance drift detection method (IW-

PDDM) by monitoring proposed weighted and combined indicator. The principal idea is first to

construct the indicator, which chooses not only the accuracy as one of the indicators, but also

considers the prediction stability. This is because the latter contains attributes related to precision

rather than accuracy. Statistics is used to define two thresholds for concept drift detection and vali-

dation. Furthermore, an incremental vote-based ensemble predictor is developed on data stream to

make prediction and it is capable to self-update with each data input. Finally, the update indicator

will be triggered when concept drift occurs and it resets the predictor. The main contributions of

this study are summarised as follows:

1. To the best of our knowledge, this work is the first to introduce prediction stability to concept

drift;

2. Defining the weighted prediction stability and its calculation rule under vote-based ensemble

learning;

3. Developing statistics to configure the threshold of concept drift detection and validation;

4. Developing an incremental vote-based ensemble learning strategy on data stream mining to

deal with concept drift detection.

5.1.1 Prediction Stability

The efficacy of machine learning models is commonly gauged through outcome-oriented pre-

dictive monitoring techniques such as precision, recall, and Area Under the Receiver Operating

Characteristic Curve (AUC) (Teinemaa et al., 2019). However, these metrics alone may not be

sufficient to adequately measure predictive performance as argued by (Teinemaa et al., 2018). For

instance, machine learning models are often prone to performance degradation when faced with

previously unseen data, leading to undesirable consequences in domains that demand high pre-

cision, such as healthcare and public transportation. Therefore, it is imperative to consider the

stability of a classifier, especially when it is employed for sequential predictions. In this study, we

introduce a new perspective on gauging prediction stability by examining the distribution of class

votes in a classifier. This distribution reflects the degree of stability in the predictions made by

the classifier, thereby providing a more comprehensive evaluation of the model’s performance. A

71

5.2. Weighted Prediction Confidence

balanced distribution would indicate a stable predictive model, whereas an imbalanced one may

signal potential instability. Hence, our approach provides an additional facet of performance eval-

uation, augmenting traditional metrics and offering a more holistic understanding of the model’s

robustness in the face of novel data.

5.2 Weighted Prediction Confidence

We propose an Incremental Weighted Performance Drift Detection Method (IWPDDM) to address

the concept drift problem in data streams. The proposed IWPDDM is meticulously designed to

cater to the dynamic nature of streaming data and is comprised of three major steps: incremental

vote-based ensemble learning, detection, and validation. These steps synergize to form a robust

and adaptive mechanism for drift detection.

5.2.1 Design of IWPDDM

The proposed IWPDDM has three steps, Incremental learning, Detection and Validation, shown

as Figure 5.1. The first incremental learning step is executed in real time, incrementally to make

prediction and update itself with new data sample input. With the prediction result and confidence

from first step, weighted incremental indicator is constructed and updated. Then the detection step

and validation step will be successively triggered when weighted incremental indicator trigger

corresponding thresholds. The IWPDDM will report the drift and reset the incremental classi-

fier.

Figure 5.1: Design of IWPDDM, include three steps, incremental vote-based ensemble learning,
detection and validation respectively. In step 1, weighted indicator will be updated and monitored.
Once corresponding statistical thresholds are reached, step 2 and 3 will be triggered successively.
When validation step validate a concept drift, signal for predictor reset will be sent, and drift will
be reported synchronous.

72

5.3. Incremental Vote-based Ensemble Learning Step

5.3 Incremental Vote-based Ensemble Learning Step

The aim of incremental vote-based ensemble learning step is to dynamically train the model to

make predictions with upcoming data samples. The performance of an incremental ensemble

learning model will change when a concept drift occurs. The prediction accuracy of the model

is considered as the first indicator, because it provides a general representation of the model’s

prediction performance. On the other hand, accuracy is inherently limited as it can only generate

binary decisions, true or false.

Motivated by (Teinemaa et al., 2018), we define a term called prediction stability (PS) for incre-

mental learning algorithms in data stream mining. Normally, a learning algorithm is considered

unstable if small changes in the training set can cause significant changes in the predictor. In this

section, we use an incremental vote-based ensemble learning algorithm as the predictor. Therefore,

changes in PS can reflect the impact of concept drift on the incremental learning model.

We consider the weighted sum S1,t of the accuracy value and prediction stability as the indicator

of performance over the time period from 1 to t, which is shown in Equation 5.1:

S1,t = W1 ·AC1,t +W2 · PS1,t (5.1)

where AC1,t is the average value of accuracy of the incremental learning model from the starting

time point 1 to t, PS1,t is the average value of prediction stability , W1 and W2 are the weight

values for AC1,t and PS1,t respectively. To maintain focus on our contribution, the weight value

allocation strategy always uses the average weight value. AC1,t is the ratio of the number of

correct predictions to the time period from the start to time point t. PS1,t is the average value of

PS from the start to t, as shown in the Equation 5.2:

PS1,t =

∑t
i=1 PSi

t
(5.2)

where PSi represents the degree of prediction stability of the predictor at time point i, which is

calculated by the Equation 5.3:

73

5.3. Incremental Vote-based Ensemble Learning Step

PS =

∑N−1
i=1

∑N
j=i+1 |NCi ·Hi −NCj ·Hj |∑N−1
i=1 Hi +

∑N
j=i+1Hj

·N (5.3)

where NCi represents the stability of the predictor for class i, and Hi is the corresponding weight

value. As mentioned before, the weight strategy always uses the average weight, so Hi = Hj =

1
N . N is the number of classes in the data stream (e.g., N equals 2 in a binary classification task).

NCi is calculated using the Equation 5.4:

NCi =
Number of classifiers vote for class k

Number of all classifiers
(5.4)

Since the predictor used in this section is a vote-based ensemble learning model, the distribution

of vote numbers for each class reflects the prediction result. For example, in a binary classification

task, A1 = A2 = 0.5 represents the worst PS, as it is almost the same as random classification

with a PS value equal to 0 based on Equation 5.3. Then the highest PS value 1 will be reached

when A1 equals 1 or 0. Therefore, the value interval of PS is [0, 1], representing the degree of

prediction stability from highest to random.

Based on Equation (5.1)-(5.4), our proposed indicator for drift detection is the weighted sum S1,t

of accuracy (AC1,t) and prediction stability (PS1,t). The generation of S1,t is shown in Algorithm

4.

Algorithm 4 Incremental Vote-Based Ensemble Predictor Learning and Generation of S1,t

1: Input: Data stream (Xi, yi), initial incremental vote-based ensemble predictor M
2: Output: S1,t, AC1,t = 0, PS1,t = 0
3: while data stream continues do
4: Perform partial training with incoming data using M
5: Update and make predictions using M
6: for prediction result on each class do
7: Calculate overall ACt and PSt (based on Equation 5.3 and 5.4) at time t
8: end for
9: Calculate AC1,t and PS1,t based on Equation 5.2

10: Calculate S1,t based on Equation 5.1
11: end while

In Algorithm 4, the incremental vote-based ensemble learner is initialized and dynamically trained

with incoming data while simultaneously making predictions on the input data. The values of ACt

and PSt are then calculated at time point t. Finally, the indicator S1,t is calculated based on the

74

5.4. Detection and Validation Step

availability of AC1,t and PS1,t.

5.4 Detection and Validation Step

Change of the indicator S1,t reflects the performance change of the predictor. If no concept drift

occurs, it will gradually increase until a certain amount of data is reached and then stabilize.

However, in the presence of concept drift, both accuracy and prediction stability, which are two

components of S1,t, will decrease.

To define the threshold for concept drift detection, the Three-sigma rule is used. The detection

threshold is set at 2 (95%) standard deviations, and the validation threshold is set at 3 (99.7%) stan-

dard deviations. Therefore, the standard deviation of the indicator S1,t is calculated as sd(S1,t) =√
S1,t · (1− S1,t).

Algorithm 5 Detection and Validation Step
1: Input: Indicator value S1,t

2: Output: Drift point
3: Initialize: drift flag = False, Smax = 0, sd(Smax) = 0
4: while S1,t continues do
5: Calculate its standard deviation sd(S1,t)
6: if S1,t − sd(S1,t) > Smax − sd(Smax) then
7: Smax = S1,t

8: sd(Smax) = sd(S1,t)
9: end if

10: if S1,t − sd(S1,t) < Smax − 2× sd(Smax) then
11: drift flag = ”Detection”
12: end if
13: if S1,t − sd(S1,t) < Smax − 3× sd(Smax) then
14: drift flag = ”Validation”
15: end if
16: end while
17: Return drift flag

In Algorithm 5, the max value of the S1,t and its standard deviation will update incrementally. At

the same time, the drift flag will be updated when corresponding threshold is reached. When the

drift flag is set to Validation, it means concept drift is validated and predictor should be reset for

retraining from scratch.

75

5.5. Experiment and Evaluation

5.5 Experiment and Evaluation

This section compares the proposed IWPDDM with the six existing drift detection methods, over

four benchmark datasets and one real-world dataset. Section 5.6 describes the datasets and drift

detection methods used in experiment. Section 5.7 analyzes the experimental results and compares

with other 6 detection methods.

5.6 Datasets and Drift Detection Methods

Four benchmark data streams widely used in drift detection literature are selected for experiment

and evaluation, namely SEA, SINE, AGRAWAL, and LED. They are available at public stream

data mining platform (Montiel et al., 2018). Descriptions of the datasets are in Table 5.1. Each

data stream has 1000 time points, the concept drift occurs at time point (CDT) 500. To compare

the performance of drift detection method, we test the methods on each dataset for 100 trials which

are generated with different random seeds.

Table 5.1: Description of the datasets

Dataset No. of attributes No. of classes Drift width Drift type
SEA 3 2 1 abrupt
SINE 2 2 1 abrupt

AGRAWAL 9 2 1 abrupt
STAGGER 3 2 1 abrupt

The real-world dataset used in this section is Posture dataset, which is collected at 0.1s intervals(u),

from sensors on ankle, belt and chest. Its class label is made by a human observer. The patterns

of each data stream of posture dataset are clearly different, before and after 500 u. So, the concept

drift point in Posture is time point 500.

Six drift detection methods are accessible in skmultiflow [18]. We use the parameters recom-

mended by skmultiflow for each drift detection method. The detailed parameters are shown in

Table 5.2.

5.7 Experiment Result and Evaluation

We use Ei to represent an independent experiment, which will run 100 times on both benchmark

datasets and real-world dataset. Concept drift point will be reported if drift detection successfully

76

5.7. Experiment Result and Evaluation

Table 5.2: Methods parameters

Algorithms Parameters
IWPDDM α = 2, β = 3

DDM α = 0.05, β = 0.01
Adwin δ = 0.05
EDDM α = 0.9, β = 0.95

PH threshold=30, δ = 0.005
HDDM A α = 0.005, β = 0.001
HDDM W α = 0.05, β = 0.01, λ = 0.05

detects the drift. To compare the performance of IWPDDM with other 6 drift detection methods,

we use drift detection accuracy and delay. The drift detection accuracy measures how the drift

detection method works with concept drift. To compare it with other 6 drift detection methods, in

terms of the ratio of the number of drifts detected data stream to the total 100 trails. The higher

the accuracy, the better the performance.

Table 5.3: Drift detection accuracy (%)

Methods IWPDDM DDM ADWIN EDDM PH HDDM A HDDM W
SEA 89 75 13 96 5 18 71
SINE 99 93 51 100 55 71 96

AGRAWAL 95 50 14 96 37 47 94
STAGGER 94 86 84 80 76 86 91
POSTURE 96 94 94 94 82 95 91

Average 94.6 79.6 51.2 93.2 51 63.4 88.6

From the result of drift detection accuracy (Table 5.3), our proposed IWPDDM has the highest

value among all the methods. On the other hand, we also compare the performance of drift detec-

tion methods based on drift detection delay. Drift detection delay refers to the distance between

detected drift point and CDT. The smaller value of delay indicates the better drift detection per-

formance. Then the Figure 5.2 describe the result of the drift detection delay. From the boxplot,

it is clear that our proposed IWPDDM has the lowest value of drift detection delay among all the

methods.

Based on the obtained result of drift detection accuracy and delay, it is evidenced that our pro-

posed IWPDDM has led to the best performance of drift detection among other methods by high-

est average drift detection accuracy, 1.4% improvement compare to second method EDDM, and

IWPDDM also have lowest drift detection delay, which is much smaller than others.

77

5.8. Summary

Figure 5.2: Drift detection delay result, x-axis represents the methods used for comparison and y-
axis is the drift detection delay. From the boxplot, our proposed IWPDDM method has the lowest
delay among all the drift detection methods

5.8 Summary

This chapter presents an incremental weighted performance drift detection method (IWPDDM)

for data stream mining. It addresses the concept drift issue by monitoring the performance of

predictor incrementally trained on data stream. The prediction accuracy and stability are both

used to construct the weighted indicator for the concept drift. The weighted indicator will then

also update with incremental learning model. Once the indicator reaches a pre-defined statistical

threshold, the concept drift will be reported immediately. The comparative studies have shown

that the proposed IWPDDM performs best among the other six established detection methods,

with better detection accuracy and delay.

78

Chapter 6

Concept Drift Detection by

Model-centric Transfer Learning

Framework

Concept drift refers to the inevitable phenomenon that influences the statistical features of the

data stream. Detecting concept drift in data streams quickly and precisely remains challenging,

and failure to detect it will render model trained on historical data ineffective. Current drift de-

tection methods suffer from the following problems: detection delay, many false detected drifts,

and rarely utilize the deep neural network directly in the field of concept drift detection, which

is considerably competent at addressing the classification problems of data stream. Furthermore,

the output of the model is usually taken as a metric to detect drift, while changes in the model

parameters are often ignored which contain highly useful information. In this section, we propose

a model-centric framework for concept drift detection (MCDD) that uses deep neural network

to detect concept drift by focusing on the change in the model itself, rather than the model out-

put. In addition, transfer learning is developed to accelerate the drift detection process and reduce

the computational complexity by freezing parts of the network. To further reduce false detected

drifts, we propose long and short time windows method to determine the real drift from the po-

tential detected drift. Experiments with real-world and artificial datasets have been undertaken to

demonstrate the effectiveness of the proposed framework.

79

6.1. Introduction

6.1 Introduction

Today, big data is constantly created from such sources as social media, online stores, the cryp-

tocurrency market, and other places. This real-time generated data is called data stream. The

results analyzed from the data stream can assist in making smarter decisions. However, the nature

of the real-time data stream is dynamic, and it poses problems for models trained with previous

data. The question is, how does the model keep stable performance on unstable data streams?

There are many factors that cause models to lose effectiveness, and concept drift is one of the un-

avoidable problems. It is caused by changes in the underlying pattern, which subsequently cause

a large downturn in the accuracy of the trained model after the drift occurs.

For convenience, the notations in this section are listed in Table 6.1.

Table 6.1: Notation and abbreviations

Notation Description

H1,n data stream H1,n = [h1, · · · , hn]

beginning from time point 1 and ending at n

hi single data sample at time point i in H , hi = (Xi, yi)

Di,t the distribution of the data stream between time point i and t

L layer of the deep neural network, e.g. LI represents input layer

δ neuron of the deep neural network

W weights stream

w weight of the neuron

ts the starting time of drift

tf time point of first detected drift

tl time point of last detected drift

Si i-th independent experiment

Oi output, Oi = [o1, o2, ..., on] in one trial

EDR effective detected range, [Lt, Lt ∗ (1 + γ)]

FEDP time span between ts and tf

LDP distance between ts and tl

80

6.1. Introduction

There are two types of concept drift may exist in data stream. Given a data stream containing

of a number of samples, indicate by H1,n = [h1, · · · , hn], where hi = (Xi, yi) represents each

sample in data stream. Xi is the feature vector of d dimensions , and yi is the class label. The data

stream typically follows a joint distribution. D1,t(X, y) at time point t + 1, a drift occurs when

Dt(X, y) ̸= Dt+1(X, y), denotes as ∃t, Pt(X, y) ̸= Pt+1(X, y) (Lu et al., 2016) .

The decomposition of joint probability Pt(X, y) follows the formula Pt(X, y) = Pt(X)×Pt(y|X).

According to Bayesian theory, there are two types of concept drift (Souza et al., 2020): real con-

cept drift, indicating a change in posterior probability, denoted as Pt(y|X) ̸= Pt+1(y|X) while

Pt(X) = Pt+1(X), and virtual concept drift shown by a change in marginal probability, denoted

as Dt(X) ̸= Dt+1(X) while Pt(y|X) = Pt+1(y|X). The majority of existing articles regard

concept drift as a change in the posterior probability because it indicates a change in the decision

boundary (Lu et al., 2019) (Gama et al., 2014) (Wang et al., 2018). Our work focuses on detecting

real concept drift in the data stream.

In order to solve the problems caused by real concept drift, a number of concept drift detection

methods have been previously proposed. The purpose is to detect drift after it occurs, and then

adjust the model according to the detection results to adapt to the new data stream. However,

the existing works usually only monitor the output performance changes of the model to judge

whether drift occurs. These models are usually conventional machine learning models, but today’s

data streams have more complex structures. Compared with traditional machine learning, the

deep learning model with stronger fitting ability and robustness has not been applied in the field

of concept drift detection as far as we know. However, the problem is that deep learning usually

requires more computing resources and time. Under the same computing resources, the processing

time is slower than that of conventional shallow models with simple structures. Excessive delay is

not conducive to drift detection.

We proposed a MCDD in streaming data. Firstly, the initialised deep neural network will be

trained and evaluated on base data without concept drift, while a second network with an identical

structure will be partially frozen based on the transfer learning principle. The partially frozen

network will merge with the pre-trained network’s weights and only execute training mode on data

containing concept drift. Transfer learning integration could considerably accelerate the concept

drift detection process and reduce its computing cost. Furthermore, the strategy of long and short

81

6.2. Methodology

time windows is designed to collect the weights of the transferred network’s final hidden layer. In

the end, the real drift will be detected, while the false drift will be filtered away.

Our contributions are:

1. Proposing a model-centric deep neural network framework to detect the concept drift in data

streams.

2. Incorporating transfer learning to enable the drift detection more efficient and precise.

3. Proposing a long and short windows strategy to accurately detect and validate real drifts

while filtering out false drifts.

4. Three types of concept drift, i.e., abrupt drift, early abrupt drift and incremental drift, will

be constructed on both artificial and real-world datasets. In addition, the performance of

various drift detection algorithms will be evaluated.

The rest of chapter is organized as follows: The proposed method is presented in Section 6.2.

Experiments and results are discussed in Section 6.3. Finally, the summary is provided in Section

6.4.

6.2 Methodology

The purpose of this work is to accurately detect real concept drift and reduce false drift. The

real concept drift will degrade the performance of the model trained with historical data. We

design a deep neural network with transfer learning to detect real concept drift. When new data

becomes available, the trained model will adapt accordingly. Therefore, if a deep neural network

is selected as the training model, the weights of the network change to indicate the model change.

A statistically significant change in the weights of the neural network represents the occurrence of

concept drift.

Model initialization and pre-training, transfer learning, and model-centric concept drift detection

are the three main parts of the framework we propose. In accordance with the three sections

depicted in Figure 6.1, respectively.

In the first section, we will generate two neural networks with the same structure: one that will

be trained and evaluated on base data, and another in which the majority of neurons are frozen,

82

6.2. Methodology

Figure 6.1: Flowchart of the Model-Centric Transfer Learning Framework on Concept Drift De-
tection.

leaving only neurons on the last layer to update their own weights during train mode. Then, in the

second section, primarily merge the partially frozen model with the weights from the pre-trained

model, and then apply the newly fitted model only in train mode to the data with concept drift;

hence, only neurons on the last layer can update their weights. The last phase will monitor the

weight stream that represents the change of entire model, and then the aggregated weights will be

fed into the long and short time windows in order to detect the real drift and filter out the false

drift.

6.2.1 Model Initialization and Pre-training

In Figure 6.1 the first part mainly does two tasks, the first is to initialise a deep neural network

model, Mi, and then use base data to train on it and get a trained model, MA; the second is to

reproduce and reconstruct a model, MB based on Mi, where part of the neurons are frozen.

We use L to represent the hidden layers in a deep neural network as the left side of the Equation

6.1. The input layer, the output layer, and the hidden layer are represented by the variables LI ,

LO, and Ln, where n ≥ 1, respectively.

And on the right side of the Equation 6.1, δn,m represents the mth neuron in the nth layer

83

6.2. Methodology

Ln.

[
LI L1 · · · Ln−1 Ln LO

]
=



δI,1 δ1,1 · · · δn−1,1 δn,1 δO,1

δI,2 δ1,2 · · · δn−1,2 δn,2 δO,2

...
...

. . .
...

...
...

δI,m δ1,m · · · δn−1,m−1 δn,m δO,m


(6.1)

The first task aims to pre-train a deep neural network with base data. Training will be similar to

conventional machine learning training procedures: train and evaluation phases. After the train-

ing of the model is finished, the neuron and its weights will be saved and used in the second

stage.

The second task is to rebuild a model based on Mi. The neural network structure of MB is the

same as that of Mi, but a portion of the neuron is frozen. Furthermore, the neuron in a deep neural

network has two modes: active and frozen (Csiszár et al., 2023); the active mode means the neuron

can be updated during the model training. The neuron, on the other hand, cannot change when it

is in frozen mode, which is represented by δ̄.

And to perform the idea of model-centric, no matter what kind of neural network structure is

applied to the base data, the last layer of the network is always the linear layer, and we freeze all the

hidden layers except the last layer, the partly frozen network shown by the following matrix:



δI,1 δ̄1,1 · · · δ̄n−1,1 δn,1 δO,1

δI,2 δ̄1,2 · · · δ̄n−1,2 δn,2 δO,2

...
...

. . .
...

...
...

δI,m δ̄1,m · · · δ̄n−1,m−1 δn,m δO,m


(6.2)

As the matrix in Equation 6.2 shows, only the neurons from L1 to Ln−1 of MB are frozen. The

neurons [δn,1, · · · , δn,m] in the last layer Ln is able to be updated.

6.2.2 Transfer Learning

In this section, transfer learning is used to train and perform drift detection in a model-centric way.

The principle behind it is that the network model after transfer learning (Mahdavi et al., 2022) is

84

6.2. Methodology

still highly sensitive to data with drift, and it can also speed up the detection efficiency of drift

while reducing computing consumption. The workflow is shown in Figure 6.2.

Figure 6.2: Flowchat of Transfer Learning, there are three steps. First, merging model B with
weights from pre-trained model A. Then, Model B performs training with data with concept drift.
Lastly, the weights (green neurons in red dashed box) from last layer form the Weight Stream.

Firstly, the MA weights will be combined with the partially frozen neural network MB , leaving

only the last hidden layer Ln is activated. The fitted MB will then be trained on concept drift data,

and the weights of the final hidden layer Ln will be collected for drift detection.

The idea of being model-centric in this section is that we conduct drift detection by observing

changes in the model itself, instead of recording and analysing the output of the model to detect

drift. Specifically, instead of collecting the weights of the entire model, we innovate the concept of

transfer learning to only activate the last layer of the model, and only collect the weight changes of

the last layer to ensure the efficiency requirements of drift detection. The specific proposal steps

are shown in Algorithm 6:

From the algorithm 6, the weights from MA will be assigned to MB , then each data instance will

feed into MB and deep neural network will start to train with Datadrift. The highlighted train

indicates that we only use train mode in this phase, as opposed to the train and evaluation in pre-

training Section 6.2.1. The reason for this is that the deep neural network learning process has two

modes: training and evaluation (Chen et al., 2022). In the train mode, each neuron in the network

could be updated; on the other hand, the weight of the neuron is fixed in evaluation mode.

The principle is that once a deep neural network is trained on a historical data, it will regard

85

6.2. Methodology

Algorithm 6 Transfer learning for MCDD

Require: weights δ of pre-trained MA, partly frozen MB , data with concept drift Datadrift,
Weight stream W

1: assign δ to MB

2: while Datadrift ̸= Empty do
3: T = 1
4: for each data instance Dataeach in Datadrift do
5: T ← T + 1
6: Dataeach train on MB (only perform train, no evaluation)
7: Collect and save weights [δn,1 · · · δn,n] in W with label wT

8: Discard Dataeach
9: end for

10: end while

the data with concept drift as a new task, degrading the performance of the neural network on

new tasks. In short, the emergence of the concept drift, will lead to major changes in the originally

stable deep neural network model. Our method is able to detect concept drift by observing changes

in the model itself, rather than observing its predictive performance on new data. Furthermore, we

found that it is not necessary to monitor the entire change of the model, and only one layer of the

deep neural network model is enough to reflect the change of whole model. In our framework

setting, we only leave the last hidden layer Ln for the system to train and update itself. The single

weight vector is [δn,1;T , δn,2;T , · · · , δn,m;T]
tr, which corresponds to the last column (red dashed

box) of Weight Stream at time T . Each column of weight stream represents the state of the deep

neural network at each time point. The weight stream will be then used as input to detect drift in

long and short time windows.

6.2.3 Model-Centric Concept Drift Detection (MCDD)

Our MCDD focuses on the change in the model itself instead of the output. To do this, we use

pre-training and transfer learning to take the model’s weights and use them as features for drift

detection.

In previous section, the weights has been incrementally updated during the transfer learning stage,

and compose the weight stream matrix W = [w1, w2, ..., wT], where wT is the weight of last

hidden layer Ln collected at time T , equivalent to [δn,1;T , δn,2;T , · · · , δn,m;T]
tr. If there is no

drift, refer to Pt(y|X) = Pt+1(y|X) while Pt(X) = Pt+1(X), indicates the properties of data

stream remain unchanged. Then, model trained on historical data do not experience knowledge

86

6.2. Methodology

Figure 6.3: Long and short time windows, its goal is to detect real drift while filtering out false
drift. In this case, the real drift point starts at 500 with a duration of 1. But there is more than one
potential drift detected by the long time window. Then short time window will be initialized and
validate whether the potential drift is true drift or false drift.

updates; therefore, the weights will remain relatively stable.

On the other hand, the model will update its weights when the posterior probability of data changed

in the stream, refer to Pt(y|X) ̸= Pt+1(y|X) while Pt(X) = Pt+1(X). It will trigger the model

to update itself to adapt to the new concept. The change in the model is reflected in the weight

change of the neurons. In order to improve the detection efficiency, MCDD only perform drift

detection by observing the change of weight on the last hidden layer Ln.

There are two steps for drift detection: weights aggregation and the long short time windows

method. The first step, aggregation will convert the weight vector wT to a single value to accelerate

the drift detection efficiency. The second step aim to use long and short time windows strategy to

detect the real concept drift and filter out the false drift.

The aggregation as first place is because there are m number of neurons in Ln, where |m| ≥ 1. The

amount of data that needs to be processed in the time period T can drop from |m×T | to |T | when

we use data aggregates instead of whole weight stream matrix. To make our work focus on the

drift detection framework, we use the arithmetic mean for aggregation, therefore the aggregated

87

6.2. Methodology

weight ẇT in time T is shown as:

ẇT =
m∑
i=1

δn,i;T /m (6.3)

where δn,i;T is the weight of mth neuron in Ln. The aggregated weight stream denotes as Ẇ ,

where Ẇ = [ẇ1, ẇ2, · · · , ẇT], then will be fed into the long and short time windows for drift

detection.

In the second step, a long and short time windows method is employed to validate real concept

drift. These two sub-windows have a progressive relationship: the long time window starts ac-

cumulating data as the detection phase begins, while the short time window is activated upon

capturing potential drift. To mitigate false drift caused by noise or abnormal cases, we adopt a

strategy from the article (Wang et al., 2022) that involves randomly subsampling instances from

the short time window, the sampling ratio used in this section is 50%. This approach not only

maintains data continuity but also minimizes the likelihood of false drift. The workflow is illus-

trated in Figure 6.3.

The Algorithm 7 illustrates the rule for determining real drift from potential drift and filtering out

the false drift.

In lines 4–7, the parameters max weight, max std, min weight, and min std are initialised

with the values weight pre train and std pre train pairwise. These two parameters, weight pre train

and std pre train, which are derived from the pre-train stage. It takes advantage of the sta-

ble weights from the pre-train phase, and lets the initialization of the max weight, max std,

min weight, min std to be more smooth. Instead of initialing the value to∞ or−∞, which will

cause high fluctuations at the beginning of the detection phase.

The calculation of weight pre train and std pre train, utilizes the weights of the model from

the pre-training phase in Section 6.2.1. The reason is that the model and train data will tend to

fit to the maximum extent in the final stage of training. Therefore, the model at this time will be

relatively stable. Then, we will collect the last 500 sets of weights of last hidden layer of model,

denoted as wptT , where T is the time point. Then it will be used in Equation 6.4.

88

6.2. Methodology

Algorithm 7 Model-Centric Concept Drift Detection

1: Input: aggregated weight stream Ẇ , drift flag, potential drift flag,
2: max weight, max std,min weight,min std, weight pre train, std pre train, Time

point T
3: Output: drift flag
4: if weight pre train ̸= 0 and std pre train ̸= 0 then
5: max weight← weight pre train, max std← std pre train
6: min weight← weight pre train, min std← std pre train
7: end if
8: while Ẇ ̸= Emtpy do
9: current aggregated weight ẇi at time point i

10: if max weight−max std ≤ ẇi − stdi then
11: max weight← ẇi, max std← stdi
12: end if
13: if max weight−max std ≥ ẇi − stdi then
14: potential drift flag ← True
15: end if
16: if min weight+min std ≥ ẇi + stdi then
17: min weight← ẇi, min std← stdi
18: end if
19: if min weight+min std ≤ ẇi + stdi then
20: potential drift flag ← True
21: end if
22: if potential drift flag == True then
23: Short window start to collect nine more potential drift flag
24: if All ten continuously potential drift flag are all True then
25: drift flag ← True
26: else
27: drift flag ← False
28: Stop and empty short window collect
29: end if
30: else
31: drift flag ← False
32: Stop and empty short window
33: end if
34: end while

weight pre train =

N∑
T=0

WptT/N (6.4)

Where N is number of the collected weights.

The calculation of std pre train is based on the weight pre train, which follows the Equation

6.5 below.

89

6.3. Experiments

std pre train =
√

(weight pre train)× (1− weight pre train)/N (6.5)

In lines 8–21, the long and time windows begin to collect upcoming weights from weight stream.

Then the max weight, max std, min weight, and min std will be updated. Since the weight

changes in two directions, increase or decrease, therefore the only group of update will be exe-

cuted. Then the potential drift flag will become True if the pre-defined threshold is reached.

The principle of potential drift detection is based on the 3σ rule (Pukelsheim, 1994). The idea is

99.7% of the values lie within one standard deviation of the mean, therefore outside of this range

is considered potential drift.

If the potential drift flag equal to True, the short time window from lines 22 to 29 is activated.

The indication of the true drift is validated if ten consecutive true potential drift flag are col-

lected. Otherwise, it will be considered false drift, shown in the Figure 6.3; meanwhile, the short

time window will be cleared and wait to be reactivated.

In summary, the long time window will be activated with the entry of data, followed by the ac-

tivation of the short time window when potential drift is detected. And short will only validate

that this is a real drift if it receives 10 successive possible drift flags; otherwise, it will identify the

potential drift as a false drift, clear itself, and wait to be triggered again.

6.3 Experiments

6.3.1 Datasets and Concept Drift Description

In this section, four artificial datasets and two real-world datasets are described. Then, proposed

approach for constructing three types of concept drift with real-world data is presented.

Artificial Datasets

For the experiment and evaluation, four artificial datasets often used in drift detection literature

are chosen: SEA, SINE, AGRAWAL(AG), and LED. They could be accessed on the public stream

data mining platform (Montiel et al., 2018). Table 6.2 provides descriptions of the datasets.

90

6.3. Experiments

Table 6.2: Description of Artificial and Real-world Datasets. 0-Abrupt concept drift, 1-Early
abrupt concept drift, and 2-Incremental concept drift

Dataset No. attributes No. class Drift types Dataset type
SEA 3 2 0/1/2 Artificial
Sine 2 2 0/1/2 Artificial
AGRAWAL 9 2 0/1/2 Artificial
Mixed 3 2 0/1/2 Artificial
Posture 3 2 0/1/2 Real-world
Powersupply 2 2 0/1/2 Real-world

Real-world Datasets

Two real-world datasets are used for drift detection evaluation. Powersupply (Wu et al., 2014)

and Posture (Kaluža et al., 2010), are two data streams collected in the real world with multiple

sensors. The details shown below:

Powersuppply: It is the hourly powersupply recording of an Italian electrical provider that records

power from two sources: the main grid and other networks that have been transformed. This

stream contains records for the years 1995 to 1998. Each data point contains two attributes and

one label, where each attribute corresponding to a source of powersupply and the label indicating

the moment of collection as a 0 to 23 integer.

Posture: The posture dataset collects data from sensors on the left/right ankle, belt, and chest at

0.1s intervals. Each data instance is made up of three features and one class label, with the features

indicating the spatial position and the class label denoting the kind of posture.

Concept drift can be generated with a specified start point and duration in artificial datasets. How-

ever, no such definition exists in real-world data. Consequently, we reorganise and rebuild the

real-world data to have three types of concept drift: abrupt concept drift, early concept drift, and

incremental concept drift.

To generate various types of concept drifts, we first extract each concept from the dataset, and then

we construct concept drift based on decision boundary movements corresponding to posterior

probability changes in the data stream. For example, in the powersupply dataset, 24 hours of

recording correspond to 24 concepts; therefore, we filter the several most distinct concepts and

use them to generate different types of concept drift.

Figure 6.4 shows the difference between abrupt drift and incremental drift measured by the dura-

91

6.3. Experiments

Figure 6.4: Different concepts in abrupt drift and incremental drift.

tion of the drift. The X1 and X2 represent the two features in the data stream, and it is clear that the

data itself will remain unchanged before and after the drift. However, the class Y corresponding

to the posterior probability of the data stream will have abrupt or incremental change after the drift

occurs. The movement of the decision boundary also confirm this observation. The difference

between these two drifts is the duration of the drift. We chose 180 degrees as an extreme example,

although a lesser rotation drift is also reasonable depending on the circumstance. The movement

of the decision boundary also reflects the pattern of drift change.

Three kinds of concept drift

For a more comprehensive evaluation on our methods, we employ three strategies for evaluating

the performance of drift detection. Each dataset contains one of three different types of concept

drift: abrupt concept drift, early abrupt concept drift, and incremental concept drift. Each data

stream has one thousand time points. We set the concept drift with different start point ps and

duration d to generate distinct concept drift. Below are the drift start point and its duration:

Drift type Drift start point (ps) Duration (d)
Abrupt drift 500 1
Early abrupt drift 100 1
Incremental drift 400 200

Table 6.3: Three different types of concept drift with drift point and duration (time point)

The abrupt and early abrupt concept drifts have the same duration, one time point, indicating that

the concept will abruptly change to a different concept. The only difference is the drift start point.

Comparatively, the later the drift occurs, the easier to be detected, as the detection method has

more time to react. Therefore, the early abrupt concept drift is used to measure the responsiveness

92

6.3. Experiments

to the concept drift. The incremental drift has a longer duration than the abrupt drift and early

abrupt drift, thereby making it harder to identify due to its modest changes. These three drifts and

the corresponding data stream changes are shown in Figure 6.5.

Figure 6.5: Three types of concept drift: abrupt concept drift, early abrupt concept drift and
incremental concept drift. The left represents the concept change, and the right represents the
decision boundary change caused by concept drift.

It is clear that both abrupt drift and early abrupt drift have dramatic changes in a short period of

time, only differing in the drift start point. However, the change of the incremental drift takes

longer, resulting in a gradual shift to a different concept.

6.3.2 Baseline Methods

In this section, we employ nine methods, of which six drift detection techniques are sourced from

the skmultiflow library (Montiel et al., 2018). These methods include DDM, ADWIN, EDDM, PH,

HDDM A, and HDDM W. Additionally, we utilize two methods from the river library (Montiel

et al., 2021), namely FHDDM and MDDM. Lastly, OASW (Yang and Shami, 2021), a method

similar to DDM, is publicly available on GitHub.

For each method, we employ the default parameters, with the exception of ADWIN, for which we

modify the settings to enhance performance. Table 6.4 presents the specific values or thresholds.

The warning and drift thresholds for DDM, HDDM, HDDM A, and HDDM W are denoted by α

and β, respectively. In the case of ADWIN and PH, there is only a drift threshold, represented by

93

6.3. Experiments

δ.

In HDDM W, λ signifies the weight assigned to the data, with more recent data receiving less

weight. For FHDDM, MDDM, and OASW, we employ a grid search strategy to determine the

most suitable parameters, thereby achieving optimal performance in this section.

Table 6.4: Algorithm parameters or threshold description

Algorithms Parameters(Thresholds)

DDM α = 0.05, β = 0.01

ADWIN δ = 0.05

EDDM α = 0.9, β = 0.95

PH δ = 0.005

HDDM A α = 0.005, β = 0.001

HDDM W α = 0.005, β = 0.001, λ = 0.05

FHDDM δ = 0.01

MDDM difference = 0.1, δ = 0.01, λ = 0.05

OASW α = 0.85, β = 0.95

6.3.3 Evaluation Metrics

The detection delay is often used to compare performance. (Liu et al., 2022). This work uses three

metrics from (Wang et al., 2022) for evaluation; details are provided below.

• Effective Detected Drift Rate (EDDR): the proportion of experimental trials where a de-

tected drift point falls inside the Effective Detected Range (EDR).

• Distance to First Effective Detected Point (FEDP): to measure how quickly the drift point

could be detected.

• Distance to Last Detected Point (LDP): determine if the drift detection method could be

halted in time after real drift has been detected.

The EDR is defined by a time interval that indicates the acceptable time interval for detected drift

point collection. Only drift points detected within EDR are considered effective. This section

defines three groups of EDR for each type of concept drift in response to varying circumstances.

94

6.3. Experiments

EDR: abrupt drift [400, 600] early abrupt drift [50, 150] and incremental drift [300, 500].

6.3.4 Experiment Setup

Our method was implemented using Python 3.7.10. We established the neural network structure

using the PyTorch 1.10.0 package. The functions we used to build the networks depicted in the

Table 6.5:

Table 6.5: Function used to construction of the neural network

Layer PyTorch layer
Linear layers torch.nn.Linear
Recurrent layers torch.nn.GRU
Non-linear layers torch.nn.Tanh
Activate layer torch.nn.Sigmoid
optimizer torch.optim.SGD

Throughout network construction and implementation, simple network structures and functions

will be utilised in order to keep our contribution more focused on the framework. The MCDD-

FCN network structure is composed of linear layers, nonlinear layers (optional), and an active

layer. Utilizing recurrent and activate layers, the MCDD-RNN structure network is constructed.

Stochastic gradient descent (SGD), which is accessible in PyTorch, used as the optimizer ap-

proach for both structures, other solutions are also acceptable. The loss function used is Binary

Cross Entropy Loss from PyTorch Library.

The experiment hyper-parameters consist of first two stages of the proposed framework, which

correspond to the two phases of model-centric drift detection. The details of the hyper-parameters

are listed in the Table 6.6.

Table 6.6: Hyper-parameters used for proposed framework

Pre-training Detection

Learning Rate
0.01(MCDD-FCN)
0.1 (MCDD-RNN)

1e-4

Step size 200 10
Epoch 3 1
Decay rate 0.9 1.0

The only difference between the hyper-parameters is the learning rate; experiments indicate that

this setting delivers more consistent results. By optimizing the hyper-parameter settings for pre-

training, the efficiency of the pre-training process can be enhanced. And for the detection phase,

95

6.3. Experiments

the slower learning rate will keep the weight update of the neural network stable until the concept

drift occurs. The detection phase’s epoch is set to 1 to meet with the data stream learning criterion

one-pass (Gu et al., 2021), that data can only be used once before being discarded.

6.3.5 Comparison Results on Benchmark Datasets

The experiments aims to validate the performance of the framework in comparison with the base-

line methods on three types of concept drift as in section 6.3.1. Section 6.3.5 is to verify whether

our proposed framework is compatible with different neural network models. For each kind of

concept drift, we run 100 trails, the metrics to evaluate the result shown in section 6.3.3. The

experiments and discussion with metrics EDDR shown in section 6.3.5. Then the remaining two

metrics FEDP and LDP will be evaluated in section 6.3.5 Abrupt Drift Detection, section 6.3.5

Early Abrupt Drift Detection and Incremental Concept Drift, section 6.3.5. We also discussed the

Parameter Adjustability of the framework for different neural network structures.

Feasibility verification of MCDD

Our proposed framework could detect concept drift by monitoring the weight change of the deep

neural network. Neural network structures exist in various forms and are effective for different

types of machine learning problems. As a consequence, our proposed framework is compatible

with various neural network structures. In this section, we adopt the widely-used neural network

structures MCDD-FCN (fully connected network) and MCDD-RNN (recurrent neural network).

Both network structures include three hidden layers, with the first two layers being linear (MCDD-

FCN) and recurrent (MCDD-RNN), and the third layer being linear for both structures. Table 7.2

displays the hyper-parameters implemented in two structures.

The MCDD-FCN and MCDD-RNN are evaluated on datasets containing abrupt and incremental

concept drift, with different drift start point and duration. The result shown in Figure 6.6a and

Figure 6.6b. From the result, it is clear that both are capable of detecting concept drift. However,

these two methods respond differently to different concept drifts.

Our two methods produce similar results, as shown in Figure 6.6a. However, MCDD-FCN main-

tains a higher concentration of detected drift points than MCDD-RNN. Inter-quartile range (IQR)

for MCDD-RNN is relatively larger at (ps=100, d=1) and (ps=200, d=1) on the boxplot, where the

96

6.3. Experiments

higher the IQR, the more discrete the detected drift points.

ps:100
d : 1

ps:200
d : 1

ps:300
d : 1

ps:400
d : 1

ps:500
d : 1

Real drift point ps and duration d

0

100

200

300

400

500

De
te

ct
ed

 d
rif

t p
oi

nt

MCDD-FCN
MCDD-RNN

(a) Result on various abrupt drifts

ps:250
d : 500

ps:300
d : 400

ps:350
d : 300

ps:400
d : 200

ps:500
d : 100

Real drift point ps and duration d

0

100

200

300

400

500

De
te

ct
ed

 d
rif

t p
oi

nt

MCDD-FCN
MCDD-RNN

(b) Result on various Incremental drifts

Figure 6.6: Result of feasibility verification experiments of the framework on abrupt and Incre-
mental drift (ps: drift start point, d: duration of drift)

As shown in Figure 6.6b, incremental concept drift leads in a greater difference between MCDD-

FCN and MCDD-RNN than abrupt drift. Overall, both methods could detect drift and generate

drift points surrounding the real drift point. However, the MCDD-RNN detects drift later than the

MCDD-FCN on five different sets of concept drift. On the other hand, the shorter the duration

of the drift, the smaller the difference between the drift detection results on our two methods,

indicating that the duration of the drift will affect the drift detection capability.

Overall, the findings of the MCDD-FCN and MCDD-RNN suggest that the proposed framework

can successfully detect various types of concept drift; however, the detection performance may be

affected by the neural network structure employed.

Evaluation on EDDR

Firstly, we compare the EDDR to investigate how the drift detection systems respond to various

types of concept drifts within the EDR, the results are presented in Table 6.7. Overall, our proposed

method has higher EDDR scores than all other methods, which are 93.61% and 95.83%. However,

the EDDR on each type of drift is quite different. It is clear that the majority of methods have the

best performance on abrupt drift. This is because abrupt drift generates a dramatic change in the

properties of the data over a short amount of time, making it simpler to detect. The majority of

methods perform poorly when dealing with incremental drift because its duration is longer than

that of abrupt drift, making it more difficult to detect.

97

6.3. Experiments

Table 6.7: EDDR result on 6 datasets from 11 methods, the unit is time point.The higher the
EDDR value, the better the performance of detection method. Our two methods have the highest
average EDDR value among other methods, and also the highest on each drift.

DDM ADWIN EDDM PH HDDM A HDDM W FHDDM MDDM OASW MCDD-RNN MCDD-FCN
AG 0 99 22 35 92 100 43 92 93 97 100 100
AG 1 97 0 43 0 70 13 94 91 94 100 100
AG 2 44 0 14 0 6 16 0 0 47 96 89
Mixed 0 100 65 54 100 100 100 93 93 100 100 98
Mixed 1 99 0 97 41 98 100 98 98 0 100 100
Mixed 2 78 0 1 9 53 67 19 22 92 97 86
Sea 0 67 0 93 0 5 49 39 41 53 100 92
Sea 1 28 0 1 0 1 42 31 29 0 56 85
Sea 2 6 0 41 0 0 2 1 1 0 57 89
Sine 0 98 95 57 100 100 100 100 100 100 100 100
Sine 1 100 0 99 94 99 100 100 100 0 100 100
Sine 2 86 0 1 18 66 83 39 43 96 99 95
posture 0 92 3 8 53 100 37 0 0 62 96 100
posture 1 99 0 84 0 99 22 0 0 0 100 100
Posture 2 69 1 100 0 74 99 1 1 80 96 94
powersupply 0 98 40 63 100 100 100 100 100 100 100 100
powersupply 1 100 0 99 0 99 100 100 100 0 95 97
Powersupply 2 96 2 100 0 97 100 76 76 100 93 100
Average 0 92.33 37.5 51.67 74.17 84.17 71.50 70.66 71.17 85.33 99.33 98.33
Average 1 87.17 0 70.50 22.5 77.67 62.83 70.50 69.67 31.50 91.83 97.00
Average 2 63.16 0.50 42.83 4.50 49.33 61.16 22.67 23.83 69.16 89.66 92.16
Average 80.89 12.67 55.00 33.72 70.39 65.17 54.61 54.89 62.00 93.61 95.83

Similarly, this phenomena is present in the single dataset. In the AG, Mixed, and Sea datasets,

for instance, all drift detection methods have a higher EDDR for abrupt and early abrupt drift,

indicating that incremental drift is more complex and challenging to detect. Our proposed method

exhibits consistent detection performance across all three drift types. It achieves nearly identi-

cal results for abrupt and early drift. For incremental drift, the detection performance is slightly

lower but still robust, with 89.66% and 92.16% for incremental and abrupt/early drifts, respec-

tively.

Wilcoxon-holm signed-rank method with Holm’s alpha (5%) is used to compare the pairwise

significance of the EDDR score. To visualise this type of comparison, we drawn a Wilcoxon

critical difference diagram (Ismail Fawaz et al., 2019). The result depicted in Figure 6.7. Our

two methods are ranked first and second, which demonstrates that the performance of MCDD is

superior to that of others. Moreover, the scores of our two methods, 3.25 and 3.44 respectively, are

extremely similar. Furthermore, this proves that the efficiency of the framework is not primarily

dependent on the deployed network structure, since it is capable of successfully detecting concept

98

6.3. Experiments

drift.

Figure 6.7: Comparison of average rank (lower is better) of methods w.r.t. performance across
datasets. MCDD-RNN and MCDD-FCN outperforms all methods.

Abrupt Drift

From the evaluation of EDDR, it is clear that the results on abrupt drift are best for majority

methods. It is evident from the examination of EDDR that the findings for abrupt drift are superior

to those for the other two types of drift. Indeed, abrupt drift changes more rapidly and visibly than

other types of drift, and it occurs in the middle of the data stream, giving detection methods more

time to react and preventing false reports because the small amount of data.

Figure 6.8 shows the results of the drift points found by nine methods across six datasets. The y

axis indicates the distribution of detected drift points, while the concept drift occurs at real drift

point 500. According to the boxplots, the majority of detected drift points for each detection

method concentrate around point 500. Particularly in datasets AG, Sine, and Powersupply. How-

ever, our framework still detect false reports in other datasets that deviate significantly from the

ground-truth drift point, e.g. results from dataset Mixed and Posture in Figure 6.8.

For a more in-depth comparison of the results, the evaluation metrics FEDP and LDP defined in

Section 6.3.3 are used. From Table 6.8 and 6.9, the average value of the deviation between the

detected drift point and real drift point is 6.39 and 5.88, respectively, which is smaller than other

methods. Our method is clearly able to detect the drift early.

In addition, we may observe that the FEDP and LDP for the same dataset are typically not equal.

It is because a method sometimes detect more than one concept drift point. For example, a method

could detect three drift points [300,500,700] with the condition that the real drift point is at 500.

However, our method have equal FEDP and LDP values for abrupt concept drift. For example

FEDP and LDP of MCDD-RNN on AG data are both equal to 1.43, as is the case with MCDD-

99

6.3. Experiments

(a) AG (b) Sea

(c) Sine (d) Mixed

(e) Posture (f) Powersupply

Figure 6.8: Abrupt drift detection result on 6 datasets, it is apparent that our proposed method (last
two in each subfigure) has the most concentrated detected concept drifts near the real drift point at
500 (red dashed line), whereas other methods perform well but are rather discrete.

FCN. It denotes that a concept drift is precisely detected in a data stream with a single abrupt drift.

This indicates that our method is capable of terminating the detection process once real drift is

detected.

In general, our method works best with abrupt drift among these drift detection methods. On

the one hand, the deviation between the detected point and the real point demonstrates that our

method has the quickest detection capability. Furthermore, our method is able to precisely detect

an exact drift and stop the detection process in time, effectively reducing the number of false drift

reports.

100

6.3. Experiments

Table 6.8: FEDP on abrupt drift

DDM ADWIN EDDM PH HDDM A HDDM W FHDDM MDDM OASW MCDD-RNN MCDD-FCN
AG 1.18 74.36 190.81 73.11 30.35 84.67 46.65 43.66 23.32 1.43 0.23
Mixed 11.52 37.00 93.02 36.35 4.78 9.32 91.24 83.07 16.80 3.12 4.89
Sea 70.68 89.00 32.57 nan 232.42 105.05 117.03 117.16 88.10 10.69 9.44
Sine 19.94 38.84 36.65 32.41 7.14 28.59 12.77 8.47 16.04 7.00 3.00
Posture 39.57 102.20 353.73 97.16 25.40 301.26 404.96 398.95 73.16 12.38 8.75
Powersupply 15.67 43.00 6.14 57.65 6.42 1.86 3.93 3.93 16.49 3.70 8.96
Average 26.43 64.07 118.82 59.33 51.09 88.46 112.76 109.20 38.99 6.39 5.88

Table 6.9: LDP on abrupt drift

DDM ADWIN EDDM PH HDDM A HDDM W FHDDM MDDM OASW MCDD-RNN MCDD-FCN
AG 40.89 268.28 248.06 73.11 37.42 375.31 455.25 457.39 23.32 1.43 0.23
Mixed 14.93 183.16 190.84 36.35 7.34 9.32 93.05 79.25 16.80 3.12 4.89
Sea 108.16 89.00 276.98 Nan 232.43 221.41 274.53 266.48 88.10 10.69 9.44
Sine 9.92 149.56 185.64 32.41 7.14 4.20 16.24 12.92 16.04 7.00 3.00
Posture 49.84 323.64 185.97 97.16 26.55 229.38 440.56 438.24 73.16 12.38 8.75
Powersupply 8.44 140.60 185.06 57.65 6.42 5.01 81.52 84.55 16.49 3.70 8.96
Average 38.70 192.37 212.09 59.34 52.88 140.77 226.86 223.13 38.98 6.39 5.88

Early Abrupt Concept Drift

Early abrupt concept drift has a similar drift duration to that of an abrupt drift, but it starts much

earlier. This requires the drift detection method to use less reaction time for drift detection.

Figure 6.9 reflects the difficulty of detection with higher discrete distribution of detected drift

points. However, our proposed method still perform the best among all the drift detection meth-

ods. We also notice that the degree of concentration of detected concept drifts is less than abrupt

drift.

In addition, FEDP and LDP scores from the Tables 6.10 and 6.11 are 8.66 and 5.31, respectively.

The lowest values suggest that our method has the best performance in detecting early abrupt

concept drift. Moreover, the fact that the FEDP and LDP had the same value shows that our

method could precisely detect an exact drift point.

Incremental Concept Drift

According to the EDDR on Table 6.7, incremental concept drift is the most complicated and

difficult to be precisely detect across all detection methods. This increased difficulty is attributed

to the typically longer duration of incremental concept drift, compared to abrupt and early abrupt

drifts. Figure 6.10 demonstrates that the detected drift points for incremental drift lack a distinct

101

6.3. Experiments

(a) AG (b) Sea

(c) Sine (d) Mixed

(e) Posture (f) Powersupply

Figure 6.9: Early abrupt drift detection result on 6 datasets, it is apparent that our proposed method
(last two in each subfigure) has the most concentrated detected concept drifts near the real drift
point at 100 (red dashed line). However, the drift points detected by other methods are relatively
discrete.

Table 6.10: FEDP on early abrupt drift

DDM ADWIN EDDM PH HDDM A HDDM W FHDDM MDDM OASW MCDD-RNN MCDD-FCN
AG 17.21 170.18 37.66 234.38 43.47 9.63 9.33 9.80 101.00 8.20 1.07
Mixed 10.65 59.64 14.97 54.75 7.25 13.92 2.94 1.50 101.00 0.44 4.47
Sea 46.91 619.00 137.25 Nan 4.00 69.61 100.68 93.25 105.27 31.24 14.37
Sine 4.15 39.16 22.07 42.31 5.63 3.61 2.51 2.82 101.00 5.42 1.02
Posture 13.04 335.45 10.92 Nan 17.73 2.28 19.08 18.71 101.00 2.81 9.62
Powersupply 3.62 83.32 24.83 80.48 5.14 4.47 4.16 4.16 101.00 3.82 1.32
Average 15.93 217.79 41.28 102.98 13.87 17.25 23.11 21.71 101.71 8.66 5.31

and consistent trend. And the degree of concentration of drift points detected by all detection

methods is significantly lower than the abrupt and early abrupt drift.

Our method can still provide higher detection performance compared to other methods. Based on

102

6.3. Experiments

Table 6.11: LDP on early abrupt drift

DDM ADWIN EDDM PH HDDM A HDDM W FHDDM MDDM OASW MCDD-RNN MCDD-FCN
AG 21.30 213.67 416.02 243.12 66.60 765.54 840.94 841.94 101.00 8.20 1.07
Mixed 10.65 276.60 72.30 54.75 7.25 13.92 116.03 116.53 101.00 0.44 4.47
Sea 62.63 619.00 380.34 Nan 4.00 133.56 155.96 153.31 105.27 31.24 14.37
Sine 4.85 235.00 73.40 42.31 5.63 31.12 13.68 13.68 101.00 5.42 1.02
Posture 16.87 492.83 145.61 Nan 17.73 757.46 834.50 833.45 101.00 2.81 9.62
Powersupply 4.47 279.80 44.72 80.48 5.14 5.01 31.44 31.40 101.00 3.82 1.32
Average 20.13 352.82 188.73 105.17 17.73 284.44 332.09 331.72 101.71 8.66 5.31

the detected points in Figure 6.10 , we can see that the points our method detected are closest to

the real drift point, and the trend is relatively concentrated. But it is also evident that our method

also produces many detected drift points that deviate from the real drift point.

(a) AG (b) Sea

(c) Sine (d) Mixed

(e) Posture (f) powersupply

Figure 6.10: Incremental drift detection result on 6 datasets. Our proposed method (last two in
each subfigure) has the most concentrated detected concept drifts near the real drift point at 100
(red dashed line).

The values of the FEDP and LDP from Table 6.12 and 6.13 also reflect the complexity of the

103

6.3. Experiments

Incremental drift, our method has higher delay than abrupt and early abrupt drift, with 40.56 and

19.66, respectively, for the FEDP and LDP. The similar tendency applies to the other methods, but

the magnitude of the change is significantly greater.

Table 6.12: FEDP on incremental concept drift

DDM ADWIN EDDM PH HDDM A HDDM W FHDDM MDDM OASW MCDD-RNN MCDD-FCN
AG 71.78 193.24 104.37 173.01 154.64 17.49 19.81 24.00 94.92 41.59 45.46
Mixed 71.01 63.96 44.42 123.39 91.68 89.33 35.31 25.37 65.48 19.38 31.44
Sea 198.99 97.00 113.77 Nan 444.73 265.94 267.64 276.16 233.43 86.35 6.09
Sine 21.06 119.96 5.54 112.00 89.07 15.41 28.80 38.85 64.76 46.19 9.49
Posture 3.29 162.20 222.44 191.75 77.71 186.97 294.03 291.29 11.00 14.67 17.92
Powersupply 11.81 146.01 3.75 187.93 46.54 6.28 4.57 5.32 47.13 35.20 7.57
Average 62.99 130.40 82.38 157.62 150.73 96.90 108.36 110.16 86.12 40.56 19.66

Table 6.13: LDP on incremental concept drift

DDM ADWIN EDDM PH HDDM A HDDM W FHDDM MDDM OASW MCDD-RNN MCDD-FCN
AG 191.80 430.68 404.89 175.63 165.19 482.54 555.97 558.13 94.92 41.59 45.46
Mixed 241.74 427.16 402.21 278.02 247.24 189.36 242.76 237.31 65.48 19.38 31.43
Sea 240.14 97.00 400.52 Nan 444.73 353.64 398.36 397.73 233.43 86.35 6.09
Sine 242.09 438.68 385.63 328.52 238.6 216.01 197.86 191.26 64.76 46.19 9.49
Posture 81.24 162.20 114.54 191.75 92.80 79.68 156.00 158.57 11.00 14.67 17.92
Powersupply 33.90 158.45 108.42 187.93 46.54 70.42 144.14 143.77 47.13 35.20 7.57
Average 171.82 285.70 302.70 232.37 205.85 231.94 282.51 281.12 86.12 40.56 19.66

Parameter Adjustability

From the above experiments, it is clear that MCDD has the best drift detection performance among

all methods. However, we have observed that our two methods sometimes perform inconsistently

on the same dataset . In Table 6.13, the dataset Sea with Incremental drift, for instance, MCDD-

RNN has a delay of 86.35 time points, but MCDD-FCN has a delay of just 6.09 time points. This

demonstrates that our proposed framework need to be adjusted to have better performance; thus,

we can benefit from modifying the hyper-parameters.

To reduce detection delay, we may raise the decay rate, which is set to 1.0 by default, so that

we can detect drift sooner. From the Figure 6.11, it is clear that the decay rate of 1.02 gives the

best results, with just 11.4 time point delays, a significant improvement over previous result of

86.35 (coloured by orange in Table 6.13). Furthermore, neither large nor small decay rates are

effective.

After the parameter adjustment, we re-compare the detection performance using Wilcoxon-Holm

104

6.3. Experiments

1.000 1.005 1.010 1.020 1.030 1.040 1.050
Decay rate of the learning rate

10

20

30

40

50

60

De
te

ct
io

n
de

la
y

(ti
m

e
po

in
t)

Figure 6.11: MCDD-FCN and MCDD-RNN drift detection result on datasets with incremental
concept drift after adjusting parameter

signed rank with the updated EDDR table. MCDD continues to rank in the top two, with scores

3.33 and 3.41 in Figure 6.12. It demonstrates that MCDD is very adaptable and that various

datasets favour different network structures.

Figure 6.12: Comparison of average rank (lower is better) of methods w.r.t. performance across
datasets. MCDD-RNN and MCDD-FCN based method have very close performance and outper-
form other methods.

MCDD’s Framework Robustness

This section presents an evaluation of the robustness of our MCDD framework in relation to data

bias and quality issues.

Data bias, in the context of this section, is primarily characterized by data class imbalance. Arti-

ficial datasets used in this section are generated with varying class distributions. The most severe

cases exhibiting a 30% to 70% split in Powersupply dataset with incremental concept drift. The

105

6.3. Experiments

details of data class imbalance as illustrated in Table 6.14. The values tabulated represent the av-

erage proportion of instances that belong to Class 0 across these data streams. Due to the binary

nature of the classification employed in this study, the proportion of instances in Class 1 can be

inferred as (1 - Class 0). This table illustrates the extent of data class imbalance present in the

datasets.

Table 6.14: Details of Data Class Imbalance (Expressed as the Percentage of Instances in Class 0):
This study comprises multiple datasets, each with a distinct type of concept drift and containing
100 data streams.

AG Sea Sine Mixed Posture Powersupply
Abrupt 44.46± 1.13 32.54± 1.82 50.00± 0.05 51.76± 5.40 50.03± 1.20 50.13± 1.45
Early Abrupt 39.58± 1.51 43.42± 1.57 53.02± 1.54 49.50± 4.97 47.82± 1.58 50.06± 1.50
Incremental 44.48± 1.44 32.55± 1.80 49.97± 0.15 49.57± 4.92 29.90± 1.96 30.01± 1.12

To further assess the MCDD method’s robustness towards imbalanced data classes, we desig-

nate datasets without concept drift as class 0, and those with concept drift as class 1, each group

comprising 100 data streams. This arrangement facilitates concept drift detection using MCDD,

yielding Receiver Operating Characteristic (ROC) curves that demonstrate the efficacy of our ap-

proach in addressing data bias, as shown in Figure 6.13. Each curve corresponds to a distinctive

type of concept drift—abrupt, early abrupt, and incremental—with respective AUC scores of 0.87,

0.90, and 0.98. These scores underscore the efficacy of MCDD in identifying concept drift even

amidst class imbalances. The AUC values nearing unity further attest to the robustness of the

MCDD framework when faced with such data complexities.

As demonstrated in the associated figure, the results from all three types of concept drift yield

impressive ROC curves, accompanied by high Area Under the Curve (AUC) scores. These results

underscore the ability of our framework to maintain high accuracy, even in the presence of data

class imbalance issues. Notably, abrupt drift exhibits the highest AUC score, followed by early

abrupt drift, and finally incremental drift. This pattern suggests that the difficulty of drift detection

is influenced by the type of concept drift. Crucially, however, the AUC scores appear to remain

unaffected by data bias, implying a robust resilience of the MCDD framework to data bias.

We also take into consideration the implications of data quality. For our artificial datasets, we

resort to the skmultiflow library’s default parameters—noise percentage, perturbation, and

has noise—to manipulate the noise types, either attribute noise or class noise (Wang et al., 2022).

On the other hand, real-world datasets, which are gathered through sensors in various environ-

106

6.3. Experiments

Figure 6.13: ROC Curves for MCDD Performance under Different Concept Drift Scenarios with
Class Imbalance.

ments, naturally incorporate unavoidable noise during the data collection process. A summary of

the noise situations across all datasets can be found in Table 6.15. This table presents the data

quality details of six datasets used in the study. Each row corresponds to a distinct dataset: AG,

Sea and Sine represent artificial datasets with controlled noise, while Posture, and Powersupply

are real-world datasets with inherent noise complexities. For each dataset, the presence or ab-

sence of noise is indicated along with the type of noise (attribute, class, or hybrid) and the specific

parameter controlling the noise level, if applicable.

Table 6.15: Data Quality and Noise Characteristics of Artificial and Real-World Datasets.

Noise Noise Type Parameter
AG Yes Attribute Noise Perturbation
Sea Yes Class Noise Noise Percentage
Sine Yes Attribute Noise Has Noise
Mixed No N/A N/A
Posture Yes Hybrid Unknown
Powersupply Yes Hybrid Unknown

After examining the EDDR results from Table 6.7 and the ROC curves in Figure 6.13, it becomes

evident that our MCDD method exhibits robustness against both data bias and data quality issues.

Specifically, our framework maintains consistent performance across varying degrees of data label

107

6.4. Summary

imbalance and noise. In conclusion, our method exhibits reliable performance in the face of diverse

data bias and quality challenges.

6.4 Summary

To accurately and precisely detect the concept drift in data stream, we proposed a Model-Centric

transfer learning framework for Concept drift Detection (MCDD). Our framework is based on

the model-centric principle, in which the model adapts to a new concept before its output changes.

Model adaptation is reflected in model structure changes, such as changes in the decision boundary

of linear regression or weight changes in deep neural networks. Firstly, the initialized deep neural

network will be trained and evaluated on base data without concept drift, and meanwhile another

structurally equal network will be partially frozen. Secondly, the partially frozen network will

combine with the weights from pre-trained network, and just perform training mode in the data

with concept drift. It significantly accelerates the concept drift detection process and reduces the

computational cost with transfer learning. Lastly, the long and short time windows collects the

weights from last hidden layer of the transferred network. In the end, the real drift is detected

while the false drift is filtered out. The experiment results on artificial and real-world dataset

demonstrate superior performance of our proposed framework. In addition, the effectiveness of

MCDD is independent of the type of used deep neural network. The experiment of parameter

adjustability also proves that MCDD is highly adaptive to improve its performance. We have

also demonstrated the framework’s robustness against data bias, specifically class imbalance, and

various degrees of data quality issues. The consistent and statistically significant performance

across diverse scenarios underscores MCDD’s potential as a reliable tool for addressing real-world

data complexities. In summary, MCDD can detect concept drift and reduce delay more effectively

than other detection methods.

108

Chapter 7

Concept Drift Understanding by

Quadruple-based Approach:

QuadCDD

Concept drift is a prevalent phenomenon in data streams that necessitates detection and in-depth

understanding, as it signifies that the statistical properties of a target variable, which the model

aims to predict, change over time in unforeseen ways. Existing detection methods predominantly

aim to identify the drift start time, which lack comprehensive understanding of data streams, lead-

ing to a loss of drift information. In this work, we present a novel Quadruple-based Approach

for Understanding Concept Drift (QuadCDD) framework in Data Streams that not only detects

and predicts the concept drift start point but also offers a more detailed analysis of concept drift

through the use of quadruples, encompassing drift start, drift end, drift severity, and drift type.

Our framework employs quadruples to enable informed decision-making and adopt appropriate

actions to handle various concept drifts, effectively maintaining high and stable performance in

data streams with concept drift. Experimental results validate the effectiveness of our QuadCDD

framework in accurately detecting and understanding concept drifts, as well as in preserving the

stability and performance of models in the presence of these drifts.

109

7.1. Introduction

7.1 Introduction

In the era of big data, data streams have become increasingly prevalent, with a vast amount of

real-time data being generated by sources such as social media, online stores, sensor networks,

and financial markets. These data streams provide valuable insights for making informed de-

cisions and driving business intelligence. However, the dynamic nature of data streams poses

challenges for predictive modeling, as the statistical properties of the target variables may change

over time, resulting in concept drift. Concept drift signifies that the distribution of the data, which

the model aims to predict, changes in unforeseen ways, thereby affecting the model’s accuracy

and stability.

In data streams, concept drift can manifest in two distinct forms. A data stream is typically com-

posed of a sequence of samples, denoted as H1,n = [h1, · · · , hn], where each sample hi = (Xi, yi)

consists of a d-dimensional feature vector Xi and a class label yi. The joint distribution of the data

stream is represented as D1,t(X, y). Concept drift occurs at time point t + 1 if Dt(X, y) ̸=

Dt+1(X, y), which can be expressed as ∃t, Pt(X, y) ̸= Pt+1(X, y) (Lu et al., 2016) .

The joint probability Pt(X, y) can be decomposed into Pt(X) × Pt(y|X). Based on Bayesian

theory, two types of concept drift can be identified (Souza et al., 2020): real concept drift, charac-

terized by a change in the posterior probability (Pt(y|X) ̸= Pt+1(y|X) while Pt(X) = Pt+1(X)),

and virtual concept drift, characterized by a change in the marginal probability (Dt(X) ̸= Dt+1(X)

while Pt(y|X) = Pt+1(y|X)). Most existing research focuses on concept drift as a change in the

posterior probability, as it implies a shift in the decision boundary (Lu et al., 2019) (Gama et al.,

2014) (Wang et al., 2018). In this work, our primary objective is to detect real concept drift in

data streams. And four types are classified according to the rate of change in the data distribution.

That is incremental drift, abrupt drift, recurring drift, and gradual drift, which are shown in Figure

7.1.

Existing drift detection methods predominantly focus on identifying the drift start time, often lead-

ing to a loss of drift information and an inadequate understanding of the data streams. This lack of

comprehensive understanding hinders the ability to effectively handle concept drift and maintain

high and stable performance in data streams with concept drift. Furthermore, most existing meth-

ods do not provide information about the drift end, drift severity, or drift type, which are crucial for

110

7.1. Introduction

Figure 7.1: Illustration of Quadruple with Distinct Types of Concept Drift in Multiple Data
Streams. The green and red dots represent the start and end of concept drift, respectively. The
x-axis represents data points in a time series format, while the y-axis denotes two different con-
cepts. The dashed line represents the concept change, with the type varying based on the duration
and severity of the concept drift.

understanding the entire drift process and adopting appropriate actions to address the drift.

To address these limitations, we propose a novel Quadruple-based Approach for Understanding

Concept Drift in Data Streams (QuadCDD) framework that not only detects and predicts the con-

cept drift start point but also offers a more detailed analysis of concept drift by employing quadru-

ples. These quadruples encompass drift start, drift end, drift severity, and drift type, providing a

comprehensive understanding of the phenomenon. Our proposed framework leverages quadruple

information to support informed decision-making and enable the adoption of appropriate actions

to effectively handle various concept drifts, ultimately maintaining high and stable performance in

data streams with concept drift.

The proposed QuadCDD framework is designed to be flexible and adaptable, capable of working

with a wide range of data stream scenarios and predictive models. By providing a detailed analysis

of concept drift and facilitating targeted action implementation, our approach aims to address the

challenges posed by the dynamic nature of data streams, enabling organizations to derive valuable

insights and make informed decisions based on their real-time data.

Our contributions are:

1. Developing a novel Quadruple-based Approach for Understanding Concept Drift in Data

111

7.2. Quadruple and QuadCDD Framework

Streams (QuadCDD) that comprehensively captures various aspects of concept drift, in-

cluding drift start, drift end, drift severity, and drift type, enhancing the understanding of the

phenomenon.

2. Providing a framework of quantitative analysis for QuadCDD: The QuadCDD framework

utilizes quadruples to provide a detailed examination of concept drift, offering valuable

insights into the underlying drift process.

3. Developing informed decision-making and targeted action implementation: The QuadCDD

framework leverages quadruple information to support informed decision-making and en-

ables the adoption of appropriate actions to effectively address different types of concept

drifts.

4. Facilitating the QuadCDD with the maintenance of high performance and stability in data

streams with concept drift: Experimental results validate the effectiveness of the QuadCDD

framework in accurately detecting and understanding concept drifts while preserving the

stability and performance of models in their presence.

The structure of the chapter is organized as follows: Section 7.2 presents the proposed QuadCDD

framework. Section 7.3 discusses the experiments and their results. Lastly, Section 7.4 provides

the conclusion along with a discussion on limitations.

7.2 Quadruple and QuadCDD Framework

In this section, we propose the Quadruple and the QuadCDD framework, which builds upon the

Quadruple concept. The inspiration for the Quadruple comes from the multi-output capabilities

of deep learning models, which can generate more than one output simultaneously. This approach

enables a more comprehensive understanding of concepts. Subsequently, we introduce the Quad-

CDD framework in the following sections.

The Quadruple describe the comprehensive picture of the concept drift, iclude the start, end, sever-

ity and type of the concept, enable use to investigate more details on concept drift and make better

decision to react to the concept drift.

The QuadCDD framework is designed based on Quadruple, which consists of four stages. First,

112

7.2. Quadruple and QuadCDD Framework

features from the pre-training data are extracted to capture the essential characteristics of the

dataset with different concept drift. Next, an initial model is trained using the pre-training data,

establishing a baseline for performance. Following this, the model undergoes fine-tuning with

data from different domains, enhancing its adaptability and generalization. During the detection

and decision-making phases, the Quadruple is generated and serves as input for decision-making.

This process ensures that the machine learning model’s performance remains consistent in the

presence of concept drifts. By leveraging the deep neural network’s multi-output capabilities,

the QuadCDD framework can effectively manage concept drifts, maintaining both stability and

adaptability in dynamic environments.

The Quadruple will be discussed in Section 7.2.1, and the QuadCDD framework is at Section

7.2.2.

7.2.1 Quadruple Representation of Concept Drift

In this section, we introduce the Quadruple representation, a comprehensive and adaptable method

for characterizing concept drift in data streams. The Quadruple is defined as (Ds, De, Dv, Dt),

which consists of four essential parameters: Drift Start, Drift End, Drift Severity, and Drift Type.

This representation allows for effective real-time monitoring, analysis, and management of con-

cept drift, ensuring the sustained accuracy and relevance of machine learning models in dynamic

environments.

The four parameters are defined as follows:

• Ds: Drift start, indicating the point in the data stream where the concept drift begins.

• De: Drift end, signifying the point in the data stream where the concept drift concludes and

stabilization occurs.

• Dv: Drift severity, quantifying the impact of the concept drift on the model’s performance.

This parameter can be adjusted according to the specific needs of various applications and

contexts.

• Dt: Drift type, describing the nature of the concept drift, such as abrupt and incremental

drift. This parameter can also be customized based on the particular requirements of diverse

scenarios.

113

7.2. Quadruple and QuadCDD Framework

The quadruple is illustrated in Figure 7.2, where tstart and tend are represented by green and red

dots, respectively. The Ds and De represent the proportion of tstart and tend in the total length

L. The magnitude of the difference in model performance between these two points defines Dv.

Furthermore, the ratio of the distance between Ds and De to the L of the data stream determines

the value of Dt.

Figure 7.2: Illustration of the quadruple in various data streams with distinct types of concept drift.

Both Ds and De are normalized values ranging from 0 to 1, making them applicable to all situa-

tions. In contrast, Dv and Dt can be adjusted based on different contexts and requirements. This

flexibility enables the Quadruple representation to adapt to a wide range of applications, providing

robust monitoring and management of concept drift across various domains.

The following sections delve deeper into the Quadruple representation: Section 7.2.1 discusses

Ds and De in detail, while Section 7.2.1 introduces Dv and Section 7.2.1 presents Dt.

Normalized Drift Start Ds and Drift End De

The components Ds and De identify the time points at which the drift begins and ends, respec-

tively. Recognizing these time points is crucial for determining the occurrence and duration of

drift. Notably, De signifies the point in the data stream where concept drift concludes and stabi-

lization takes place. Despite its importance, only a limited number of studies have explored De in

the literature.

114

7.2. Quadruple and QuadCDD Framework

To make the measurement of Ds and De applicable to various data stream situations with concept

drift, we employ normalized values within the range of [0, 1] instead of absolute values. This nor-

malization enables seamless integration of these parameters within the QuadCDD deep learning

framework.

Given the definitions of Ds and De, we can represent them with the following equations:

Ds =
tstart

L
, (7.1)

De =
tend

L
, (7.2)

where tstart and tend denote the start and end position of concept drift in the data stream, respec-

tively, and L represents the total length of the data stream. It is essential to ensure that Ds < De

for a valid time range of drift occurrence.

Drift Severity Dv

As previously mentioned, the Dv component quantifies the impact of drift on the model’s per-

formance, providing valuable insights for guiding the adaptation process. This parameter can be

tailored to suit the specific needs of various applications and contexts.

The assessment of severity in concept drift scenarios holds significant value, but its implications

may vary depending on the specific context. In this study, severity is defined as the absolute

difference in model performance, particularly focusing on the metric of accuracy. Accuracy, being

a fundamental measure of a model’s predictive capability and its ability to accurately classify

instances, provides a reliable basis for evaluating severity. By quantifying the disparity between

the initial concept Ci and the concept that arises after the occurrence of drift Cd, we can gain

valuable insights into the extent to which concept drift impacts the model’s accuracy. We formally

define the value of severity as follows:

Dv = |ACCCi −ACCCd
|, (7.3)

115

7.2. Quadruple and QuadCDD Framework

where 0 < Dv < 1. It is crucial to note that Cd is distinct from De, as the stabilization of Cd

always occurs after De. For instance, in a given scenario, Ds starts at a certain point, and De ends

at another point, but the accuracy value will be significantly different after De when the severity

varies. Therefore, in this study, we set a threshold equal to Cd = 0.1 ∗L+De as the indicator for

the next concept.

The value of Dv can result in different levels of accuracy decline when drift occurs. We define

threshold severity as a threshold to determine if a severity is impactful enough to affect learn-

ing in data streams with concept drift. The threshold severity needs to be fine-tuned during

the adaptation phase, as each scenario presents unique characteristics and definitions of drift. By

quantifying drift severity and considering its effects on model performance, we enable more effec-

tive adaptation strategies and enhance the overall robustness of learning algorithms in the presence

of concept drift.

Drift Type Dt

In this work, we analyze three primary types of concept drift identified in existing literature:

abrupt, gradual, and incremental (Wang et al., 2023). We will not be considering recurrent drift

in our analysis. However, it is worth noting that these three types of drift can be effectively con-

densed into two base drifts based on the Quadruple representation. As a result, our focus lies on

abrupt and incremental drift, which are represented in the Quadruple as Dt, a binary value that is

either 0 or 1. This simplification allows for a more streamlined analysis, as illustrated in Figure

7.3. The invariant Drift Type Dt remains unchanged despite the presence of diverse internal con-

cept drift patterns. The green and red dots represent the starting and ending points of the concept

drift within the data stream, while the dashed line denotes the distinct shape of the concept change.

It is evident that Dt is determined by Ds and De, and how they change with respect to each other

has no effect on Dt.

The classification of concept drift in our study is determined by the length of the drift. However,

the length is not fixed across all scenarios, as data streams often exhibit varying lengths. To account

for the variability in concept drift patterns, we introduce a Type threshold parameter that helps

determine the type of drift. In our approach, the Type threshold is defined as a proportion of

the periodic length of the data stream. For instance, consider a data stream with a periodic length

116

7.2. Quadruple and QuadCDD Framework

Figure 7.3: The invariant Drift Type Dt remains unchanged despite the presence of diverse internal
concept drift patterns. The green and red dots represent the starting and ending points of the
concept drift within the data stream, while the dashed line denotes the distinct shape of the concept
change. It is important to note that the value of Dt is solely determined by the start and end points,
resulting in all these shapes having the same Dt value.

of 1000 and another length of 10000. If we set the Type threshold to 0.2, the corresponding

lengths used to classify the type of concept drift would be 200 (1000 * 0.2) and 2000 (10000 *

0.2), respectively.

By introducing the Type threshold parameter, we can adaptively adjust the length thresholds

based on the characteristics of the data stream. This approach allows us to effectively classify

different types of concept drift by comparing the actual lengths of the drift periods to the thresholds

derived from the Type threshold parameter. Similar to the severity of concept drift, the type is

only determined by the absolute distance between Ds and De.

Dt =


1, if |DS −De| > Type threshold

0, otherwise
(7.4)

Understanding the type of concept drift is critical for decision-making processes, as it informs the

selection of appropriate adaptation strategies. When the drift is abrupt and the severity is high,

there is insufficient data between the two concepts to be considered as training data. Conversely,

the data obtained during the drift transition can be utilized as training data to refine the model’s

117

7.2. Quadruple and QuadCDD Framework

performance following concept drift.

7.2.2 QuadCDD framework

The QuadCDD framework is specifically designed to enhance the understanding of concept drift

by identifying and quantifying concept drift in data streams, and then offering a reaction strategy

to address the performance degradation caused by the concept drift. By utilizing the generated

Quadruple, the framework improves our understanding of concept drift and decision-making in

response to concept drift.

The entire process is divided into four stages: pre-training, adaptive fine-tuning, detection, and

decision-making, as depicted in Figure 7.4.

Figure 7.4: The workflow of our proposed QuadCDD framework, consist of four phase, Pre-
training, adapative fine-tune, detection and Decision-making

The framework begins with the pre-training phase, where training data is first extracted and fed

into the designed deep neural network to establish an initial model. Subsequently, as new data is

introduced, the data stream length and severity can be calculated, allowing the trained model to

fine-tune adaptively to accommodate the data stream with different concept drifts.

In the detection phase, the fine-tuned model generates a Quadruple, serving as a crucial input for

the decision-making process in pinpointing and addressing concept drift. This Quadruple is repre-

sented as (Ds, De, Dv, Dt). Decisions are based on the Quadruple, with the goal of maintaining

the highest possible overall accuracy. Consequently, incremental training on data following the

118

7.2. Quadruple and QuadCDD Framework

detection of drift or re-training a new model using post-drift data may be considered as potential

options.

Pre-training

In the pre-training phase, there are two sub-phases: feature extraction and initial model training.

Firstly, the training data is generated with a pre-defined Quadruple. The Ds and De are pre-

defined when the data stream is constructed, while the Dt is determined by Equation 7.4. Then,

the constructed training data will be processed by a machine learning model; in this work, we

use the Naive Bayes as the base model. The feature we used in this work is the accuracy rate.

Subsequently, the Dv is calculated by the Equation 7.3. This calculation provides insights into

the severity of concept drift by considering the difference in accuracy rates at the drift start and

end points. The inclusion of the 10% portion after the De accounts for the fact that the change in

accuracy becomes significantly different only after a small portion of the data stream has elapsed

past the drift end point. This ensures that the severity measured accurately reflects the impact

of the concept drift on the model’s performance. Finally, the training data with its label is built,

which consists of an accuracy list with a length equal to the data stream and the generated Quadru-

ple.

The next sub-phase is the initial model training. As discussed in the previous section, in the

Quadruple, it is evident that Ds, De, and Dv are floating-point values ranging from 0.0 to 1.0,

while Dt is a binary value of 0 or 1. Consequently, equal weights cannot be simply allocated to

all four components.

The network structure is designed to be independent of the framework, meaning it can be replaced

or modified to suit various scenarios. To maintain focus on our contribution, we employ a sim-

ple architecture consisting of two Bidirectional LSTM layers and a fully connected linear layer.

While additional layers could lead to increased accuracy, time and computational costs must be

considered as trade-offs.

Given that rapid and accurate drift detection is the foremost priority, we assign higher and equal

weights to Ds and De. Conversely, Dv receives a slightly lower weight, and the smallest weight

is allocated to Dt. With this in mind, we define the loss function as follows:

119

7.2. Quadruple and QuadCDD Framework

loss =

√
α1(Ds − Ḋs)2 + α2(De − Ḋe)2 + α3(Dv − Ḋv)2 + α4(Dt − Ḋt)2 (7.5)

where αi, with i = [1,2,3,4], represents the weight assigned to each component in the Quadruple.

The Dx and Ḋx denote the actual value and predicted value in the Quadruple, respectively.

In this work, we use the weight vector α = [α1, α2, α3, α4] defined as α = [0.3, 0.3, 0.25, 0.15] to

represent the importance of each item in the Quadruple: Ds, De, Dv, and Dt, respectively. This

allocation of weights acknowledges the significance of different aspects of concept drift while

maintaining a balanced approach.

The higher weights assigned to Ds and De ensure that the system pays more attention to the start-

ing and ending points of the drift. The start point (Ds) is crucial because it provides an indication

of when the drift begins, which directly affects the performance of the predictive model. Like-

wise, the end point (De) is important because it reveals when the drift concludes and stabilization

occurs. By assigning different weights to these components, the framework effectively prioritizes

their joint contribution to the overall understanding of concept drift.

Adaptive Fine-tuning for Concept Drift Detection

In data streams generated by various sources, accurate concept drift detection necessitates adapt-

ing the pre-trained model to new situations. Although data streams may share similarities, their

underlying characteristics can differ. To ensure the robustness of the proposed QuadCDD frame-

work, we implement an adaptive fine-tuning strategy for the pre-trained model from Section 7.2.2.

This strategy effectively detects concept drifts in diverse contexts.

The adaptation process is especially critical for components Dv and Dt. Severity (Dv) represents

the impact level caused by the concept drift, and the maximum severity level may vary depending

on the specific scenario. For example, in a binary classification problem, the most severe con-

cept drift could involve a complete label flip where data points initially labeled as 0 become 1

after the concept drift occurs. However, the Dv generated in this case may not apply directly to

other situations. Consequently, the framework must be fine-tuned on new data to ensure proper

adaptation.

To achieve this, new domain data will be collected and used for adaptive fine-tuning. During the

120

7.2. Quadruple and QuadCDD Framework

fine-tuning process, the learning rate is set higher than in the pre-training phase, and the number of

epochs is reduced, enabling rapid adaptation. The fine-tuned model can then effectively perform

concept drift detection in new data streams, ensuring the detection process remains accurate and

robust across various scenarios.

Detection

Traditional concept drift detection methods have predominantly focused on identifying the drift’s

starting point. This approach, however, may not offer a comprehensive understanding of the con-

cept drift. Quadruple Ds, De, Dv, Dt generated encompassing the drift’s start point, end point,

severity and type in more detailed. This output presents a more holistic perspective on the concept

drift, facilitating a deeper comprehension of the underlying causes and empowering the develop-

ment of more effective strategies to react to concept drift.

Employing a quadruple output in the detection phase of concept drift signifies a crucial advance-

ment in the field of data analysis. This method offers a more intricate and sophisticated insight

into the dynamic data environment, paving the way for more effective strategies to adapt to the

evolving data landscape. The quadruple output serves as a valuable tool for researchers and practi-

tioners, enabling them to make well-informed decisions about detecting and responding to concept

drift in their datasets.

Decision-Making and deployment for Concept Drift handling

The objective of this phase is to ensure the model’s performance remains consistent in the presence

of concept drift. Decisions are made based on the Quadruple output of the Detection phase.

Two prevalent strategies exist for handling concept drift. The first, incremental learning, is ap-

plied when the concept drift is not severe and only marginally impacts the trained model. In this

case, incremental learning suffices to maintain the model’s performance. The second strategy, re-

training, is employed when the drift severity is high, necessitating the discard of the old trained

model and training a new model on the data after the drift is detected. Incremental learning on

data affected by severe drift can degrade the model’s performance.

Therefore, making appropriate decisions to manage concept drift is vital for maintaining the con-

sistent performance of a model operating in a data stream.

121

7.2. Quadruple and QuadCDD Framework

To achieve this, we utilize the quadruple generated by the Detection phase. The details shown

in algorithm 8. The parameter Dv is crucial in determining whether to retrain the model or use

incremental learning. Based on our experiments, Threshold detection has been determined as

0.3 ± 0.1, which effectively identifies when the severity of the concept drift is low enough to

warrant incremental learning. Nevertheless, this threshold can be adapted to various scenarios

based on the specific requirements of the application.

Another essential parameter, Dt, plays a significant role in decision-making as the type of concept

drift can offer insights into the most suitable response. Furthermore, the parameters Ds and De

furnish vital information about when and where to deploy the decision in the data stream. Specif-

ically, when a concept drift is detected at Ds, data from another concept should be collected, and

the comprehension of the concept drift should be accomplished by De.

122

7.2. Quadruple and QuadCDD Framework

Algorithm 8 Understanding Concept Drift in Data Stream
Input: Data stream S with continuous data points

Output: Quadruple and Decision

Detection

1: for each piece of data chunk in Whole stream do

2: Understand the data stream with concept drift using a fine-tuned model

3: Record the quadruple (Ds, De, Dv, Dt)

4: end for

Decision

1: Collect data after De after De to deploy a decision to react to concept drift

2: if Dt then

3: Type of Concept drift is abrupt

4: else

5: Type of Concept drift is Incremental

6: end if

7: Determine the decision to react to the concept drift based on Dv

8: if Dv ≤ threshold then

9: Decision making on incremental learning

10: else

11: Decision making on re-training model

12: end if

Deployment

1: if Decision is incremental learning then

2: Perform incremental learning on data after De using the original model

3: else

4: Drop the original model

5: Initialize a new model and train it on data after De

6: end if

Incremental learning and model re-training are vital techniques for effectively addressing concept

drift in data streams, with the choice between them being determined by the severity of the drift.

123

7.3. Experiment and Evaluation

Incremental learning involves updating the existing model iteratively, allowing it to adapt to evolv-

ing concepts while preserving past knowledge. In the presented algorithm, the decision to employ

incremental learning hinges on the severity of concept drift, represented by the Dv value, falling

below a predefined threshold. When the severity is considered low, the algorithm selects incre-

mental learning as the appropriate strategy. The original model is then leveraged to adapt to the

data points after the drift’s end point, De. This incremental learning process facilitates the model’s

efficient adjustment to evolving patterns and concepts within the data stream. Conversely, when

the severity surpasses the threshold, re-training the model becomes necessary. This entails replac-

ing the original model with a newly initialized one, which is then trained using the data instances

after De. The re-training process ensures that the updated model captures the latest patterns and

concepts, enhancing its performance in the face of significant concept drift. By incorporating

severity as the determining factor, the algorithm intelligently selects between incremental learning

and model re-training, enabling the model to maintain accuracy and effectiveness while effectively

adapting to evolving dynamics in the data stream.

7.3 Experiment and Evaluation

7.3.1 Dataset and Experiment Settings

We implemented our method using Python 3.7.10. The neural network structure was established

using the PyTorch 1.10.0 package. The functions employed to construct the networks are depicted

in Table 7.1:

Table 7.1: Function used to construction of the neural network

Layer PyTorch layer
Linear layers torch.nn.Linear
Bidirectional LSTM layer torch.nn.LSTM(bidirectional=True)
optimizer torch.optim.SGD

In this study, our main objective is to validate the efficacy of our proposed framework, with less

emphasis on exploring diverse neural network architectures. Our framework is designed to be

adaptable to various neural network structures. For demonstration purposes, we have chosen Bidi-

rectional Long Short-Term Memory (BLSTM) to construct the LSTM layers, accompanied by

a fully connected layer as the output layer. The network employs two layers of BLSTM to ef-

124

7.3. Experiment and Evaluation

fectively capture the time-series relationships in the data stream, which are influenced by concept

drift. The features extracted from this process are then inputted into a fully connected layer, result-

ing in the generation of the quadruple. It’s important to highlight that the network’s architecture

can be customized to suit different types of data streams.

The experiment hyperparameters consist of the first two stages of the proposed framework, Pre-

training and Adaptive Fine-tuning. The details of these hyperparameters are listed in Table 7.2.

Table 7.2: Hyper-parameters used for proposed framework

Pre-training Adaptive Fine-tune
Learning Rate 1e-3 1e-2
Step size 100 100
Epoch 40 20
Decay rate 0.9 0.9

In the pre-training phase, we aim to optimize the performance of the trained network by utilizing

a smaller learning rate and a larger number of epochs, resulting in higher accuracy. Consequently,

the adaptive fine-tuning phase can rapidly adapt based on the pre-trained network. In this phase,

we employ a learning rate that is ten times larger than in the pre-training phase and half the number

of epochs.

Artificial dataset

We generate four artificial datasets using the Python library, skmultiflow. This library allows us to

pre-define the Ds and De points of concept drift. Furthermore, the Dv and Dt of the concept drift

can be adjusted by altering the parameters in the data stream settings.

Circle: The circle dataset contains of 1000 data samples, the binary classes are determined by the

straight line cross the center of circle. The drift is introduced by changing the slope the straight

line.

Sine: The sine data contains 1000 data samples, within x-axis [0, π] and y-axis [−1, 1], the decision

boundary is based on the line of sine. And the drift is introduced by shifting the line of sine

between 0 and π.

Hyperplane: A hyperplane in d-dimensional space is the set of points x that satisfy
∑d

i=1wixi =

w0 =
∑d

i=1wi, where xi is the ith coordinate of x. Examples for which
∑d

i=1wixi > w0, are

125

7.3. Experiment and Evaluation

labeled positive, and examples for which
∑d

i=1wixi ≤ w0, are labeled negative. Hyperplanes are

useful for simulating time-changing concepts, because we can change the orientation and position

of the hyperplane in a smooth manner by changing the relative size of the weights. We introduce

change to this dataset by adding drift to each weight feature wi = wi + dσ, where σ is the

probability that the direction of change is reversed and d is the change applied to every example.

In this work, to generate concept drift, we choose to fix the σ and change the d to have different

level of concept drift.

RandomRBF:Random Radial Basis Function stream generator. Produces a radial basis function

stream. A number of centroids, having a random central position, a standard deviation, a class

label and weight, are generated. A new sample is created by choosing one of the centroids at

random, taking into account their weights, and offsetting the attributes at a random direction from

the centroid’s center. The offset length is drawn from a Gaussian distribution. The drift is created

by adding a speed to certain centroids. As the samples are generated each of the moving centroids’

centers is changed by an amount determined by its speed.

Real-world dataset

Two real-world datasets are used for drift detection evaluation. Powersupply (Wu et al., 2014)

and Posture posture, are two data streams collected in the real world with multiple sensors. The

details shown below:

Powersuppply: It is the hourly powersupply recording of an Italian electrical provider that records

power from two sources: the main grid and other networks that have been transformed. This

stream contains records for the years 1995 to 1998. Each data point contains two attributes and

one label, where each attribute corresponding to a source of powersupply and the label indicating

the moment of collection as a 0 to 23 integer.

Posture: The posture dataset collects data from sensors on the left/right ankle, belt, and chest at

0.1s intervals. Each data instance is made up of three features and one class label, with the features

indicating the spatial position and the class label denoting the kind of posture.

Concept drift can be generated with a specified start point and duration in artificial datasets. To do

the same thing, we construct the concept drift in real-world dataset by selecting different concept

126

7.3. Experiment and Evaluation

and combine them into data stream.

Benchmark Method

In this work, we employ nine methods, of which six drift detection methods are sourced from the

skmultiflow library (Montiel et al., 2018). These methods include DDM (Gama et al., 2004), AD-

WIN (Bifet and Gavalda, 2007), EDDM (Baena-Garcıa et al., 2006), PH (Page, 1954), HDDM A

(Frı́as-Blanco et al., 2015), and HDDM W (Frı́as-Blanco et al., 2015). Additionally, we utilize

two methods from the river library (Montiel et al., 2021), namely FHDDM (Pesaranghader and

Viktor, 2016) and MDDM (Pesaranghader et al., 2017). Lastly, OASW (Yang and Shami, 2021),

a method similar to DDM, is publicly available.

For majority of the methods, we employ the default parameters, with the exception of ADWIN,

for which we modify the settings to enhance performance. Table 7.3 presents the specific values

or thresholds. The warning and drift thresholds for DDM, HDDM, HDDM A, and HDDM W are

denoted by α and β, respectively. In the case of ADWIN and PH, there is only a drift threshold,

represented by δ.

In HDDM W, λ signifies the weight assigned to the data, with more recent data receiving less

weight. For FHDDM, MDDM, and OASW, we employ a grid search strategy to determine the

most suitable parameters, thereby achieving optimal performance in this work.

Table 7.3: Algorithm parameters or threshold description

Algorithms Parameters(Thresholds)
DDM (Gama et al., 2004) α = 0.05, β = 0.01
ADWIN (Bifet and Gavalda, 2007) δ = 0.05
EDDM (Baena-Garcıa et al., 2006) α = 0.9, β = 0.95
PH (Page, 1954) δ = 0.005
HDDM A (Frı́as-Blanco et al., 2015) α = 0.005, β = 0.001
HDDM W (Frı́as-Blanco et al., 2015) α = 0.005, β = 0.001, λ = 0.05
FHDDM (Pesaranghader and Viktor, 2016) δ = 0.01
MDDM (Pesaranghader et al., 2017) difference = 0.1, δ = 0.01, λ = 0.05
OASW (Yang and Shami, 2021) α = 0.85, β = 0.95

7.3.2 Concept Drift Detection Experiment and Evaluation

In this section, we use the pre-trained and fine-tuned network performing the concept drift detec-

tion on dataset with variant concept drift.

127

7.3. Experiment and Evaluation

The detection comparison runs 2000 trails for each dataset. Since the benchmark methods in

Section 7.3.1 only perform the detection by reporting the drift start point Dt, therefore, we conduct

the comparison of the Ds for all the benchmark methods and QuadCDD. The result is shown in

Table 7.4.

Table 7.4: Concept drift detection delay, denoted by
∣∣∣Ds − D̂s

∣∣∣, where Ds represents the ground

truth of the concept drift start point, and D̂s represents the detected drift start point. A smaller
difference between these two variables indicates a stronger detection ability of the concept drift
detection method.

DDM ADWIN EDDM PH HDDM A HDDM W FDDM MDDM OASW QuadCDD
Circle 6.08 43.18 35.33 17.15 34.86 28.56 29.61 15.32 9.14 8.20
Sine 54.27 202.20 62.77 112.10 103.64 94.98 135.73 144.02 60.48 67.88
Hyperplane 43.85 179.17 53.85 100.87 93.68 106.82 142.72 128.28 77.51 80.25
RandomRBF 291.16 316.91 331.77 261.43 285.00 335.33 360.55 360.36 251.82 176.26
Posture 39.57 102.20 353.73 97.16 25.40 301.26 404.96 398.95 73.16 12.38
Powersupply 18.69 47.58 16.15 53.76 13.62 3.78 4.78 7.62 18.68 23.54
Average 75.60 148.54 142.27 107.08 92.70 145.12 179.73 175.76 81.80 61.41

Table 7.4 presents the performance of various drift detection methods, including our proposed

method, QuadCDD, across six different datasets: Circle, Sine, Hyperplane, RandomRBF, Posture,

and Powersupply. The performance metric used is the distance from the drift start point to the pre-

dicted drift start point, with lower values indicating better accuracy in drift detection. On average,

QuadCDD outperforms all other methods, achieving the lowest average distance of 61.41, indicat-

ing its effectiveness in accurately predicting drift start points. Notably, QuadCDD demonstrates

exceptional performance on the RandomRBF and Posture datasets, with distances of 176.26 and

12.38 respectively.

7.3.3 Understanding Concept Drift

In this section, we employ our pre-trained and adaptive fine-tuned model to generate quadruple

parameters as said in Section 7.2.2, which are subsequently utilized to examine the concept drift

in greater detail. To ensure the robustness of our findings, we conduct 2000 experimental trials

on each dataset. Data for these experiments are generated using various quadruple parameter

combinations, specifically has 1000 data points in each trail of data.

For illustrative purposes, we present the results derived from the Circle dataset as Figure 7.5.

128

7.3. Experiment and Evaluation

(a) Drift Start Ds (b) Drift End De

(c) Drift Severity Dv (d) Drift Type Dt

Figure 7.5: Quadruple Understanding on Cricle Datasets, the first three plots shows the Bland-
Altman plot of the parameters, the red dash line indicates the mean of the residuals, and the two
blue dash line indicates the mean ± 1.96 standard deviations. The last plot is the violin plot
visualized the binary classification.

Ds, De, and Dv The first three figures, Figure 7.5a, 7.5b, and 7.5c, display the residual values

between the true and predicted outcomes for Ds, De, and Dv. The x-axis represents the mean of

the true and predicted values, while the y-axis shows the absolute value of the residuals. These fig-

ures are constructed using the Bland-Altman plot methodology (Bland and Altman, 1986). Given

that Ds, De, and Dv are randomly generated within a limited range, we treat these three parame-

ters as continuous variables. The Bland-Altman plot is derived from the ground truth values and

their corresponding predicted values obtained from the QuadCDD framework. Smaller residuals

indicate better performance.

As observed, most residuals cluster around the line where the residual equals 0, which signifies

a close alignment between the true and predicted values. To further investigate the agreement

between these values, Bland-Altman lines are drawn in each subfigure. These lines represent

the mean difference and the limits of agreement, defined as the mean difference ± 1.96 standard

129

7.3. Experiment and Evaluation

deviations.

By applying the Bland-Altman plot principles, we can evaluate the model’s performance through

the calculation of the percentage of data points falling within the limits of agreement. These

findings are presented in Table 7.5. The table reveals that the QuadCDD framework provides

stable predictions for these three parameters, with nearly 95% of values falling within ± 1.96

standard deviations. This indicates that the difference between the real values and the QuadCDD

processed results is statistically negligible.

Table 7.5: The table presents the percentage of data points falling within the Bland-Altman lines
for various categories of concept drift, including Circle, Sine, Hyperplane, RandomRBF, Posture,
and Powersupply. The displayed values correspond to the measurements Ds, De, and Dv associ-
ated with each category, along with the average values across all categories. Notably, a significant
majority of the data points (within the range of 95% ± 1.96 standard deviation) demonstrate a
high level of agreement with the Bland-Altman analysis.

Ds De Dv

Circle 95.19 94.95 94.25
Sine 96.27 95.15 96.43
Hyperplane 97.13 91.74 95.09
RandomRBF 93.12 95.63 97.10
Posture 95.81 97.15 94.81
Powersupply 95.39 92.18 95.72
Average 95.48 94.46 95.56

Table 7.6 shows the absolute residual values for the three parameters across different datasets. The

table demonstrates a high concentration of QuadCDD-generated parameters. When combined with

the results from Table 7.5, it is evident that the continuous parameters Ds, De, and Dv generated

by QuadCDD exhibit high accuracy.

Table 7.6: Residual Analysis of Concept Drift. The table presents the absolute residual values
denoted by Ds, De, and Dv for different categories of concept drift. Ds and De are measured in
units of 1000 data points, while Dv is measured in percentages.

Ds De Dv

Circle 0.017 0.010 0.046
Sine 0.17 0.059 0.021
Hyperplane 0.037 0.014 0.005
RandomRBF 0.088 0.018 0.005
Posture 0.013 0.021 0.01
Powersupply 0.038 0.027 0.009
Average 0.0605 0.024 0.016

130

7.3. Experiment and Evaluation

Dt For the final parameter, Dt, which takes on binary values of 0 or 1, we employ a violin plot

for visualization, as depicted in Figure 7.5d. The violin plot indicates that there is no substantial

distinction between the two groups represented by the values of 0 and 1.

To further assess QuadCDD’s capability in determining Dt, we present the accuracy and F1 score

in Table 7.7. These findings demonstrate that the ability to distinguish Dt is satisfactory, with an

average accuracy of 93.9% and an F1 score of 83.3%. Moreover, this supports the notion that

assigning a smaller weight to Dt is adequate for generating accurate results.

Table 7.7: Dt results, The Dt is either 0 or 1 based on Equation. 7.4.

Acc (%) F1 (%)
Circle 93.2 82.8
Sine 94.2 83.2
Hyperplane 92.2 80.5
RandomRBF 94.2 83.4
Posture 94.1 85.3
Powersupply 94.1 84.3
Average 93.9 83.3

7.3.4 Decision-Making in Response to Concept Drift

In this section, we analyze the quadruple generated from Section 7.3.3 to make informed deci-

sions in response to data streams with concept drift. Concept drift impacts the performance of

trained models, necessitating adaptive strategies to maintain their performance. The degree of

performance change largely depends on the severity Dv of the concept drift.

As an illustration, we employ the Circle dataset with a decision boundary defined as a straight line

intersecting the circle. The initial slope of −∞ is chosen for the training dataset. To simulate

concept drift, we introduce varying slopes of −1000,−100,−10,−5,−1, 0, 1, 5, 10, 100, 1000.

The drift starting point (Ds) and ending point (De) are pre-defined at data points 500 and 1000,

respectively, within a total generated data length of 5000. Subsequently, we plot the accuracy of

the model when no action is taken in response to the drift, as depicted in Figure 7.6. This analysis

aims to highlight that larger differences between the original data and the drift data correspond to

more significant changes in the model’s performance.

It is evident that the model accuracy starts to decline from point 500, and the magnitude of the

decline becomes significantly different from point 1000 onward. Upon overall observation, the

131

7.3. Experiment and Evaluation

Figure 7.6: Effect of Concept Drift on Model Accuracy Across 11 Data Streams. Each data stream
consists of two concepts: the first concept remains constant from 0 to point 500, which is consistent
across all data streams. The second concept exhibits varying levels of drift severity, indicated by
the slope of the decision boundary (a straight line for the Circle dataset). The initial slope for the
first concept is set to −∞, while the slopes for the subsequent concepts range from -1000 to 1000
(indicated in the legend at the right side). This figure illustrates that larger differences in slope
lead to more significant declines in model accuracy. The trend becomes particularly evident after
point 1000, emphasizing the impact of concept drift on model performance.

differentiation of the model accuracy is highly correlated to the Dv, which is induced by the

magnitude of the slope change in this case. In other words, the higher the magnitude, the larger the

decline. For instance, the accuracy with a slope of -1000 exhibits the best performance, whereas

the worst accuracy occurs at a slope of 1000.

Informed decisions can be made using the quadruple generated by the QuadCDD framework.

In this work, we employ two adaptive strategies based on the quadruple and compare the aver-

age accuracy before and after their application. Consequently, we obtain three accuracy metrics:

Accoriginal, Accincremental, and Accre−train. As illustrated in Figure 7.7, Accoriginal declines

sharply when no action is taken, while Accincremental follows a similar trend, with an even steeper

decrease after a slope of 0. It is evident that higher severity levels correspond to lower accuracy

for Accoriginal and Accincremental.

In contrast, the re-training strategy, Accre−train, consistently maintains a high and stable average

accuracy. The significant difference between Accincremental and Accre−train begins around index

132

7.3. Experiment and Evaluation

Figure 7.7: Comparison of accuracy for the three strategies: Accoriginal represents the accuracy rate
of the trained model without any action taken in response to concept drift, Accincremental illustrates
the performance when incremental learning is applied based on quadruple-informed decisions,
and Accre-train indicates the decision to re-train the model. The figure reveals that Accoriginal ex-
periences a sharp decline in accuracy, while Accincremental maintains relatively high and stable
performance until index -5. In most situations, Accre-train demonstrates consistently high accuracy.

-1, which corresponds to a severity of 0.28. Beyond this point, Accincremental is considerably

lower than Accre−train. However, a trade-off between the strategies should be considered when

selecting the appropriate decision.

By applying the decision-making algorithm, we adopt different strategies for data streams with

concept drift and varying Dv, as depicted in Figure 7.8. The figure clearly shows two phases. In

the first phase, before the drift ends, all accuracy lines share a similar pattern, with stable accuracy

ranging from 0 to 500, where Ds starts. This is followed by a dramatic drop from 500 to 1000,

which corresponds to the defined De. In the second phase, the accuracy rates vary for cases with

and without reactions to drift. It is evident that the accuracy after taking adaptive actions (dash

line) is consistently higher than the accuracy without any adaptation (solid line), indicating the

effectiveness of our decision-making approach for handling concept drift.

As illustrated by the left sub-figure, the results from continuous learning show a rapid recovery

of accuracy in response to concept drift and consistently stable performance thereafter. When

compared to the Accoriginal variable, the recovery speed following the decision-making process

is faster, and the accuracy at the end of the data stream is higher. These findings substantiate that

133

7.3. Experiment and Evaluation

(a) Accuracy before and after decision-making
with incremental learning based on QuadCDD

(b) Accuracy before and after decision-making
with re-training based on QuadCDD

Figure 7.8: Accuracy before and after decision-making based on QuadCDD

quadruple-based decision-making is effective in enhancing the model’s performance when faced

with low severity levels.

In contrast, the right sub-figure reveals a dramatic decrease in accuracy when no action is taken,

which corresponds to larger Dv values causing a greater degree of accuracy drop. This observa-

tion underscores the substantial performance improvement achieved through model retraining. As

corroborated by Figure 7.7, continuous learning is not suitable in this particular scenario. Instead,

retraining the model upon drift cessation presents a more viable option.

Table 7.8: Accuracy rate (%) comparison on six datasets, the first column is the accuracy rate
without reaction to the concept, the second column is the accuracy rate after decision-making with
our proposed QuadCDD framework

No action QuadCDD
Circle 61.20 93.51
Sine 62.35 94.83
Hyperplane 64.59 93.62
RandomRBF 75.42 95.72
Posture 67.19 95.35
Powersupply 76.13 97.72
Average 67.81 95.12

Table 7.8 displays the average accuracy obtained without taking action in response to data streams

with concept drift (shown in the No action column) and the accuracy rate after informed decisions

are made (shown in QuadCDD column). The decision could be either incremental learning or re-

training, depending on the Dv value. It is clear that the model performance improves significantly

by 27.31%, demonstrating that the decisions made effectively maintain high and stable model

performance.

134

7.4. Summary

In summary, the impact of concept drift on the performance of data streams primarily depends on

Ds. We can observe that the effect of Ds on performance is directly proportional to its magnitude.

Our QuadCDD method enables a detailed understanding of concept drift through the detection

of quadruples and facilitates tailored responses to different concept drifts. We adopt varying de-

cisions based on different Ds values to ensure the model’s stable performance. Our experiments

demonstrate that our decision-making approach results in an average performance improvement of

27.31% compared to taking no countermeasures, achieving an average accuracy of 95.12%.

7.4 Summary

In conclusion, our novel Quadruple-based Approach for Understanding Concept Drift framework

in Data Streams addresses the limitations of existing concept drift detection methods that primar-

ily rely on hypothesis testing frameworks. By providing a more detailed understanding of concept

drift through the use of quadruples, our framework allows for a comprehensive analysis of drift

start, drift end, drift severity, and drift type. This enables informed decision-making and the adop-

tion of appropriate actions to handle various concept drifts effectively, resulting in high and stable

performance in data streams with concept drift. Our experimental results demonstrate the effec-

tiveness of the QuadCDD framework in accurately detecting and understanding concept drifts,

as well as preserving the stability and performance of models when faced with such drifts. This

research contributes to the field of data stream analysis by offering a more holistic approach to

concept drift detection and understanding, ultimately benefiting a wide range of applications that

depend on accurate and stable predictions in the presence of evolving data streams.

135

Chapter 8

Conclusion and Future Research

8.1 Conclusions

The rapid expansion of online applications such as sensor networks, telephony, mobile applica-

tions, and cloud computing has coincided with the rise in popularity of data stream mining, which

has been one of the most notable implementations of this technology. Other applications that have

benefited from this technology include cloud computing. These are only a few examples of the

many different web apps that have been successful as a result of this trend. There are still a great

many more. The data that is produced by these systems, which includes network logs and the flows

of electronic transactions, is not only extensive but also always changing, which makes it prone to

both quick development and large changes in the distributions that it is based on. This is because

these systems are constantly generating new information. The flows of electronic transactions are

included in this data. The problem that occurs as a consequence of such a dynamic environment

is referred to as concept drift, and it presents major hurdles to the systems that are employed for

online data mining and machine learning.

There are still major restrictions that need to be dealt with, despite the fact that a variety of meth-

ods for the identification and adaption of concept drift have been devised. These limits include the

occurrence of complex data stream circumstances, the identification of erroneous drifts, and the in-

frequent discovery of these problems throughout the process of deploying a neural network.

In light of this, the purpose of this research was to develop innovative drift detection algorithms

136

8.1. Conclusions

with the ability to interpret and recognise various forms of concept drift in a more granular manner.

This was done in an effort to improve the quality of drift identification already available. Within

the scope of this investigation, it was planned that these algorithms would be put into action.

The findings of this study are summarized as follows:

• The design and implementation of an innovative concept drift detection system for multi-

label data stream classification was realized, allowing for concept drift detection in more

intricate scenarios. This involved enhancing the capabilities of the Drift Detection Method

(DDM) through the integration of a false positive rate, which resulted in an improved detec-

tion performance. (For details, refer to Objective 1, Chapter 3)

The innovation in this detection method lies in broadening the application of DDM to more

complex scenarios, specifically those involving multi-labeled data streams. The incorpora-

tion of a false positive rate leads to a more sensitive reaction to concept drift, resulting in

prompt and more accurate concept drift detection outcomes. This improvement also under-

scores the effect of indicator diversity on the performance of concept drift detection.

• A novel concept drift detection method, referred to as Noisy Data Drift Detection Method

(NTDDM), was developed for noisy data streams. The system showed exceptional perfor-

mance in scenarios where the data stream had both concept drift and noise. (For details,

refer to Objective 2, Chapter 4)

The initial step involved quantifying and defining two different types of noise in the data

stream. Three metrics for a comprehensive measure of concept drift were then developed,

facilitating a more thorough comparison of the concept drift detection performance. The

proposed NTDDM detects concept drift by identifying potential drift using a detection func-

tion, then filters out the drift caused by noise with a validation function. Overall, the NT-

DDM showed strong performance in detecting concept drift in data streams with noise.

• An innovative concept drift detection method was developed that leverages the prediction

performance and stability of machine learning models, with the aim of improving detection

performance by focusing more on the change in the model itself rather than its output. (For

details, refer to Objective 3, Chapter 5)

137

8.2. Limitations

Changes in model performances, which are statistically significant, are usually used for drift

detection. This method leverages changes in model stability to detect concept drift, where a

vote-based incremental ensemble learning model could capture concept drift by monitoring

a weighted indicator with prediction performance and stability. The experimental results

demonstrated improved performance in drift detection.

• A novel model-centric concept drift detection method based on transfer learning with deep

neural networks was developed. This aims to accelerate the efficiency of concept drift de-

tection by harnessing the power of deep neural networks. (For details, refer to Objective 4,

Chapter 6)

This method explores the potential of deep neural networks to replace conventional ma-

chine learning methods for concept drift detection. While deep neural networks can handle

more complex machine learning tasks, the considerable computational resources and time

required are at odds with the immediate response requirement for concept drift. Thus, the

use of transfer learning to freeze parts of the neural network helps reveal the capability of

deep neural networks for prompt and accurate drift detection.

• A novel concept drift detection and understanding method was developed to provide a com-

prehensive understanding of the concept. The result, represented by a quadruple comprising

the drift start, drift end, drift severity, and drift type, provides a holistic perspective on con-

cept drift. (For details, refer to Objective 5, Chapter 7)

The premise of this method is rooted in the observation that most concept drift detection

methods focus heavily on drift start detection. However, drift start is just one aspect of

the phenomenon. Leveraging the power of deep neural networks, a quadruple containing

four pieces of information can be generated simultaneously. Experimentation shows that

taking informed and instructive actions based on quadruple results leads to high and stable

performance in data stream learning with concept drift.

8.2 Limitations

Despite the advancements made in this work on concept drift detection, several limitations have

been identified, paving the way for future research directions. These are outlined as follows:

138

8.3. Future Research

• Lack of Complexity Analysis: While our methods demonstrate effectiveness in detecting

concept drift, an in-depth analysis of their computational complexity is lacking. This is

crucial, especially for algorithms deployed in data stream mining, where efficiency and

speed are paramount.

• Noise Impact Study: The influence of noise on concept drift detection has not been ex-

plored extensively. Our discussion primarily revolves around the impact of a single type

of noise, despite the common occurrence of multiple noise types in real-world scenarios.

Future work should delve into the combined effects of various noise types on concept drift

detection.

• Theoretical Basis for Weight Change Utilization: Our approach uses weight changes in

deep neural networks as an indicator for concept drift detection. However, this application

lacks a solid theoretical foundation. Future research could benefit from an explanatory anal-

ysis from the perspective of explainable AI to deepen the understanding of this approach.

• Consideration of Recurrent Concept Drift: Among the four types of concept drift, re-

current concept drift was not addressed in our study. Given its prevalence in real-world

applications, it is imperative to consider this type of drift in future research to enhance the

robustness of detection methodologies.

• Scalability and Real-World Applicability: There is a need to test the scalability of our

proposed methods in large-scale, real-world scenarios. This includes evaluating the meth-

ods’ performance in rapidly changing and diverse data environments to ensure their practical

utility.

• Integration of Advanced Neural Architectures: Future research should also explore the

integration of more sophisticated neural network architectures and techniques, such as trans-

former, to improve the adaptability and efficiency of the concept drift detection methods in

varying data stream scenarios.

8.3 Future Research

This research has successfully made significant advancements in the field of concept drift de-

tection, yielding a collection of novel methodologies with demonstrated proficiency in complex

139

8.3. Future Research

data stream classification scenarios. Notwithstanding these developments, there exist numerous

research directions that could augment and expand the practicality of these methodologies. We

intend to address these areas in our future work:

• Incorporating Varied Data Modalities: While our research has proficiently addressed the

challenges associated with multi-label data streams and noisy data scenarios, it is crucial to

expand our scope to encompass more complex and diverse data modalities. These would

include high-dimensional data, imbalanced data streams, as well as multimodal data stem-

ming from sources such as video and audio. Multimodal data offers a rich and complex rep-

resentation of information, presenting novel challenges and opportunities for concept drift

detection. Through the utilization of deep learning techniques, we aim to parse and analyze

such data, detecting any underlying concept drift. Furthermore, by integrating data across

multiple modalities, we aspire to develop robust models capable of functioning in diverse

environments and scenarios. Therefore, the handling and understanding of multimodal data

will form a critical component of our future work.

• Enhancement of Performance Metrics: While our current implementation of metrics for

tracking concept drift has shown efficacy, there is a pressing need for a more universal

and well-rounded performance assessment framework in the field. To date, the community

has primarily relied on detection latency as a key indicator, but this singular dimension

inadequately captures the multifaceted nature of concept drift detection. Therefore, future

work should be dedicated to the development of a more comprehensive set of metrics. This

framework should encapsulate a broader range of dimensions including, but not limited

to, detection latency, false positive rate, false negative rate, and computational efficiency.

A robust, holistic metric system will ensure a thorough evaluation of detection outcomes,

pushing the boundaries of concept drift detection research.

• Scalability and Efficiency Optimization in Real-World Contexts: The experimental datasets

employed in our studies, while significant, still present a considerable discrepancy compared

to the sheer volume and velocity of real-world data streams. As such, a key challenge in fu-

ture work is to rigorously test and measure the effectiveness of our methodologies in large-

scale, rapidly evolving scenarios. Consequently, this necessitates an in-depth investigation

into the scalability of our methods, alongside a concerted effort to optimize computational

140

8.3. Future Research

efficiency. Our ambition is to empower these methodologies to perform real-time or near

real-time concept drift detection within substantial and swiftly changing data environments

typical of real-world scenarios. Achieving this would further underscore the practical utility

of our concept drift detection methods.

• In light of the current research, future work with QuadCDD should focus on addressing

certain limitations and areas for improvement. One aspect to consider is the adaptive fine-

tuning of the model, including the adjustment of hyper-parameters to better accommodate

various data streams with concept drift. This would enhance the model’s adaptability and

overall performance in handling diverse types of concept drifts.

Furthermore, the drift type (Dt) is not extensively utilized in QuadCDD. Future research

should explore additional potential applications of Dt to facilitate a deeper understanding

of concept drift and its various manifestations. By addressing these limitations and expand-

ing on the current framework, we can continue to advance the field of data stream analysis

and develop more robust and effective models for handling concept drift in real-world ap-

plications.

• Exploiting Deep Learning Techniques: The promising outcomes achieved through the

application of deep learning techniques in concept drift detection signal potential for further

exploration. Upcoming research could focus on developing sophisticated deep learning

architectures, refining existing models, and harnessing transfer learning and other strategies

to augment model efficiency.

Addressing concept drift remains pivotal in adaptive machine learning systems, despite the chal-

lenges it poses. The ever-changing nature of data necessitates the development of robust, resilient

machine learning models that can accommodate these shifts. The future of machine learning algo-

rithms is significantly promising, particularly those that are capable of effectively handling concept

drift. Such advancements will not only enhance predictive model reliability in evolving environ-

ments but also spur the development of sophisticated, adaptable systems. Ultimately, continued

research in this domain is critical for the progression of machine learning and data science.

141

References

Ackermann, M. R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C. and Sohler, C. (2010),

‘Streamkm++: A clustering algorithm for data streams’, ACM J. Exp. Algorithmics 17.

Alghushairy, O., Alsini, R., Soule, T. and Ma, X. (2020), ‘A review of local outlier factor algo-

rithms for outlier detection in big data streams’, Big Data Cogn. Comput. 5, 1.

Alippi, C., Boracchi, G. and Roveri, M. (2013), ‘Just-in-time classifiers for recurrent concepts’,

IEEE Transactions on Neural Networks and Learning Systems 24, 620–634.

Alippi, C., Boracchi, G. and Roveri, M. (2017), ‘Hierarchical change-detection tests’, IEEE

Transactions on Neural Networks and Learning Systems 28(2), 246–258.

Alkassar, S., Abdullah, M. A. M., Jebur, B. A., Abdul-Majeed, G. H., Wei, B. and Woo, W. L.

(2021), ‘Automated diagnosis of childhood pneumonia in chest radiographs using modified

densely residual bottleneck-layer features’, Applied Sciences 11(23).

Andonovski, G., Lughofer, E. and Škrjanc, I. (2021), ‘Evolving fuzzy model identification of

nonlinear wiener-hammerstein processes’, IEEE Access 9, 158470–158480.

Baena-Garcıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavalda, R. and Morales-Bueno, R.

(2006), Early drift detection method, in ‘Fourth international workshop on knowledge discovery

from data streams’, Vol. 6, pp. 77–86.

Baier, L., Schlör, T., Schöffer, J. and Kühl, N. (2021), ‘Detecting concept drift with neural network

model uncertainty’, CoRR abs/2107.01873.

Basseville, M. and Nikiforov, I. V. (1993), Detection of Abrupt Changes: Theory and Application,

Prentice-Hall, Inc., USA.

142

References

Bifet, A. and Gavalda, R. (2007), Learning from time-changing data with adaptive windowing, in

‘Proceedings of the 2007 SIAM international conference on data mining’, SIAM, pp. 443–448.

Bifet, A., Holmes, G., Kirkby, R. and Pfahringer, B. (2010), ‘MOA: massive online analysis’, J.

Mach. Learn. Res. 11, 1601–1604.

Bland, J. M. and Altman, D. (1986), ‘Statistical methods for assessing agreement between two

methods of clinical measurement’, The lancet 327(8476), 307–310.

Blažič, S. and Škrjanc, I. (2020), ‘Incremental fuzzy c-regression clustering from streaming data

for local-model-network identification’, IEEE Transactions on Fuzzy Systems 28(4), 758–767.

Buckland, M. and Gey, F. (1994), ‘The relationship between recall and precision’, Journal of the

American society for information science 45(1), 12–19.

Casilari, E., Lora-Rivera, R. and Garcı́a-Lagos, F. (2020), ‘A study on the application of con-

volutional neural networks to fall detection evaluated with multiple public datasets’, Sensors

20(5), 1466.

Chen, D., Yang, Q., Liu, J. and Zeng, Z. (2020), ‘Selective prototype-based learning on concept-

drifting data streams’, Information Sciences 516, 20–32.

Chen, Q., Chen, Z., Nafa, Y., Duan, T., Pan, W., Zhang, L. and Li, Z. (2022), ‘Adaptive deep

learning for entity resolution by risk analysis’, Knowledge-Based Systems p. 110118.

Csiszár, O., Pusztaházi, L. S., Dénes-Fazakas, L., Gashler, M. S., Kreinovich, V. and Csiszár, G.

(2023), ‘Uninorm-like parametric activation functions for human-understandable neural mod-

els’, Knowledge-Based Systems 260, 110095.

Dawid, A. P. and Vovk, V. G. (1999), ‘Prequential probability: principles and properties’,

Bernoulli 5(1), 125 – 162.

Diez-Olivan, A., Ortego, P., Del Ser, J., Landa-Torres, I., Galar, D., Camacho, D. and Sierra, B.

(2021), ‘Adaptive dendritic cell-deep learning approach for industrial prognosis under changing

conditions’, IEEE Transactions on Industrial Informatics pp. 1–1.

Ditzler, G., Roveri, M., Alippi, C. and Polikar, R. (2015), ‘Learning in nonstationary environ-

ments: A survey’, IEEE Computational Intelligence Magazine 10(4), 12–25.

143

References

Dongre, P. B. and Malik, L. G. (2014), A review on real time data stream classification and adapt-

ing to various concept drift scenarios, in ‘2014 IEEE International Advance Computing Confer-

ence (IACC)’, pp. 533–537.

dos Reis, D. M., Flach, P., Matwin, S. and Batista, G. (2016), Fast unsupervised online drift detec-

tion using incremental kolmogorov-smirnov test, in ‘Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining’, pp. 1545–1554.

Du, H., Minku, L. L. and Zhou, H. (2020), Marline: Multi-source mapping transfer learning

for non-stationary environments, in ‘2020 IEEE International Conference on Data Mining

(ICDM)’, pp. 122–131.

Du, L., Song, Q. and Jia, X. (2014), ‘Detecting concept drift: An information entropy based

method using an adaptive sliding window’, Intell. Data Anal. 18(3), 337–364.

Dubuc, T. T., Stahl, F. T. and Roesch, E. B. (2021), ‘Mapping the big data landscape: Technologies,

platforms and paradigms for real-time analytics of data streams’, IEEE Access 9, 15351–15374.

Fang, Z., Li, Y., Lu, J., Dong, J., Han, B. and Liu, F. (2022), ‘Is out-of-distribution detection

learnable?’.

Fang, Z., Lu, J., Liu, F., Xuan, J. and Zhang, G. (2020), ‘Open set domain adaptation: Theoretical

bound and algorithm’, IEEE transactions on neural networks and learning systems PP.

Feng, G. (2019), Concept Drift Detection for Detection Machine Learning with Stream Data, PhD

thesis, University of Technology Sydney.

Flach, P. (2012), Machine learning: the art and science of algorithms that make sense of data,

Cambridge university press.

Frı́as-Blanco, I., Campo-Ávila, J. d., Ramos-Jiménez, G., Morales-Bueno, R., Ortiz-Dı́az, A. and

Caballero-Mota, Y. (2015), ‘Online and non-parametric drift detection methods based on ho-

effding’s bounds’, IEEE Transactions on Knowledge and Data Engineering 27(3), 810–823.

Gaber, M. M. (2012), ‘Advances in data stream mining’, Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery 2.

144

References

Gama, J., Medas, P., Castillo, G. and Rodrigues, P. (2004), Learning with drift detection, in

‘Brazilian symposium on artificial intelligence’, Springer, pp. 286–295.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M. and Bouchachia, A. (2014), ‘A survey on concept

drift adaptation’, ACM computing surveys (CSUR) 46(4), 1–37.

Gao, B., He, Y., Lok Woo, W., Yun Tian, G., Liu, J. and Hu, Y. (2016), ‘Multidimensional tensor-

based inductive thermography with multiple physical fields for offshore wind turbine gear in-

spection’, IEEE Transactions on Industrial Electronics 63(10), 6305–6315.

Gu, X., Angelov, P. and Zhao, Z. (2021), ‘Self-organizing fuzzy inference ensemble system for

big streaming data classification’, Knowledge-Based Systems 218, 106870.

Guo, H., Zhang, S. and Wang, W. (2021), ‘Selective ensemble-based online adaptive deep neural

networks for streaming data with concept drift’, Neural Networks 142, 437–456.

Halstead, B., Koh, Y. S., Riddle, P. J., Pears, R., Pechenizkiy, M., Bifet, A., Olivares, G. and Coul-

son, G. (2021), ‘Analyzing and repairing concept drift adaptation in data stream classification’,

Machine Learning pp. 1–35.

Hamad, R. A., Yang, L., Woo, W. L. and Wei, B. (2022), ‘Convnet-based performers attention and

supervised contrastive learning for activity recognition’, Applied Intelligence pp. 1–17.

Hamad, R., Kimura, M., Yang, L., Woo, W. L. and Wei, B. (2021), ‘Dilated causal convolution

with multi-head self attention for sensor human activity recognition’, Neural Computing and

Applications 33.

Haque, A., Khan, L. and Baron, M. (2016), Sand: Semi-supervised adaptive novel class detec-

tion and classification over data stream, in ‘Proceedings of the AAAI Conference on Artificial

Intelligence’, Vol. 30.

Harel, M., Mannor, S., El-Yaniv, R. and Crammer, K. (2014), Concept drift detection through

resampling, in ‘International Conference on Machine Learning’.

Hashemi, S. and Yang, Y. (2009), ‘Flexible decision tree for data stream classification in the

presence of concept change, noise and missing values’, Data Min. Knowl. Discov. 19, 95–131.

145

References

Hashemi, S., Yang, Y. and Kangavari, M. (2007), To better handle concept change and noise:

A cellular automata approach to data stream classification, in M. Orgun and J. Thornton, eds,

‘Proc, 20th Aust. Joint Conf. on AI: Advances in AI’, Vol. 4830, Springer-Verlag London Ltd.,

Germany, pp. 669 – 674.

Hernández, M. and Stolfo, S. (1998), ‘Real-world data is dirty: Data cleansing and the

merge/purge problem’, Data Min. Knowl. Discov. 2, 9–37.

Hu, B., Gao, B., Woo, W. L., Ruan, L., Jin, J., Yang, Y. and Yu, Y. (2021), ‘A lightweight spatial

and temporal multi-feature fusion network for defect detection’, IEEE Transactions on Image

Processing 30, 472–486.

Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L. and Muller, P.-A. (2019), ‘Deep learning

for time series classification: a review’, Data Mining and Knowledge Discovery 33(4), 917–963.

Iwashita, A. S. and Papa, J. P. (2019), ‘An Overview on Concept Drift Learning’, IEEE Access

7, 1532–1547.

Jain, L., Katarya, R. and Sachdeva, S. (2020), ‘Opinion leader detection using whale optimization

algorithm in online social network’, Expert Systems with Applications 142, 113016.

Jr., F. J. M. (1951), ‘The kolmogorov-smirnov test for goodness of fit’, Journal of the American

Statistical Association 46(253), 68–78.

Kaluža, B., Mirchevska, V., Dovgan, E., Luštrek, M. and Gams, M. (2010), An agent-based ap-

proach to care in independent living, in ‘Proceedings of the First International Joint Conference

on Ambient Intelligence’, AmI’10, Springer-Verlag, Berlin, Heidelberg, p. 177–186.

Kammerer, K., Pryss, R., Hoppenstedt, B., Sommer, K. and Reichert, M. (2020), ‘Process-driven

and flow-based processing of industrial sensor data’, Sensors 20(18).

Kaur, A. and Jagdev, G. (2017), Analyzing working of fp-growth algorithm for frequent pattern

mining.

Kauschke, S., Lehmann, D. H. and Fürnkranz, J. (2019), Patching deep neural networks for nonsta-

tionary environments, in ‘2019 International Joint Conference on Neural Networks (IJCNN)’,

pp. 1–8.

146

References

Kelly, M. G., Hand, D. J. and Adams, N. M. (1999), The impact of changing populations on

classifier performance, in ‘Proceedings of the Fifth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining’, KDD ’99, Association for Computing Machinery,

New York, NY, USA, p. 367–371.

Klinkenberg, R., Viii, L. I., Renz, I. and Ag, D.-B. (1998), Adaptive information filtering: Learn-

ing in the presence of concept drifts.

Korycki, L. and Krawczyk, B. (2021), Class-incremental experience replay for continual learning

under concept drift, in ‘Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition’, pp. 3649–3658.

Kovic, M. and Kovic, M. (2017), ‘Why i write with latex (and why you should too)’.

URL: https://medium.com/@marko kovic/why-i-write-with-latex-and-why-you-should-too-

ba6a764fadf9

Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J. and Woźniak, M. (2017), ‘Ensemble learn-

ing for data stream analysis: A survey’, Information Fusion 37, 132–156.

Krawczyk, B., Stefanowski, J. and Wozniak, M. (2015), ‘Data stream classification and big data

analytics’, Neurocomputing 150, 238–239.

L. Lobo, J., Del Ser, J. and Herrera, F. (2021), ‘Lunar: Cellular automata for drifting data streams’,

Information Sciences 543, 467–487.

Laborieux, A., Ernoult, M., Hirtzlin, T. and Querlioz, D. (2021), ‘Synaptic metaplasticity in bina-

rized neural networks’, Nature communications 12(1), 1–12.

Lamport, L. (1994), LATEX: a document preparation system: user’s guide and reference manual,

Addison-wesley.

Leite, D., Andonovski, G., Škrjanc, I. and Gomide, F. (2020), ‘Optimal rule-based granular sys-

tems from data streams’, IEEE Transactions on Fuzzy Systems 28(3), 583–596.

Leite, D. and Gomide, F. (2020), ‘An overview on evolving systems and learning from stream

data’, Evolving Systems X, 1–18.

147

https://medium.com/@marko_kovic/why-i-write-with-latex-and-why-you-should-too-ba6a764fadf9
https://medium.com/@marko_kovic/why-i-write-with-latex-and-why-you-should-too-ba6a764fadf9

References

Li, J., Jiang, H., Mei, X., Hu, C. and Zhang, G. (2020), ‘Dynamical analysis of rumor spread-

ing model in multi-lingual environment and heterogeneous complex networks’, Information

Sciences 536, 391–408.

Lin, C.-C., Deng, D.-J., Kuo, C.-H. and Chen, L. (2019), ‘Concept drift detection and adaption

in big imbalance industrial iot data using an ensemble learning method of offline classifiers’,

IEEE Access 7, 56198–56207.

Liu, A., Lu, J., Liu, F. and Zhang, G. (2018), ‘Accumulating regional density dissimilarity for

concept drift detection in data streams’, Pattern Recognition 76, 256–272.

Liu, A., Lu, J., Song, Y., Xuan, J. and Zhang, G. (2022), ‘Concept drift detection delay index’,

IEEE Transactions on Knowledge and Data Engineering pp. 1–1.

Liu, A., Song, Y., Zhang, G. and Lu, J. (2017), Regional concept drift detection and density

synchronized drift adaptation, in ‘International Joint Conference on Artificial Intelligence’.

Liu, F., Yu, Y., Song, P., Fan, Y. and Tong, X. (2020), ‘Scalable kde-based top-n local outlier

detection over large-scale data streams’, Knowledge-Based Systems 204, 106186.

Liu, S., Feng, L., Wu, J., Hou, G. and Han, G. (2017), ‘Concept drift detection for data stream

learning based on angle optimized global embedding and principal component analysis in sensor

networks’, Computers & Electrical Engineering 58, 327–336.

Liu, Z., Loo, C. K. and Seera, M. (2019), ‘Meta-cognitive recurrent recursive kernel os-elm for

concept drift handling’, Applied Soft Computing 75, 494–507.

Long, M., Cao, Z., Wang, J. and Jordan, M. I. (2018), Conditional adversarial domain adapta-

tion, in ‘Proceedings of the 32nd International Conference on Neural Information Processing

Systems’, NIPS’18, Curran Associates Inc., Red Hook, NY, USA, p. 1647–1657.

Losing, V., Hammer, B. and Wersing, H. (2016), Knn classifier with self adjusting memory for

heterogeneous concept drift, in ‘2016 IEEE 16th International Conference on Data Mining

(ICDM)’, pp. 291–300.

Lu, J., Liu, A., Dong, F., Gu, F., Gama, J. and Zhang, G. (2019), ‘Learning under concept drift: A

review’, IEEE Transactions on Knowledge and Data Engineering 31(12), 2346–2363.

148

References

Lu, N., Lu, J., Zhang, G. and Lopez de Mantaras, R. (2016), ‘A concept drift-tolerant case-base

editing technique’, Artificial Intelligence 230, 108–133.

Luengo, J., Sánchez-Tarragó, D., Prati, R. C. and Herrera, F. (2021), ‘Multiple instance classifica-

tion: Bag noise filtering for negative instance noise cleaning’, Information Sciences 579, 388–

400.

Lughofer, E. (2017), ‘On-line active learning: A new paradigm to improve practical useability of

data stream modeling methods’, Information Sciences 415-416, 356–376.

Lughofer, E. and Angelov, P. (2011), ‘Handling drifts and shifts in on-line data streams with evolv-

ing fuzzy systems’, Applied Soft Computing 11(2), 2057–2068. The Impact of Soft Computing

for the Progress of Artificial Intelligence.

Lughofer, E., Pratama, M. and Skrjanc, I. (2018), ‘Incremental rule splitting in generalized evolv-

ing fuzzy systems for autonomous drift compensation’, IEEE Transactions on Fuzzy Systems

26(4), 1854–1865.

Lughofer, E., Pratama, M. and Škrjanc, I. (2021), ‘Online bagging of evolving fuzzy systems’,

Information Sciences 570, 16–33.

Lughofer, E., Weigl, E., Heidl, W., Eitzinger, C. and Radauer, T. (2016), ‘Recognizing input

space and target concept drifts in data streams with scarcely labeled and unlabelled instances’,

Information Sciences 355-356, 127–151.

Luo, Q., Gao, B., Woo, W. and Yang, Y. (2019), ‘Temporal and spatial deep learning network for

infrared thermal defect detection’, NDT & E International 108, 102164.

Mahan, F., Mohammadzad, M., Rozekhani, S. M. and Pedrycz, W. (2021), ‘Chi-mflexdt:chi-

square-based multi flexible fuzzy decision tree for data stream classification’, Applied Soft

Computing 105, 107301.

Mahdavi, E., Fanian, A., Mirzaei, A. and Taghiyarrenani, Z. (2022), ‘Itl-ids: Incremental transfer

learning for intrusion detection systems’, Knowledge-Based Systems 253, 109542.

Manias, D. M., Shaer, I., Yang, L. and Shami, A. (2021), Concept drift detection in federated

149

References

networked systems, in ‘2021 IEEE Global Communications Conference (GLOBECOM)’, IEEE

Press, p. 1–6.

Masud, M. M., Gao, J., Khan, L. and Han, J. (2009), Classifying evolving data streams for intru-

sion detection.

Mittelbach, F., Goossens, M., Braams, J., Carlisle, D. and Rowley, C. (2004), The LATEX

companion, Addison-Wesley Professional.

Montiel, J., Halford, M., Mastelini, S. M., Bolmier, G., Sourty, R., Vaysse, R., Zouitine, A.,

Gomes, H. M., Read, J., Abdessalem, T. and Bifet, A. (2021), ‘River: Machine learning for

streaming data in python’, J. Mach. Learn. Res. 22(1).

Montiel, J., Read, J., Bifet, A. and Abdessalem, T. (2018), ‘Scikit-multiflow: A multi-output

streaming framework’, Journal of Machine Learning Research 19(72), 1–5.

Orozco-Arias, S., Piña, J. S., Tabares-Soto, R., Castillo-Ossa, L. F., Guyot, R. and Isaza, G. (n.d.),

‘Measuring performance metrics of machine learning algorithms for detecting and classifying

transposable elements’.

Page, E. S. (1954), ‘Continuous inspection schemes’, Biometrika 41(1/2), 100–115.

Pang, Z.-H., Fan, L.-Z., Sun, J., Liu, K. and Liu, G.-P. (2021), ‘Detection of stealthy false data

injection attacks against networked control systems via active data modification’, Information

Sciences 546, 192–205.

Pesaranghader, A. and Viktor, H. L. (2016), Fast hoeffding drift detection method for evolving

data streams, in P. Frasconi, N. Landwehr, G. Manco and J. Vreeken, eds, ‘Machine Learning

and Knowledge Discovery in Databases’, Springer International Publishing, Cham, pp. 96–111.

Pesaranghader, A., Viktor, H. L. and Paquet, E. (2017), ‘Mcdiarmid drift detection methods

for evolving data streams’, 2018 International Joint Conference on Neural Networks (IJCNN)

pp. 1–9.

Pratama, M., Lu, J., Lughofer, E., Zhang, G. and Er, M. J. (2017), ‘An incremental learning of

concept drifts using evolving type-2 recurrent fuzzy neural networks’, IEEE Transactions on

Fuzzy Systems 25(5), 1175–1192.

150

References

Priya, S. and Uthra, R. A. (2021), ‘Deep learning framework for handling concept drift and

class imbalanced complex decision-making on streaming data’, Complex & Intelligent Systems

pp. 1–17.

Pukelsheim, F. (1994), ‘The three sigma rule’, The American Statistician 48(2), 88–91.

Rezk, H., Aly, M. and Fathy, A. (2021), ‘A novel strategy based on recent equilibrium optimizer to

enhance the performance of pem fuel cell system through optimized fuzzy logic mppt’, Energy

234, 121267.

Rohlf, F. J., Sokal, R. R. et al. (1995), Statistical tables, Macmillan.

Ryan, S., Corizzo, R., Kiringa, I. and Japkowicz, N. (2019), ‘Deep learning versus conventional

learning in data streams with concept drifts’, 2019 18th IEEE International Conference On

Machine Learning And Applications (ICMLA) pp. 1306–1313.

Schweppe, H., Zimmermann, A. and Grill, D. (2010), ‘Flexible on-board stream processing for

automotive sensor data’, IEEE Transactions on Industrial Informatics 6(1), 81–92.

Shaker, A. and Lughofer, E. (2014), ‘Self-adaptive and local strategies for a smooth treatment of

drifts in data streams’, Evolving Systems 5, 239–257.

Sobolewski, P. and Wozniak, M. (2013), ‘Concept drift detection and model selection with sim-

ulated recurrence and ensembles of statistical detectors.’, J. Univers. Comput. Sci. 19(4), 462–

483.

Song, Y., Zhang, G., Lu, H. and Lu, J. (2019), A noise-tolerant fuzzy c-means based drift adap-

tation method for data stream regression, in ‘2019 IEEE International Conference on Fuzzy

Systems’, pp. 1–6.

Souza, V. M., dos Reis, D. M., Maletzke, A. G. and Batista, G. E. (2020), ‘Challenges in

benchmarking stream learning algorithms with real-world data’, Data Mining and Knowledge

Discovery 34(6), 1805–1858.

Teinemaa, I., Dumas, M., Leontjeva, A. and Maggi, F. M. (2018), ‘Temporal stability in predictive

process monitoring’, Data Mining and Knowledge Discovery 32, 1306–1338.

151

References

Teinemaa, I., Dumas, M., Rosa, M. L. and Maggi, F. M. (2019), ‘Outcome-oriented predictive

process monitoring: Review and benchmark’, ACM Trans. Knowl. Discov. Data 13(2).

Tengtrairat, N., Woo, W. L., Parathai, P., Aryupong, C., Jitsangiam, P. and Rinchumphu, D. (2021),

‘Automated landslide-risk prediction using web gis and machine learning models’, Sensors

21(13).

Tengtrairat, N., Woo, W. L., Parathai, P., Rinchumphu, D. and Chaichana, C. (2022), ‘Non-

intrusive fish weight estimation in turbid water using deep learning and regression models’,

Sensors 22(14).

Tharwat, A. (n.d.), ‘Classification assessment methods’.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski,

E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman,

K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,

Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quin-

tero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P. and

SciPy 1.0 Contributors (2020), ‘SciPy 1.0: Fundamental Algorithms for Scientific Computing

in Python’, Nature Methods 17, 261–272.

Wang, H. and Abraham, Z. (2015), Concept drift detection for streaming data, in ‘2015 Interna-

tional Joint Conference on Neural Networks (IJCNN)’, pp. 1–9.

Wang, P., Jin, N., Davies, D. and Woo, W. L. (2023), ‘Model-centric transfer learning framework

for concept drift detection’, Knowledge-Based Systems 275, 110705.

Wang, P., Jin, N., Woo, W. L., Woodward, J. R. and Davies, D. (2022), ‘Noise tolerant drift

detection method for data stream mining’, Information Sciences 609, 1318–1333.

Wang, S., Minku, L. L. and Yao, X. (2018), ‘A systematic study of online class imbalance

learning with concept drift’, IEEE Transactions on Neural Networks and Learning Systems

29(10), 4802–4821.

Wares, S., Isaacs, J. P. and Elyan, E. (2019), ‘Data stream mining: methods and challenges for

handling concept drift’, SN Applied Sciences 1.

152

References

Wei, L., Liu, L., Qi, J. and Qian, T. (2020), ‘Rules acquisition of formal decision contexts based

on three-way concept lattices’, Information Sciences 516, 529–544.

Widmer, G. and Kubat, M. (1994), ‘Learning in the presence of concept drift and hidden contexts’,

Machine Learning 23.

Wu, X., Zhu, X., Wu, G.-Q. and Ding, W. (2014), ‘Data mining with big data’, IEEE Transactions

on Knowledge and Data Engineering 26(1), 97–107.

Xiong, H., Pandey, G., Steinbach, M. and Kumar, V. (2006), ‘Enhancing data analysis with noise

removal’, IEEE Transactions on Knowledge and Data Engineering 18(3), 304–319.

Xu, Y., Sun, G., Geng, T. and He, J. (2019), ‘Low-energy data collection in wireless sensor net-

works based on matrix completion’, Sensors 19(4), 945.

Xu, Y. and Wilson, K. (2021), Early alert systems during a pandemic: A simulation study on

the impact of concept drift, in ‘LAK21: 11th International Learning Analytics and Knowledge

Conference’, LAK21, Association for Computing Machinery, New York, NY, USA, p. 504–510.

Yang, L. and Shami, A. (2021), ‘A lightweight concept drift detection and adaptation framework

for iot data streams’, IEEE Internet of Things Magazine 4(2), 96–101.

Yang, Y., Zheng, X., Guo, W., Liu, X. and Chang, V. (2019), ‘Privacy-preserving smart iot-

based healthcare big data storage and self-adaptive access control system’, Information Sciences

479, 567–592.

Yu, H., Zhang, Q., Liu, T., Lu, J., Wen, Y. and Zhang, G. (2022), ‘Meta-add: A meta-learning

based pre-trained model for concept drift active detection’, Information Sciences 608, 996–

1009.

Yu, S. and Abraham, Z. (2017), Concept drift detection with hierarchical hypothesis testing, in

‘Proceedings of the 2017 SIAM International Conference on Data Mining’, SIAM, pp. 768–

776.

Yu, S., Abraham, Z., Wang, H., Shah, M., Wei, Y. and Prı́ncipe, J. C. (2019), ‘Concept drift

detection and adaptation with hierarchical hypothesis testing’, Journal of the Franklin Institute

356(5), 3187–3215.

153

References

Yu, S., Wang, X. and Prı́ncipe, J. (2018), Request-and-reverify: Hierarchical hypothesis testing

for concept drift detection with expensive labels, in ‘IJCAI’.

Zhang, Y., Gao, B., Yang, D., Woo, W. L. and Wen, H. (2022), ‘Online learning of wearable

sensing for human activity recognition’, IEEE Internet of Things Journal 9(23), 24315–24327.

Zyblewski, P., Sabourin, R. and Woźniak, M. (2021), ‘Preprocessed dynamic classifier ensemble

selection for highly imbalanced drifted data streams’, Information Fusion 66, 138–154.

Škrjanc, I. (2020), ‘Cluster-volume-based merging approach for incrementally evolving fuzzy

gaussian clustering—egauss+’, IEEE Transactions on Fuzzy Systems 28(9), 2222–2231.

Škrjanc et al.

Škrjanc, I., Iglesias, J. A., Sanchis, A., Leite, D., Lughofer, E. and Gomide, F. (2019), ‘Evolving

fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A

survey’, Information Sciences 490, 344–368.

154

	Abstract
	Acronyms
	Acknowledgements
	Declaration
	List of publications
	Introduction
	Background
	Research Questions and Objectives
	Research Contributions
	Thesis Structure

	Literature Review
	Data Stream Mining
	Evolving Data Stream
	Data Stream Mining
	Background and Concepts
	Data Stream Mining Techniques
	Challenges

	Concept Drift
	Definition of Concept Drift
	Types of Concept Drift
	Concept Drift Applications

	Concept Drift Detection
	Performance-based
	Distribution-based Drift Detection
	Evolving System
	Multiple Hypothesis Test Drift Detection Method
	Deep Neural Network

	Concept Drift Detection in Data Stream with Multi-label
	Introduction
	Drift Detection Method (DDM)
	Drift Detection Method with False Positive Rate for multi-label Classification (DDM-FP-M)
	False Positive Rate Calculation for Multi-label Classification
	DDM-FP-M

	Experiment and Result Analysis
	Datasets and Experiment Setting
	Experiment Result Analysis

	Summary

	Concept Drift Detection in Noisy Data Stream
	Introduction
	Problem Statement
	Introduction of Noise
	Definition of Noise
	Difference between Noise and Concept Drift

	Proposed Noise Tolerant Drift Detection Method
	Design of NTDDM
	Detection
	Validation

	Experiment and Result Analysis
	Datasets and Experiment Set-up
	Measures for the Experimental Results
	Experiments on Real-world Dataset

	Summary

	Concept Drift Detection by Tracking Weighted Prediction Confidence of Incremental Learning
	Introduction
	Prediction Stability

	Weighted Prediction Confidence
	Design of IWPDDM

	Incremental Vote-based Ensemble Learning Step
	Detection and Validation Step
	Experiment and Evaluation
	Datasets and Drift Detection Methods
	Experiment Result and Evaluation
	Summary

	Concept Drift Detection by Model-centric Transfer Learning Framework
	Introduction
	Methodology
	Model Initialization and Pre-training
	Transfer Learning
	Model-Centric Concept Drift Detection (MCDD)

	Experiments
	Datasets and Concept Drift Description
	Baseline Methods
	Evaluation Metrics
	Experiment Setup
	Comparison Results on Benchmark Datasets

	Summary

	Concept Drift Understanding by Quadruple-based Approach: QuadCDD
	Introduction
	Quadruple and QuadCDD Framework
	Quadruple Representation of Concept Drift
	QuadCDD framework

	Experiment and Evaluation
	Dataset and Experiment Settings
	Concept Drift Detection Experiment and Evaluation
	Understanding Concept Drift
	Decision-Making in Response to Concept Drift

	Summary

	Conclusion and Future Research
	Conclusions
	Limitations
	Future Research

	References

