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Constructing virtual scenes that incorporate human and object interaction has traditionally been a time consuming process in 

computer animation, whereby the motion of an actor is first recorded and any objects used in the scene are then intricately added by 
an animator. The Microsoft Kinect utilizes a synchronized RGBD stream to provide markerless skeletal tracking of humans, enabling 
efficient motion capture; however, the problem of capturing environment objects remains unsolved. In this paper, we propose a new 
framework to segment and track three major types of environment objects using Kinect, namely background planes, stationary objects 
and dynamic objects. We demonstrate that the motion of an actor and their surrounding environment can be obtained at the same 
time, saving considerable effort for the animators. Our proposed system is best to be applied to applications involving extensive 
human-object interactions, such as console games and animation designs. 

 
Index Terms — Computer vision and image processing, human computer interaction, graphical modeling and simulations 

 

I. INTRODUCTION 
raditional motion tracking devices such as the optical 
motion capture system require complex user setup and 

heavy data post-processing, making it unsuitable for real-time 
applications. Recently, Microsoft introduced an integrated 
motion sensing device called Kinect that enables markerless 
motion tracking, which provides new opportunities for human 
computer interaction research. These projects range from 
using skeletal gesture as a replacement to keyboard and mouse 
input [13] to computer graphics application such as 
recognizing and creating facial animations [16]. 

A major problem with the Kinect, as well as most of the 
Kinect related research, is that tracking is only performed for 
the human user. When creating an animation, the environment 
objects are equally important to define the context of the 
scene. Without the environment being captured, animators 
have to manually place environment objects into the scene, 
including the background and any objects the character is 
interacting with, which entail a large amount of post capture 
work. 

In this paper, we propose to utilize the depth and color 
cameras in Kinect to capture environment objects. We 
observed that environment object can usually be classified into 
three groups. (1) Background planes in the capture area such 
as walls, doors, and floor. (2) Stationary objects that remain 
unmoved throughout a capture session, such as tables and 
chairs. (3) Dynamic objects that move and are interacted with 
by the human user, such as a football and a cup. It is difficult, 
if not impossible, to design a single segmentation algorithm 
that works well for the three types of objects, due to their 
different features and behaviors. Therefore, we propose a 
framework to segment and track each type of object using 
specifically designed algorithms, and combined the results to 
create the final scene. 

Combined with the Kinect’s built-in motion tracking 
capability [18], our system can capture and animate the whole 

scene including the character and environment in real-time. As 
a result, our proposed system can save considerable time for 
the animator, removing the need for intricate object placement 
into the captured scene. Furthermore, we can improve the 
realism of the final animation, as the structure of the scene and 
the movements of the objects are based on real data. This is 
beneficial to both the film and video game industries, as it will 
provide a new system for near-immediate prototyping of 
environments and the actor’s interaction with that 
environment. 

Our system is most beneficial for capturing animations 
involving heavy human-object interaction. The captured scene 
can be employed as a prototype of desired animation, or 
guidance for the animator during post-processing of the 
animation. 

II. RELATED WORKS 
In this section, we review related work from the computer 

animation and vision fields, focusing on developments in 
object interaction and markerless tracking.  

A. Computer Animations 
Synthesizing human movement for a virtual character that 

realistically interacts with an environment is an ongoing 
problem. Koga et al. [7] demonstrated that motion planning 
techniques could be applied to computer animation, animating 
a virtual character’s arms to reach for and grasp an object 
without collision. Kallmann et al. [6] took this work further by 
using probabilistic roadmaps for the automatic synthesis of 
multiple limbs at a time. More recently, Shapiro et al. [12] 
showed that they can edit captured full-body motions such that 
the virtual character can adapt to complex dynamic 
environments. They create motion plans to avoid undesired 
collision, while allowing interaction with some objects. The 
drawback of this approach is that it is heavily reliant on 
inverse kinematics, which can only be applied to linked-limbs 
but not the entire body without degrading the quality of the 
movements. These papers focused on motion planning through 
editing an already existing capture or synthesizing reaching 
and grasping. We believed that by capturing both human 
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motion and environment objects at the same time, human 
movement should not require editing. Any objects required for 
the scene should be captured by the depth camera and inserted 
into to the final scene with a polygonal representation.  

For passive object interaction, a different approach has been 
presented by Abe and Popović [1], who have created a control 
algorithm that considers the external constraints, the character 
and object models to produce a physical simulation of the 
desired animation. Example animations include the virtual 
character holding a chain and picking up a box. The major 
limitation of this approach is the limited motions the character 
could perform. For example, the character cannot jump, and 
this would result in a loss of control on certain degrees of 
freedom. Using physical simulation for animation has been 
taken further by Jain and Liu [5]. They implemented a system, 
based on dynamic equations, that allows the animator to edit 
the trajectory of a bouncing ball and calculate the physics for 
any corresponding contact with the virtual character. The 
character is animated by marked motion capture and can also 
be edited to change the point of contact with the passive 
object. A drawback of this approach is that there is no 
feedback of the impact of the collision between character and 
object. If a ball hit a character, it would simply bounce off the 
character, which remains unperturbed. Rather than replicating 
the physics and manually building the object interaction, our 
algorithm applies visual tracking to capture the motion of 
objects. Furthermore, since the actor and the objects interact in 
the real world, the generated animation by definition is 
realistic. 

B. Computer Visions 
Here, we review some of the recent research regarding 

markerless motion capture, particularly those which are 
designed for computer animation. 

Pekelny and Gotsman [9] have shown that it is possible to 
reconstruct a complete 3D mesh of an articulated object, such 
as a humanoid monster or toy truck using only a single depth 
camera. They can then estimate a rigid-body skeleton for that 
object, without a need for an initial template, subsequently 
allowing new motions to be generated for the reconstructed 
mesh and generated skeleton. 

Increasing the number of cameras will increase the data 
available to work with and subsequently improve the results. 
Gall et al. [7] have shown that by using a multi-view video 
sequence, they can perform accurate skeleton and surface 
estimation through a series of interleaved captures. Therefore, 
they are able to capture both the rigid transformations of the 
skeleton and the non-rigid transformations of human hair and 
clothing. 

Taylor and Cowley [14] present a plane segmentation and 
analysis technique. They use an RGB image to suggest an 
interpretation for a corresponding depth image, and therefore 
improve the resulting plane segmentation. This paper 
demonstrates the benefits of synchronized RGBD data for 
scene analysis, especially when dealing with unknown and 
complex environmental layouts.  

C. Contributions 
The major contribution of this paper is to propose a new 

system to capture environmental objects, along with the 
interaction between a user and the environment, using 
Microsoft Kinect. We apply tailored algorithms to segment the 
three major types of objects in a scene, namely background 
plane, stationary objects and dynamic objects. With accurate 
and efficient object segmentation algorithms, it is possible to 
create animations of human-environment interactions with 
minimal effort. 

III. SYSTEM OVERVIEW 
The overview of our system is shown in Fig. 1. Based on 

the depth image, we create a point cloud in the 3D space (Sec. 
IV-A), from which we segment the background plane (Sec. 
IV-B) and the stationary objects (Sec. IV-C and Sec. IV-D) 
separately. Using the color image, we segment the dynamic 
objects (Sec. IV-E and Sec. IV-F). All the segmented results 
are combined to form a final animation. 

 

IV. METHODOLOGY 
In this section, we explain how we construct the point cloud 

from the depth image and how we apply different algorithms 
to segment three classes of objects, including planer 
background, stationary objects and dynamic objects. 

A. Point Cloud Creation with Depth Image 
Here, we describe the process to create point cloud from 

Kinect inputs. Each pixel in the Kinect depth image 
corresponds to a point in the 3D point cloud. In other words, 
for each frame, we can create a point cloud of the scene by 
mapping the pixels in the depth image on to a 3D virtual 
world. 

In Fig. 2, the real scene and the corresponding point cloud is 
shown. Notice that the floor is not particularly well captured 
with relatively large areas missing. This is because of the 
depth measurements algorithm in Kinect that is derived from 
triangulation via structured light rather than time of flight. 
Thus, capture results are poor for horizontal surfaces, 

 

Fig. 1: Overview of the proposed system. Based on the features of the three 
different types of objects, we designed different segmentation algorithm to 
obtain the most accurate and computational efficient results. 



 3

especially when they are far from the camera. 

 
The cloud is then down sampled using a voxel grid, which 

approximates the centroid of all points contained within a 
1cm3 voxel. This provides a much cleaner resultant cloud and 
a more consistent distance between the individual points. 

B. Background Planes Segmentation with RANSAC 
Here, we explain the process to identify and segment 

background planes in the point cloud with Random Sample 
Consensus (RANSAC). We define background planes as 
large, flat planes lying at the far end of the capture area, such 
as the walls in a room. Non-planer objects such as the curtain 
on the wall are considered as stationary objects and will be 
considered in the next section. 

We apply RANSAC [3] as it can robustly estimate the 
parameters for any planar regions within the point cloud. The 
algorithm iteratively estimates the inlier points that fit a planar 
model, or otherwise classifies the points as outliers. Upon 
successfully fitting a plane to the cloud, the plane’s 
coefficients including the normal and the distance from the 
camera are computed. 

Among the detected planes from RANSAC, we obtain the 
background as the planes with area larger than a predefined 
threshold. Fig. 3 (left) shows a successfully segmented 
background plane. Notice that the segmented point cloud may 
contain holes due to the occlusion of objects. The position and 
orientation of the plane is stored for future rendering. 

 
It is possible to detect the floor plane using RANSAC. 

However, it requires carefully tuned parameters for the 
number of iterations and distance threshold, due to the poor 
capture quality. 

C. Stationary Objects Segmentation with Euclidean Cluster 
Extraction 

Here, we explain the process to segment stationary objects 
in the scene using Euclidean Cluster Extraction [10]. We 
define stationary objects as the objects with constant position 

and orientation throughout one capture session. 
By removing the point cloud of the background plane, we 

can obtain the foreground, which consists of multiple 
stationary objects (Fig. 3 right). The Euclidean Cluster 
Extraction algorithm is applied to segment the point cloud into 
individual objects. The algorithm iteratively searches for 
connecting points per cluster through nearest neighbors. A 
spherical radius is used to decide if a point belongs to a 
cluster, which is set to 3cm in our experiments. The position 
of the object is then represented by its 3D centroid.  

At this point, an animator can optionally associate objects in 
the point cloud with a polygon mesh for rendering in the final 
scene. This also allows the animator to combine multiple 
objects into a single logical object for better representation of 
the 3D centroid. This may be necessary when single objects 
are segmented into separate parts due to gaps in the point 
cloud. For example Fig 4 shows the chairs seat and back 
requiring manual combination after being separated during 
object segmentation. 

 
While it is possible to use the segmented result directly in 

the final scene, we prefer to store the point cloud in a 
database, such that if we see the same object in future capture 
sessions, we can automatically identify the orientation of the 
object. This process is explained in the next section. 
 

D. Stationary Object Transformation by Registration 
It is common for different capture sessions to have the same 

stationary objects in different positions. It would be time 
consuming to manually identify the objects in every capture 
session. Instead, we make use of the point cloud database to 
identify the rigid transformation of different stationary objects 
in the scene.  

We apply the registration algorithm [2] [10] to calculate the 
rigid transformations of stationary objects. The point cloud 
stored in the database such as the chair in Fig. 4 is called a 
template cloud. The registration algorithm aligns the template 
cloud with the cloud in a new capture session, such that we 
can identify the chair and obtain the rigid transformation 
automatically. It involves the following three steps: 

Estimating Surface Normal: We estimate the surface 
normal of a point cloud by the normal of a plane tangent to the 
surface of nearby points. The plane is obtained by fitting the 
nearest neighbors with least-square method. 

Point Features Histograms: Point Feature Histograms 
(PFH) make use of the estimated surface normal to produce 
further discriminative geometric information of a given point 

 

 
Fig. 4: Concatenation of the seat and back of chair after object segmentation 

 

 
Fig. 3: (Left) The background plane segmented by RANSAC, and (Right) the 
remaining point cloud 

 

 
Fig. 2: (Left) The real scene and (Right) the point cloud created. 
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cloud. It attempts to model surface variations among a 
neighborhood of points in a cloud using the directions of the 
given surface normal. The outcome is a histogram of 
relationships between all pairs of points within a 
neighborhood.  

Initial Alignment Algorithm: The initial alignment 
algorithm solves the problem of finding a match between two 
point clouds by producing a number of possible 
correspondences to match the input cloud against a template 
cloud. The distance between the PFHs for the clouds is first 
computed. The cloud with the lowest distance is then selected 
and Iterative Closest Point is used to evaluate the rigid 
transform between clouds.  

Fig. 5 upper left shows the template cloud of the chair in the 
database and the point cloud in the current scene. Fig. 5 upper 
right is an estimated transformation that places the point cloud 
of the chair on top the template cloud. The computed rigid 
transformation has been applied to the chair object to create 
the scene in Fig. 5 lower. In Fig. 6, a more extreme example is 
shown, requiring the transformation of a large vertical box 
point cloud to a horizontal box template cloud. 

 

 
With the point cloud database and the registration 

algorithm, it becomes very efficient to setup a new scene in 

which stationary objects are placed in different positions. 

E. Dynamic Object Segmentation with Background 
Subtraction 

Although registration can evaluate the transformation of 
objects, it is too computational costly to be performed in run-
time. Thus, we only apply registration to initialize stationary 
objects in a scene, and apply simpler background subtraction 
to track dynamic objects in run-time. Here, we define dynamic 
objects as environment objects that move during a capture 
session. 

Since the camera is assumed to be steady and the dynamic 
object is moving, background subtraction provides the most 
robust and computationally efficient method to segment the 
objects. Given two successive frames from the color image, 
we calculate the absolute color difference for each pixel (Fig. 
7 upper left) and threshold the pixel difference to generate a 
binary image (Fig. 7 upper right). After applying an erosion 
filter (Fig. 7 lower left), we use axis aligned bounding box to 
segment the dynamic object (Fig. 7 lower right).  

 
Segmentation by background subtraction is accurate and 

fast, but can only be applied to moving objects. Thus it can 
only be used in dynamic objects but not stationary objects. 

F. Dynamic Object Tracking with Mean Shift Tracking 
Here, we explain the process to track a dynamic object 

across frames. 
The mean shift algorithm is used to track dynamic objects 

in the scene [4]. The algorithm iteratively looks for the local 
maxima of a probability map on a frame-to-frame basis, 
starting from the position provided by the detected object’s 
bounding box. A new centroid can then be found in the 
surrounding area of the object in the previous frame. It 
provides the position of the object and subsequently a new 
bounding box in the current frame. Mean shift terminates after 
a predefined number of iterations or when the local maxima 
found reach a threshold. 

 

Fig. 7: Key processes in to detect dynamic objects with background 
subtraction. (Upper left) Difference image generated by background 
subtraction (Upper right) Binary image generated by thresholding (Lower 
left) Applying erosion filter (Lower right) Object segmented with axis 
aligned bounding box 

 

 

 
Fig. 6: Another successful transformation of a box in a new scene. 

 

 

 
Fig. 5: A successful transformation of a chair for a new scene. 
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HSV color space is used as it allows the representation of 
color through a single channel, namely the hue (Fig. 8 upper 
left). The probability map is produced by back projection for 
each frame. It calculates possible regions of an image that 
match a given histogram (Fig. 8 upper right). We exclude any 
pixel with saturation smaller than a predefined threshold as 
colors in such a range become non-representative (Fig. 8 
lower left). Finally, we can track the centroid of the object in 
the current frame (Fig. 8 lower right). We then obtain the 
corresponding location in the depth image, and evaluate the 
3D position of the object. 

Due to the household environment, parts of the door frame 
are clearly of a similar color to the ball as shown in the 
example of Fig. 8. Still, the algorithm is robust enough to deal 
with this situation. 

 

V. EXPERIMENTAL RESULTS 
In this section, we conduct different experiments to test the 

robustness and accuracy of our system.  
During implementation, we use the OpenNI [8] to obtain 

depth and color image from Kinect. We then use the Point 
Cloud Library [11] to segment background plane and 
stationary objects, and use OpenCV [17] to segment dynamic 
objects. Finally, we use the Ogre3D to render the resultant 
scene. 

A. Background Plan Segmentation 

 We obtain background plane coefficients produced by 
RANSAC, and render the plane with textured polygons. In 
Fig. 9, Kinect has been positioned to capture multiple planes. 
After processing, two planes representing the walls have been 
detected by the plane segmentation algorithm. As shown in the 
figure, the rendered scene is an accurate representation of the 
real world scene, with the walls at the correct angle. 

B. Stationary Objects Segmentation 
In this experiment, we use a point cloud database that 

consists of a chair and a lamp. We place the stationary objects 
in the scene and apply registration to calculate their orientation 
and location. Finally, we render the corresponding polygon 
mesh as shown in Fig. 10. 

  
Another experiment is conducted as shown in Fig. 11. The 

chair has been moved to the left and rotated, and an actor has 
also been introduced to scene. Registration is used again to 
initialize the orientation and position of the stationary objects. 
We use Kinect’s internal human tracking functions to track the 
human user [18]. Several human-object interaction have been 
captured, such as tying a shoelace and resting an arm on the 
chair.  

 
C. Dynamic Objects Segmentation 

Here, an experiment is conducted to evaluate the 
performance on tracking dynamic objects with the present of a 
user. The dynamic object in this case is a ball as shown in Fig. 
12. The results of the real-time dynamic object and human 
tracking are reasonably accurate. Furthermore, upon dropping 
the ball from a height, the ball is successfully tracked in its 

 

 

 
Fig. 11: (Left) Real world and (Right) rendered scenes of actor interacting 
with chair. 

 

 
Fig. 10: (Left) Real world and (Right) rendered scenes of chair, light and rear 
wall. 

 

 
Fig. 9: (Left) Real world and (Right) rendered scenes with multiple planes. 

 

 

 
Fig. 8: Key processes in to tracking dynamic objects with mean shift 
tracking. (Upper left) HSV representation of the color image (Upper right) 
Probability map (Lower left) Thresholding saturation value (Lower right) 
Object tracked in the current frame 
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descent to the ground including the subsequent bounces. This 
creates realistic animation of a falling ball without any 
implementation of physics. 

 
D. Performance 

With skeletal and object tracking both active, the renderer 
maintains an interactive frame rate of 15-25 FPS on a modest 
laptop with the following hardware specification: Intel Core 
i3-370M @ 2.4GHz for the CPU, 4GB RAM and an NVidia 
GeForce G310M graphic card. Overall, the creation of a scene 
with stationary objects takes no more than 10 minutes of the 
animator’s time from initial capture to render. 

VI. CONCLUSION AND DISCUSSIONS 
In this paper, we presented a new algorithm to capture 

human-environment interaction with the markerless Kinect 
system. We proposed tailored algorithms for segmenting and 
tracking three classes of objects, including the background 
planes, the stationary objects and the dynamic objects. We 
apply Kinect’s built-in human tracker to capture the human 
motion. Experimental results showed a satisfactory quality of 
captures in real-time. 

Synthesizing the object motion in Jain and Liu’s work [5] 
requires input from the animator, who must decide how 
object’s physics should be applied to the scene. It takes around 
30-40 minutes for the animator to produce a scene, as oppose 
to 10 minutes in our system. 

While the system produced is capable of producing scenes 
quickly, there is usually a jittering effect of dynamic objects, 
which degrade the quality of the animation. One way of 
improving the jittering is to apply a smoothing filter to the 
position determined from the tracking algorithm. 

The quality of registration is limited due to the use of 2.5D 
point clouds rather than 3D (i.e. the point cloud suffers from 
occlusion of objects). One way of improvement is to employ 
multiple Kinects in set positions to capture different angles of 
the stationary object in order to generate a full 3D point cloud. 

As a future direction, we are interested in investigating the 
contextual relationship between the human user and 
environmental objects. By understanding the contextual 

meaning of the human action, it is possible to apply the system 
to serious applications such as security monitors and sport 
training. 
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Fig. 12: (Left) Real world and (Right) rendered scenes of object tracking. 


