
Northumbria Research Link

Citation: Mackay, Kevin, Shum, Hubert P. H. and Komura, Taku (2012) Environment
capturing with Microsoft Kinect. In: Proceedings of the 2012 International Conference on
Software Knowledge Information Management and Applications, 9-11 September 2012,
Chengdu University, China.

URL:

This version was downloaded from Northumbria Research Link:
https://nrl.northumbria.ac.uk/id/eprint/10421/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

 1

Environment Capturing with Microsoft Kinect

Kevin Mackay1, Hubert P. H. Shum2, and Taku Komura1

1The University of Edinburgh, UK
2The Northumbria University, UK

Constructing virtual scenes that incorporate human and object interaction has traditionally been a time consuming process in

computer animation, whereby the motion of an actor is first recorded and any objects used in the scene are then intricately added by
an animator. The Microsoft Kinect utilizes a synchronized RGBD stream to provide markerless skeletal tracking of humans, enabling
efficient motion capture; however, the problem of capturing environment objects remains unsolved. In this paper, we propose a new
framework to segment and track three major types of environment objects using Kinect, namely background planes, stationary objects
and dynamic objects. We demonstrate that the motion of an actor and their surrounding environment can be obtained at the same
time, saving considerable effort for the animators. Our proposed system is best to be applied to applications involving extensive
human-object interactions, such as console games and animation designs.

Index Terms — Computer vision and image processing, human computer interaction, graphical modeling and simulations

I. INTRODUCTION
raditional motion tracking devices such as the optical
motion capture system require complex user setup and

heavy data post-processing, making it unsuitable for real-time
applications. Recently, Microsoft introduced an integrated
motion sensing device called Kinect that enables markerless
motion tracking, which provides new opportunities for human
computer interaction research. These projects range from
using skeletal gesture as a replacement to keyboard and mouse
input [13] to computer graphics application such as
recognizing and creating facial animations [16].

A major problem with the Kinect, as well as most of the
Kinect related research, is that tracking is only performed for
the human user. When creating an animation, the environment
objects are equally important to define the context of the
scene. Without the environment being captured, animators
have to manually place environment objects into the scene,
including the background and any objects the character is
interacting with, which entail a large amount of post capture
work.

In this paper, we propose to utilize the depth and color
cameras in Kinect to capture environment objects. We
observed that environment object can usually be classified into
three groups. (1) Background planes in the capture area such
as walls, doors, and floor. (2) Stationary objects that remain
unmoved throughout a capture session, such as tables and
chairs. (3) Dynamic objects that move and are interacted with
by the human user, such as a football and a cup. It is difficult,
if not impossible, to design a single segmentation algorithm
that works well for the three types of objects, due to their
different features and behaviors. Therefore, we propose a
framework to segment and track each type of object using
specifically designed algorithms, and combined the results to
create the final scene.

Combined with the Kinect’s built-in motion tracking
capability [18], our system can capture and animate the whole

scene including the character and environment in real-time. As
a result, our proposed system can save considerable time for
the animator, removing the need for intricate object placement
into the captured scene. Furthermore, we can improve the
realism of the final animation, as the structure of the scene and
the movements of the objects are based on real data. This is
beneficial to both the film and video game industries, as it will
provide a new system for near-immediate prototyping of
environments and the actor’s interaction with that
environment.

Our system is most beneficial for capturing animations
involving heavy human-object interaction. The captured scene
can be employed as a prototype of desired animation, or
guidance for the animator during post-processing of the
animation.

II. RELATED WORKS
In this section, we review related work from the computer

animation and vision fields, focusing on developments in
object interaction and markerless tracking.

A. Computer Animations
Synthesizing human movement for a virtual character that

realistically interacts with an environment is an ongoing
problem. Koga et al. [7] demonstrated that motion planning
techniques could be applied to computer animation, animating
a virtual character’s arms to reach for and grasp an object
without collision. Kallmann et al. [6] took this work further by
using probabilistic roadmaps for the automatic synthesis of
multiple limbs at a time. More recently, Shapiro et al. [12]
showed that they can edit captured full-body motions such that
the virtual character can adapt to complex dynamic
environments. They create motion plans to avoid undesired
collision, while allowing interaction with some objects. The
drawback of this approach is that it is heavily reliant on
inverse kinematics, which can only be applied to linked-limbs
but not the entire body without degrading the quality of the
movements. These papers focused on motion planning through
editing an already existing capture or synthesizing reaching
and grasping. We believed that by capturing both human

T

Manuscript received May 31, 2012. Corresponding author:
Hubert P. H. Shum (e-mail: hubert.shum@northumbria.ac.uk).

Digital Object Identifier inserted by IEEE

 2

motion and environment objects at the same time, human
movement should not require editing. Any objects required for
the scene should be captured by the depth camera and inserted
into to the final scene with a polygonal representation.

For passive object interaction, a different approach has been
presented by Abe and Popović [1], who have created a control
algorithm that considers the external constraints, the character
and object models to produce a physical simulation of the
desired animation. Example animations include the virtual
character holding a chain and picking up a box. The major
limitation of this approach is the limited motions the character
could perform. For example, the character cannot jump, and
this would result in a loss of control on certain degrees of
freedom. Using physical simulation for animation has been
taken further by Jain and Liu [5]. They implemented a system,
based on dynamic equations, that allows the animator to edit
the trajectory of a bouncing ball and calculate the physics for
any corresponding contact with the virtual character. The
character is animated by marked motion capture and can also
be edited to change the point of contact with the passive
object. A drawback of this approach is that there is no
feedback of the impact of the collision between character and
object. If a ball hit a character, it would simply bounce off the
character, which remains unperturbed. Rather than replicating
the physics and manually building the object interaction, our
algorithm applies visual tracking to capture the motion of
objects. Furthermore, since the actor and the objects interact in
the real world, the generated animation by definition is
realistic.

B. Computer Visions
Here, we review some of the recent research regarding

markerless motion capture, particularly those which are
designed for computer animation.

Pekelny and Gotsman [9] have shown that it is possible to
reconstruct a complete 3D mesh of an articulated object, such
as a humanoid monster or toy truck using only a single depth
camera. They can then estimate a rigid-body skeleton for that
object, without a need for an initial template, subsequently
allowing new motions to be generated for the reconstructed
mesh and generated skeleton.

Increasing the number of cameras will increase the data
available to work with and subsequently improve the results.
Gall et al. [7] have shown that by using a multi-view video
sequence, they can perform accurate skeleton and surface
estimation through a series of interleaved captures. Therefore,
they are able to capture both the rigid transformations of the
skeleton and the non-rigid transformations of human hair and
clothing.

Taylor and Cowley [14] present a plane segmentation and
analysis technique. They use an RGB image to suggest an
interpretation for a corresponding depth image, and therefore
improve the resulting plane segmentation. This paper
demonstrates the benefits of synchronized RGBD data for
scene analysis, especially when dealing with unknown and
complex environmental layouts.

C. Contributions
The major contribution of this paper is to propose a new

system to capture environmental objects, along with the
interaction between a user and the environment, using
Microsoft Kinect. We apply tailored algorithms to segment the
three major types of objects in a scene, namely background
plane, stationary objects and dynamic objects. With accurate
and efficient object segmentation algorithms, it is possible to
create animations of human-environment interactions with
minimal effort.

III. SYSTEM OVERVIEW
The overview of our system is shown in Fig. 1. Based on

the depth image, we create a point cloud in the 3D space (Sec.
IV-A), from which we segment the background plane (Sec.
IV-B) and the stationary objects (Sec. IV-C and Sec. IV-D)
separately. Using the color image, we segment the dynamic
objects (Sec. IV-E and Sec. IV-F). All the segmented results
are combined to form a final animation.

IV. METHODOLOGY
In this section, we explain how we construct the point cloud

from the depth image and how we apply different algorithms
to segment three classes of objects, including planer
background, stationary objects and dynamic objects.

A. Point Cloud Creation with Depth Image
Here, we describe the process to create point cloud from

Kinect inputs. Each pixel in the Kinect depth image
corresponds to a point in the 3D point cloud. In other words,
for each frame, we can create a point cloud of the scene by
mapping the pixels in the depth image on to a 3D virtual
world.

In Fig. 2, the real scene and the corresponding point cloud is
shown. Notice that the floor is not particularly well captured
with relatively large areas missing. This is because of the
depth measurements algorithm in Kinect that is derived from
triangulation via structured light rather than time of flight.
Thus, capture results are poor for horizontal surfaces,

Fig. 1: Overview of the proposed system. Based on the features of the three
different types of objects, we designed different segmentation algorithm to
obtain the most accurate and computational efficient results.

 3

especially when they are far from the camera.

The cloud is then down sampled using a voxel grid, which

approximates the centroid of all points contained within a
1cm3 voxel. This provides a much cleaner resultant cloud and
a more consistent distance between the individual points.

B. Background Planes Segmentation with RANSAC
Here, we explain the process to identify and segment

background planes in the point cloud with Random Sample
Consensus (RANSAC). We define background planes as
large, flat planes lying at the far end of the capture area, such
as the walls in a room. Non-planer objects such as the curtain
on the wall are considered as stationary objects and will be
considered in the next section.

We apply RANSAC [3] as it can robustly estimate the
parameters for any planar regions within the point cloud. The
algorithm iteratively estimates the inlier points that fit a planar
model, or otherwise classifies the points as outliers. Upon
successfully fitting a plane to the cloud, the plane’s
coefficients including the normal and the distance from the
camera are computed.

Among the detected planes from RANSAC, we obtain the
background as the planes with area larger than a predefined
threshold. Fig. 3 (left) shows a successfully segmented
background plane. Notice that the segmented point cloud may
contain holes due to the occlusion of objects. The position and
orientation of the plane is stored for future rendering.

It is possible to detect the floor plane using RANSAC.

However, it requires carefully tuned parameters for the
number of iterations and distance threshold, due to the poor
capture quality.

C. Stationary Objects Segmentation with Euclidean Cluster
Extraction

Here, we explain the process to segment stationary objects
in the scene using Euclidean Cluster Extraction [10]. We
define stationary objects as the objects with constant position

and orientation throughout one capture session.
By removing the point cloud of the background plane, we

can obtain the foreground, which consists of multiple
stationary objects (Fig. 3 right). The Euclidean Cluster
Extraction algorithm is applied to segment the point cloud into
individual objects. The algorithm iteratively searches for
connecting points per cluster through nearest neighbors. A
spherical radius is used to decide if a point belongs to a
cluster, which is set to 3cm in our experiments. The position
of the object is then represented by its 3D centroid.

At this point, an animator can optionally associate objects in
the point cloud with a polygon mesh for rendering in the final
scene. This also allows the animator to combine multiple
objects into a single logical object for better representation of
the 3D centroid. This may be necessary when single objects
are segmented into separate parts due to gaps in the point
cloud. For example Fig 4 shows the chairs seat and back
requiring manual combination after being separated during
object segmentation.

While it is possible to use the segmented result directly in

the final scene, we prefer to store the point cloud in a
database, such that if we see the same object in future capture
sessions, we can automatically identify the orientation of the
object. This process is explained in the next section.

D. Stationary Object Transformation by Registration
It is common for different capture sessions to have the same

stationary objects in different positions. It would be time
consuming to manually identify the objects in every capture
session. Instead, we make use of the point cloud database to
identify the rigid transformation of different stationary objects
in the scene.

We apply the registration algorithm [2] [10] to calculate the
rigid transformations of stationary objects. The point cloud
stored in the database such as the chair in Fig. 4 is called a
template cloud. The registration algorithm aligns the template
cloud with the cloud in a new capture session, such that we
can identify the chair and obtain the rigid transformation
automatically. It involves the following three steps:

Estimating Surface Normal: We estimate the surface
normal of a point cloud by the normal of a plane tangent to the
surface of nearby points. The plane is obtained by fitting the
nearest neighbors with least-square method.

Point Features Histograms: Point Feature Histograms
(PFH) make use of the estimated surface normal to produce
further discriminative geometric information of a given point

Fig. 4: Concatenation of the seat and back of chair after object segmentation

Fig. 3: (Left) The background plane segmented by RANSAC, and (Right) the
remaining point cloud

Fig. 2: (Left) The real scene and (Right) the point cloud created.

 4

cloud. It attempts to model surface variations among a
neighborhood of points in a cloud using the directions of the
given surface normal. The outcome is a histogram of
relationships between all pairs of points within a
neighborhood.

Initial Alignment Algorithm: The initial alignment
algorithm solves the problem of finding a match between two
point clouds by producing a number of possible
correspondences to match the input cloud against a template
cloud. The distance between the PFHs for the clouds is first
computed. The cloud with the lowest distance is then selected
and Iterative Closest Point is used to evaluate the rigid
transform between clouds.

Fig. 5 upper left shows the template cloud of the chair in the
database and the point cloud in the current scene. Fig. 5 upper
right is an estimated transformation that places the point cloud
of the chair on top the template cloud. The computed rigid
transformation has been applied to the chair object to create
the scene in Fig. 5 lower. In Fig. 6, a more extreme example is
shown, requiring the transformation of a large vertical box
point cloud to a horizontal box template cloud.

With the point cloud database and the registration

algorithm, it becomes very efficient to setup a new scene in

which stationary objects are placed in different positions.

E. Dynamic Object Segmentation with Background
Subtraction

Although registration can evaluate the transformation of
objects, it is too computational costly to be performed in run-
time. Thus, we only apply registration to initialize stationary
objects in a scene, and apply simpler background subtraction
to track dynamic objects in run-time. Here, we define dynamic
objects as environment objects that move during a capture
session.

Since the camera is assumed to be steady and the dynamic
object is moving, background subtraction provides the most
robust and computationally efficient method to segment the
objects. Given two successive frames from the color image,
we calculate the absolute color difference for each pixel (Fig.
7 upper left) and threshold the pixel difference to generate a
binary image (Fig. 7 upper right). After applying an erosion
filter (Fig. 7 lower left), we use axis aligned bounding box to
segment the dynamic object (Fig. 7 lower right).

Segmentation by background subtraction is accurate and

fast, but can only be applied to moving objects. Thus it can
only be used in dynamic objects but not stationary objects.

F. Dynamic Object Tracking with Mean Shift Tracking
Here, we explain the process to track a dynamic object

across frames.
The mean shift algorithm is used to track dynamic objects

in the scene [4]. The algorithm iteratively looks for the local
maxima of a probability map on a frame-to-frame basis,
starting from the position provided by the detected object’s
bounding box. A new centroid can then be found in the
surrounding area of the object in the previous frame. It
provides the position of the object and subsequently a new
bounding box in the current frame. Mean shift terminates after
a predefined number of iterations or when the local maxima
found reach a threshold.

Fig. 7: Key processes in to detect dynamic objects with background
subtraction. (Upper left) Difference image generated by background
subtraction (Upper right) Binary image generated by thresholding (Lower
left) Applying erosion filter (Lower right) Object segmented with axis
aligned bounding box

Fig. 6: Another successful transformation of a box in a new scene.

Fig. 5: A successful transformation of a chair for a new scene.

 5

HSV color space is used as it allows the representation of
color through a single channel, namely the hue (Fig. 8 upper
left). The probability map is produced by back projection for
each frame. It calculates possible regions of an image that
match a given histogram (Fig. 8 upper right). We exclude any
pixel with saturation smaller than a predefined threshold as
colors in such a range become non-representative (Fig. 8
lower left). Finally, we can track the centroid of the object in
the current frame (Fig. 8 lower right). We then obtain the
corresponding location in the depth image, and evaluate the
3D position of the object.

Due to the household environment, parts of the door frame
are clearly of a similar color to the ball as shown in the
example of Fig. 8. Still, the algorithm is robust enough to deal
with this situation.

V. EXPERIMENTAL RESULTS
In this section, we conduct different experiments to test the

robustness and accuracy of our system.
During implementation, we use the OpenNI [8] to obtain

depth and color image from Kinect. We then use the Point
Cloud Library [11] to segment background plane and
stationary objects, and use OpenCV [17] to segment dynamic
objects. Finally, we use the Ogre3D to render the resultant
scene.

A. Background Plan Segmentation

 We obtain background plane coefficients produced by
RANSAC, and render the plane with textured polygons. In
Fig. 9, Kinect has been positioned to capture multiple planes.
After processing, two planes representing the walls have been
detected by the plane segmentation algorithm. As shown in the
figure, the rendered scene is an accurate representation of the
real world scene, with the walls at the correct angle.

B. Stationary Objects Segmentation
In this experiment, we use a point cloud database that

consists of a chair and a lamp. We place the stationary objects
in the scene and apply registration to calculate their orientation
and location. Finally, we render the corresponding polygon
mesh as shown in Fig. 10.

Another experiment is conducted as shown in Fig. 11. The

chair has been moved to the left and rotated, and an actor has
also been introduced to scene. Registration is used again to
initialize the orientation and position of the stationary objects.
We use Kinect’s internal human tracking functions to track the
human user [18]. Several human-object interaction have been
captured, such as tying a shoelace and resting an arm on the
chair.

C. Dynamic Objects Segmentation

Here, an experiment is conducted to evaluate the
performance on tracking dynamic objects with the present of a
user. The dynamic object in this case is a ball as shown in Fig.
12. The results of the real-time dynamic object and human
tracking are reasonably accurate. Furthermore, upon dropping
the ball from a height, the ball is successfully tracked in its

Fig. 11: (Left) Real world and (Right) rendered scenes of actor interacting
with chair.

Fig. 10: (Left) Real world and (Right) rendered scenes of chair, light and rear
wall.

Fig. 9: (Left) Real world and (Right) rendered scenes with multiple planes.

Fig. 8: Key processes in to tracking dynamic objects with mean shift
tracking. (Upper left) HSV representation of the color image (Upper right)
Probability map (Lower left) Thresholding saturation value (Lower right)
Object tracked in the current frame

 6

descent to the ground including the subsequent bounces. This
creates realistic animation of a falling ball without any
implementation of physics.

D. Performance

With skeletal and object tracking both active, the renderer
maintains an interactive frame rate of 15-25 FPS on a modest
laptop with the following hardware specification: Intel Core
i3-370M @ 2.4GHz for the CPU, 4GB RAM and an NVidia
GeForce G310M graphic card. Overall, the creation of a scene
with stationary objects takes no more than 10 minutes of the
animator’s time from initial capture to render.

VI. CONCLUSION AND DISCUSSIONS
In this paper, we presented a new algorithm to capture

human-environment interaction with the markerless Kinect
system. We proposed tailored algorithms for segmenting and
tracking three classes of objects, including the background
planes, the stationary objects and the dynamic objects. We
apply Kinect’s built-in human tracker to capture the human
motion. Experimental results showed a satisfactory quality of
captures in real-time.

Synthesizing the object motion in Jain and Liu’s work [5]
requires input from the animator, who must decide how
object’s physics should be applied to the scene. It takes around
30-40 minutes for the animator to produce a scene, as oppose
to 10 minutes in our system.

While the system produced is capable of producing scenes
quickly, there is usually a jittering effect of dynamic objects,
which degrade the quality of the animation. One way of
improving the jittering is to apply a smoothing filter to the
position determined from the tracking algorithm.

The quality of registration is limited due to the use of 2.5D
point clouds rather than 3D (i.e. the point cloud suffers from
occlusion of objects). One way of improvement is to employ
multiple Kinects in set positions to capture different angles of
the stationary object in order to generate a full 3D point cloud.

As a future direction, we are interested in investigating the
contextual relationship between the human user and
environmental objects. By understanding the contextual

meaning of the human action, it is possible to apply the system
to serious applications such as security monitors and sport
training.

ACKNOWLEDGEMENT
We thank the anonymous reviewers for their constructive

comments. We also thank Mr. Chris Blythe for his help in
revising the paper.

REFERENCES
[1] Abe, Y. and Popović, J. (2006). “Interactive Animation of Dynamic

Manipulation,” Proceedings of the 2006 ACM SIGGRAPH/Eurographics
symposium on Computer animation, SCA ’06, pages 195–204, Aire-la-
Ville, Switzerland, Switzerland. Eurographics Association.

[2] Dixon, M. (2011). “Aligning Object Templates to a Point Cloud,”
http://pointclouds.org/documentation/tutorials/template_alignment.php#te
mplate-alignment.

[3] Fischler, M. A. and Bolles, R. C. (1981). “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography,” Commun. ACM, 24:381–395.

[4] Fukunaga, K. and Hostetler, L. (1975). “The Estimation of the Gradient of
a Density Function, with Applications in Pattern Recognition,” IEEE
Transactions on Information Theory, 21(1):32–40.

[5] Jain, S. and Liu, C. K. (2009). “Interactive Synthesis of Human-Object
Interaction,” Proceedings of the 2009 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’09, pages 47–53, New York,
NY, USA. ACM.

[6] Kallmann, M., Aubel, A., Abaci, T., and Thalmann, D. (2003). “Planning
Collision-Free Reaching Motions for Interactive Object Manipulation and
Grasping,” Computer graphics Forum (Proceedings of Eurographics’03),
22(3):313–322.

[7] Koga, Y., Kondo, K., Kuffner, J., and claude Latombe, J. (1994).
“Planning Motions with Intentions.”

[8] OpenNI (2010). “OpenNI / SampleAppSinbad,”
 https://github.com/OpenNI/SampleAppSinbad.
[9] Pekelny, Y. and Gotsman, C. (2008). “Articulated Object Reconstruction

and Markerless Motion Capture from Depth Video,” Computer Graphics
Forum, 27(2):399–408.

[10] Rusu, R. B. (2009). “Semantic 3D Object Maps for Everyday
Manipulation in Human Living Environments,” PhD thesis, Computer
Science Department, Technische Universitat Munchen, Germany.

[11] Rusu, R. B. and Cousins, S. (2011). “3D is here: Point Cloud Library
(PCL),” IEEE International Conference on Robotics and Automation
(ICRA), Shanghai, China.

[12] Shapiro, A., Kallmann, M., and Faloutsos, P. (2007). “Interactive Motion
Correction and Object Manipulation,” ACM SIGGRAPH Symposium on
Interactive 3D graphics and Games (I3D’07), Seattle.

[13] Suma, E. A., Lange, B., Rizzo, S., Krum, D., and Bolas, M. (2010).
“Flexible Action and Articulated Skeleton – FAAST,”
http://projects.ict.usc.edu/mxr/faast/.

[14] Taylor, C. and Cowley, A. (2011). “Segmentation and Analysis of RGB-
D data,” RGB-D: Advanced Reasoning with Depth Cameras 2011,
Seattle, WA, USA.

[16] Weise, T., Bouaziz, S., Li, H., and Pauly, M. (2011). “Realtime
Performance-Based Facial Animation,” ACM Transactions on Graphics
(Proceedings SIGGRAPH2011), 30(4).

[17] G. Bradski, “The OpenCV Library”, Dr. Dobb's Journal of Software
Tools, 2008

[18] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake. (2011) “Real-Time Human Pose Recognition
in Parts from Single Depth Images,” IEEE Conference on Computer
Vision and Pattern Recognition, June 2011.

Fig. 12: (Left) Real world and (Right) rendered scenes of object tracking.

