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Abstract – Two series of novel rigid pyrazolone derivatives were synthesized and evaluated as 

inhibitors of Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis. Two of these 

compounds showed high activity against MTB (MIC = 4 μg/mL). The newly synthesized 

pyrazolones were also computationally investigated to analyze their fit properties to the 

pharmacophoric model for antitubercular compounds previously built by us. Results are in 

agreement with that previously found by us for a class of pyrazole analogues and confirm the 

fundamental role of the p-chlorophenyl moiety at C4 for the antimycobacterial activity. 

 

1. Introduction 

On 2008 falled the 125th anniversary of Robert Koch’s discovery of the bacillus Mycobacterium 

tuberculosis (MTB),
1
 the etiological agent of the well known respiratory disease Tuberculosis (TB). 

Despite MTB was identified more than one century ago and many efficient drugs were discovered 

during this time to eradicate the disease, TB still remains one of the leading cause of worldwide 

illness and death. About 9.2 million new cases and 1.7 million deaths from TB occurred in 2006, of 

which 0.7 million cases and 0.2 million deaths were in HIV-positive people.
2
 Moreover the 

emergence of multiple drug resistant (MDR-TB) strains and, more recently, extensively drug 

resistant (XDR-TB) strains makes the discovery and the development of new drugs a priority.
3
  

In the last years, our work was focused into the discovery and the synthesis of new  

antimycobacterial compounds having pyrazole structure. Computational as well as synthetic studies 

led us to identify pyrazoles 1-4 as the best hit compounds with MIC values ranging between 4 and 

12 g/mL (Figure 1).
4-5

 Structure-activity realtionship (SAR) studies revealed that the presence of 

the p-chlorobenzoyl moiety at the C4 of the pyrazole ring of 1-4 is fundamental for the 
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antimycobacterial activity of these compounds. These pyrazoles bearing a benzoyl moiety at C4 

exist under certain conditions
6
 in one or more tautomeric forms and also in an hydrogen bond 

stabilized form (Structure A, Figure 1). In particular, an in-depth investigation by Holzer and co-

workers revealed that 5-hydroxypyrazoles such as 1-4 might exist in the chelated form A, because 

of the stabilization by intramolecular hydrogen bond which prevents the free rotation of C4-C6 

bond.
6
 On this basis, we assumed that the antimycobacterial activity of  1-4 could be partly related 

to the constrained conformation A where the p-Cl-phenyl ring is fixed in a “syn” relative position 

with respect to the C3-methyl group. Accordingly, we planned the synthesis of a series of 

pyrazolones with general structure B and C (Figure 1). Pyrazolones B could be considered as rigid 

derivatives of pyrazoles 1-4 with a “syn” conformation. The introduction of secondary amine 

moieties on pyrazolones B and C was settled on the basis of recent results on the synthesis of 

antimycobaterial pyrrole compounds.
7
 It is known that the thiomorpholine or N-methylpiperazine 

moieties on pyrrole derivatives, such as the active BM212, play a crucial role in the inhibition of 

MTB. Hence, the intrduction of a secondary amine coud play a dual role, leading to compounds 

with constrained conformation and with a potential improvement of their antimycobacterial activity. 

Finally, the synthesis of a series of pyrazolones having general structure C was planned to support 

the hypothesis that the p-chlorophenyl moiety at C4 could have a fundamental role for the 

antimycobacterial activity. 
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Figure 1. Pyrazoles and pyrazolones derivatives 

 

2. Chemistry 

We first focused our attention on the synthesis of derivatives with general structure B. Pyrazoles 1 

and 3, chosen as synthetic precursors, were synthesized according to reported procedures.
4-5

 

Reaction of 1 and 3 with different secondary amines led to desired pyrazolones 5a-k. The reactions 

were performed  in DMF or DME under microwave irradiation at 160 °C and were completed in 

only 10 minutes (Scheme 1). 
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Scheme 1. Reagents and conditions: i. Secondary amines (1.2 eq), DMF (for 5a-h) or DME (for 5i-

k), W, 160 °C, 10 min. 

 

A second series of pyrazolone derivatives with general structure C was synthesized. Commercially 

available pyrazolone 6 was reacted under the Vilsmeir conditions with POCl3 in DMF at 80 °C. 

When the reaction was stopped with NaOH 30% solution, 7 was isolated as the only product. On 

the other hand, when Vilsmeir reaction was quenched with distilled H2O and stirred in aqueous 

medium for 48 h, desired aldehyde 8 was obtained in 92 % yield. Aldehyde 8 was then reacted with 

several secondary amines at 100 °C under microwave irradiation affording desired compounds 9a-g 

in good yields (Scheme 2). Stereochemistry of 5a-k and 9a-g was determined by NOESY 

experiments. NOE-cross couplings are illustrated in Figure 2. 
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Scheme 2. Reagents and conditions: i. a) POCl3, DMF, 2 h, 80 °C then b) H2O, rt, 48 h. ii. a) 

POCl3, DMF, 2 h, 80 °C then b) NaOH 30%. iii. R1R2NH, W, 100 °C, 5 min. 
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Figure 2. Observed NOE cross-couplings 

 

3. Results and discussion. 

Componds 5a-k, 7 and 9a-g were assayed for their inhibitory activity toward M. tuberculosis 

H37Rv (ATCC27294). The minimum inhibitory concentration (MIC expressed as g mL
-1

) was 

determined for each compound. Resulting data were reported in Table 1. 

 

Table 1. Schematic representation and MIC values for 5, 7 and 9. 
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Compound R R1 
MIC (g mL

-1
) 

M. tuberculosis 

5a H thiomorpholine 8 

5b H N-Me-piperazine 8 

5c H morpholine 16 

5d H N(Me)2 32 

5e Cl thiomorpholine 8 

5f Cl N-Me-piperazine 4 

5g Cl morpholine 4 

5h Cl N(Me)2 16 

5i Cl piperidine >64 

5j Cl 4-Me-piperidine 64 

5k Cl PrNMe 64 

7 Cl  >64 

9a Cl N-Ph-piperazine 64 

9b Cl N-Me-piperazine 64 

9c Cl morpholine 64 

9d Cl N-Ac-piperazine 64 

9e Cl NH-Ph 64 

9f Cl N-(2-hydroxyethyl)-piperazine 64 

9g Cl N-(2-furoyl)-piperazine 32 

 

 

The presence of a chlorine atom on the N1-phenyl ring (5e-h) caused an improvement of activity 

with respect to non-halogenated 5a-d. In particular, 5f-g, bearing N-Me-piperazine and morpholine 

moieties proved to be very active with MIC = 4 g/mL. On the other hand, the presence of a 

piperidine or Me-piperidine moieties (5i-k) resulted to be detrimental for activity. This result 

suggests the relevant role of an additional heteroatom on the cycloalkyl amine ring. Compounds 9a-

g resulted inactive against MTB. On the basis of these latter biological data, it seems evident that 

the p-chlorophenyl ring is crucial for antimycobacterial activity. 

The cytotoxicity of compounds 5a-k, 7 and 9a-g toward VERO cells was also assayed. The active 

compounds 5a-b and 5e-f showed significant cytoxicity (CC50 = 5.71 g/mL for 5a, 5.58 g/mL for 

5b, 4.86 g/mL for 5e, 5.49 g/mL for 5f). The active compound 5g showed a slightly better 



cytotoxic profile with CC50 = 13.29 g/mL. On the contrary the inactive compounds 9a-g proved to 

be no cytotoxic with CC50 > 125 g/mL. 

 

4. Computational studies. 

The new pyrazolone derivatives were analyzed for their ability to fit a pharmacophoric model for 

antimycobacterial compounds, consisting in two hydrophobics, two aromatic ring features and a 

hydrogen bond acceptor group. Superposition of one of the most active compounds (5g) to the 

model (Figure 3A) showed a full complementarity between chemical groups of 5g and the 

pharmacophoric features. In fact, the RA1-HY1 system was matched by the p-chlorophenyl moiety 

at N1. The correspondence between the chlorine atom at R and HY1 accounted for the difference in 

activity found between R-chlorinated and unchlorinated analogues. In general, MIC values of 

chloro derivatives (5f-i) were better than those of the corresponding non halogenated analogues 5a-

d, lacking a group able to fit HY1. Moreover, the oxygen atom of the morpholine ring of 5g was the 

hydrogen bond acceptor group interacting with HBA. Also this contact was suggested to be very 

important for activity. In fact, compounds with a reduced ability (the thiomorpholino derivative 5e) 

or completely unable to fit HBA (5h-k) were all characterized by activity values lower that that 

found for 5f-g and 7, whose amino nitrogen atom is located at a ~2.8 Å distance from HBA. Finally, 

the additional p-chlorophenyl moiety at C4 matched RA2, while the methyl group at C3 was the 

hydrophobic group filling HY2.  

Superposition of compounds 9 to the model showed an interaction pattern similar to that found for 

compounds 5 (Figure 3B). However, the lack of the p-chlorophenyl moiety at C4 made such 

compounds unable to fit RA2, thus accounting for their low antimycobacterial activity. 

Such results were in agreement with that found by us for a class of pyrazole derivatives and 

suggesting that the p-chlorophenyl moiety at N1 was very important for activity, in addition to the 

ability of compounds to make a hydrogen bond contact coded by the HBA feature of the model. 
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Figure 3. Superposition of 5g (A) and 9a (B) into the model for antimycobacterial compounds. 

Pharmacophoric features are color coded: orange for aromatic rings (RA); green for hydrogen bond 

acceptor groups (HBA); cyan for hydrophobic regions (HY). The aromatic ring feature RA2 not 

mapped by 9a is in brown. 

 

5. Experimental 

Reagents were obtained from commercial suppliers and used without further purification. N,N-

dimethylformamide (DMF) and dimethoxyethane (DME) were purchased anhydrous (Aldrich), 

dichloromethane was dried over CaH2 prior to use. Anhydrous reactions were run under a positive 

pressure of dry N2. Merck silica gel 60 was used for flash chromatography (23–400 mesh). 
1
H NMR 

and 
13

C NMR spectra were measured at 200 MHz on a Bruker AC200F spectrometer and at 400 

MHz on a Bruker Avance DPX400. Chemical shifts were reported relative to CDCl3 at  7.24 ppm 

and to tetramethylsilane at  0.00 ppm.  

 

5.1. HPLC and MS analysis 

The purity of compounds was assessed by reverse-phase liquid chromatography and a mass 

spectrometer (Agilent series 1100 LC/ MSD) with a UV detector at k = 254 nm and with an 

electrospray ionization source (ESI). All the solvents were of HPLC grade (Fluka). Mass spectral 

(MS) data were obtained using an Agilent 1100 LC/ MSD VL system (G1946C) with a 0.4 mL/min 

flow rate using a binary solvent system of 95:5 methyl alcohol/water. UV detection was monitored 



at 254 nm. Mass spectra were acquired in positive mode scanning over the mass range of 50–1500. 

The following ion source parameters were used: drying gas flow, 9 mL/min; nebulize pressure, 40 

psig; drying gas temperature, 350 °C. 

 

5.2. Microwave irradiation experiments 

Microwave irradiation was conducted using a CEM Discover Synthesis Unit (CEM Corp., 

Matthews, NC). The machine consists of a continuous focused microwave power delivery system 

with operator selectable power output (0 to 300 W). The temperature of the contents of  the vessels 

was monitored using a calibrated infrared temperature sensor mounted under the reaction vessel. All 

experiments were performed using the stirring option whereby the contents of the vessels are stirred 

by means of rotating magnetic plate located below the floor of the microwave cavity and a Teflon-

coated magnetic stir bar in the vessel. 

 

5.3. Synthesis of pyrazolones 5a–k. 

Compounds 1 or 3 (1 eq./mol) were dissolved in anhydrous DMF or DME in a sealed vessel 

equipped with magnetic stirring bar. The appropriate amine was added (1.2 eq./mol) to the solution 

and the vessel placed in the microwave oven and heated  (160 °C , 10 min.) under microwave 

irradiation. After cooling, a saturated solution of NH4Cl was added and the aqueous phase was 

extracted with AcOEt (3x 10 mL). The combined organic layers were washed with a saturated 

solution of NH4Cl and H2O, dried over anhydrous Na2SO4, filtered and evaporated to dryness to 

afford crude compounds 5a–k, which were purified by flash chromatography (CH2Cl2/MeOH 99:1 

for compounds 5b, 5f, 5i-k; petroleum ether/ EtOAc 8:2 for compounds 5a, 5c, 5e, 5g) to afford the 

final products (25-70 % yield). 

5a: Yield: 70 %. 
1
H NMR (CDCl3):  (ppm) 7.91 (2H, d, J = 8.04 Hz, Ph), 7.44 (2H, d, J = 8.35 Hz, 

Ph), 7.32-7.28 (4H, m, Ph), 7.04 (1H, t, J = 7.30 Hz, Ph), 4.12 (2H, m, CH2NCH2), 3.55 (2H, m, 

CH2NCH2), 2.96 (2H, m, CH2SCH2), 2.64 (2H, m, CH2SCH2), 1.29 (3H, s, CH3). 
13

C NMR 

(CDCl3):  (ppm) 165.43, 161.66, 149.02, 139.40, 138.60, 133.70, 131.80, 131.60, 129.90, 129.50, 

129.20, 129.15, 124.10, 123.90, 119.20, 104.02, 57.73, 57.71, 28.81. MS: m/z  398-400 (M+1)
+
; 

420-422 (M+Na)
+;

 817-819.  Anal. for C21H20ClN3OS Calcd.%: C, 63.39; H, 5.07; N, 10,56; Found: 

C, 63.58; H, 5.08; N, 10.59. 

5b: Yield: 60 %. 
1
H NMR (CDCl3):  (ppm) 7.91 (2H, d, J = 7.71 Hz, Ph), 7.41 (2H, d, J = 7.52 Hz, 

Ph), 7.27-7.26 (4H, m, Ph), 7.01 (1H, t, J = 7.00 Hz, Ph), 3.92 (2H, m, CH2NCH2), 3.35 (2H, m, 

CH2NCH2), 2.65 (2H, m, CH2N(CH3)CH2), 2.43 (2H, m, CH2N(CH3)CH2), 2.27 (3H, s, NCH3), 

1.28 (3H, s, CH3). 
13

C NMR (CDCl3):  (ppm) 164.56, 161.81, 148.95, 139.52, 138.34, 133.54, 



131.80, 129.45, 128.74, 128.71, 128.67, 128.61, 128.57, 123.90, 119.31, 102.95, 55.96, 55.86,  

55.09, 51.10, 55.67, 15.81. MS: m/z  395-397 (M+1)
+
; 417-419 (M+Na)

+
; 433-435 (M+K)

+
, 811-

813 (2M+Na)
+
. Anal. for C22H23ClN4O Calcd.%: C, 66.91; H, 5.87; N, 14.19; Found: C, 67.11; H, 

5.71; N, 14.23. 

5c Yield: 30 %. 
1
H NMR (CDCl3):  (ppm) 7.95 (2H, d, J = 8.05 Hz, Ph), 7.48 (2H, d, J = 8.05 Hz, 

Ph), 7.36-7.32 (4H, m, Ph), 7.08 (1H, t, J = 7.30 Hz, Ph), 4.02 (2H, m, CH2OCH2), 3.96 (2H, m, 

CH2OCH2), 3.74 (2H, m, CH2NCH2), 3.38 (2H, m, CH2NCH2), 1.35 (3H, s, CH3). 
13

C NMR 

(CDCl3):  (ppm) 164.39, 161.74, 148.92, 139.44, 138.54, 133.16, 131.85, 129.60, 128.66, 124.02, 

119.29, 103.10, 67.68, 67.35, 55.60, 51.72, 15.83. MS: m/z  382-384 (M+1)
+
; 404-406 (M+Na)

+
; 

785-787 (2M+Na)
+
. Anal. for C21H20ClN3O2 Calcd.%: C, 66.05; H, 5.28; N, 11; Found: C, 66.76; 

H, 5.30; N, 11.04. 

5d: Yield: 25 %. 
1
H NMR (CDCl3):  (ppm) 8.01 (2H, d, J = 8.04 Hz, Ph), 7.48 (2H, d, J = 8.04 Hz, 

Ph), 7.37-7.34 (4H, m, Ph), 7.09 (1H, t, J = 7.29 Hz, Ph), 3.58 (3H, s, CH3NCH3), 3.08 (3H, s, 

CH3NCH3), 1.37 (3H, s, CH3). 
13

C NMR (CDCl3):  (ppm) 165.64, 162.00, 148.51, 139.65, 138.32, 

133.45, 131.96, 129.37, 128.60, 123.76, 119.12, 102.44, 46.76, 43.51, 15.69.  MS: m/z  340-342 

(M+1)
+
; 362-364 (M+Na)

+
; 701-703 (2M+Na)

+
. Anal. for C19H18ClN3O  Calcd.%: C, 67.15; H, 

5.34; N, 12.37; Found: C, 67.28; H, 5.35; N, 12.39. 

5e: Yield: 50 %. 
1
H NMR (CDCl3):  (ppm) 7.91 (2H, d, J = 8.53 Hz, Ph), 7.44 (2H, d, J = 8.53 Hz, 

Ph), 7.29-7.23 (4H, m, Ph), 4.10 (2H, m, CH2NCH2), 3.55 (2H, m, CH2NCH2), 2.95 (2H, m, 

CH2SCH2), 2.63 (2H, m, CH2SCH2), 1.27 (3H, s, CH3). 
13

C NMR (CDCl3):  (ppm) 165.67, 

161.61, 149.41, 138.71, 138.06, 133.57, 132.21, 132.12, 131.80, 130.05, 129.75, 129.65, 129.19, 

128.83, 120.05, 103.77, 57.76, 53.78, 28.66. MS: m/z  432-434 (M+1)
+
; 454-456 (M+Na)

+ 
; 470-

472 (M+K)
+ 

; 887-885 (2M+Na)
+
. Anal. for C21H19Cl2N3OS Calcd.%: C, 58.34; H, 4.43; N, 9.72; 

Found: C, 58.46; H, 4.44; N, 9.74. 

5f: Yield: 50 %. 
1
H NMR (CDCl3):  (ppm) 7.96 (2H, d, J = 8.63 Hz, Ph), 7.46 (2H, d, J = 8.63 Hz, 

Ph), 7.33-7.26 (4H, m, Ph), 3.96 (2H, m, CH2NCH2), 3.41 (2H, m, CH2NCH2), 2.69 (2H, m, 

CH2N(CH3)CH2), 2.49 (2H, m, CH2N(CH3)CH2), 2.33 (3H, s, NCH3), 1.32 (3H, s, CH3). 
13

C NMR 

(CDCl3):  (ppm) 164.75, 161.77, 149.33, 138.49, 138.20, 133.41, 131.77, 129.53, 128.63, 120.12, 

102.74, 55.85, 55.66, 55.17, 51.21, 45.81, 15.78. MS: m/z  429-431 (M+1)
+
; 451-453 (M+Na)

+
; 

881-879 (2M+Na)
+
. Anal. for C22H22Cl2N4O Calcd.%: C, 61.54; H, 5.16; N, 13.05; Found: C, 

61.68; H, 5.18; N, 13.10. 

5g: Yield: 50 %. 
1
H NMR (CDCl3):  (ppm) 7.94 (2H, d, J = 8.50 Hz, Ph), 7.48 (2H, d, J = 8.50 Hz, 

Ph), 7.32-7.26 (4H, m, Ph), 4.00 (2H, m, CH2OCH2), 3.95 (2H, m, CH2OCH2), 3.73 (2H, m, 

CH2NCH2), 3.37 (2H, m, CH2NCH2), 1.34 (3H, s, CH3). 
13

C NMR (CDCl3):  (ppm) 164.77, 



161.65, 149.34, 138.72, 138.05, 132.94, 131.83, 129.67, 128.88, 128.63, 120.21, 102.82, 67.59, 

67.40, 55.66, 51.79, 15.76. MS: m/z  416-418 (M+1)
+
; 438-440 (M+Na)

+
; 855-853 (2M+Na)

+
. 

Anal. for C21H19Cl2N3O2 Calcd.%: C, 60.59; H, 4.60; N, 10.09; Found: C, 60.83; H, 4.62; N, 10.13. 

5h: Yield: 26 %. 
1
H NMR (CDCl3):  (ppm) 7.99 (2H, d, J = 8.50 Hz, Ph), 7.47 (2H, d, J = 8.50 Hz, 

Ph), 7.34-7.24 (4H, m, Ph), 3.57 (3H, s, CH3NCH3), 3.07 (3H, s, CH3NCH3), 1.35 (3H, s, CH3). 
13

C 

NMR (CDCl3):  (ppm)  165.99, 161.90, 148.91, 138.49, 138.27, 133.23, 131.92, 129.41, 128.63, 

128.56, 120.08, 102.18, 46.75, 43.58, 15.62. MS: m/z  374-376 (M+1)
+
; 396-398 (M+Na)

+
; 412-

414 (M+K)
+
. Anal. for C19H17Cl2N3O  Calcd.%: C, 60.97; H, 4.58; N, 11.23; Found: C, 61.15; H, 

4.59; N, 11.26. 

5i: Yield: 55%. 
1
H NMR (CDCl3):  (ppm) 8.02 (2H, d, J = 8.53 Hz, Ph), 7.51 (2H, d, J = 8.53 Hz, 

Ph), 7.39 (2H, d, J = 8.53 Hz, Ph), 7.33 (2H, d, J = 8.53 Hz, Ph), 3.95 (2H, m, CH2NCH2), 3.40 

(2H, m, CH2NCH2), 1.88-1.74 (6H, m, CH2CH2CH2), 1.38 (3H, s, CH3).
 13

C-NMR (CDCl3): δ 

(ppm) 165.18, 161.80, 149.39, 138.45, 133.95, 131.55, 129.23, 128.82, 128.44, 119.89, 102.56, 

56.54, 52.50, 29.69, 27.46, 27.24, 23.54. MS: m/z  414-416 (M+1)
+
. Anal. for C22H21Cl2N3O 

Calcd.%: C, 63.77; H, 5.11; N, 10,14; Found: C, 62.37; H, 5.13; N, 10.19. 

5j: Yield: 56%. 
1
H NMR (CDCl3):  (ppm) 7.99 (2H, d, J = 8.85 Hz, Ph), 7.46 (2H, d, J = 8.83 Hz, 

Ph), 7.36 (2H, d, J = 8.63 Hz, Ph), 7.28 (2H, d, J = 8.63 Hz, Ph), 3.95 (2H, m, CH2NCH2), 3.48 

(1H, m, CH2NCH2), 3.23 (1H, m, CH2NCH2), 1.87 (4H, m, CH2CH(CH3)CH2), 1.49-1.46 (1H, m, 

CHCH3), 1.33 (3H, s, CH3), 1.01 (3H, d, J = 5.76 Hz, CH3).
 13

C-NMR (CDCl3):  (ppm) 165.18, 

161.82, 149.36, 138.34, 133.37, 129.95, 129.18, 128.47, 120.01, 102.63, 55.65, 51.83, 35.39, 29.86, 

21.35, 15.67. MS: m/z 428-430 (M+1)
+
; 450-452 (M+Na)

+
. Anal. for C23H24Cl2N3O Calcd.%: C, 

64.49; H, 5.41; N, 9.81; Found: C, 64.37; H, 5.35; N, 9.97. 

5k: Yield: 56 %. 
1
H NMR (CDCl3): δ (ppm) 7.97 (2H, d, J = 8.73 Hz, Ph), 7.46 (2H, d, J = 8.46 Hz, 

Ph), 7.36-7.30 (4H, m, Ph), 3.56 (3H, s, N-CH3), 3.38-3.34 (2H, m, CH3CH2CH2NCH3), 1.69-1.66 

(2H, m, CH3CH2CH2), 1.36 (3H, s, CH3), 0.81 (3H, t, J = 7.32, CH2CH3).
 13

C-NMR (CDCl3): δ 

(ppm) 165.55, 161.74, 152.73, 148.84, 138.22, 133.74, 131.87, 129.37, 128.49, 127.95, 119.96, 

102.74, 60.20, 57.54, 44.11, 40.99, 29.64, 21.94, 21.24, 15.66, 11.13, 10.47. MS: m/z 402-404 

(M+1)
+
; 424-426 (M+Na)

+
. Anal. for C21H21Cl2N3O Calcd.%: C, 62.69; H, 5.26; N, 10.44; Found: 

C, 62.71; H, 5.30; N, 10.47. 

 

5.4. Synthesis of aldehyde 8. 

To a stirred solution of compound 6 (1equiv/mol.) in DMF, 0.7 eq./mol of POCl3 and 2 eq./mol of 

DMF were added. The mixtures was heated at 80 °C for 2 h. After cooling, distilled H2O was added 

and the resulting solution was stirred for 48 h. The desisered product 8 was obtained as a yellow 



precipitate which was separated by filtration and used in the next step without any further 

purification. 

8: Yield: 92%. 
1
H NMR (CDCl3): δ (ppm) 10.26 (1H, bs, OH), 9.33 (1H, s, CHO), 7.67 (2H, bd, 

Ph), 7.31 (2H, bd, Ph), 2.34 (3H, s, CH3).
 13

C-NMR (CDCl3): δ (ppm) 159.60, 149.56, 135.30, 

132.07, 129.45, 128.93, 128.32, 121.86, 105.99, 13.12. MS: m/z 235 [M-H]
-
. Anal. for 

C11H9ClN2O2 Calcd.%: C, 55.83; H, 3.83; N, 11.84; Found: C, 56.01; H, 4.03; N, 12.04. 

 

5.5. Synthesis of pyrazolones 9a–g. 

Compound 8 (0.42 mmol, 1 eq./mol) and the appropriate amine (4 eq./ mol) were irradiated under 

microwave at 100 ° C for 5 min. The crude products 9a-g were then directly crystallized using 

AcOEt 100%. 

9a: Yield: 70%. 
1
H NMR (CDCl3): δ (ppm) 7.95 (2H, d, J = 8.30 Hz, Ph), 7.34-7.27 (4H, m, Ph), 

7.04 (1H, s, C=CH-piperazine), 6.96 (2H, d, J = 8.32 Hz, Ph), 4.93 (2H, m, CH2NCH2), 3.78 (2H, 

m, CH2NCH2), 3.38 (4H, m, CH2N(Ph)CH2), 2.22 (3H, s, CH3).
 13

C-NMR (CDCl3): δ (ppm) 

162.25, 150.82, 150.26, 149.35, 138.06, 129.48, 129.44, 129.40, 129.35, 128.99, 128.59, 128.55, 

121.16, 121.12, 120.40, 120.36, 116.92, 116.87, 99.46, 56.29, 51.45, 50.70, 50.64, 50.60, 49.82, 

13.56. MS: m/z 381 (M+1)
+
. Anal. for C21H21ClN4O Calcd.%: C, 66.22; H, 5.56; N, 14.71; Found: 

C, 66.34; H, 5.71; N, 14.83. 

9b: Yield: 60%. 
1
H NMR (CDCl3): δ (ppm) 7.94 (2H, d, J = 7.18 Hz, Ph), 7.29 (2H, d, J = 7.18 Hz, 

Ph), 6.93 (1H, s, C=CH-piperazine), 4.74 (2H, m, CH2NCH2), 3.58 (2H, s, CH2NCH2), 2.58 (4H, m, 

CH2NCH2), 2.33 (3H, s, NCH3), 2.16 (3H, s, CH3).
 13

C-NMR (CDCl3): δ (ppm) 162.03, 150.79, 

138.17, 128.82, 128.49, 128.37, 99.13, 56.38, 55.38, 54.97, 51.53, 45.65, 13.43. MS: m/z 319 

(M+1)
+
. Anal. for C16H19ClN4O Calcd.%: C, 60.28; H, 6.01; N, 17.57; Found: C, 60.33; H, 5.07; N, 

17.63. 

9c: Yield: 53%. 
1
H NMR (CDCl3): δ (ppm) 7.93 (2H, d, J = 7.64 Hz, Ph), 7.31 (2H, d, J = 7.64 Hz, 

Ph), 6.94 (1H, s, C=CH-morpholine), 4.80 (2H, m, CH2NCH2), 3.86 (4H, m, CH2OCH2), 3.58 (2H, 

m, CH2NCH2), 2.19 (3H, s, CH3).
 13

C-NMR (CDCl3): δ (ppm) 161.74, 148.29, 138.04, 128.52, 

128.47, 120.37, 67.07, 56.15, 52.34, 13.41. MS: m/z 312 (M+1)
+
; 334 (M+Na)

+
. Anal. for 

C15H16ClN3O2 Calcd.%: C, 58.92; H, 5.27; N, 13.74; Found: C, 59.02; H, 5.35; N, 14.02. 

9d: Yield: 30%. 
1
H NMR (CDCl3): δ (ppm) 7.93 (2H, d, J = 8.48 Hz, Ph), 7.33 (2H, d, J = 8.48 Hz, 

Ph), 7.01 (1H, s, C=CH-piperazine, 4.78 (2H, m, CH2NCH2), 3.83 (2H, m, CH2NCH2), 3.70 (2H, 

m, CH2N(CH3)CH2), 3.59 (2H, m, CH2N(CH3)CH2), 2.21 (3H, s, CH3), 2.17 (3H, s, COCH3).
 13

C-

NMR (CDCl3): δ (ppm) 152.75, 149.40, 137.87, 129.19, 128.56, 120.39, 55.79, 51.49, 41.86, 21.21, 



13.43. MS: m/z 369 (M+Na)
+
. Anal for C17H19ClN4O2 Calcd.%: C, 58.87; H, 5.52; N, 16.15; 

Found: C, 58.93; H, 5.54; N, 16.32. 

9e: Yield: 48%. 
1
H NMR (CDCl3): δ (ppm) 11.42 (1H, bs, NH), 8.0 (2H, d, J = 8.16 Hz, Ph), 7.89 

(1H, s, CH=NHPh), 7.41 (2H, d, J = 7.18 Hz, Ph), 7.35 (2H, d, J = 8.16 Hz, Ph), 7.25-7.20 (3H, m, 

Ph), 2.29 (3H, s, CH3).
 13

C-NMR (CDCl3): δ (ppm) 161.15, 148.22, 142.85, 138.47, 137.57, 130.06, 

129.14, 128.72, 125.84, 119.79, 117.31, 102.94, 12.60. MS: m/z 306 (M+1)
+
; 328 (M+Na)

+
. Anal. 

for C17H16ClN3O Calcd.%: C, 65.07; H, 5.14; N, 13.39; Found: C, 66.01; H, 5.24; N, 13.77. 

9f: Yield: 37%. 
1
H NMR (CDCl3): δ (ppm) 7.93 (2H, d, J = 8.10 Hz, Ph), 7.31 (2H, d, J = 8.10 Hz, 

Ph), 6.96 (1H, s, C=CH-piperazine, 4.78 (2H, m, CH2NCH2), 4.78 (2H, m, CH2NCH2), 3.68 (2H, 

m, CH2NCH2), 3.64 (2H, m, CH2OH), 2.74 (4H, m, CH2N(CH2CH2OH)CH2), 2.64 (2H, m, NCH2 

CH2OH), 2.19 (3H, s, CH3).
 13

C-NMR (CDCl3): δ (ppm) 162.04, 150.75, 149.41, 130.08, 128.97, 

128.56, 120.40, 59.17, 58.08, 56.39, 53.43, 53.0, 51.58, 13.42. MS: m/z 349 (M+1)
+
. Anal. for 

C17H21ClN4O2 Calcd.%: C, 58.53; H, 6.07; N, 16.06; Found: C, 58.62; H, 6.11; N, 16.12. 

9g: Yield: 74%. 
1
H NMR (CDCl3): δ (ppm) 7.93 (2H, d, J = 8.56 Hz, Ph), 7.50 (1H, s, H3-Furane), 

7.31 (2H, d, J = 8.56 Hz, Ph), 7.09 (1H, s, C=CH-Piperazine), 6.98 (1H, s, H4-Furane), 6.51 (1H, s, 

H5-Furane), 4.80 (2H, m, CH2NCH2), 4.05 (2H, m, CH2N(CO)CH2), 3.96 (2H, m, CH2N(CO)CH2), 

3.62 (2H, m, CH2NCH2), 2.19 (3H, s, CH3).
 13

C-NMR (CDCl3): δ (ppm) 163.02, 150.73, 149.44, 

147.30, 144.22, 137.96, 129.10, 128.52, 120.35, 117.71, 111.65, 100.04, 55.92, 51.81, 29.66, 13.42. 

MS: m/z 399 (M+1)
+
. Anal. for. C20H19ClN4O3 Calcd.%: C, 60.23; H, 4.80; N, 14.05; Found: C, 

60.35; H, 5.12; N, 14.09. 

 

6. Microbiological assays 

 

6.1. Mycobacterial strain 

M. tuberculosis H37Rv ATCC 27294 was used in this study. It was maintained on Löwenstein-

Jensen (bioMérieux, Marcy l’Étoile, France) agar slants until needed. 

 

6.2. Antimicrobial susceptibility testing 

MICs were determined by a standard twofold agar dilution method. Briefly, 1 mL of Middlebrook 

7H11 agar (Becton Dickinson BBL, Sparks, MD) supplemented with 10% oleic acid-albumin-

dextrose-catalase enrichment containing the testing compounds in 24-multiwell plates at 

concentrations ranging between 0.0312 and 64 μg/mL was inoculated with 10 μL of a suspension 

containing M. tuberculosis H37Rv 1.5 × 10
5
 cfu/mL grown on Middlebrook 7H9 broth (Difco 

Laboratories, Detroit, MI) supplemented with 10% albumin-dextrose-catalase enrichment. Final 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TF8-4T5CGPV-B&_user=7597297&_coverDate=09%2F15%2F2008&_alid=855343644&_rdoc=4&_fmt=full&_orig=search&_cdi=5220&_sort=d&_docanchor=&view=c&_ct=41&_acct=C000036918&_version=1&_urlVersion=0&_userid=7597297&md5=9e6d0c9f2878074445cd8e53b5e350e5#bib5


inoculum was 1.5 × 10
3
 per well and was obtained as described previously.

8
 Plates were incubated 

for 21–28 days and MICs were read as minimal concentrations of compounds completely inhibiting 

visible growth of mycobacteria. 

 

7. Computational details 

Computational analysis was performed by means of the Catalyst software package, version 4.10, 

following a protocol previously described.
5
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