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1. Introduction 

Parametric three-wave mixing in quadratic nonlinear crystals provides a versatile means of 
achieving widely tunable frequency conversion of laser light, thus permitting a substantial 
extension of the wavelength coverage of laser sources across broad wavelength regions. For 
mode-locked lasers, the effective parametric interaction length among short pulses at 
different wavelengths is limited by crystal dispersion, which leads to group velocity walk-
off. Nevertheless, as well known since the 1970s, the frequency conversion of short pulses 
may be significantly enhanced by means of the optical soliton concept (Zakharov & 
Manakov, 1973). Indeed, the collision of two soliton input pulses at different frequencies, 
with proper durations and peak powers, leads to a time compressed pulse at the sum-
frequency (Ibragimov & Struthers, 1996). However such pulse is unstable, since it rapidly 
decays into two, time-shifted replicas of the input pulses. On the other hand, two resonant 
bright pulses and a kink (or phase jump across a CW background) pulse may propagate 
locked together as an optical simulton, in spite of their different linear group velocities, 
owing to their nonlinear mutual trapping (Nozaki & Taniuti, 1973; Degasperis et al., 2006). 
In this chapter we present at first a self-contained derivation of the three-wave equations in 
dispersive and quadratic nonlinear crystals. We outline the generality as well as the 
limitations to the application of the basic three-wave parametric interaction equations, in 
which intra-pulse chromatic dispersion is neglected. Next we review a recently discovered 
class of exact simulton solutions of the parametric three-wave interaction (Degasperis et al., 
2006; Conforti et al., 2006; Degasperis et al., 2007), which have as potential applications the 
stable sum and frequency difference generation of short optical pulses and pulse trains. 
These nonlinear waves are characterised by the property that the group velocity of the two 
bright pulses and the kink may be controlled by varying the input energy of the wave-
packets, or the relative energy distribution among the three waves (Degasperis et al., 2006). 
It is particularly significant that the common velocity and the relative energy distribution of 
these mutually trapped pulses may gradually evolve upon propagation through the crystal 
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(Conforti et al., 2007). Such unique feature may enable one to achieve a stable frequency 
conversion of short optical pulses, as well as a continuous control of their frequency 
conversion efficiency by adjusting the input intensity of a continuous wave background 
wave (Conforti et al., 2007). In addition, the control of the CW power level also permits the 
highly efficient generation of a frequency converted train of short optical pulses, which 
represent a time-periodic copy at a different optical frequency of the input short signal pulse 
(Baronio et al., 2008). We provide simple analytical relations between the time duration, 
amplitude and repetition rate of the generated pulse sequence, and the parameters of the 
input short pulse and CW. Finally, we describe the practical conditions for the experimental 
observation of the above described pulse shaping, generation and speed control effects via 
parametric three wave mixing in commonly available quadratic nonlinear crystals. In 
particular, a simple and easily achievable condition must be respected for the linear group 
velocities of the three interacting waves, namely that the group velocity of the sum-frequency 
wave must be intermediate between the group velocities of the two fundamental waves. 

2. Equations 

The resonant interaction of three waves (TWI) is an important process which appears in 

various contexts of physics, such as fluid dynamics and optics. It describes the mixing of 

three quasi–monochromatic waves whose wave numbers 
! ! !

1 2 3k ,k ,k  and frequencies !1, !2, !3 

satisfy the resonant conditions 

 1 2 3 1 2 3= , =k k k ω ω ω+ +
! ! !

 (1) 

in weakly nonlinear and dispersive media. In optics this resonant interaction may occur in 

any nonlinear medium where nonlinear effects are small and can be considered as a 

perturbation of the linear wave propagation, the lowest-order nonlinearity is quadratic in 

the field amplitudes and the dispersion relation !( k
!

) allows for the special choice of the 

wave numbers kα

!

, α = 1, 2, 3, such that the phase matching (or resonance) condition (1) is 

satisfied, where !α = !( kα

!

). The proper description of the resonant interaction is provided 

by a relatively simple model which can be derived from Maxwell equations in a dielectric 

with quadratic nonlinear susceptibility "(2). Here below we first sketch the way to obtain the 

system of three coupled equations which model the resonant interaction, and then we 

discuss some of its properties together with special solutions of applicative interest. 

If ( , )P r t
!

!

 is the dielectric polarization vector field induced by the electromagnetic wave, the 

charge and current densities in the medium are (hereafter a subscripted variable stands for 
partial differentiation with respect to that variable, and a dot between two vectors indicates 
their scalar product) 

 = , = ,r tP J Pρ −∇ ⋅
! ! ! !

 (2) 

so that Maxwell’s equations reduce in a standard way to the single vector equation for the 

electric vector field ( , )E r t
!

!

 

 2

0

1
[ ( )] = .tt r r r ttE c E E P− ∆ − ∇ ∇ ⋅ −

! ! ! ! ! !

!
 (3) 
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Here we assume that the medium is homogeneous but not isotropic, and that only its linear 

response, namely (1)

jnχ , is frequency dependent; moreover losses are assumed to be 

negligibly small. Thus the dielectric polarization field components Pj are related to the 

electric field by the standard formula (summation over repeated indexes is understood) 

 (1) (2)

0 1 1 1 0( , ) = ( ) ( , ) ( , ) ( , ) .
t

j jn n jnm n mP r t dt t t E r t E r t E r tχ χ
−∞

− +!
! ! ! !

! !  (4) 

The way to proceed further is via the widely used multiscale (or slowly varying amplitude 

approximation) method (see for instance (Degasperis, 2009) and references quoted there). 

The starting point is the following approximate expression of the solution (here c. c. means 

complex conjugate) 

 

( ) ( )(1) (1) (2) (2)1 1 2 2

( )(3) (3) 23 3

( , ) = [ ( , ) ( , )

( , ) ] . . ( ) ,

i k r t i k r t

j j j

i k r t

j

E r t A B e A B e

A B e c c O

ω ω

ω

η ξ τ ξ τ

ξ τ η

⋅ − ⋅ −

⋅ −

+

+ + +

! !

! !

!

!

! !

!

!

 (5) 

 

where # is a small parameter which enters also in the scaled spatial co-ordinates = rξ η
!

!

and 

in the slow time variable $ = #t. This expression shows that the electric field is the 

superposition of three quasi–monochromatic waves, namely of three carrier waves which 

are modulated by the slowly varying amplitudes A(α), α =1, 2, 3. Moreover, we have 

additionally assumed that only the wave amplitudes are affected by the nonlinear dynamics 

but not their state of polarization, so that the three vectors ( )B α
!

, α = 1, 2, 3 are taken co-

ordinate and time independent while the three dynamical variables A(α)( ξ
!

,$) , α = 1, 2, 3 are 

just scalars. The wave–number vectors k1j , k2j , k3j, their corresponding frequencies !1 , !2 , !3, 

together with the polarization state vectors (1) (2) (3), ,j j jB B B  satisfy the dispersion relation 

 2 2 2 2 (1)ˆ( ) ( ) = 0 ,j j jn nc k k B c k Bk Bω ω χ ω− ⋅ + ⋅ +
! ! ! !

 (6) 

where the function (1)ˆ
jnχ (!) is the Fourier transform 

 (1) (1)

0
ˆ ( ) = ( ) .i t

jn jndte tωχ ω χ
+∞

!  (7) 

 

It now remains to insert the expression (5) into the Maxwell’s equation (3) and to expand the 

resulting formula in powers of the small perturbative parameter #. We omit detailing this 

computation and we limit ourselves to the following remarks. At first order, O(#), one 

merely finds that wave numbers, frequencies and polarization state vectors of the three 

fundamental harmonics (see Eq. (5)) satisfy the dispersion relation (6). The resonance 

conditions (1) play a crucial role at the next order, O(#2), as they imply the coupling between 

the three wave amplitudes. Moreover, since the quadratic nonlinearity implies that all 

harmonics of the form 1 1 1 2 2 2exp{ [ ( ) ( )}i k r t k r tα ω α ω⋅ − + ⋅ −
! !

! !

 come into play, with any integer 

α1 and α2, one has to assume also that the dispersion relations of the medium are satisfied 

only for the three cases (α1 = ±1, α2 = 0), (α1 = 0, α2 = ±1) and (α1 = α2 = ±1). This condition 

guarantees that all higher harmonics are in the O(#2) term in the expression (5) and can 

therefore be omitted. The resulting O(#2) equations which are derived this way are then 
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1
1 1 1 2 3v =

A
A i A Aξ γ

τ
∗∂

+ ⋅∇
∂

!

!

 

 2
2 2 2 1 3v =

A
A i A Aξ γ

τ
∗∂

+ ⋅∇
∂

!

!

 (8) 

3
3 3 3 1 2v = .

A
A i A Aξ γ

τ

∂
+ ⋅ ∇

∂

!

!

 

Here the vectors 1 2 3v ,v ,v
! ! !

 are the group velocities corresponding to the three carrier waves 

while the coefficients %1 , %2 , %3 are expressions in terms of the three fundamental harmonics 

wave numbers and polarization state vectors, and, of course, also of the linear and quadratic 

susceptibility coefficients (1)

jnχ  and (2)

jnmχ . This fully tridimensional three wave resonant 

interaction model has been investigated by Kaup (Kaup, 1981). Here we consider the 

reduced case in which the three amplitudes A1 , A2 , A3 depend upon only two independent 

variables. Since the partial differential equations of the system (8) are of the first order, the 

four variables &1 , &2 , &3 , $ play a similar role. Hence the choice of two independent variables 

out of the four may be dictated by the specific physical context under consideration. Thus 

one may describe temporal dynamics by choosing for instance the space and time 

coordinates &1 = & and $, or spatial dynamics by choosing instead the variables &1 and &2. In 

this section we adopt the first notation by giving the variable $ the meaning of time. Finally, 

we prefer to transform amplitudes and co-ordinates so as to display the characteristic 

coefficients '1 , '2 , '3 which are proportional to the inverse of the group velocities, and to set 

the coupling constants equal to unit, %α = 1, in (8) so as to write the TWI model equations in 

the dimensionless form 

1 1
1 2 3=

A A
iA Aδ

ξ τ
∗∂ ∂

+
∂ ∂

 

 2 2
2 1 3=

A A
iA Aδ

ξ τ
∗∂ ∂

+
∂ ∂

 (9) 

3 3
3 1 2= .

A A
iA Aδ

ξ τ

∂ ∂
+

∂ ∂
 

With no loss of generality, we shall write Eqs. (9) in a coordinate system such that '1 = 0. 
Moreover, we consider the case 0 < '3 < '2. This system of equations is not only of great 
interest because of its broad applicability, but it exhibits quite special mathematical 
properties. In fact it has been discovered (Zakharov & Manakov, 1973) that it is an integrable 
Hamiltonian system with the implication that it can be investigated by the spectral methods 
of soliton theory both in the class of solutions which are well localised (as for bright solitons) 
and in the class of solutions with nonvanishing values at infinity (as for dark solitons). In 
particular, this model has explicitly known solutions and infinitely many conservation laws 
(after early studies (Armstrong et al., 1970; Bers, 1975), for a review paper see (Kaup, 1979) 
and, more recently (Calogero & Degasperis, 2004; Degasperis & Lombardo, 2006; 2009)). 
Conservation laws are related to symmetries, namely to transformations of the two 
independent variables & and $, and the dependent variables A1 , A2 , A3, which leave the TWI 
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equations (9) invariant. As these transformations depend upon one or more arbitrary 
parameters, one may insert additional parameters into the expression of an explicit solution by 
just transforming this solution. Because of this practical use of symmetries, we report here a 
few of them. Moreover, we also report below, for some of these symmetries, their associated 
conservation laws which are derived by standard technique from the Lagrangian density 

 
3

* *

1 2 3

=1

1 1
= ( ) . ..
4 2

j j j j

j

A A A A A A c c
i

ξ τδ+ − +""  (10) 

To each of these symmetries it corresponds the local conservation law 

 = 0τ ξρ β+  (11) 

which implies that, if the evolution variable is $, the integral 

 = ( , )R dξρ ξ τ
+∞

−∞!  (12) 

is the conserved quantity since it is $ ! independent. On the other hand, if instead the 
variable & is the evolution variable (as in the case this is the spatial transverse co-ordinate), 
then the integral 

 = ( , )B dτβ ξ τ
+∞

−∞!  (13) 

is the conserved quantity since it is & ! independent. The conserved quantity among R and B 
which should be used depends of course on the physical process under investigation. The 
simplest symmetries are: 

1. translation of the variable &, Aj(&,$) " jA′ (&,$) = Aj(& + a,$) whose associated conserved 

quantity is 

 
3

*

=1

1
= . .,
4

j j j

j

P A A d c c
i

ξδ ξ
∞

−∞
+"!  (14) 

if the evolution variable is $, or, if the evolution variable is instead &, the appropriate 
conserved quantity is 

 
3

* *

1 2 3

=1

1 1
= ( ) . ..

4 2
j j j

j

J A A A A A d c c
i

τδ τ
∞

−∞
− +"!  (15) 

2. translation of the variable $, Aj(&,$) " jA′  (&,$) = Aj(&,$ + b) whose associated conserved 

quantity is 

 
3

* *

1 2 3

=1

1 1
= ( ) . . ,

4 2
j j

j

E A A A A A d c c
i

ξ ξ
∞

−∞
− +"!  (16) 

if the evolution variable is $, or, if the evolution variable is instead &, the appropriate 
conserved quantity is 

 
3

*

=1

1
= . . .
4

j j j

j

H A A d c c
i

τδ τ
∞

−∞
+"!  (17) 
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3. phase translations, A1(&,$) " 1A′ (&,$) = exp(i(1)A1(&,$) , A2(&,$) " 2A′ (&,$) = exp(i(2)A2(&,$), 

A3(&,$) " 3A′ (&,$) = exp(i(1 + i(2)A3(&,$) whose two associated conserved quantities are 

the well known Manley-Rowe invariants 

( )2 2

13 1 3 1 1 3 3

1
= = | | | | ,

2
M M M A A dδ δ ξ

∞

−∞
+ +!  

 ( )2 2

23 2 3 2 2 3 3

1
= = | | | | ,

2
M M M A A dδ δ ξ

∞

−∞
+ +!  (18) 

if the evolution variable is $, or, if the evolution variable is instead &, the appropriate 
Manley-Rowe invariants read 

( )2 2

13 1 3 1 3

1
= = | | | | ,

2
I I I A A dτ

∞

−∞
+ +!  

 ( )2 2

23 2 3 2 3

1
= = | | | | .

2
I I I A A dτ

∞

−∞
+ +!  (19) 

Two more symmetries which may turn out to be useful are the scale transformation Aj(&,$)" 

jA′ (&,$) = pAj(p&, p$), where p is a real arbitrary parameter, and the characteristic phase 

transformation A1(&,$)" 1A′ (&,$) = exp[iq('2 !'3)&1]A1(&,$) , A2(&,$)" 2A′ (&,$) = exp[iq('3 ! 

'1)&2]A2(&,$) , A3(&,$) " 3A′ (&,$) = exp[!iq('1 ! '2)&3]A3(&,$), where q is an arbitrary real 

parameter and &j = $ ! 'j& are the characteristic co-ordinates. 
Several explicit soliton solutions, of both bright and dark type, of the TWI equations (9) have 

been computed by algebraic construction methods, see (Degasperis & Lombardo, 2009) and 

references quoted there, and some of them are detailed in the following sections with the 

purpose of displaying their relevance to special optical processes. 

On the applicative side, the three-wave resonant interaction has been extensively studied in 

the context of nonlinear optics, since it applies to parametric amplification, second harmonic 

generation and frequency conversion, stimulated Raman and Brillouin scattering and light 

speed control (Taranenko & Kazovsky, 1992; Ibragimov & Struthers, 1996; Ibragimov et al., 

1998; Picozzi & Haelterman, 1998). 

3. Frequency conversion 

Optical parametric amplification in quadratic nonlinear crystals has been studied since the 
invention of the laser, as it provides a versatile means of achieving widely tunable frequency 
conversion (Cerullo & De Silvestri, 2003). In parametric processes, the effective interaction 
length of short optical pulses is limited by temporal walk-off owing to chromatic dispersion, 
or group velocity mismatch (GVM) (Armstrong et al., 1970; Akhmanov et al., 1992). 
Compression and amplification of ultra-short laser pulses in second harmonic and sum-
frequency (SF) generation in the presence of GVM was theoretically predicted (Wang & 
Dragila, 1990; Stabinis et al., 1991) and observed in several experiments (Wang & Luther-
Davies, 1992; Chien et al., 1995). The conversion efficiency of generated SF pulses may be 
optimised (Ibragimov & Struthers, 1996; 1997; Ibragimov et al., 1998; 1999; Fournier et al., 
1998) by operating in the soliton regime (Zakharov & Manakov, 1973; Kaup, 1976). In fact, 
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the temporal collision of two short soliton pulses in a quadratic nonlinear crystal may 
efficiently generate a short, time-compressed SF pulse (Ibragimov & Struthers, 1996). 
However this SF pulse is unstable: its energy decays back into the two incident pulses after a 
relatively short distance. 
 

    
 

 

Fig. 1. Sum-frequency generation at !3 from the parametric interaction of two short optical 
signals at !1 and !2. The characteristic delays are '1 = 0, '2 = 2, '3 = 1. 

Figure 1 illustrates a typical example of the efficient SF parametric interaction of two short 
optical pulses in the soliton regime (Ibragimov & Struthers, 1996). At the crystal input, two 
isolated soliton pulses A1 and A2 with frequencies !1 and !2 propagate with speeds v1 and v2. 
Whenever the faster pulse overtakes the slower one, an idler pulse A3 at the SF !1 + !2 is 
generated and propagates with the linear speed v3. Depending on the time widths and 
intensities of the input pulses, the temporal duration of the SF pulse is reduced with respect 
to the input pulse widths. Correspondingly, the SF pulse peak intensity grows larger than 
the input pulse intensities. Figure 1 shows that, eventually, the SF idler pulse decays back 
into the two original isolated pulses at frequencies !1 and !2. Note that the shapes, 
intensities and widths of the input pulses are left unchanged in spite of their interaction. As 
shown in Ref. (Ibragimov & Struthers, 1996), the above discussed SF pulse generation 
process may be analytically described in terms of soliton solutions of Eqs. (9) (Zakharov & 
Manakov, 1973; Kaup, 1976). In the notation of Eqs. (9), the complete three–wave dynamics 
reads as: 

*2 3
1 2 3

2 3

= ,
4

A i A A
p

δ δ

δ δ

∆ −
−  
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3 2 32 2
2 2

2 3 2 3

4
= [ 2 ( ) ],

iqp
A i e exp i k ip

τδ δ δ
τ

δ δ δ δ
− −

∆ − −
 

 * 2 3 23 3
3 3

2 3 2 3

4
= [2 ( ) ],

iqp
A i e exp i k ip

τδ δ δ
τ

δ δ δ δ
+

∆ − −
 (20) 

where 

 3 2
2 3

2 3 2 3

4 4
=1 ( ) ( )

p p
exp exp

δ δ
τ τ

δ δ δ δ
∆ + − + −

− −
 (21) 

1 2= ( ), = 1,2,3 (3),n n nq q n modδ δ+ +−  

 = .n nτ τ δ ξ− +  (22) 

For a given choice of the characteristic linear group velocities, we are left with the three 
parameters p, k, q. The parameter p is associated with the re-scaling of the wave amplitudes, 
and of the coordinates $ and &. Here the value of k and q adds a phase shift which is linear in 
both $ and &. 
The decay of the SF pulse which is shown in Fig. 1 may be a significant drawback in 
practical applications, since it implies that a given nonlinear crystal length yields efficient 
conversion for a limited range of input pulse intensities and time widths only. The 
parametric sum frequency conversion of an ultra-short signal and a quasi-CW background 
pump-control may be exploited as a means to reduce or even eliminate the decay of the 
generated idler wave (Conforti et al., 2007). In the presence of GVM, the parametric SF 
conversion of an ultra-short optical signal and a quasi-CW pump generally leads to the 
generation of a low-intensity and relatively long idler pulse, whose duration is associated 
with the interaction distance in the crystal. 
This scenario changes dramatically in the soliton regime. Figure 2 illustrates the efficient 

generation of a stable, ultra-short SF idler pulse from the parametric SF conversion of a 

properly prepared ultra-short signal and a CW background control with an arbitrary 

intensity level. In Fig. 2 we injected in the quadratic nonlinear crystal the short signal at 

frequency !2, along with a delayed and relatively long pump-control pulse at frequency !1. 

Initially, the two pulses propagate uncoupled; as soon as the faster pulse starts to overlap in 

time with the slower quasi-CW control, their nonlinear mixing generates a short SF idler 

pulse. The sum frequency process displayed in Fig. 2 can be analytically explained and 

explored in terms of stable TWIS (Three Wave Interaction Soliton) solutions (Degasperis et 

al., 2006). 

In the notation of Eqs. (9), the properly prepared ultra–short pulse is a ZM single–wave 
soliton pulse (Zakharov & Manakov, 1973) at frequency !2; it reads as 

 
2

1 2 2 3 3

2

= 0, = 2 , = 0,
cosh(2 )

i
e

A A P A
P

ρφτ

ρδ δ
ρτ

 (23) 

where 

 3 2 3 2 2= / ( ), = .ρ δ δ δ τ τ δ ξ− − +  (24) 
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Fig. 2. Sum-frequency generation at !3 from the parametric interaction of a short pulse at !2 

and a quasi-CW control at !1. The characteristic delays are '1 = 0, '2 = 2, '3 = 1. 

For a given choice of the three linear group velocities, or characteristic delays 'j , the above 

ZM soliton is determined in terms of the two real parameters P > 0, φ. The parameter P fixes 

both the soliton peak amplitude and its temporal width. Whereas the parameter φ 

corresponds to a phase shift which is linear in both $ and &. On the other hand, the generic 

input quasi CW signal at frequency !1 may be described as 

 1 2 3= [tanh( ) tanh( )], = 0, = 0,
2

i
fi

r r

Ce
A A A

γτ τ ττ τ

τ τ

− −−
−  (25) 

where C is the complex amplitude and % is the frequency shift with respect to !1 of the 
quasi-CW signal; $i ($f ) and $r are the switch–on (switch–off) time and the rise/fall time of 

the quasi–CW signal, respectively. We consider the case in which |C|2
 < P2'2'3. 

When the faster short pulse, pre-delayed with respect to the slower quasi-CW pump at 

frequency !1, overtakes the background (at $ = 0, in Fig. 2), their collision leads to the 

generation of a short idler pulse at the SF !3. Additionally, a dip appears in the quasi CW 

control; whereas the intensity, duration and propagation speed of the input wave at 

frequency !2 are modified. Indeed, the signal-pump interaction generates a stable TWIS 

simulton (Degasperis et al., 2006). In the notation of Eqs. (9), the TWIS simulton solution 

reads as 
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*

1 1 1
1 2 2

2 3

2 exp( )
= {1 [1 tanh[ ( )]]}

| | ( )

pb iag iq
A B

b a g

τ
τ δξ

δ δ
+ − − +

+ −
 

2 2 2
2

2 2
2 3

2 exp[ ( )]
= ,

( ) cosh[ ( )]| |

pa g i q
A

g Bb a

τ χτ ωξ

δ δ τ δξ

+ +

− − ++
 

 
*

3 3 3
3

2 2
2 3

2 exp[ ( )]
= ,

( ) cosh[ ( )]| |

pb g i q
A

g Bb a

τ χτ ωξ

δ δ τ δξ

− − − −

− − ++
 (26) 

where 

2 2 2= ( 1)( / ), = | | ,b Q p ik Q r p k a− + − −  

2 2 21 1
= [ 4 ],

2
Q r r k p

p
+ +  

2 3 2 3 2 3= [ ( )] / ( ),B p Qδ δ δ δ δ δ+ − − −  

2 3 2 3 2 3= 2 / [ ( )],Qδ δ δ δ δ δ δ+ − −  

2 3 2 3 2 3= [ ( ) / ] / ( ),k Qχ δ δ δ δ δ δ+ − − −  

2 3 2 3= 2 / ( ) , =n nkω δ δ δ δ τ τ δ ξ− − − +  

1/2
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For a given choice of the characteristic linear group velocities, we are left with the four 

parameters p, a, k, q. The parameter p is associated with the re-scaling of the wave 

amplitudes, and of the coordinates $ and &. Whereas a measures the amplitude of the CW 

background in wave A1 (namely 2 3a δ δ ). The value of k is related to the soliton 

wavenumber. The parameter q simply adds a phase shift which is linear in both $ and & (see 

(Degasperis et al., 2006) for parameter details). 
It is remarkable that we may analytically predict the parameters p, k, q, a of the generated 

TWIS from the corresponding parameters of the input single wave TWIS and the complex 

amplitude of the pump control. This can be achieved by supposing that the input TWIS 

adiabatically (i.e., without emission of radiation) reshapes into a new TWI simulton after its 

collision with the quasi-CW pump at a given point in time (say, at $ = 0). Under this basic 

hypothesis, the conservative nature of the three-wave interaction permits us to suppose that: 

i) the energy I23 (19) of the input TWI soliton is conserved in the generated TWI simulton; ii) 

the phase of the !2 frequency components of the input TWI soliton and of the generated TWI 

simulton is continuous across their time interface (i.e., at $ = 0); iii) the amplitude and phase 

of the control pump C coincide with the corresponding values of the asymptotic plateau of 

the generated TWI simulton component at frequency !1. By imposing the above three 

conditions, after some straightforward calculations we obtain the following relations that 

relate the parameters of the incident and of the transmitted TWIS 
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 2 3 2 3 2 3= , =| |, ( ) = , ( ) 2 = ,p P a C q q kδ δ δ δ γ δ δ φ− − −  (28) 

with the restriction 2 3| |<C P δ δ . 

As an example, in Fig. 2 the input TWI soliton at frequency !2 is described by Eqs. (23) with 

P = 1.3, φ = 0, and the background control amplitude is C = 1.7. After the collision with the 
CW background, the above equations predict that the generated TWIS is described by Eqs. 
(26), with p = 1.3, q = 0, k = 0, and a = 1.2. The accuracy of this prediction is well confirmed 
by its comparison with the numerical solutions of the TWI Eqs. (9). Indeed, Fig. 3 compares 
the numerical and the analytical evolutions (along the crystal length &) of the energy, the 
pulse duration and the velocity of the idler and signal pulses which correspond to the case 
shown in Fig. 2. We performed further extensive numerical simulations, which confirmed 
the general validity of the above described adiabatic transition model for TWIS generation 
upon collision with a CW background. 
 

   

Fig. 3. Numerical evolution (lines) and theoretical predictions (circles) of energy, pulse 
duration and velocity of idler and signal waves reported in Fig.2. 

Indeed, by increasing or decreasing the CW background amplitude |C| in the range [0, 

p 2 3δ δ ], we observed that stable TWISs with different velocity, duration and energy 

distributions may be adiabatically shaped. The important consequence of this result is that, 

by means of Eqs. (26)–(28), we may analytically predict and control the characteristics of the 

generated idler pulse (namely, its velocity, time duration and energy) simply as a function 

of the intensity level of the CW pump. Moreover, we would like to emphasize that the 

stability of the whole SF idler conversion process is ensured by the underlying stability of 

the generated TWIS (Conforti et al., 2006). 

4. Ultrafast pulse train generation 

Efficient mechanisms for the generation of high–contrast, ultra–short pulse trains are of 
interest in a broad range of domains, such as time–resolved spectroscopy and microscopy, 
selective femtosecond chemistry, quantum coherent control in high–field physics, and 
optical communications. Relevant application examples include quantum–path control of 
high–harmonic generation (Zhang et al., 2007); multi–pulse excitation of atoms, molecules, 
and solids (Weiner et al., 1990); multiple–laser–pulse excitation of high–gradient plasma 
accelerators (Umstadter et al., 1994); high–fluence THz wave–train generation for radar, 
microwave (Liu et al., 1996) and optical communication systems. Several techniques for 
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generating trains of ultra–short pulses at repetition rates beyond those achievable by active 
laser mode locking or by means of electrically–controlled modulation have been explored in 
recent years. For example, linear pulse train generation techniques include the repetition–
rate multiplication of a lower rate source by applying amplitude (Petropoulos et al., 2000; 
Yiannopoulos et al., 2003) or phase–spectral filtering (Longhi et al., 2000; Azana & Muriel, 
2001; Caraquitena et al., 2007). Moreover, different all–optical techniques that may result in 
up to THz pulse train rates have also been proposed by using both quadratic and cubic 
nonlinear media. Consider for example induced modulation instability (Hasegawa, 1984; 
Coen & Haelterman, 2001), multiple four-wave-mixing (Pitois et al., 2002; Inoue et al., 2007), 
and backward quasi-phase-matched second harmonic generation (Conti et al., 1999; Conforti 
et al., 2005). 
Here, we present a TWI nonlinear technique for the flexible generation of a train of ultra–
short optical pulses with light-controlled time width, amplitude and repetition rate. This 
technique originates from the interaction of three waves at resonance (Baronio et al., 2008). 
Let us first present numerical evidence of the train generation process. Figure 4 illustrates 
the possibility of obtaining an efficient modulation of the input CW signal into a train of 
ultra–short pulses, as a result of its parametric mixing with an ultra-short ZM soliton pulse 
at a different carrier wavelength. In particular, in Fig. 4 we numerically solved Eqs. (9), 
where the initial excitation conditions at & = 0 were provided by a quasi–CW signal at 
frequency !1 (a standing signal in a coordinate system where '1 =0) and a short ZM soliton 
pulse at frequency !2 (with delay parameter '2 > 0). The two input pulses were pre-delayed, 
so that they could collide at some distance inside the crystal. Figure 4 shows that, as soon as 
the faster ZM soliton pulse starts to overlap in time with the slower quasi–CW signal, their 
parametric mixing leads to the generation of an idler short pulse at frequency !3. 
Additionally, Fig. 4 also shows that the TWI leads to a periodic oscillation with distance & of 
the intensity of the two short pulses at carrier frequencies !2 and !3. As a result, it turns out 
that the centre of mass of these two pulses periodically oscillates in time around an average 
value, which grows larger with distance according to a common average group velocity; this 
velocity is clearly (see Fig. 4) different from the group velocity of the incoming short pulse. 
As for the incoming CW signal, Fig. 4 also shows that a train of short pulses is carved on the 
CW background at frequency !1. Finally, Fig. 4 also illustrates that at the end of the three–
wave interaction process the quasi–CW background at !1 is modulated into a sequence of 
ultra–short pulses, the soliton pulse at !2 returns back to its original shape, and the 
generated sum-frequency pulse at !3 vanishes. 
Quite remarkably, we shall demonstrate that the entire three–wave interaction process 

which is displayed in Fig. 4 may be analytically represented in terms of particular analytical 

TWI solutions. As in the previous section, in the notation of Eqs. (9), the arbitrary input 

quasi CW signal at frequency !1 is given by expression (25) and the input ZM single–wave 

soliton pulse at frequency !2 by expression (23). We consider the case in which |C|2
 > P2'2'3 

and % = φ. 

After the collision of the ZM pulse with the CW background, we surmise that their 

parametric interaction generates a three-wave trapponic soliton, which consists of a group-

velocity locked bright-bright-dark triplet. Similar triplet solutions have been already 

considered in nonlinear optics in the form of simultons (Degasperis et al., 2006; Conforti et 

al., 2007) or boomerons (Conforti et al., 2006). Trappon soliton solutions of the TWI Eqs. (9) 

may be found as discussed in the recent analysis of Ref. (Calogero & Degasperis, 2005; 
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Fig. 4. Sum–frequency generation at !3 from the parametric interaction of a quasi–CW 
control at !1 and a short pulse at !2. The characteristic delays are '1 = 0, '2 = 2, '3 = 1. 

Degasperis et al., 2006). TWI trappons are characterized by a periodic (or trapped) spatio–
temporal evolution of the energy distribution of the three waves, as well as of their locked 
propagation speed. As a result, the center of mass of a trappon also periodically oscillates 
within a limited time interval. As far as the potential applications are concerned, the most 
significant property of the trappon dynamics consists in the carving of a train of short pulses 
into the CW–background at frequency !1. Indeed the entire three–wave interaction 
dynamics after the collision of the short pulse with the CW background as shown by Fig. 4 
may be analytically described in terms of the trappon solution 
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where 
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For a given choice of the characteristic linear velocities in Eqs. (9), the trappon solution of 
Eqs. (29) is completely determined by just three independent real parameters, namely p, q, a 
(with the restrictions that p > 0, a > 0 and a2 > p2). The parameter p is associated with the 
rescaling of the wave amplitudes, and of coordinates $ and &. Whereas a measures the 
amplitude of the CW background in wave A1. The parameter q adds a phase shift which is 
linear in both $ and &. 
The trappon solution (29) extends in time from $ = !# to $ =+# and at large distances (i.e., 
for & " +#) it exhibits a time–periodic behavior. Nevertheless, as we shall see, Eqs. (29) 
exactly describe the mixing of the ZM soliton (23) with the quasi–CW (25) background 
signal over the finite interval [$i,$f ] (which correspond to the times of turning on and off the 
CW wave at frequency !1, respectively). 
Indeed, one may analytically predict the characteristic parameters p, q, a of the generated 

TWI trappon from the corresponding P, φ parameters of the isolated input ZM soliton, and 
the complex amplitude C and the frequency shift % of the CW signal. As we discussed in the 
previous section, it is sufficient to suppose that the input ZM soliton adiabatically (i.e., 
without emission of radiation) reshapes into a trappon soliton after its collision with the 
quasi–CW background at a given point in time (say, at $ = $i). In the spectral domain 
(Zakharov & Manakov, 1973) this hypothesis is equivalent to imposing that the input ZM 
soliton, after the collision with the CW background, transfers its discrete eigenvalue to the 
trappon soliton. In the frame of this basic hypothesis, the conservative nature of the three–
wave interaction permits us to suppose that: i) the energy I23 (19) of the input TWI soliton is 
conserved in the generated trappon soliton; ii) the phase of the !2 frequency components of 
the input TWI soliton and of the generated TWI soliton varies in a continuous manner across 
their time interface (i.e., at $ = $i); iii) the amplitude and the phase of the CW background 
coincide with the corresponding values of the asymptotic plateau of the component at 
frequency !1 of the generated TWI trappon. The above three conditions, after some 
straightforward calculations, permit us to obtain the following equations that relate the 
parameters of the incident and the transmitted solitons (i.e., before and after the collision, 
respectively) 
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 2 3 2 3= , =| |, ( ) = ,p P a C qδ δ δ δ φ−  (31) 

with the restrictions that |C|2
 > P2'2'3 and % = φ. The above conditions define the matching 

relations among the amplitudes and the phases of both the input ZM soliton and of the CW 

signal which should be satisfied in order to excite the trapponic soliton. As an example, 

consider the case of Fig. 4, where the CW background control is described by Eqs. (25) with 

C = 3, % = 1, and the input ZM soliton is obtained from Eqs. (23) with P = 1.5, φ = 1. After the 

collision with the CW background, Eqs. (31) predict that the generated trappon is obtained 

from Eqs. (29) with p = 1.5, q = 1, and a = 3/ 2 . We confirmed the accuracy of this 

prediction by means of extensive comparisons of the analytical expression (29) with 

numerical solutions of the TWI Eqs. (9). For example, Fig. 5 displays both numerically 

computed and analytical evolutions for the energy I2 (along the crystal length &) and for the 

output transverse profile of wave A1 (along $) (these correspond to the same interaction 

process previously shown in Fig. 4). 
 

       
 

Fig. 5. Numerical evolution (continuous lines) and theoretical prediction from Eqs. (29) 
(dotted lines) of the energy at !2 and of the output pulse profile at !1 for the case of Fig. 4. 

The amplitude profile of the generated train of ultra–short pulses at frequency !1 may be 
exactly described by performing the limit for & "+# of the first of Eqs. (29), which yields 
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where 2 3| |=C a δ δ  (see (28)), 2 2tan( ) = /a p pβ −  (see (30)) and period 2 2= /T a pπ − . 

Two different examples of the generated pulse trains as described by Eqs. (32) are shown in 

Fig. 6 a)–b). 

Equation (32) provides relatively simple expressions that relate the parameters of the 

injected soliton pulse and CW background to the main features of the generated output 

pulse train. Indeed, |A1#| is a time periodic signal (with period T) with average value 

approximatively equal to |C|. Moreover, from Eqs. (32) one obtains that the peak 

amplitude of the generated pulses is M = |C| + 2 2 3δ δ P; whereas the minimum amplitude 

is m = |C| ! 2 2 3δ δ P. Hence the maximum intensity contrast for the generated train is 

obtained for |C| = 2P 2 3δ δ : in this case, the field amplitude at the minima vanishes and 

the peak amplitude reads as M = 4 2 3δ δ P. 
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Fig. 6. Output pulse train (32) amplitude (blue line) and its time–average value (red line) for: 

a) C = 2.5 2 ,P = 1 and b) C = 2.5 2 ,P = 2; Pulse train frequency f = 1/T c) vs. P (C = 10); 

and d) vs. C (p = 2). 

In Figure 6 c)–d) we illustrate the analytically predicted dependence of the repetition rate of 

the ultra–short pulse train 2 2

2 3=1 / = | | /( ) /R T C pδ δ π− , as a function of the amplitudes of 

the input short pulse and of the CW signal, respectively. As it can be seen in Fig. 6 c), the 
repetition rate is the largest whenever the amplitude of the input soliton vanishes. Whereas 
there is a critical input soliton amplitude, above which the period of the generated pulse 
train diverges to infinity. On the other hand, Fig. 6 d) shows that when varying the CW 
background amplitude, a finite repetition rate is only obtained for amplitudes |C| above a 
certain threshold level, and this rate grows larger with |C| in a linear fashion. In fact, these 
thresholds define the borderlines of existence of TWI simulton triplets or TWI trappons 
excitations. 
The above results show that the peak amplitude, the time width and the repetition rate of 

the pulse train which is generated at !1 may be controlled in a stable manner by simply 

adjusting the intensity level of the input CW signal |C| and/or the amplitude level (hence 

the time width) P of the input short soliton pulse. 

It is worth noting that the proposed method for generating pulse trains has a very high 

efficiency: in principle, the entire energy of the pump pulse A1 may be converted into the 

pulse train. Indeed from (i) the energy conservation relation (19) and (ii) the fact that at the 

end of interaction A3 = 0, it follows that the energy of the quasi-CW pulse is conserved 

before and after the collision with the control pulse A2. 
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It should be pointed out that the generation process that we have described so far may be 
thought of as a way of ”writing” a pulse train on a quasi CW signal. The opposite process of 
”erasing” such wave train to go back to a flat, quasi CW, signal is also possible. Indeed, it is 
easy to realize that this reverse process is well described in a similar way by the formation of 
the trappon soliton solution of the TWI Eqs. (9) which is obtained from the expression (29) 
via the invariance transformation & "!& , $"!$ , A1 " A1 , A2 " A2 , A3"!A3. 

5. Experimental observability 

In this section, we discuss the experimental conditions for the practical observation of three 
wave solitons, with particular reference to their applications to frequency conversion and 
pulse train generation as discussed in the previous sections. It is interesting to notice that the 
three-wave soliton concept may be applied to describe the interaction between either three 
optical pulses in the time domain, or three beams in the spatial domain. 

5.1 Temporal solitons 

To be specific, let us consider the nonlinear eee interaction of two pulses, at )1 = 1550 nm and 
at )2 = 3400 nm, which mix in a 2 cm long periodically poled bulk Lithium Niobate crystal 
with about 28*m periodicity, to generate the sum-frequency pulse at )3 = 1064 nm. For 
perfect phase-matching with collinear geometry, one obtains the refraction indexes: n1 = 
2.117, n2 = 2.05 and n3 = 2.134, respectively. The corresponding group velocities satisfy the 

inequality v1 > v3 > v2, namely v1 = 1.386 × 108
 m/s, v3 = 1.374 × 108

 m/s and v2 = 1.3615 × 108
 

m/s. In other words, the sum–frequency pulse group velocity is intermediate between the 
group velocities of the two input signals. This condition is crucial for the existence and 
stability of TWI soliton, simulton and trapponinc solutions. The effective nonlinear 
coefficient is d33 = 25 pm/V. 
Whenever the input pulses are ZM single wave solitons, for instance pulses of about 200 fs 
temporal duration with peak intensity of a few hundreds of MW/cm2, 100% energy 
conversion into a time compressed sum-frequency pulse is achievable at a certain point of 
the nonlinear crystal, for a proper ratio among the intensities of the two input fundamental 
pulses (Ibragimov & Struthers, 1996; 1997). The drawback is that, after a relatively short 
propagation distance, the generated pulse decays again in the two original fundamental 
solitons. 
Whenever an input pulse is a ZM single wave soliton, i.e. a pulse of about 200 fs temporal 

duration with peak intensity of a few hundreds of MW/cm2, and the other input signal is a 

quasi–continuous wave (say, with a 3ps time duration), their interaction leads to the 

generation of an ultra–short stable sum–frequency pulse of approximately the same time 

width (200 fs) of the incident short pulse. It is particularly significant that the peak intensity 

(and the group velocity) of the generated pulse may continuously evolve upon propagation 

through the crystal, from zero to a few hundreds of MW/cm2 (v from v3 to v2), simply by 

varying the intensity of the quasi-CW background (Conforti et al., 2007). Such unique 

feature may enable to achieve the stable frequency conversion of short signal optical pulses, 

as well as the continuous control of the frequency conversion efficiency by adjusting the 

input intensity of the quasi-CW background pump wave. 

In addition, the control of the CW pump power level also permits the highly efficient 

generation of a sum-frequency converted train of idler pulses which represent a time-
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periodic copy of the input short signal pulse (Baronio et al., 2008). Whenever the peak 

intensity of the quasi–CW signal is higher than the peak intensity of the short ZM soliton 

pulse, the parametric mixing leads to the generation of a train of 250 fs pulses with a 

repetition rate of about 2THz and peak power levels of the order of a few hundreds of 

MW/cm2. Again the peak amplitude, the time width and the repetition rate of the pulse train 

which is generated may be controlled in a stable manner by simply adjusting the intensity 

level of the input qusi-CW signal. 

In practical terms, the upper limit to the frequency conversion and train generation 

processes offered by the present technique will be set by the limit of validity of Eqs. (9), 

which hold true in all three–wave physical systems whenever the presence of group velocity 

dispersion within each wave can be neglected. 

5.2 Spatial solitons 

As discussed in section 2, one could write the same TWI model Eqs. (9) where the 

independent coordinates are, instead of &1 = & and $, the two spatial variables &1 and &2. In 

order to clearly distinguish this situation, involving the interaction between three spatial 

beams, from the previous cases involving short temporal pulses, and to maintain the same 

notation used in (Baronio et al., 2009), we name the longitudinal spatial coordinate &1 = z and 

the transverse spatial coordinate &2 = x. Moreover, we also set in this case A1,2,3 = φ1,2,3. Note 

that the spatial beams under consideration are supposed to be wide enough so that 

diffraction (in analogy with group-velocity dispersion in the temporal case) may be 

neglected in the propagation of each individual beam, at least over their interaction 

distance. The interest in studying the spatial case is twofold: from one side it appears to be 

the simplest situation for providing experimental evidence of three wave soliton dynamics; 

from the practical viewpoint, spatial solitons in this framework might reveal interesting 

properties for beam shaping and switching. 

Here we describe the set-up which led to the first experimental demonstration of laser beam 

reshaping by means of the three-wave ZM soliton effect in optics (Baronio et al., 2009). 

To be precise, Fig. 7 illustrates the numerical optical scenario exploited to demonstrate the 

existence of ZM solitons. Here we show numerical simulations, with '1 = !'2 and '3 = 0, 

illustrating the typical wave dynamics in the spatial x ! z plane in the presence of two 

electromagnetic beams φ1 at )1, φ2 at )2 and no beam φ3 at )3 in z = 0 interacting in a quadratic 

nonlinear medium; that is, φ1(x,0) $ 0, φ2(x,0) $ 0, φ3(x,0) = 0. 

Fig. 7.a shows the dynamics of the low–intensity linear regime: the beams at the two 

fundamental wavelengths )1 and )2 do not interact and propagate with their own 

characteristic directions associated with the respective spatial velocities v1 and v2. 

Next, Fig. 7.b shows that, at intermediate input intensities, the beams at wavelengths )1 and 

)2 interact and generate a beam at )3. As the two fundamental waves overlap in space, the 

sum frequency wave φ3 is generated. After the collision, the energy remaining in each input 

beam keeps propagating along the original direction corresponding to their linear 

wavevectors. Note that the collision between the input waves does not lead to any spatial 

shift in their propagation directions. In fact, in this situation it can be shown that no three-

wave soliton is generated by the interaction process. According to the definition of a soliton 

as a discrete component of the spectrum that is obtained by means of the spectral transform 
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method (Zakharov et al., 1980; Zakharov, 1991), in Fig. 7.b the initial data φ1(x, z = 0),  

φ2(x, z = 0) , φ3(x, z = 0) is only composed of a continuum spectrum component (radiation) 

without any discrete spectrum component (solitons). 

 
 

 
 

 

Fig. 7. Numerical x ! z TWI dynamics of waves at wavelengths )1 and )2 which mix to 
generate a field at the wavelength )3. (a) Linear, (b) frequency conversion, and (c) solitonic 
regime. 

Finally, Fig. 7.c shows that, at relatively high input intensities, the interaction between the 

two input beams and the generated beam is qualitatively different from the previous cases. 

In fact, in this case the input fields contain a discrete soliton component along with a 

residual radiation spectrum. The solitonic behavior of the three wave interaction is not 

visible in the first part (i.e., the signal generation) of the interaction picture of Fig. 7.c, which 

is similar to what happens in Fig. 7.b: as in this case the residual input beams which keep 

propagating after generating the sum-frequency wave are composed by pure radiation. In 

fact, the presence of a soliton in the generated beam is revealed in its subsequent complete 

decay into the two waves, which is the spatial analog of the temporal soliton decay. From 

the point of view of the spectral transform of the optical field, we may say that in this case 

the initial data φ1(x, z = 0), φ2(x, z = 0), φ3(x, z = 0) is composed of both a continuum spectrum 

component, or radiation, and a discrete spectrum component or soliton. 
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Another signature of the soliton presence in Fig. 7.c is the characteristic spatial shift that is 

observed between the two input soliton fundamental beams, and the output soliton 

fundamental beams that are generated from the decay of the soliton pump beam, with no 

change of the propagation direction before and after the three-wave interaction process. 

From another perspective, we may point out that if the generated beam was not a three-

wave soliton, then its evolution could be predicted from a simple CW analysis. In this case 

one would not observe a sharp wave decay at a well-defined point along the crystal, but 

rather its continuous back-conversion into the two fundamental waves which would emerge 

from the process substantially wider with respect to the original input beams. 

As a matter of fact, as in the case of temporal solitons, in the spatial case we may identify 

three separate interaction regimes. Namely, the linear, the frequency conversion, and the 

solitonic regime. In order to provide the experimental demonstration of the above discussed 

nonlinear dynamics, Ref. (Baronio et al., 2009) considered the optical spatial non–collinear 

scheme with type II second harmonic generation (SHG) in a birefringent KTP crystal. Two 

orthogonally polarized beams at frequency )1 =)2 =)=1064nm, eEλ  and oEλ  , were injected 

into the nonlinear birefringent medium to cross and overlap at the input face of the crystal. 

Each field was linearly polarized and aligned with a polarization eigenstate of the crystal. In 

the present scheme the two input waves required for the parametric processes to occur, and 

for the subsequent observation of solitonic decay, had tilted wave–fronts. In the overlapping 

area the harmonic / 2

eEλ  at 532nm was generated along a direction which maximized the 

conversion efficiency as it was fixed by the noncollinear phase–matching conditions. The 

sum–frequency harmonic propagation direction was found to be in between the directions 

of the two input waves. As the intensities of the input fields were varied in a suitable range 

(1MW/cm2 ! 2.5GW/cm2), the TWI linear, frequency conversion, and solitonic regimes in the 

ordinary KTP plane were experimentally observed as reported in ref.(Baronio et al., 2009). 

6. Conclusions 

Introduced by a self-contained derivation in section 2 of the 1+1 dimensional equations 

ruling three-wave parametric interactions in dispersive and quadratic nonlinear optical 

crystals, in this chapter we presented an extensive review of their exact simulton solutions. 

Exploiting the properties of such solutions may have important practical applications to the 

parametric frequency conversion (e.g., sum and frequency difference generation) of short 

optical pulses. As discussed in section 3, a key property of simulton solutions consisting of 

two bright and one dark wave packet is that their common group velocity may be controlled 

in all-optical manner by adjusting the input energy distribution of its three wave 

components. We pointed out in section 3 that the simulton speed as well as the energy of its 

component waves may evolve in an adiabatic manner whenever one of their parameters 

(such as the input power of one of the waves) is varied at the crystal input. The above 

property permits to obtain a stable (i.e., independent of the precise crystal length or optical 

peak power) frequency conversion of relatively short isolated optical pulses when mixing 

them with quasi–CW pulses. In section 4, we have discussed how, by properly adjusting the 

power of the quasi–CW pulses, one may achieve a full modulation of this CW in a time-

periodic replica of the input short pulse at a different frequency. We could provide simple 
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analytical expressions that permit to relate the time duration, the amplitude and the 

repetition rate of the generated pulse sequence with the input short pulse and CW. Finally, 

in section 5 we have outlined under which practical conditions it should be possible to 

achieve an experimental confirmation in commonly available quadratic nonlinear crystals of 

the theoretically predicted frequency conversion and pulse train generation effects. A first 

demonstration of nonlinear beam reshaping associated with three–wave interaction soliton 

properties was recently carried out in the spatial domain, and its peculiar properties have 

been discussed at the end of section 5. 
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