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Abstract. Alfv én wave phase mixing is an extensively stud-
ied mechanism for dissipating wave energy in an inhomoge-
neous medium. It is common in the vast majority of phase mix-
ing papers to assume that even though short scale lengths and
steep gradients develop as a result of phase mixing, nonlinear
wave coupling does not occur. However, weakly nonlinear stud-
ies have shown that phase mixing generates magnetoacoustic
modes. Numerical results are presented which show the nonlin-
ear generation of magnetosonic waves by Alfvén wave phase
mixing. The efficiency of the effect is determined by the wave
amplitude, the frequency of the Alfvén waves and the gradi-
ent in the background Alfv́en speed. Weakly nonlinear theory
has shown that the amplitude of the fast magnetosonic wave
grows linearly in time. The simulations presented in this paper
extend this result to later times and show saturation of the fast
magnetosonic component at amplitudes much lower than that
of the Alfvén wave. For the case where Alfvén waves are driven
at the boundary, simulating photospheric footpoint motion, a
clear modulation of the saturated amplitude is observed. All the
results in this paper are for a low amplitude (≤ 0.1), single fre-
quency Alfv́en wave and a uniform background magnetic field
in a two dimensional domain. For this simplified geometry, and
with a monochromatic driver, we concluded that the nonlin-
ear generation of fast modes has little effect on classical phase
mixing.

Key words: Magnetohydrodynamics (MHD) – plasmas – waves
– Sun: corona

1. Introduction

Magnetohydrodynamic (MHD) waves play an important role
in the dynamics of various astrophysical plasma systems. They
are key building elements in theories of acceleration of the solar
and stellar winds, coronal heating and the formation of inho-
mogeneities in and support of molecular clouds. Also, in recent
times, MHD waves have been observed in the solar wind and
the solar corona. Therefore, investigation of the main features
of MHD wave dynamics is a significant part of plasma astro-
physics. The behaviour of MHD waves in homogeneous plas-

mas is well understood. However, in astrophysical situations, the
wavelength is often of the same order as the characteristic spa-
tial scale of some macro parameters of the plasma (e.g. density,
magnetic field, temperature, steady flow). Interaction of MHD
waves with plasma inhomogeneities generates a number of very
interesting physical phenomena, such as mode coupling, appear-
ance of trapped modes and guided propagation, wave dispersion,
resonant absorption and phase mixing (see, e.g. Roberts 1991
and Goossens 1991), which can dramatically affect the MHD
wave dynamics and, in particular, cause enhanced dissipation
and heating of astrophysical plasmas.

Alfv én wave phase mixing has been studied extensively as
a possible mechanism for coronal heating (Heyvaerts & Priest
1983; Browning 1991; Malara et al. 1996; Nakariakov et al.
1997, 1998; De Moortel et al. 1999). Briefly, the idea of the
mechanism is simple: when the medium has a density gradient
perpendicular to the magnetic field, the Alfvén speed is a func-
tion of the transverse coordinate. Consequently, on each mag-
netic field line, Alfv́en waves propagate with their local Alfvén
speed. After a certain time, perturbations by Alfvén waves of
neighbouring magnetic field lines become out of phase, i.e. there
is phase mixing. This effect leads to the generation of smaller
and smaller transverse spatial scales. The generation of trans-
verse gradients in the wave leads to a strong increase in the
dissipation of Alfv́en wave energy due to viscosity and/or resis-
tivity, because the dissipation is proportional to the wave num-
ber squared. Throughout this paper we will refer to this model
of Alfv én wave phase mixing, which ignores compressible ef-
fects and nonlinear wave coupling, as the classical phase mixing
model.

For a compressible plasma, an alternative sink of Alfvén
wave energy in an inhomogeneous plasma is conversion to the
magnetosonic mode, and this mode can propagate across the
magnetic field. Alfv́en waves are subject to dissipation due to
the shear component of the viscosity tensor, while the fast mag-
netosonic modes are subject to dissipation due to the viscosity
tensor’s volume component. In the near collisionless plasma of
the corona the volume component of the viscosity is much higher
than the shear component. As a result fast magnetosonic waves
can be dissipated much faster than Alfvén waves and the cou-
pling of Alfv én into fast waves may be an efficient mechanism
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for dissipating Alfv́en wave energy. This process has been called
indirect heating of the plasma through phase mixing(Nakari-
akov et al. 1997). According to weakly nonlinear theory the
amplitude of this fast wave component grows linearly in time.
Also, because the fast waves propagate across magnetic field
lines they can give rise to heating of the plasma away from the
initial phase mixing region. This effect leads to thermal transport
across the magnetic field, which is very important in the ther-
modynamics of strongly magnetized plasmas where the usual
thermal conduction across the field is depressed. Similar effects
were found for phase mixing on inhomogeneous steady flows
in plasmas (Nakariakov et al. 1998). In addition, in the almost
collisionless plasmas of solar and stellar corona, the obliquely
propagating compressive waves can be dissipated by Landau
damping (see, e.g. Wentzel 1989).

The analytical results of Nakariakov et al. (1997), showing
the secular (∝ t) growth of the fast wave perturbations during
the initial stage of the phase mixing development, have been
obtained under the simplifying assumptions of no dissipation,
zero plasma beta and weakly nonlinear coupling. Also, magne-
tosonic perturbations were assumed to be initially absent from
the system. The last assumption restricts the analysis to the early
stage of the system’s evolution, when the magnetosonic waves
are of sufficiently low amplitude. The analytical treatment of the
developed stage of phase mixing has not yet been undertaken.
However, useful information on MHD wave behaviour can also
be obtained by full MHD numerical simulation. There have been
several numerical studies undertaken in this direction. Malara
et al. (1996) have, through other interesting phenomena, found
nonlinear generation of fast magnetosonic waves in the phase
mixing region (their runs 7-9). The efficiency of the generation
has been estimated as proportional to the square of the Alfvén
wave amplitude. However, the relatively low Reynolds numbers
(2000) used in the simulations, did not allow the authors to sim-
ulate significant phase mixing and, so, to observe the effect of
indirect heating. The same effect has also been observed by Of-
man & Davila (1997) numerically simulating nonlinear Alfvén
waves in coronal holes. On the slopes of the density inhomo-
geneity associated with the coronal hole, the generation of fast
waves has been clearly seen (see, e.g., Fig. 2 of the paper). Also
the Lundquist number, the measure of dissipation of short scale
perturbations, was low (103) in the simulations. Poedts et al.
(1997) studied both phase mixing and resonant dissipation in
the Solar corona. These simulations showed phase mixing in
expanding coronal holes (see Fig. 4 of the paper) but they did
not run long enough to reach the strongly phase mixed regime
or study nonlinearly generated waves.

In this study, we consider the developed stage of Alfvén
wave phase mixing, aiming to determine if the amplitude of the
generated fast mode continues to grow linearly or saturates. In
addition, effects of weak finite plasma-β are incorporated into
the model. We perform 2.5D, time dependent numerical simula-
tions of the ideal MHD set of equations, using the Lagrangian-
Eulerian remap technique. The simulations allow us to investi-
gate the effects of the sharp transverse structuring generated by
phase mixing.

2. The model and background theory

Our governing equations are from ideal magnetohydrodynam-
ics:

∂ρ

∂t
+ 5 · (ρv) = 0, (1)

ρ
∂v
∂t

+ ρ(v · 5)v + 5p + B ∧ (5 ∧ B) = 0, (2)

∂B
∂t

− 5 ∧ (v ∧ B) = 0, (3)

∂p

∂t
+ v · 5p + γp 5 ·v = 0, (4)

wheret is the time,ρ is the plasma density,v the velocity,p the
pressure,B the magnetic field andγ = 5/3. All quantities are
normalised asB = B∗B̃, p = B2

∗ p̃/µ0, r = a∗r̃, ρ = ρ∗ρ̃,
v =

√
B2∗/(µ0ρ∗) ṽ and t = a∗

√
µ0ρ∗/B2∗ t̃ , where all the

symbols have their usual meanings. To simplify the notation,
the tilde has been dropped in Eqs. (1) to (4) as well as in the rest
of this paper.

2.1. The equilibrium

We consider these equations in Cartesian coordinates and as-
sume that there are no variations in they direction (∂/∂y = 0),
thereby reducing the analysis to two dimensions. The equilib-
rium state is described by a homogeneous magnetic field in the
z direction and a density gradient in thex direction:

ρ0 = ρ0(x) ; p0 ≡ constant (5)

B0 = (0, 0, B0) ; v0 = 0 (6)

while the finite amplitude perturbations

ρ = ρ(x, z, t) ; v = (vx, vy, vz) (7)

p = p(x, z, t) ; B = (Bx, By, Bz) (8)

are allowed in the plasma. The equilibrium conditions (5) and
(6) allow the unperturbed total pressure to be constant across
the magnetic field.

2.2. Analytical description

Following the standard method (Nakariakov et al. 1995, 1997),
the MHD equations are written in component form using equi-
librium (5) and (6) and perturbations (7) and (8). These equa-
tions are correct to an arbitrary order of the perturbations.

∂ρ

∂t
+ ρ0

(
∂vx

∂x
+

∂vz

∂z

)
+ vx

∂ρ0

∂x
= N1, (9)

ρ0
∂vx

∂t
+

∂p

∂x
− B0

(
∂Bx

∂z
− ∂Bz

∂x

)
= N2, (10)

ρ0
∂vy

∂t
− B0

∂By

∂z
= N3, (11)

ρ0
∂vz

∂t
+

∂p

∂z
= N4, (12)

∂Bx

∂t
− B0

∂vx

∂z
= N5, (13)
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∂By

∂t
− B0

∂vy

∂z
= N6, (14)

∂Bz

∂t
+ B0

∂vx

∂x
= N7, (15)

∂p

∂t
+ γp0

(
∂vx

∂x
+

∂vz

∂z

)
= N8, (16)

with the nonlinear terms given by

N1 = −ρ

(
∂vx

∂x
+

∂vz

∂z

)
− vx

∂ρ

∂x
− vz

∂ρ

∂z
, (17)

N2 = −ρ
∂vx

∂t
− (ρ0 + ρ)

[
vx

∂

∂x
+ vz

∂

∂z

]
vx − By

∂By

∂x

+ Bz

(
∂Bx

∂z
− ∂Bz

∂x

)
, (18)

N3 = −ρ
∂vy

∂t
− (ρ0 + ρ)

[
vx

∂

∂x
+ vz

∂

∂z

]
vy + Bz

∂By

∂z

+ Bx
∂By

∂x
, (19)

N4 = −ρ
∂vz

∂t
− (ρ0 + ρ)

[
vx

∂

∂x
+ vz

∂

∂z

]
vz

− Bx

(
∂Bx

∂z
− ∂Bz

∂x

)
− By

∂By

∂z
, (20)

N5 = − ∂

∂z
(vzBx − vxBz) , (21)

N6 =
∂

∂z
(vyBz − vzBy) − ∂

∂x
(vxBy − vyBx) , (22)

N7 =
∂

∂x
(vzBx − vxBz) , (23)

N8 = −vx
∂p

∂x
− vz

∂p

∂z
− γp

(
∂vx

∂x
+

∂vz

∂z

)
. (24)

Eqs. (9)–(16) describe all the waves occurring in the plasma.
By combining these expressions, one obtains for the evolution
of the velocity components(

∂2

∂t2
− c2

A

∂2

∂z2

)
vy =

1
ρ0

(
∂N3

∂t
+ B0

∂N6

∂z

)
, (25)

(
∂2

∂t2
− c2

s

∂2

∂z2

)
vz − c2

s

∂2vx

∂z∂x
=

1
ρ0

(
∂N4

∂t
− ∂N8

∂z

)
,(26)

[
∂2

∂t2
− (c2

s + c2
A)

∂2

∂x2 − c2
A

∂2

∂z2

]
vx − c2

s

∂2vz

∂z∂x
=

1
ρ0

[
∂N2

∂t
− ∂N8

∂x
+ B0

(
∂N5

∂z
− ∂N7

∂x

)]
(27)

where the definitions

cA(x) =

√
B2

0

ρ0(x)
; cs(x) =

√
γp0

ρ0(x)
(28)

have been used. HerecA = cA(x) is the Alfvén speed and
cs = cs(x) the sound speed. Eq. (25) describes the evolution
of a linearly polarized Alfv́en wave, and the pair of linearly
coupled Eqs. (26) and (27) describes the evolution of slow and
fast magnetosonic waves. In some limiting cases, e.g.β = 0,
∂/∂x or ∂/∂z = 0, the equations for slow and fast modes are
decoupled. The wave equations are correct to an arbitrary order
of nonlinearity.

In order to obtain expressions for the dependence of the
plasma quantities on the perturbed velocities in the model, con-
sider Eqs. (9) to (16) in the linear limit. It follows that

ρ = −
∫ [

∂

∂x
(ρ0vx) +

∂

∂z
(ρ0vz)

]
dt, (29)

p = −γp0

∫ (
∂vx

∂x
+

∂vz

∂z

)
dt, (30)

Bx

B0
=

∫
∂vx

∂z
dt, (31)

By

B0
=

∫
∂vy

∂z
dt, (32)

Bz

B0
= −

∫
∂vx

∂x
dt. (33)

In the geometry considered, a linear Alfvén wave perturbs
vy andBy, while the magnetosonic waves perturb the remaining
physical quantities. However, in the nonlinear regime, the lin-
early polarized Alfv́en wave perturbs these quantities too, and
this leads to nonlinear excitation of the magnetosonic waves and
to consequent coupling of the Alfvén wave to the magnetosonic
perturbations. In other words, this process is self-interaction of
the Alfvén wave.

The initial stage of nonlinear generation of magnetosonic
waves by Alfv́en waves in an inhomogeneous medium has been
considered by Nakariakov et al. (1997). To estimate the effi-
ciency of this process, we consider a zero-β plasma of the geom-
etry described above. This case is described by Eqs. (25)–(27)
with cs = 0. Initially, there is an Alfv́en wave only, perturbing
By andvy, and all remaining physical quantities are not per-
turbed. So, initially, all the nonlinear terms on the right hand
side of Eq. (25) are zero, and the Alfvén wave evolves linearly,
according to the left hand side of (25). (Note that the same equa-
tion has been derived by Ofman & Davila 1997). AsBy is non-
zero, the termsN2 andN4 are non-zero too, which give source
terms on the right hand sides of (26) and (27). Consequently,
the magnetosonic perturbations are generated as

vz

cA
∼ 1

2

(
By

B0

)2

, (34)

vx

cA
∼ 1

4
dcA

dx

(
By

B0

)2

t. (35)

Both motions in thex andz directions perturb the density. The
longitudinal motions (vz) are always generated by an Alfvén
wave, while the transverse perturbations (vx) are connected with
the inhomogeneity of the medium in the transverse direction,
dcA/dx. In the initial stage, the transverse perturbations are
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generated secularly (∝ t) because of phase mixing of Alfvén
waves. In the cold case, the transverse perturbations correspond
to obliquely propagating fast magnetosonic waves, and the lon-
gitudinal perturbations to degenerated slow waves.

In the case of warm plasma (cs /= 0), slow and fast mag-
netosonic waves are coupled with each other by the pair of
Eqs. (27) and (26). In other words, each wave, slow or fast,
perturbs bothvx andvz components of the velocity. However,
the longitudinal and transversal components of the velocity are
excited by the same mechanisms (34) and (35) as in the cold
case.

The developed stage of the nonlinear interaction of Alfvén
waves with compressive perturbations is characterized by the
back-reaction of the induced compressive perturbations on the
Alfv én waves. Technically, this phenomenon is connected with
the growth of the nonlinear terms on the right hand side of
Eq. (25). In the case of a homogeneous medium, the self-
interaction of Alfv́en waves is described by the Cohen–Kulsrud
equation (Cohen & Kulsrud 1974, see also discussions in Of-
man & Davila 1995, Verwichte et al. 1999 and Nakariakov et
al. 2000). However, this effect is proportional to the square of
the Alfvén wave amplitude and can significantly influence the
wave evolution only if the wave amplitude is sufficiently high
or the wave propagates over sufficient long distances to allow
the nonlinear effects to build up.

Thus, in numerical simulations, we expect to observe weakly
nonlinear coupling of Alfv́en modes with fast and slow magne-
tosonic modes during the initial stage of the wave interaction
described by Eqs. (34) and (35).

3. The numerical code

The code used to produce the results (Lare2d) was developed
at St. Andrews University by Arber et al. (2000).Lare2d is a
numerical code that operates by taking a Lagrangian predictor-
corrector time step and after each Lagrangian step all variables
are conservatively remapped back onto the original Eulerian
grid using Van Leer gradient limiters. Results are obtained by
initializing the code with the unperturbed density

ρ0(x) = 3 − 2 tanh(αx), (36)

whereα is a free parameter used to fix the scale length of the
density inhomogeneity. An example withα =

√
0.05 is shown

in Fig. 1. This is the value ofα used throughout unless otherwise
explicitly stated. Note, that the position of the highest gradient
in the Alfvén speed (cA = B0/

√
ρ0(x)) is shifted toward the

positivex with respect to the positioning of the highest gradient
in the density (x = 0).

The boundary condition in thex direction is that all quanti-
ties have zero gradient. Thex boundaries are far away from the
maximum background density change atx = 0, so that they do
not influence the physics.

In this geometry linearly polarized Alfv́en waves perturb the
y components of the magnetic field and velocity (By andvy).
This is implemented numerically in two different ways:

Fig. 1. Profiles of the unperturbed densityρ0(x) (solid curve) and
Alfv én speed (dashed curve) for the inhomogeneity parameterα =√

0.05.

Firstly, thez direction is treated as periodic and an Alfvén wave
with amplitude 0.001 is initialized so that two wavelengths
fit into the numerical domain. The wave is planar att = 0
with wave-fronts parallel to thex axis. (Sect. 4)

Secondly, a sinusoidal Alfv́en wave is driven at thez = 0
boundary:vy(x, z, t) = A sin ωt. Again the amplitude is
A = 10−3 and driving frequency isω = 1. The driven
Alfv én wave propagates in thez direction and as soon as the
wave reaches the upper boundary the simulation is stopped.
(Sect. 5)

A plasma-β of 0.01 is used, to correspond to the plasma
in the solar corona. Unless otherwise stated, the initialization
described in this section has been used for all the numerical
simulations presented in this paper.

Previous phase mixing calculations (De Moortel et al.
1999) have used scale lengths and speeds estimated for coronal
plumes. One of the aims of this work is to estimate the relative
importance of nonlinear generation of fast modes, as opposed to
classical phase mixing, as a mechanism for dissipating Alfvén
wave energy. A typical plume in this paper is assumed to have
a number density of4 × 1015m−3, B = 10G, T = 106K
and a background density of1015m−3. An increase in density
by a factor of 4 is assumed to take place over a distance of
7Mm. (1Mm = 106m.) For these parameters a one minute
period Alfvén wave would have a wavelength' 30Mm, while
five minute oscillations would have wavelengths' 150Mm.
Furthermore for the one minute oscillations it is expected (De
Moortel et al. 1999) that phase mixing will become prevalent
at around 1.5 solar radii. For coronal plumes this suggests that
the Alfvén wave is of the order of 10 full wavelengths out of
phase when classical phase mixing is significant. Simulations
in this work are therefore for density scale lengths less than the
Alfv én wavelength, with a density increase by a factor of four,
and run for sufficient time that the waves go out of phase by 10
wavelengths across the density ramp.
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Fig. 2. A contour plot of the Alfv́en wave. TheBy amplitude is plotted on the(x, z) plane at times t=0.5 and t=3.

4. Saturation levels of magnetosonic waves

The numerical results obtained using a periodicz direction – the
direction of the uniform magnetic fieldB0 – are presented in this
section. An Alfv́en wave is initialized att = 0and the simulation
then evolves from that state without further Alfvén wave driving,
i.e. att = 0 we setBy = a sin(kz) andvz = a sin(kz)/ρ1/2.

As the numerical code evolves in time, the Alfvén wave
moves at different local speeds due to theρ0 gradient (Fig. 1).
Throughout the numerical simulation the Alfvén wavelength
λA stays practically constant (the nonlinear modification of the
Alfv én wavelength is insignificant in this study because the am-
plitude is weak and the Alfv́en waves remain practically lin-
ear, see the discussion in Sect. 2.2), so that phase mixing of
the Alfvén waves takes place where the background density
gradient (and hence the local Alfvén velocity) changes. Fig. 2
presents two contour plots of the(x, z) plane in the beginning
of the run and at time t=3. These show the phase mixing region
centred to the right ofx = 0 as expected from Fig. 1.

Slow magnetosonic waves are generated nonlinearly by the
Alfv én wave. These are generated at every position in thex
direction. Fast magnetosonic waves are generated where the
phase mixing of the Alfv́en wave occurs. The amplitude of the
fast magnetosonic waves grows linearly with time during the
initial stages of the numerical runs. However, they soon saturate
at levels that are dependent on the amplitude and wavelength of
the Alfvén wave, as well as the scale length of the background
density gradient. The saturation levels of the slow and the fast
magnetosonic waves are independent of the plasma-β.

Fig. 3 shows that as the background density scale length de-
creases, i.e.α increases, the initial rate of linear growth ofvx

increases. Note that Figs. 3 and 4 are plots of the maximum
value ofvx along the linex = 0 versus time and not plots ofvx

at a point. In all cases the amplitude still saturates at a low level
compared to the Alfv́en wave component (which has an ampli-
tude of10−3). Lower values ofα show linear growth of thevx

amplitude for longer and end with a larger saturated amplitude.
However, decreasingα by two orders of magnitude only ap-
proximately doubles the maximumvx amplitude. Fig. 4 shows
that the initial linear growth of thevx amplitude is influenced by

Fig. 3.Time evolution of the fast magnetosonic wave (vx) amplitude as
a function of the background density gradient parameterα. Lines are
for α =

√
0.05 (dotted curve), α =

√
0.5 (dashed curve) andα =

√
5

(solid curve).

Fig. 4. Time evolution of the fast magnetosonic wave (vx) amplitude
as a function of the Alfv́en wave lengthλA. Lines are forλA = 0.25
(dashed curve), λA = 0.3 (dotted curve), λA = 0.5 (solid curve) and
λA = 1 (dot-dashed curve).

the Alfvén wavelength: shorter Alfv́en waves causes stronger
growth. Once thevx amplitude has saturated, there is little dis-
tinction between the different Alfv́en wavelengths. Fig. 5 shows
that the saturated amplitude varies as the square of the Alfvén
amplitude.
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Fig. 5.The saturation levels of the fast (vx) and slow (vz) magnetosonic
wave amplitudes as a function of the Alfvén wave (vy) amplitude.

It is the gradient in thex direction ofvy which is the source
of the fast waves. Initially this is zero but grows linearly in time
due to phase mixing. This linear growth of the gradient contin-
ues throughout the simulations presented in this paper, i.e. there
is no saturation of the basic phase mixing process. The natural
questions which then arise are why does the amplitude of the
fast wave not also continue to grow linearly and why does it
saturate at the level it does? A possible explanation of this can
be given in terms a greatly simplified model. From the full sim-
ulations it is clear that the fast wave saturates at low amplitude
(typically proportional to the square of the Alfvén wave ampli-
tude). To a good approximation we can then assume that the
phase mixing acts as a source of fast waves without perturbing
the Alfvén waves. We therefore represent the generation of fast
waves by the generation of 1D sound waves (or fast waves ifP
is interpreted as a magnetic pressure) with a specified driving
term,h(x). In this caseh(x) is the pressure gradient resulting
from phase mixing, i.e. it represents theBy∂By/∂x term in
Eq. (18) at a fixed point inz. The simplified equations are then

∂v

∂t
+

∂P

∂x
= h(x), (37)

∂P

∂t
+

∂v

∂x
= 0, (38)

whereh(x) is determined from the gradient ofB2
y with By =

a cos (ωt) andω = ω0/
√

3 − 2 tanh(αx). The advantages of
this simplified model are that it contains a driver consistent with
the full equations but the only other process included is simple
linear wave propagation. Results from this model can there-
fore only be attributed to the interference of linear waves and
it removes any possibility of nonlinear wave interactions being
an explanation of the derived solution. This is unlike the full
set of MHD equations where all possible ideal MHD process
are included. Eqs. (37) and (38) are solved numerically using a
second order Maccormack scheme. Fig. 6 showsh(x) andv at
three times in the solution. The top figures show that the driving
termh(x) has the required properties of a transverse gradient

generated by phase mixing: the amplitude is growing linearly
in time and the number of oscillations in thex direction also
increases secularly. The bottom figures show that the amplitude
of the generated waves has grown linearly in time but then sat-
urates. This can be seen more clearly in Fig. 7 which shows the
solution forv as a function of time atx = 0. All of these results
were produced withω0 = 5, α = 1 anda = 0.1. Varying
a confirmed that the saturated amplitude scales asa2 which is
also in agreement with the full MHD results. Calculating the
maximumv, |v|max whenα is varied does not produce results
in clear agreement with the results of Fig. 3. Witha = 0.001
andα = 0.05 this simple model gives|v|max = 1.6 × 10−6,
while α = 0.5 gives|v|max = 2.01 × 10−6 andα = 5 gives
|v|max = 4.78 × 10−7. Thus the general behaviour between
α = 0.05 andα = 5 is consistent with the full simulations, i.e.
as the density scale length increases the final saturated ampli-
tude increases, but the scaling over this range is not the same as
found from the full MHD equations.

From these model equations a natural interpretation of the
saturation of fast wave generation by Alfvén waves follows from
simple wave interference. At early times there is a single max-
imum in h(x) whose amplitude grows linearly in time. This
generates right and left propagating waves whose amplitudes
also grow linearly in time. However, at later times there are
many peaks inh(x) and while each of these is growing in am-
plitude neighbouring peaks are not in phase, i.e. their separation
is not an integer multiply of the generated wave’s wavelength.
Indeed, since the number of maxima inh(x) grows and their
separation decreases, it is impossible for these to be coherent
emitters of fast waves. Thus while the phase mixing continues
to generate shorter and shorter scale lengths the generated fast
wave amplitude saturation occurs soon after the phase differ-
ence across the density ramp generates a second maximum in
the transverse gradient ofv2

y.

5. Results with Alfvén wave driven atz = 0

In this section a sinusoidal Alfv́en wave is driven at thez = 0
boundary. In order to prevent thex boundaries influencing the
solution where the phase mixing occurs, thex axis is lengthened
to x ∈ [−50, 50] and theρ0 profile of Fig. 1 is shifted so that
ρ0 = 3 is at positionx = 25.

Fig. 8 shows the oblique propagating fast wave generation
by phase mixing. The Alfv́en wave generated atz = 0 prop-
agates in the direction of increasingz values and experiences
phase mixing. Fig. 8 presents the generation of transversal gra-
dients in the initially plane Alfv́en wave. The gradients are con-
fined to the region where the Alfvén speed experience the vari-
ation. These gradients are a source term on the right hand side
of Eq. (27). The fast waves excited by the source, propagate
across the field with the fast magnetosonic speed

√
c2
s + c2

A,
also shown by Fig. 8. Initially the fast wave growth rate is high,
according to previous theoretical expectations. However, it sat-
urates later during the simulation and the fast wave amplitude
exhibits periodic modulations. Only every fourth point in each
direction was used to produce Fig. 8 as this gave the clearest
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Fig. 6. Plots ofh(x) andv from the solution to Eqs. 37 and 38 att = 0.1, t = 1 andt = 10.

images. All structures are resolved in these simulations even
though some of this resolution is clearly lost in using only one
out of 16 available data points.

Fig. 9 contains the oscillations of the driven Alfvén wave
(By andvy) along thez axis atx = 25, as well as the magne-
tosonic waves generated by the driven wave (Bx, Bz, vx and
vz). The time during the simulation can be read directly from
thez axis using the relationt = z/cA wherecA is a constant in
thez direction, so that asz increases, the time increases. Note
that because the amplitudes of the fast and slow magnetosonic
components saturate at such a low amplitude there is only a
small leakage of energy from the Alfvén wave component into
these modes. Thusvy andBy in Fig. 9 appear as constant am-
plitude oscillations because the decrease in amplitude of these
components is too small to be apparent from these plots.

By performing a linear analysis similar to Nakariakov et al.
(1995, 1997) on the MHD Eqs. (1) to (4) using the ground state
(5) and (6), it is easy to show that the oscillations inBx, Bz,
vx andvz are double the driven frequencyω. Eqs. (31) and (33)
show that the oscillations ofBx andBz are determined by the
behavior ofvx in the linear limit.

Fig. 9 shows the Alfv́en wave (By andvy) propagating in the
direction of the magnetic field. At the start of the numerical run
the driven amplitude is ramped up to 0.001 over 4 wavelengths.
The oscillations invz show the progress of a sound wave. Up till
z = 30 the oscillations are centered around zero, and in front of
the sound wave the oscillations are positive. The interpretation
of this phenomenon is trivial: there are two kinds of the longi-
tudinal motions in the system. The first is produced by a slow
wave. They are generated by the driver atz = 0 and propagate
to z > 0 with the sound speedcs =

√
γp0/ρ0(x) =

√
0.05/3,

which givesz = 30 at t = 410. These perturbations are regular
acoustic waves with positive and negative motions of the plasma

Fig. 7.v as a function of time atx = 0.

along the field. The second type of the longitudinal perturbations
is driven by the Alfv́en wave ponderomotive force (see (34)) and
are always positive for an Alfv́en wave propagating in the posi-
tive direction ofz. These nonlinearly driven motions propagate
with the Alfvén wave speedcA = B0/

√
ρ0(x) = 1/

√
3 and

exist even whenβ = 0 (see Verwichte et al. 1999; Nakariakov
et al. 2000 for more detailed discussion). At timet = 410 the
Alfv én wave has traveled to positionz = 236 along thez axis.

The z = 0 boundary conditions on the velocity compo-
nents arevx = 0, vz = 0 andvy = A sin(ωt). Zero gradient
conditions are used on the magnetic field components. These
conditions do not drive a pure Alfvén wave but also generate an
acoustic wave component. This driven acoustic wave has an am-
plitude which is proportional to the square of the Alfvén wave. It
should be pointed out that the generation of this acoustic wave is
by no means an error in the boundary conditions or in the simu-
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a b

Fig. 8.The growth of (a) transverse gradients∂v2
y/∂x in the Alfvén wave due to phase mixing and (b) induced fast mode perturbationsvx. Here

the Alfvén wave is driven atz = 0.

Fig. 9.z profiles at timet = 410 of the Alfvén wave (By andvy), fast magnetosonic wave (Bz, Bx andvx), and the slow magnetosonic wave
(vz).

lation’s validity. Photospheric motions will not be generators of
pure Alfvén waves and all that is required of driving conditions
is that they are physically realistic. The presence of boundary
driven acoustic modes does of course introduce another wave
into the full set of coupled MHD equations. However, this mode
is a second order effect and will not significantly affect the pri-
mary Alfvén wave phase mixing. Furthermore, by looking at
the results of Fig. 9 beyondz = 30, or the periodic boundary
results of Sect. 4, we can see the result of phase mixing without
this acoustic mode.

The amplitude ofvx saturates (as shown is Sect. 4) and after
saturation it experiences a smooth modulation, the wavelength
of which is independent of the driven amplitude. The other pa-

rameters that can be changed in the numerical simulation are
the frequencyω of the driven Alfv́en wave and the unperturbed
densityρ0 gradient. Fig. 10 shows the dependency of the mod-
ulation wavelengthλ on both these parameters. As the driven
wavelength is doubled (i.e.ω is halved)λ doubles in length.
When the characteristic length scale is doubled, i.e.α is halved,
the wavelength of the modulationλ increases by 3/2.

This modulation, which is also present in the periodic re-
sults shown in Fig. 3, is both unexpected and as yet unexplained.
A natural interpretation would be that the nonlinearly gener-
ated fast mode is beating with some other boundary driven or
generated wave. However, in this 2D geometry with a non-
sheared magnetic field, this equilibrium cannot support ideal
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Fig. 10.Dependence of the modulation in thevx wavelengthλ on the
driven frequencyω and onα.

MHD trapped fast waves ifβ < 1 (Roberts 1981) and we see no
evidence of the localized structure (in thex direction) that might
be expected from a driven quasi-mode (Poedts & Kerner 1991).
This leaves no clear candidate to explain this modulation and
we must defer its explanation to a later study.

6. Conclusion

In a transversally inhomogeneous plasma, Alfvén waves are
subject to phase mixing (Heyvaerts & Priest 1983). This phe-
nomenon leads to the linear growth of transversal gradients in
Alfv én waves, producing a varying magnetic pressure which is
the source of fast magnetosonic waves. Phase mixing of a har-
monic Alfvén wave excites fast magnetosonic waves at double
the frequency of the Alfv́en wave (Nakariakov et al. 1997). This
analytical result was confirmed by the numerical simulation of a
plane Alfvén wave in a two-dimensional domain. It was shown
that the fast magnetosonic wave amplitude saturates and experi-
ences a slow modulation, which is a function of the background
Alfv én speed gradient and the frequency of the driven wave.

The fast magnetosonic waves, generated continuously by
Alfv én wave phase mixing, propagate across the magnetic field,
away from the layer of phase mixing. There is therefore a per-
manent leakage of energy away from the phase mixing layer.
This can causeindirect heating of the plasma through phase
mixing when the obliquely propagating fast waves, excited by
Alfv én wave phase mixing, are dissipated at some distance from
the layer of phase mixing. This mechanism leads to the spread-
ing out of the heated plasma region from the inhomogeneous
layer. However, the results in this paper have shown that the
nonlinearly generated fast wave component saturates at an am-
plitude proportional to the square of the Alfvén wave amplitude.
Thus for Alfvén waves generated continuously by photospheric
motions, which would have a typical amplitude of10−3 in the
normalization of this paper, only a small fraction of the Alfvén
wave energy is radiated away as fast waves. We thus conclude
that the classical model of phase mixing is valid despite its
ignoring nonlinear wave coupling. The picture is different for
Alfv én waves with a large amplitude, as might be excited by the
shocks emanating from flares. With Alfvén amplitudes of 0.1
the fast mode amplitude would saturate at approximately 0.01.
Since the phase mixing mechanism requires the Alfvén waves
to propagate out until they are about 10 full wavelengths out
of phase before significant phase mixing damping occurs, the
transfer of energy into fast waves would be a significant sink

of energy in this case. Also, the saturation level of the com-
pressive perturbations generated by the transversal gradients in
the Alfvén wave (vx) is 2 to 3 times higher than the longitudi-
nal compressive components of the Alfvén wave (vz). This can
strongly affect self-interaction of the Alfvén wave through its
generation of compressive perturbations, as discussed in Sect. 2.

The model we have used for phase mixing in this paper is
greatly simplified compared to the reality of coronal plumes.
We have assumed 2D geometry, a uniform magnetic field, sim-
ple density structure and a monochromatic source of Alfvén
waves. These are all clear limitations of the model. However,
this set of simplifying assumptions is entirely consistent with
the great majority of work on phase mixing and thus we were
able to directly comment on the applicability of simpler models
which ignore nonlinear wave coupling. We have also presented
a simplified model as a possible explanation of the results. The
saturation of fast waves was then interpreted as destructive in-
terference from incoherent sources. This mechanism is effective
to a large extent due to the restrictive geometry of these simu-
lations. If they coordinate in this work were not ignorable the
possibility would exist for constructive interference in other di-
rections. Thus while this work can be definitive in its support
for classical phase mixing theories in this simplified geometry
a conclusive answer for general frequency drivers and realistic
geometries must wait until more detailed study of geometric
effects, nonharmonic drivers etc. has been completed.
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Poedts S., T́oth G., Belïen A.J.C., Goedbloed J.P., 1997, Solar Physics

172, 45
Roberts B., 1981, Solar Physics 69, 27
Roberts B., 1991, In: Priest E.R., Hood A.W. (eds.) Advances in Solar

System Magnetohydrodynamics. Cambridge Univ. Press
Verwichte E., Nakariakov V.M., Longbottom A., 1999, J. Plasma Phys.

62, 219
Wentzel D.G., 1989, ApJ 336, 1073


	Introduction
	The model and background theory
	The equilibrium
	Analytical description

	The numerical code
	Saturation levels of magnetosonic waves
	Results with Alfv'en wave driven at $z=0$
	Conclusion

