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The effect of sheared diamagnetic flow on turbulent structures generated
by the Charney—Hasegawa—Mima equation

G. J. J. Botha,¥ M. G. Haines, and R. J. Hastie
Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

(Received 18 May 1999; accepted 21 June 1999

The generation of electrostatic drift wave turbulence is modeled by the Charney—Hasegawa—Mima
equation. The equilibrium density gradiemi=ny(x) is chosen so thatlny/dx is nonzero and
spatially variable(i.e., v, . is shearefl It is shown that this sheared diamagnetic flow leads to
localized turbulence which is concentrated at nvaxj, with a largedv /dx inhibiting the spread

of the turbulence in th& direction. Coherent structures form which propagate with the hagain

they direction. Movement in th& direction is accompanied by a change in their amplitudes. When
the numerical code is initialized with a single wave, the plasma behavior is dominated by the initial
mode and its harmonics. @999 American Institute of Physid$$1070-664X99)00510-§

I. INTRODUCTION sults obtained in the numerical simulations are divided into
One of the first characteristics of the(High) mode that three main sections: Section VI describes the coherent struc-

was discovered in tokamaks was the transport barrier at jgires in the plasma which form in the turbulence; Sec. Vi

edge! Since then internal transport barriers have been mee{:gresents the spectra formed py the gen'eralized energy and
sured in various machinds® These barrier¢both internal enstrophy; and Sec. VIl investigates the influence of various

and at the edgeare usually attributed to sheare X B) density profiles. A summary of all the results concludes this

flow.® However, Shainget al” note that a sheared diamag- paper.
netic flow can also suppress turbulence. In this paper, we
consider a sheared diamagnetic flow and consider its effedt NUMERICAL SIMULATIONS
on the turbulence. In order not to complicate our investiga-  Most numerical simulations in this field use slab geom-
tion, we choose to include the density profile which gener-etry and a two-dimensional regular grid to simulate the plane
ates the diamagnetic flow and suppress other effects. perpendicular to a constant and uniform magnetic field. The
The numerical model used is the Hasegawa—Mimglasma inhomogeneity enters the CHM equation through
model of two-dimensional electrostatic drift wave L_'=(1/ny)(dny/dx) with ny the equilibrium density. This
turbulencé”® The model consists of the Charney— implies that whenL ;! is zero, a constant or periodic, an
Hasegawa—MimaCHM) equatiort®*2 which evolves the infinite plane can be simulated by choosing the boundary
perturbed electrostatic potentigl; while the unperturbed conditions periodic in both the andy directions. In the
densityno=ng(x) is fixed in time with characteristic length Jiterature L, * is treated almost exclusively as a constart’
L, = (1/ng)(dny/dx). Most numerical simulationgwith a  or as equal to zer5?-33Here, we treapel,, '<1, where
few notable exceptiod$') treatL,* as a constant and use p.=c./€,;, cs being the ion sound speed afl,; the ion
periodic boundary conditions in bothandy directions on  cyclotron frequency.
the two-dimensional Cartesian plane. A general review by  Double periodicity allows the numerical codes to be
Arter'® covers the modeling of drift-wave turbulence in to- treated spectrally. The modes in th@ndy directions range
kamaks using the CHM equation. The present publicatiofrom 16x 16 mode&® to 512< 512 mode£>?® The existing
considers numerically the influence of variong=ng(x) numerical codes can be divided into spectral
profiles on the turbulence generated by the CHM equationgoded’-18:21:22.25.26,28,.29 and pseudo-spectral
In particular,ng profiles introducing a sheared diamagnetic codes:®1920.232427.30-3¢n the pseudo-spectral codes, it is
flow (v, ) are investigated. usually the linear terms which are calculated in Fourier
Section Il contains a short review of numerical simula-space, while the nonlinear term is calculated in coordinate
tions which used the CHM equation. This is followed by space using a finite difference scheme. A few authors have
Sec. Il stating the CHM equation and its two global con-extended this differentiated spatial treatment into the tempo-
stants: the generalized energy and the generalized enstrophyl treatment of the CHM equatidfi;?>*°using explicit time
The derivation of the equation and its two global constantssteps to advance the linear terms and a split operator Lax—
the conditions under which the model is valid as well as theyendroff schem?® for the nonlinear term.
effect of the chosen boundary conditions are discussed in an |n order to make the numerical simulations become more
appendix. In Sec. IV the numerical implementation of thisrealistic, the doubly periodic boundary condition needs to be
model is described and this is followed by a description ofrelaxed. Ingersoll and Cuohtjdeveloped a code which is
the diagnostics used to present the res(8isc. \J. The re-  periodic in they direction and hagi¢,/dy=0 along thex
boundaries, wherep, is the field quantity evolved by the

dNow at Department of Pure and Applied Physics, Queen’s University,C_H'vI _equati_on- _Tlheir code is S_peCtral in _bOth th@-ndy
Belfast BT7 1NN, UK. directions withL,, “=0. The nonlinear term is calculated us-
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ing Arakawa’s schenié in coordinate space and the time particular, on the behavior of the coherent structures.
scheme uses centered time differences, with a forward inte-
gration every fifty time steps.

Su, Horton, and Morrisdff published results using a nu- Ml THE MODEL
merical code which is periodic only in thedirection. L, * The equation evolved in this model is the Charney—
=L, %x) implies that the diamagnetic velocitw,, Hasegawa—Mima equatidh'?
= —cTeLgll(eB) is sheared. They calculated the nonlinear J[ed 1 ¢ c I

. : . . 1 2 -1 1

term in Fourier space and evolved the CHM equation in aﬁ—t S TEVL% - g'—n v
space that is spectral ynand finite differenced irx. e ¢l y

Prakash, Chu, and HasegaWeonsidered a regular grid 1 ¢2
which is periodic iny and has¢;=0 on thex boundaries. - Q_m Ewl,vfm:o D

The nonlinear term was calculated in coordinate space using
Arakawa’s schem® and the CHM equation was time inte- which describes two-dimensional electrostatic turbul®fce
grated using the Euler scheme for the first time step and then the ,y) plane perpendicular to a constant and uniform
leapfrog scheme for successive time steps. They used a Copragnetic fieldB=BZz Here, ¢, is the perturbed electrostatic
stantL,* (i.e. not a function of time or spag@nd termi-  potential, T, is the constant and uniform electron tempera-
nated the numerical run @%,=5Q", whereQ); is the ion  ture, e is the electron charge, ands the speed of lightQ,;
cyclotron frequency. Such a short run does not allow for thgs the ion cyclotron frequency arid;lz(l/no)(dnoldx) is
drift-wave turbulence to evolve fully. After reproducing the inverse characteristic length associated with the unper-
some of their result§Sec. VIII) we extended the duration of turbed density gradient. The notatipn , ] represents the
our numerical runs to a few characteristic time lengtdec.  Jacobian operatdialso known as Poisson brackets
V). The Appendix contains a short description of the deriva-
The duration of the numerical runs varies over a widetion and validity of the CHM equation and describes how to
range in the published literature. Some simulations are of thebtain its two global constants: the generalized en&vgnd
order of 102 |L,|.c.*, while others have a duration of up the generalized enstrophy, defined by
032031600 |L,|.c.*, 1220|L,|.c5* and 2000|L,|.cSt.

2
Our numerical runs have durations betweer{12().c; ! and W= f s nl_-l_‘*+lminové dv, )
67.4|L,|.c5* which in each run is enough time for the rel- voTel2 Mo 2
evant physics to evolve. Vxy |2
In the literature the following physical effects have been — L E N2 } E
. u mingv< | + dv. (3
added to the CHM equation: an electron temperature vlNoTe 2 B) 2\ Qg

gradientt*!83* 3 nonlinear term originating from theE(

xB) velocity?’ electron dissipatioh® nonadiabatic
electrons?? sources and sink&:232831.33k awaharaet al?*

modified the CHM equation by simplifying the nonlinear
term, while many numerical papers included V. THE NUMERICAL IMPLEMENTATION

. 4. 17,25-28,31,32- i . . . . .. .
hyperviscosity: The accuracy of most numerical The two-dimensional domain is divided into a regular

codes_ is, measured in terms of conseryation of the CHNbrid, the size of one ce(dimensionsix andAy) being such
equation’s global constants: the generalized energy and thtﬁatAx<Ln and alsoAx, Ay<ps wherepg is c/Q;. The

generalized enstrophy. _ ____dimensions of the numerical domain are givenagyanda,
All the publications which have been considered in thisj, the x andy directions, respectively.

section, have used Cartesian coordinates with a regular, rect- The domain is periodic in thg direction and reflecting

angular numerical grid. This, however, is not the only geoMyyoundary conditiorf at x=0 andx=a, are chosen with
etry which is used in the literature. Marcfisised plane cy- 4, =0. In order to prevent the reflecting boundaries from
lindrical coordinates on an annular grid to study vorteXpolluting the numerical solutionyn, is chosen to be zero
behavior, in order to compare his numerical results with cynext to thex boundaries. This results e, /dx=0 near the
lindrical laboratory experiments by Sommeriatal®  x poundaries which prevents reflection and helps with the
Williams*® used spherical coordinates on a spherical grid inconservation of the generalized enstropifhe latter is dis-
order to simulate Rossby waves in the Jovian atmosphergussed in detail in the Appendjx.
He included a force term to introduce vortices with isotropic By finite differencing in thex direction and using spec-
spectra at a fixed wavenumber. tral methods in they direction, the linear part of the CHM
The research interest of most of the publications can bequation may be written as a tridiagonal system describing
divided into two main groups: those which are interested inthe evolution of¢,. By using the complex Fourier represen-
the study of the behavior of coherent vortices in two-tation, a bi-tridiagonal system is obtained which evolves the
dimensional  turbulend@!#16:172021.23-25.30.31.3334383q  reg| and imaginary parts ab;. This system is solved using
those papers which study two-dimensional turbulence/on Rosenberg’s methdt.The numerical simulation is de-
itself18:19.2227=29.32.3%rnjs paper presents the effects of aaliazed by setting the top third of the Fourier spectrum to
sheared diamagnetic flow on the CHM turbulence and irzero. The upper boundary in Fourier space is reflective. The

The influence of the boundary conditions and bof*
=L, }(x) onWandU is discussed in the Appendix.

Downloaded 22 Mar 2001 to 128.40.56.151. Redistribution subject to AIP copyright, see http://ojps.aip.org/pop/popcr.jsp



3840 Phys. Plasmas, Vol. 6, No. 10, October 1999 Botha, Haines, and Hastie

nonlinear term in the CHM equation is calculated using Ar-
akawa'’s finite difference scheme for vector nonlinearitfes. Un=

The CHM equation is time advanced by means of a
modified Euler predictor corrector method. If the CHM equa-which allows the monitoring of the different modes of the
tion is written symbolically as generalized enstrophy.

1 (ax
a_J'o Uy (X)dX (12

X

oy s " By defining 2

o w= ! (E anEJrlminovE , (13
where X is the term containind.,* and Z is the nonlinear MoTel2 Mo 2
term, then the time advancement scheme is written as

W:f wdV, (14)

YP 4+ XPAt=YO+ZOAL, (5 v

YD XA DAt=YO 4 1[Zz0 4 Zz()]AL, (6) W 2 W, (x) @273y, (15
where the superscripts indicate the iteration in time Amd m===
the time step. The final tim&;,, and the time stepjAt must 1 [a,
be chosen so thab, At<1 and w, (Ts,>1, wherew, o sza—xfo Win(X)dX, (16)

=kv,e, i.€., the time step must be small enough to resolve
the physics and the duration of the numerical run must behe generalized energhEq. (2)] is monitored in a similar
long enough to cover the time scales of interest. It is usefulvay.

to define the characteristic time as

1 a, VI. COHERENT STRUCTURES
(@)

kv,e mMv,,' Experimental measurements indicate the possible exis-
tence of coherent structures in fusion plasfi44 By initial-
izing the numerical code with one wave as well with mul-
tiple waves in they direction different turbulent structures
are obtained.

The numerical code is initialized with an equilibrium
density profileng=ny(x) as shown in Fig. 1. This implies

tati To Io(?tam a Tﬁasdurfg ?{f the fluctuations over the Compufhatv*e is sheared along the direction and is constant in
ational domain, the definition time. The initial perturbation

wherem is the initial mode in Fourier space.

V. DIAGNOSTICS

M
(e¢1> _ \/i 3 edi(xi,y))|? ® Go —(x—a,/2)2
Te rms M= Te ALY = 270 & 207 ' a9
is used, where the summation is along yfdirection withM 27my
the number of grid cells.g¢/Te)ms IS @ function ofx and ¢1(x,y)=A(x)cos{ ) (18)
its x profile may be monitored as it evolves over time. This y

diagnostic is helpful in observing the level and position ofis chosen and wittr=1 andG, a constant, the maximum

fluctuations along the axis.

values of kL,) ! ande¢, /T, can be set to occur at the

The generalized energy and enstrophy are defined byame position on the numerical grid and both are equal to
Egs.(2) and (3), respectively, and their conservation is the 1.49x 10 2. Equation(A5) then implies that the terms in the
prime indicator of the accuracy of this numerical code. If theCHM equation are of comparable magnitude. Two numerical

definition
1 2
+ —

2

VXv
E
Qci

is used, then the generalized enstropfy. (3)] can be writ-
ten as

U=f udV.
v

The numerical code is spectral in thedirection, which im-
plies thatu may be written as

U= ——/{5mnev2

T npTe! 2

11
( ©)

(10

o]

u= 2 um(x)eiZ'rrmy/ay.
oo

(11)

The x dependence of Eq10) then becomes

simulations are performed: the first is initialized with a single
mode in they direction (m=9), while the second has two
initial waves(modes 7 and 11

The resolution of the numerical grid is the same for both
these runs. Thg direction has 256 grid cells and a length of
a,/ps=10/0.43~23, while 85 modes are allowed in Fourier
space. During the numerical run initialized with a single
mode a,~ 28ps with 300 grid cells in thex direction and
during the run with multiple modes,~46.5¢ with 500
cells.

The duration of the simulations is chosen so that many
characteristic timegsee Eq(7)] are fitted into each run. The
final time for the simulation initialized with mode 9 1B,
=1.4x10* s=21|L,|.c;'=8 characteristic times. Here,
the minimum value ofL,| has been used. The chosen time
step isAt=5%x10° s which givesAtw, ,=1.8x10 3. The
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FIG. 1. x profiles ofng andv,¢.

final time for the simulation with multiple initial modes is B. Multiple modes
Tin=4.5x10"% s=67|L,|.c;* which is 20 characteristic
times when Eq(7) uses mode 7 to calculate the characteris
tic time andTy, is 32 characteristic times when mode 11 is
used. The time stefit=10 8 s so thatAtw, . is of the same
order as during the simulation initialized with mode 9.

The accuracy of the numerical runs is measured by th
conservation of the generalized enerdyg. (14)] and the

After 7x10°° s the numerical simulation initialized
‘with modes 7 and 11 has evolved into turbulence which con-
tains coherent structures formed by local maxima and
minima on the X,y) plane. Figure 3 presents contours of
ep, /T, on the ,y) plane at five different times during the

umerical run and is representative of the turbulence from

lized 101, Duri h initialized 7x10°° stoTy,. The spatial trajectories of the maxima and
generalized enstrophiEq. (10)]. During the run initialize minima may be followed as they evolve in tinleigs. 4 and

with a single mode the change in the generalized energy i§ respectively, as well as the time evolution of the ampli-
less than 0.75%. The generalized enstrophy fluctuates durin[g’des of these, structurébigs. 6 and ¥
this run but changes by less than 4%. The change during the The trajectories of the coherent structures show that the

fun initialized With multiple mOde.S Is 1.6% for the general- iy movement is in thg direction with they velocities of
ized energy, while the generalized enstrophy changes b%e same order as their local, .. This implies that they

2.5%. trajectories of the coherent structures are longer near
A. Single mode =a,/2 than near the boundariegFigs. 4 and b Migration

in the x direction is more irregular and often accompanied by
amplitude changes. This is particularly noticeable for the
minima, with a few maxima also showing this behaviewq.,

Thev, . profile creates flows in thedirection which are
sheared along the direction (Fig. 1) with the fastest flow

occurring atx=6 cm. The effect of this sheared flow is maximum 3 in Figs. 4 and)6 This behavior is ascribed to

shown in Fig. 2. As early as>210 ° s after initialization, - -
. . ; . the v, .=V, (X) profile: x movement causes the coherent
the numerical simulation evolves into the stable structure, as

shown in Fig. 2. During the measurement of Fig. 2 thestructures to move through differem, . rovx'/s.and this
. L2 causes the amplitude to change. However, this is not the only
plasma structures at=8.2 cm moved in the negativedi- . . . -
. . factor influencing the amplitude of the coherent structures:
rection at a speed of 1.26.. In contrast to this, the plasma

structures ak=10 cm show very little movement. Although mqvement and amphtud_e _changes are _mfluenced by nearby
neighbors as wel(e.g., minimum 11 in Figs. 5 and).7

the shapes of thg different s.ubst'ructures change in time, the Although the coherent structures on they) plane were
shape of the main structure in Fig. 2 stays the same. . . : .
. . . followed for the duration of the numerical simulation, as
A Fourier analysis of the temporal fluctuations of . . . - .
well as for simulations with different initial modes, no dis-

e¢, /T, at fixed positions on the numerical grid shows that . - :
) . cernible pattern was observed. A minimum and a maximum
the frequencies of the faster flows are higher than the fre-

quencies of the slower flo#s(as expected with the given would join together to form a modofa pair of extrema of

Vv, profile). It also shows that all measured frequencies areOppOSIte sigh and modons would split up into their two

: extrema seemingly at random. Sometimes two minima

of the same order a®, /27. The fastest moving plasma at : L .

; . . . would combine to create one minimum and the same is true
x=6 cm has frequencies which are slightly higher than :

. for the maxima.

w, J2m. Closer to thex boundaries where the plasma moves
slower in they direction, the values of the measured frequen-
cies correspond more to their loaal /2. A Fourieranaly- , ‘ceNERALIZED ENERGY AND ENSTROPHY
sis of the spatial fluctuations gives spectra which show that

the initial modem=9 dominates in all the flows alongwith The dual cascade model is well established in two-
the higher harmonics oin=9 an order of magnitude dimensional fluid turbulené@and the CHM equation which
smaller. links this literature with drift wave turbulence has made the
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FIG. 2. Contour plots oé¢, /T, as it evolves in time for mode 9.

dual cascade a compelling paradigm in plasma phy$iesr  as well as the influence of condensation in the Fourier spec-
the parameter space used in this publication, Terry antta of the generalized energy and enstrophy. The results pre-
Newmarf® predict that more than 97% of the generalizedsented in this section are obtained with the same initializa-
energy will cascade to larger scale lengths with the rest cagions as are used in Sec. VI: the first simulation is initialized
cading to smaller scales. At the same time more than 96% aofith mode 9 in Fourier space and the second simulation is
the generalized enstrophy will cascade to smaller scales witimitialized with modes 7 and 11. The accuracy of Sec. VI is
the rest cascading to larger scales. These flows are observadintained.
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FIG. 3. Contour plots o&¢, /T, as it evolves in time for modes 7 and 11.

A. Single mode times a dual cascade involving only these harmonics, satu-

When the numerical simulation is initialized with mode "ates and the spectra oy, and 4, show stable behavior.
m=9 in Fourier space, the initial mode dominates the Foufigure 10 presents the spectra of the generalized energy and
rier spectra of the generalized energy and enstrdpfys. 8 enstrophy at 8.09410 ° s and shows that the dual cascade
and 9, respectively The initialization first relaxes into a occurs only in harmonics of the initial mode=9. In the
state in which only harmonics oh=9 are present. Between generalized energy spectrum, the energy has cascaded
2x10°° and 1.0x10 * s (1.15 and 5.84 characteristic mainly to lower mode numbeftarger scale lengthsnd has
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FIG. 4. Spatial trajectories of maxima e, /T, in Fig. 3 as they evolve in  FIG. 5. Spatial trajectories of minima ef), /T, in Fig. 3 as they evolve in
time. Each maximum is numbered and the numbers correspond to those time. Each minimum is numbered and the numbers correspond to those in
Fig. 6. Fig. 7.

condensed in moda=0. In the generalized enstrophy spec-
trum the enstrophy has cascaded to higher mode numbe?s;
(smaller scale lengthswhile the condensation of the gener- When the simulation is initialized with modes 7 and 11,
alized energy am=0 causes the high amplitude wf=0 in  the initial spectra of the generalized energy,{) and the

the generalized enstrophy spectrum. In the same way, thgeneralized enstrophyi4,) contain only these two modes.
condensation in the higher enstrophy modes is reflected iRigure 11 shows the spectra &&5.1x10°° s, which is

the generalized energy spectryFig. 8). As can be seen in when the plasma enters saturated turbulence and the initial
Figs. 8 and 9, the harmonics of=9 fluctuate in amplitude conditions are destroyed. The generalized energy cascades
during the numerical run until 9.76510 ° or 105<(9.3 inversely to lower mode numbers, while the generalized en-
X 10 7) s on the time axes of Figs. 8 and 9, after which thestrophy cascades to higher mode numbers. Unlike the simu-
stable multiharmonic structure is destroyed by numericalation which is initialized with mode 9 only, the modes
noise. Prior to this transition all the harmonic modes in thewhich are generated do not belong only to the harmonics of
generalized enstrophy spectrum gained amplitude as the gemodes 7 and 11. Figure 11 also shows that the condensation
eralized enstrophy cascaded to higher mode numbers, whik the lower modes of tha/,, spectrum manifests in the high
the nonharmonic modes grow exponentially from noise untilamplitudes of the lower modes in tli¢, spectrum, while
they reach amplitudes comparable with the harmonic modeSerry and Newmalf? predict very little inverse cascading for

at 10 * s. All the nonharmonic modes have the same growtti/,,. The reason for this is that they assume no condensation
rate. A smaller separation between the harmonic modes im the spectra.

the spectrunte.g., by initializing withm=3) or an increased After t=5.1X10 ° s the shapes of the spectra stay
amplitude of the initial perturbation will increase this growth largely the same until the end of the numerical run, while the
rate. As soon as the nonharmonic and harmonic modes are widividual modes change as they evolve in time. In g
comparable amplitude, the stable harmonic structure givespectrum the lower modes grow. In contrast to this, the lower

Multiple modes

way to turbulence with alin numbers present. modes in thé/,, spectrum diminish and all the higher modes
variation of maxima variation of maxima
. L
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FIG. 6. Time evolution of the amplitudes of the maximaeaf, /T,. Each maximum is numbered and the numbers correspond to those in Fig. 4.
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FIG. 7. Time evolution of the amplitudes of the minimaea, /T,. Each minimum is numbered and the numbers correspond to those in Fig. 5.

increase in amplitude as the generalized enstrophy continu- The spectra at the end of the simulatiofy() are pre-
ously flows to higher modes. The upper boundary in Fouriesented in Fig. 12. ATy, modes 1, 2, and 3 dominate thg,
space is reflective to facilitate generalized enstrophy consespectrum with modem=2 having the largest amplitude.
vation. This reflective boundary causes the growing ampliDrift wave ordering[Eq. (A2)] givesm=a, /(2mps) ~4 us-
tudes of4,,, for high m numbers, as the simulation progressesing the initialization values. None of this is reflected in the
in time. Wy, spectrum because the condensation in the lower modes

FIG. 8. Time evolution oV, during
numerical run initialized with mode 9.
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mum ata,/2. This enables the duration of the numerical runs
to be lengthened while the turbulence is kept away from the
X boundaries. Again no significant asymmetry in the propa-
gation along thex direction is found.

Figure 13 contains the distributions of €¢1/Te)ms
and it shows that the initial perturbation is a Gaussian in the
middle of thex axis and away from the boundaries. As time
evolves, the perturbation moves towards thé&oundaries
and atTy, the perturbation is a distance pQaway from
both x boundaries.

B. The nq profiles in Figs. 14 and 15

Different np=ngy(x) profiles are used to initialize two
separate numerical simulations. One is in the form of a step
function (Fig. 14) and the other of a top hat functigfrig.

15). In both cases, the sharp edges are smoothed out and
dng/dx are finite. Thesa, profiles will be referred to as the
“step” and the “top hat” profiles, respectively. Figures 14
and 15 also present profiles {(KL,| !, wherek has been
calculated using Eq(A2). They show thatdny/dx=0 for
xe€(0,0.%9,), xe(32.6p5,51ps) and xe(82.8,83.7py),

i.e., exactly in the middle of th& axis and at thex bound-
aries. The|kL,|~! profiles also indicate that two main
streams form in the plasma, flowing with the loeal, along

FIG. 9. Time evolution otf,, during numerical run initialized with mode 9.

dominates all other spectral structure. The fitig/spectrum
of the simulation is influenced by the fin&,, spectrum in
that the same modes which are dominandif, have the
largest amplitudes in th&,, spectrum.

VIIl. AMPLITUDE OF THE SHEARED DIAMAGNETIC

FLOW they direction. Table | presents a summary of these streams.
In order to study the effect of the sized¥, ./dx on the The resolution of the numerical grid is the same as dur-

plasma turbulence, the numerical code is initialized with dif-ing the previous simulations. The length of thexis is now

ferent profiles ofng=ngy(x). chosen to be,=83.7p5 and the number of grid cells in this

direction to be 900. The time stejpt=7.5x10 ° s and the
final time isTg,=4.5X10"* s=67|L,|.c;* calculated with

By choosing a spatially uniform and nonvariablﬁl, min|L,|. This gives 20 characteristic times for mode 7 and
the numerical results obtained with this code may be com32 characteristic times for mode 11 in each plasma stream.
pared to the results published by Prakash, Chu, and The initial ¢»; perturbation is similar to Eq917) and
Hasegawd’ By considering the behavior directly after ini- (18) when multiple modes in Fourier space are used, except
tialization, their nonlinear results which describe symmetricthat two normal distributions are fitted along theéirection:
propagation along th& direction of W, are reproduced by each hasr=1 and their maxima are at=10 cm=23.3
this numerical code—but not their asymmetric propagatiorand x=26 cm=60.50;. These maxima are therefore an
of the pulse. Our initial pulse propagates at equal rates tequal distance away from,/2 as well as from the bound-
bothx boundaries and when it reaches these boundaries, it &ries. The sizes of the maxima are such that the linear and
reflected back towards the center of thexis and in doing nonlinear terms in the CHM equation are of comparable
so contaminates the numerical solution in the domain. Thisnagnitudelaccording to Eq(A5)].
reflection is eliminated by introducing an:1= L;l(x) pro- With this initialization, a high level of accuracy is main-
file (Fig. 1) so thatv, =0 at thex boundaries and a maxi- tained during the numerical simulations. The generalized en-

A. The nq profile in Fig. 1

energy spectrum enstrophy spectrum
L L B 2,0Jmmu.mv.u-v..--q--u.--u.-u-.m-.---q---..--...-m.v--v..---p--..-m.n.é
sof E 1.6F .
~ 3 é o E i .
N 3 3 T 19k 3 FIG. 10. Generalized energy and en-
o ¢t 3 2t E strophy spectra at=8.091x107° s,
~F 3 \:08 E which is 87x(9.3x10°7) s on the
x 2.5_— t = _ time axes of Figs. 8 and 9.
i 3 04F | —
0.0 V|||I|||II||||I|u|I|||||||||I||||I||||I||||Iu|||1||1I||||I||||I||||Iu|||||||l||||||n|§— 0.0t Ilu|IHI|I1|||||I||I||uIIH|I||||I||||||||II||uI||I|I||||I1I|||||||II|||I|||I§
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energy spectrum enstrophy spectrum

10 15 20 25 30 35 40 "0 10 20 30 40 50 60 70 8O
m m

FIG. 11. Generalized energy and enstrophy spectta=&t1x 10~ ° s for the numerical runs initialized with modes 7 and 11.

ergy shows a loss of 1% during both simulations while thewhile the turbulence in the slower flowing stream is almost
change in the generalized enstrophy is 1.4% and 2%, respeat thex=0 boundary. During the numerical run which uses
tively, when the step and the top hat profiles are used. the top hat profile, the twa, . flows have the same size and
Figures 16 and 17 present the distribution of the fluctuations in both flows are the same distance away
(ed1/Te)ms @s measured at different times during these nufrom thex boundaries at timé=3x 10 * s (Fig. 16.
merical simulations. The initial symmetry in thedistribu- This result is not inconsistent with Wakatagtial *” who
tion of (ed1/Te)ms IS largely maintained during the numeri- had a resistive model which contained diamagnetic as well as
cal simulation which uses the top hat profileig. 16. In  sheared EXB) flows. They showed that it is mainly the
contrast to this, during the numerical simulation using thediamagnetic flow that is responsible for the level of saturated
step profile(Fig. 17), a stronger perturbation moves from 10 fluctuations, while the sign of thee(x B) flow influences the
cm into the region wherdny/dx=0 than from 26 cm. This level of fluctuations during the growth phase. We find that a
is shown by the fact that the fluctuations in the regionsheared diamagnetic floydv, ./dx| inhibits the spreading
xe (14 cm, 22 cm are larger near 14 cm than near 22 cm. of the saturated fluctuations in thedirection.
From this observation it is deduced that the size of the
gradient ofv, . influence the spread of the perturbation in the
x direction. During the numerical run which uses the step
profile, thev, , flow atx=28.9 cm is larger than the flow at |x. SUMMARY
x=7.3 cm(Table |). This implies thatdv, ./dx is also larger
and this steeper gradient inhibits the spread of the turbulence In this publication turbulence is generated using the
in the x direction in the stream at=28.9 cm more effec- CHM equation withdL,, */dx+0. As is expected from two-
tively than in the case of the streamyat 7.3 cm. This can dimensional turbulence, the spectra of the generalized energy
be seen in thex dependence ofeg,/T.)ms measured at  and enstrophy show that the generalized energy flows to
=3x10"% s in Fig. 17: in the faster flowing stream, the larger and the generalized enstrophy to smaller spatial struc-
turbulence is still 1.2 cm away from the=36 cm boundary, tures. In all cases, the generalized energy condensates in the

energy spectrum enstrophy spectrum
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FIG. 12. Generalized energy and enstrophy spectig,afor the numerical runs initialized with modes 7 and 11.
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FIG. 13. x profiles of (¢, /T.)ms at four different times during simulation when thg profile of Fig. 1 is used.

lower part of its spectrum and this causes high amplitudes in  For the single mode initialization, the spectrum of the
the lower part of the generalized enstrophy spectrum in spitgeneralized energy shows that the energy flow to lower
of the enstrophy flowing to higher modes. modes is restricted at first to the initial mode and its harmon-

When the numerical code is initialized with one har-ics. Similarly, in the generalized enstrophy spectrum, the en-
monic in they direction(i.e., a single mode in its generalized strophy flows exclusively to modes that are higher harmonics
energy and enstrophy spedtra stable structure temporarily of the initial mode. After a significant number of character-
forms in the &,y) plane. This structure consists of different istic times this nonlinear state, which is dominated by its
streams which flow in the direction of the diamagnetic ve-initial conditions, is destroyed by growing nonharmonic
locity, each flow corresponding to the loca) . and with a modes to evolve into a fully turbulent state with allnum-
spatial spectrum dominated by the initial mode. bers present.

unperturbed density density gradient

T —— — i 0.015

_ 0.01
1
1 g
1 =
E 0.005 -
o.oo 10 20 30
x (em) x {em)

FIG. 14. Unperturbed density profile which resembles a step function.
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FIG. 15. Unperturbed density profile which resembles a top hat function.

When the numerical code is initialized with multiple quently, the electron physics is described by the adiabatic
modes in they direction (i.e., multiple modes in its general- responsen;/ny=e¢,/T, along each magnetic field line,
ized energy and enstrophy spegtithe two-dimensional tur- wheree is the electron charge amg andngy=ngy(x) are the
bulence saturates shortly after initialization and localperturbed and equilibrium densities. The ions are cold and
maxima and minima form in the turbulence. These extremare described by the fluid equation of continuity which con-
propagate mainly in the direction of the diamagnetic flowtains only the EX B) and the polarization velocities. Substi-
with a speed of the same order as the locgl. Some mi- tuting the adiabatic response into the ion equation of conti-
gration in thex direction is observed, which is accompanied nuity by invoking quasineutrality and using the orderings
by changes in the amplitudes of the extrema. This is ex-
plained by the fact that the maxima and minima sample the ei>1<1; PsLEl<1 (A1)
value of the local, o=V, o(X). Te

For the multiple mode initialization, the generalized en-
ergy flows to lower modes utilizing all the modes in its
spectrum—irrespective of the initial condition. The same is  pk~0(1), (A2)
gﬁs I%uzetgi?gegzlrlzrﬁg de enss trophy spectrum where the enstrg. Charney—Hasegawa—Mini@HM) equatior®~12

The effect of the size ofiv,./dx on the turbulence 5 (e¢; 1 ¢ c iy

as well as the drift wave ordering

generated by the CHM equation has been investigated. Al - fgvfdh —gln Ty

thoughVn, (and hencer, ) is the source of the turbulence, € °

it is shown that the largedv, ./dXx is, the more the turbu- 1 ¢2

lence is prevented from spreading in théirection. This is - Q_m E[qsl,vf(/)l]:o (A3)

explained by postulating that the shearvip, tears the tur-
bulence and thus inhibits its spread in thelirection. The s optained, where
same mechanism may be at work in the measured transport

turbulence up and reduces the transport across these barriers. [¢1’V ¢1]= (?_x T - T W (A4)
Although no transport has been calculated in this publication,

it is hoped that by showing the influencegfe=v,¢(x) on  The notationps=cs/{l; is used where is the sound speed
electrostatic turbulence, we can contribute to the understands well asL, *= (1/ng)(dny/dx) which is the inverse char-

ing of the mechanism active in transport barriers. acteristic Iength associated with the unperturbed density gra-
dient.
When the linear term containirlg, * is of the same size
PROPERTIES

1. The field equation

The Hasegawa—Mima model for plasma turbuléfide  TABLE I. Different streams flowing with velocity, .
a two-dimensional model describing turbulence on theg )

Profile Local ma)v, X position Flow direction
plane perpendicular to a constant and uniform magnetic field AV P
1 ” :
B=BZ. The electric field i€E= — V ¢;, whered, is the per-  SteP 2-gg§ 18: cms 27é39°m pos',‘t'_"@’ axis
turbed electrostatic potential. The electrons have a constanf ' ems = em positivey axis
6.333x10* cm's 7.1 cm negativey axis
and uniform temperaturé, and are assumed to be in ther- 6.333<10° cms ! 28.9 cm positivey axis

mal equilibrium along the magnetic field lines. Conse-
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FIG. 16. x profiles of ¢, /Te)ms at
four different times during simulation
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FIG. 17. x profiles of ¢, /T.)ms at four different times during simulation using step profile.
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. ed in Eq. (A8) as an energy flux. The volume integral in Eq.
(KLp) "~ - (A5)  (A8) is a source or a sink of the generalized energy.
The generalized enstrophy is obtained by multiplying
is obeyed. From EqsAl) and(A2) it follows that the CHM  Eq. (A3) by ¢/(Q;B)V2¢,=p2V2(ed;/T,) and then inte-

equation is valid only whenkl,) *<1. Equation(A5) is  grating it over the volume. This process results in
therefore consistent with Eq§Al) and (A2). It should be

e

noted that these orderings have nothing to say about th@+j 2 9 e;’51) i(e;% dv,e
variation ofL, *=L, *(x). The scale at which.,* changes dt  Jv[ ®dx\| Te /ay| Te | dx
in the x direction (i.e., dL,, */dx) does not enter the deriva- 5
tion of the CHM equation and consequentBn/dx? is not L i(pSV eisl) } dV+ J J,-dS=0, (A11)
relevant when deciding the validity of the equation. 2 dy Te s
where
2. Constants of motion f 1 (1 A VXV, 2
U=| | ——=|smnevi|+5 dv, Al2
To obtain the local conservation property of the CHM vineTel2 %% "2\ Oy (A12)

equation, Eq(A3) is written as

c® 1 d 1 ec d
9 JZZ_Z_LrTlVleﬂ___ 1ﬂ
VeV [@=0, (A6) B? (i gy i BTe Jt
1 c31 -
1 Co ~ 5 5 5(V2eA(V
- -z 1 $1X2). (A13)
(D In n0+ Te Qci BV ¢1. (A?) Q(Z:I B3 2

Thus, ® (known as the potential vorticify) is conserved Equation (A12) is identified as the generalized enstrophy
along the trajectory of a fluid element. This local conserva{consisting of a kinetic and a vorticity tejrand the last term
tion property gives rise to an infinite family of invariants in Eq. (A11) as the generalized enstrophy flux. The volume
which may be obtained by considering any functiondef integral in Eq.(A11) defines a source or a sink.
along the line of flow of a fluid element.

The CHM equation also possesses global integral invari-
ants which are not obtained from the conservatio®df Of 4. Boundary conditions and the global constants

all the invariants, only two of the no#- invariants are con- The geometry used in the numerical simulations is that
served if the Fourier spectrum is truncated to a finite numbegy g two-dimensional slab in Cartesian coordinates. The slab
of modes: the generalized energy and the generalized e”Str@,‘periodic in they direction and at the two boundariesxat
phy.' These two global constants are the topic of the next g andx=a, the perturbed electrostatic potential=0.
section. Here,a, is the length of the slab in thedirection.

Equation(A8) describes the evolution of the generalized
energyW. The periodicity iny makes the volume integral in
Eqg. (A8) identically zero, while the energy flux vanishes

In contrast to the published literature where they usuallyjunder the influence of the and y boundary conditions.
are derived with_,*=0 or constant, the generalized energy Equation(A8) therefore reduces to

3. Global constants

and enstrophy will be derived with, *=L_*(x). IW
The generalized energy is obtained by multiplying Eq. ——=0 (A14)
(A3) by ep, /T, and then integrating it over the volume. o
This results in which implies that the generalized energy is conserved by
these boundary conditions.

2
oW Ei(e_r_ﬁl) dv+ J J;-dS=0, (A8) Equation(All) describes the evolution of the general-
e S

at v2oay ized enstrophyJ. The volume integral in EQA11) vanishes
wherev, . is the electron density gradient drifilso known due to the periodicity iry. J, consists of three terms, the first
as the diamagnetic velocijtand two of which are periodic iny and vanish akx=0 andx
5 =a,. As a result the first two terms in the surface integral of
We f 1 [1niTe 1
~JvngTe component form, it becomes clear that theomponent van-
ishes due to the periodicity ig while they component is
=5 a7r P15Vt o 2¢1V2¢1
QCI BTe at QCI TeB L a2¢1 2% d_y:
0X2 X a.y

—+—min0VE

> no 2 dv, (A9)

Eqg. (A11) vanish. When the third term af, is written in
-1 ec 4 1 ecd nonzero. Hence EqA11) reduces to

J1

X (V by X 2). (A10) ot 2 B32)y

Equation(A9) is identified as a generalized ener@pnsist- which means that the generalized enstrophy will be con-
ing of pressure and kinetic energy tepnamd the third term  served only when either

U 1 c%1
f 0 (A15)
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dpy Py
—=0 or =0 (Al6)
X (;)XZ

at thex boundaries. Note thdt, 1= =L, 1(x) does not influ-
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