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[1] The possible interactions between plasma waves and relativistic charged particles are
considered. An electromagnetic perturbation in the plasma is formulated as an elliptically
polarized wave, and the collisionless plasma is described by a distribution in phase space,
which is realized in cylindrical coordinates. The linearized Vlasov equation is solved in
the semi-relativistic limit, to obtain the distribution function in the rest frame of the
observer. The perturbed currents supported by the ionized medium are then calculated, so
that an expression can be written for the total amount of energy available for transfer
through the Landau mechanism. It is found that only certain modes of the perturbed
current are available for this energy transfer. The final expressions are presented in terms
of Stokes parameters, and applied to the special cases of a thermal as well as a nonthermal
plasma. The thermal plasma is described by a Maxwellian distribution, while two
nonthermal distributions are considered: the kappa distribution and a generalized Weibull
distribution.

Citation: Evangelidis, E. A., and G. J. J. Botha (2005), Relativistic Landau resonances, J. Geophys. Res., 110, A02216,

doi:10.1029/2004JA010756.

1. Introduction

[2] Highly energetic particles are prevalent in space and
laboratory plasmas. Relativistic particles flowing from pul-
sars [Melrose, 2003] have been studied through extensive
observations of the Crab nebula [Oort and Walraven, 1956;
Bogovalov and Khangoulyan, 2002; Mori et al., 2004].
Relativistic protons and electrons accelerated by solar flares
and coronal mass ejections [Klein et al., 2001; Maia et al.,
2001; Reames, 2002], as well as high-energy electrons in
Jupiter’s radiation belt [Bolton et al., 2002] and in the
Earth’s inner magnetosphere [Friedel et al., 2002] and
radiation belt [Li and Temerin, 2001; Lorentzen et al.,
2001], have been observed in the solar system and near-
Earth environment. Together with the presence of high-
energy alpha particles in fusion plasmas [Hawryluk, 1998;
Perkins et al., 1999; Aymar et al., 2002; Testa et al., 2004],
these occurrences of highly energetic particles add to the
interest in the interaction of the particles with their plasma
environment.
[3] The same theoretical framework is used in the labo-

ratory and in space to describe the particle interaction with
waves in the surrounding plasma [Stix, 1962]. The idea of
slowing down highly energetic particles by means of Alfvén
waves was proposed by, among others, Kahn [1971] in
connection with the Crab nebula. In the Earth’s magneto-
sphere, Horne and Thorne [1998] identified electromagnetic
ion cyclotron (EMIC) waves, oblique magnetosonic waves,

and whistler waves as possible wave modes capable of
resonating with electrons. EMIC waves were identified as a
possible cause of pitch angle scatter [Summers et al., 1998],
while whistler waves may provide a mechanism to acceler-
ate electrons to relativistic energies as well as to affect the
electron scatter rates [Horne and Thorne, 2003; Summers et
al., 2004]. Diffusion rates of radiation belt electrons are
known to be a function of the electron energy [Horne et al.,
2003], and as such are also influenced by the resonances
between electrons and the plasma waves. As whistler waves
appear to be highly effective in resonating with radiation
belt electrons [Meredith et al., 2003], these wave-particle
interactions have been modeled numerically in various
studies [Summers and Ma, 2000; Summers et al., 2004;
Omura and Summers, 2004].
[4] In this paper we would like to re-examine the role of

electromagnetic waves in exchanging energy with near-
relativistic charged particles (e.g., protons, electrons, and
alpha particles) in tenuous media, where collisions are an
unlikely mechanism for the transfer of energy and momen-
tum. In the literature, Landau resonances are described
analytically by explicitly using the dielectric tensor, which
quickly becomes a monumental task [Stix, 1962; Miyamoto,
1989]. Rather than follow this route, we use a known
identity for Bessel functions (see equation (42)), to simplify
the expressions. The final answer, written in terms of Stokes
parameters, shows that only certain modes of the perturbed
currents supported by the ionized medium are available for
energy transfer through the Landau mechanism. The ana-
lytical results presented in this paper will provide valuable
insight when applied to (among various applications) the
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study of resonant interactions between waves and energetic
particles in the Earth’s radiation belt.
[5] In the next section the required expressions for such

an energy transfer are derived. This analysis is performed in
the semi-relativistic limit, which is then compared to the
classical case in section 3. The general expressions are
then applied to the special cases of a thermalized plasma
(section 4) as well as a nonthermalized plasma (section 5).
Two nonthermal distributions are considered: the kappa
distribution and a generalization of the Weibull distribu-
tion. Finally, a comparison is made between positive and
negative charged particles.

2. Relativistic Plasma

[6] A relativistic plasma distribution in a static, uniform
magnetic field H0 = (0, 0, H0) without an externally applied
electric field can be described by the collisionless Boltz-
mann (or Vlasov) equation,

@f

@t
þ c2

E p � @f
@r

þ _p � @f
@p

¼ 0; ð1Þ

where f is the distribution of particles in phase space, p is
the relativistic momentum, c is the speed of light, and with
the relativistic energy given by

E ¼ mc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=cð Þ2

q ; ð2Þ

where m is the rest mass of the particles moving at velocity
v. Equation (1) is expressed in cylindrical coordinates; that
is, the position vector becomes

r ¼ r cosf e1 þ r sinf e2 þ z e3; ð3Þ

and the momentum becomes

p ¼ p? cosf e1 þ p? sinf e2 þ pk e3; ð4Þ

where the perpendicular and parallel components refer to
the direction relative to the magnetic field H0. An
electromagnetic perturbation will be described by the vector
potential

A ¼ Ake
i k�r�wtð Þ; Ak ¼ a1; ia2; 0ð Þ: ð5Þ

This is the expression for a polarized monochromatic plane
wave, with wave vector k = (k1, 0, k3) and the frequency w
determined by the dispersion relation of the type of wave
under consideration. The Lorentz force can be written as

_p0 ¼
qc

E p0 
H0

¼ qcH0

E p? sinf;�p? cosf; 0ð Þ; ð6Þ

_p1 ¼ q � 1

c

@A

@t
þ c

E p0 
 r
 Að Þ
� �

; ð7Þ

in the zero (unperturbed) and the first-order (perturbed)
approximation. The notation q contains the sign and size of
a particle’s charge. The velocity in the unperturbed state is
given by

v0 ¼
c2

E p0: ð8Þ

The steady state Vlasov equation (1)

v0 �
@f0
@r

þ _p0 �
@f0
@p

¼ 0 ð9Þ

is written, with the help of equations (4) and (6), in the form

v0 �
@f0
@r

� W
@f0
@f

¼ 0; ð10Þ

where the definition

W ¼ qcH0

E ð11Þ

has been used. From this it is concluded that a coordinate
independent distribution function, which is also axisym-
metric in momentum space, is a solution. Let f [( p0?)

2, (p0k)
2]

be such a function in a frame of reference moving with
velocity vR with respect to an observer considered at rest. In
the frame of the observer this becomes

f0 p2
� �

¼ f0 p2?;
pk � EvR=c2
� �2

1� v2R=c
2

" #
ð12Þ

for motion parallel to the magnetic field [Kahn, 1971;
Landau and Lifshitz, 1975]. Since vR/c  1, a Taylor
expansion gives

f0 p2
� �

¼ f0 p2?; p
2
k

	 

�
2pkE
c

vR

c
f 00 p2?; p

2
k

	 


þ p2k þ
E2

c2

� �
f 00 p2?; p

2
k

	 

þ
2p2kE

2

c2
f 000 p2?; p

2
k

	 
" #
vR

c

	 
2

þO vR

c

	 
3
; ð13Þ

where we have used a binomial expansion for the
denominator, and

f 00 ¼ @f0
@p2

: ð14Þ

Only first-order accuracy is maintained in this analysis; that
is, only the first two terms of expansion (13) are used. With
this ground state, the Vlasov equation (1) is linearized as

@f1
@t

þ c2

E p0 �
@f1
@r

þ _p0 �
@f1
@p

þ _p1 �
@f0
@p

¼ 0; ð15Þ

where f1 is the perturbed distribution. Assume that f1 takes
the form

f1 ¼ f fð Þei k�r�wtð Þ; ð16Þ
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where k is the wave vector used in perturbation (5).
Substituting all the above expressions in the linearized
Vlasov equation (15), the differential equation for the
perturbed distribution function

df fð Þ
df

� i c cosfþ mð Þf fð Þ � Q fð Þ ¼ 0 ð17Þ

is obtained, where

c ¼ ck1

qH0

� �
p? ¼ b p?; ð18Þ

m ¼ ck3

qH0

pk �
wE
c2k3

� �
; ð19Þ

Q fð Þ ¼ i
2qk3

cW
w
k3

� vR

� �
a1 cosfþ ia2 sinfð Þp?f 00 : ð20Þ

By solving this first-order linear ODE in the standard way,
i.e.,

f fð Þ ¼ eg fð Þ C1 þ
Z

Q fð Þe�g fð Þdf
� �

; ð21Þ

where C1 is the integration constant and

g fð Þ ¼ i c sinfþ mfð Þ; ð22Þ

as well as employing the expansions

e�ic sinf ¼
X1

m¼�1
Jm cð Þe�imf; ð23Þ

the final result

f fð Þ ¼ i2qk3

cW
w
k3

� vR

� �
f 00p?

X1
m¼�1

X1
n¼�1

Jm cð ÞJn cð Þ
1� mþ mð Þ2

ei n�mð Þf

� Am sinf� iBm cosfð Þ ð24Þ

is obtained, where the definitions

Am ¼ a1 þ a2 mþ mð Þ ð25Þ

Bm ¼ a1 mþ mð Þ þ a2 ð26Þ

have been used. The constant of integration C1 was found to
be zero under the boundary condition f(f + 2p) = f(f). As
an aside, it should be noted that Lifshitz and Pitaevskii
[1981, equation (53.11)] solved ODE (17) by placing the
integration constant in the integration limits of (21). This
leads to unnecessary complications where Landau’s caus-
ality argument has to be invoked, together with the
periodicity of f(f), in order to determine C1. Solution (24)
is the expression for the perturbed distribution function, to
be used further in the evaluation of the currents supported

by the ionized medium, the statistical properties of which
are determined by the function f0.
[7] The current produced by charge q moving with

velocity v is

qv ¼ qc2

E p: ð27Þ

Integrating the product of this and the perturbed distribution
(16) over momentum space, we obtain the associated
current distribution

j ¼ i2qk3

H0

w
k3

� vR

� �
ei k�r�wtð Þ

Z 1

0

dp?

Z 1

�1
dpk

Z 2p

0

df

�
X1

m¼�1

X1
n¼�1

f 00
Jn cð ÞJm cð Þ
1� mþ mð Þ2

� ei n�mð Þf Am sinf� iBm cosfð Þ
p3? cosf

p3? sinf
p2?pk

2
64

3
75; ð28Þ

where (4) and (24) have been used. The orthogonality of the
trigonometric functions shows that the only surviving
currents are those for the following combinations of the
indices m and n:

n� m ¼ 0; �1; �2: ð29Þ

The corresponding currents are indicated with respective
superscripts in brackets. Thus they are

j 0ð Þ ¼ 2k
Z 1

0

dp?

Z 1

�1
dpk f

0
0p

3
?

X1
m¼�1

J 2m cð Þ
1� mþ mð Þ2

Bm

iAm

0

2
64

3
75;

ð30Þ

j þ1ð Þ ¼ � 2k a1 � a2ð Þ
0

0

1

2
64

3
75Z 1

0

dp?

Z 1

�1
dpk

� f 00p2?pk
X1

m¼�1

Jm cð ÞJmþ1 cð Þ
mþ mþ 1

; ð31Þ

j �1ð Þ ¼ � 2k a1 þ a2ð Þ
0

0

1

2
64

3
75Z 1

0

dp?

Z 1

�1
dpk

� f 00p2?pk
X1

m¼�1

Jm�1 cð ÞJm cð Þ
mþ m� 1

; ð32Þ

j þ2ð Þ ¼ � k a1 � a2ð Þ
1

i

0

2
64

3
75Z 1

0

dp?

Z 1

�1
dpk

� f 00p3?
X1

m¼�1

Jm cð ÞJmþ2 cð Þ
mþ mþ 1

; ð33Þ
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j �2ð Þ ¼ � k a1 þ a2ð Þ
1

�i

0

2
64

3
75Z 1

0

dp?

Z 1

�1
dpk

� f 00p3?
X1

m¼�1

Jm�2 cð ÞJm cð Þ
mþ m� 1

; ð34Þ

where the abbreviation

k ¼ pqk3
H0

w
k3

� vR

� �
ei k�r�wtð Þ ð35Þ

has been used. The electric field consistent with the vector
potential (5) is

E ¼ � 1

c

@A

@t
¼ w

c
ia1;�a2; 0ð Þei k�r�wtð Þ; ð36Þ

and its complex conjugate

E? ¼ �w
c

ia1; a2; 0ð Þe�i k�r�wtð Þ; ð37Þ

which is to be used below. Notice that the electric field is
perpendicular to the ±1 currents. Therefore only the 0 and
±2 modes are available to do work. In order to calculate the
work available in each channel, we form the scalar product
of the currents with the complex conjugate electric field.
The results are summarized below:

j 0ð Þ � E? ¼ kE

Z 1

0

dp?

Z 1

�1
dpk f 00p

3
?

�
X1

m¼�1
Jm2 cð Þ a1 þ a2ð Þ2

mþ m� 1
þ a1 � a2ð Þ2

mþ mþ 1

" #
; ð38Þ

j þ2ð Þ � E? ¼ a21 � a22
� �

kE

Z 1

0

dp?

Z 1

�1
dpk

� f 00p3?
X1

m¼�1

Jm cð ÞJmþ2 cð Þ
mþ mþ 1

; ð39Þ

j �2ð Þ � E? ¼ a21 � a22
� �

kE

Z 1

0

dp?

Z 1

�1
dpk

� f 00p3?
X1

m¼�1

Jm�2 cð ÞJm cð Þ
mþ m� 1

; ð40Þ

where we have used the abbreviation

kE ¼ ipqk3w
cH0

w
k3

� vR

� �
: ð41Þ

Using the identity [Evangelidis, 1973, 1977a, 1977b, 1978,
1984]

X1
m¼�1

Jmþp cð ÞJm cð Þ
m� m� q

¼
�p Jpþmþq cð Þ J� mþqð Þ cð Þ

sin mþ qð Þp½ � ð42Þ

in the expressions above, they simplify to

j 0ð Þ � E? ¼ pkE

Z 1

0

dp?

Z 1

�1
dpk f

0
0p

3
?

� a1 þ a2ð Þ2
J� m�1ð Þ cð ÞJ m�1ð Þ cð Þ

sin m� 1ð Þp½ �

�

þ a1 � a2ð Þ2
J� mþ1ð Þ cð ÞJ mþ1ð Þ cð Þ

sin mþ 1ð Þp½ �

�
; ð43Þ

j þ2ð Þ � E? ¼ pkE a21 � a22
� � Z 1

0

dp?

Z 1

�1
dpk

� f 00p3?
J� m�1ð Þ cð ÞJ mþ1ð Þ cð Þ

sin mþ 1ð Þp½ � ; ð44Þ

j �2ð Þ � E? ¼ pkE a21 � a22
� � Z 1

0

dp?

Z 1

�1
dpk

� f 00p3?
J� mþ1ð Þ cð ÞJ m�1ð Þ cð Þ

sin m� 1ð Þp½ � : ð45Þ

These integrals have singularities at

mþ 1 ¼ M ; m� 1 ¼ N ; ð46Þ

where M and N are integers. Bessel functions with lowest
order have the highest amplitude and will dominate the
results. Thus only M = N = 0 will be used in the present
analysis.
[8] Expressions (44) and (45) give the contribution of the

poles m ± 1 ! 0 as the integral goes from �1 to 1, in
terms of the same Stokes parameter. See Befeki [1966] for a
definition of Stokes parameters. In contrast, in expression
(43) the contribution of each pole is associated with a
different Stokes parameter. Expressions (43) to (45) are
quite general and can be used in the computation of the
transfer of energy through the Landau mechanism. They are
particularly suited to the calculation of the integrals over the
poles for contours satisfying the causality requirement, that
is, going around the poles in a counterclockwise sense in the
lower imaginary half plane (Figure 1). To avoid unnecessary
repetitions, the idea is presented in the evaluation of the
integral in expression (44) only. First it is noticed that as the
points on the real axis approach the pole, the sine terms can
be represented by their arguments, so that

lim
mþ1!0

Z 1

�1

pf p?; pk
� �

sin mþ 1ð Þp½ � dpk ¼ lim
m!�1

Z 1

�1

f p?; pk
� �
mþ 1

dpk

¼ lim
pk!p�k

qH0

ck3

Z 1

�1

f p?; pk
� �
pk � p�k

dpk

ð47Þ

upon the use of definition (19). The poles will be signified
by pk

+ and pk
�, whereby

p�k ¼ E
c2k3

w� Wð Þ: ð48Þ
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Thus integration along the path of Figure 1 gives

PV

Z 1

�1

f p?; pk
� �

sin mþ 1ð Þp½ � dpk þ
qH0

ck3
ipf p?; p

�
k

	 
h i
;

where PV indicates the Cauchy principal value. The
principal value represents the irreversible Joule heating,
i.e., the energy transfer from the wave (field) to the particles
(current). The second term represents the energy transferred
through the Landau mechanism, which can flow in either
direction between wave and particles. The total amount of
energy available for transfer is thus

W ¼ 1

2
j 0ð Þ þ j �2ð Þ þ j þ2ð Þ
h i

� E?

¼ WJ þWL; ð49Þ

where WJ is the energy going into the Joule heating, and
where the amount of energy available for transfer through
the Landau mechanism is

WL ¼ � p2q2w
2c2

w
k3

� vR

� �Z 1

0

dp?p
3
?

� a1 þ a2ð Þ2J 20 cð Þf 00 p2?; pþk

	 
2� ��

þ a1 � a2ð Þ2J 20 cð Þf 00 p2?; p�k

	 
2� �
þ a21 � a22
� �

J0 cð ÞJ2 cð Þ

� f 00 p2?; pþk

	 
2� �
þ f 00 p2?; p�k

	 
2� �� ��
: ð50Þ

This is the sought for expression under quite general
assumptions.

3. Nonrelativistic Plasma

[9] For a nonrelativistic plasma, equation (1) is valid but
with the energy given by E = mc2 instead of (2), and with a
distribution f0(p?

2 , pk
2) instead of (12). Assuming the same

perturbation as (5) and (16), we obtain ODE (17) with Q
defined as

Q fð Þ ¼ i
2qw
cW

a1 cosfþ ia2 sinfð Þp?f 00 : ð51Þ

From this it is clear that the rest of the analysis can be
obtained by setting vR = 0, so that the final answer is given
by

WL ¼ � p2q2w2

2c2k3

Z 1

0

dp?p
3
? a1 þ a2ð Þ2J 20 cð Þf 00 p2?; pþk

	 
2� ��

þ a1 � a2ð Þ2J 20 cð Þf 00 p2?; p�k

	 
2� �
þ a21 � a22
� �

J0 cð ÞJ2 cð Þ

� f 00 p2?; pþk

	 
2� �
þ f 00 p2?; p�k

	 
2� �� ��
: ð52Þ

4. Thermal Plasma

[10] To employ the derived expressions in the calculation
of the energy transferable between particles and waves, one
has to specify the thermal state of the plasma under
consideration. For an axisymmetric plasma in thermal
equilibrium, the distribution function in the rest frame of
the observer is a Maxwellian

f0 ¼
N

2pmkBTð Þ3=2
exp � p2

2mkBT

� �
; ð53Þ

where N is the number of particles per unit volume, kB is the
Boltzmann constant, and T is the absolute temperature. Its
derivative, as defined by (14), is

f 00 ¼ � Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p3 2mkBTð Þ5

q exp �
p2? þ p2k

2mkBT

 !
: ð54Þ

This becomes

f 00
��
p�k
¼ � Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p3 2mkBTð Þ5
q Q� exp � p2?

2mkBT

� �
ð55Þ

at resonances pk
+ and pk

�, where

Q� ¼ exp �
p�k

	 
2
2mkBT

0
B@

1
CA: ð56Þ

A substitution into (50) gives the available energy for
transfer through the Landau mechanism as

WL ¼ pNq2w

2c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 2mkBTð Þ5

q w
k3

� vR

� �Z 1

0

dp?p
3
?e

�p2?=2mkBT

� a21 � a22
� �

Qþ þQ�� �
J0 cð ÞJ2 cð Þ

"
þ a21 þ a22
� �

Qþ þQ�� �#
þ 2a1a2 Qþ �Q�� �$

J 20 cð Þ
%
:

ð57Þ

Figure 1. Integration path of
R1
�1 dpk in expression (44)

around the singularity pk
�, with e ! 0. The contribution

from the dashed semicircle is zero when R ! 1. For
further reading, see Boyd and Sanderson [2003].
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Using the values of the momentum at the two poles as given
by (48), we obtain

Qþ þQ� ¼ 2e�g w2þW2ð Þ cosh 2gwWð Þ; ð58Þ

Qþ �Q� ¼ �2e�g w2þW2ð Þ sinh 2gwWð Þ; ð59Þ

where the definition

g ¼ 1

2mkBT

E
c2k3

� �2

ð60Þ

has been employed. Consequently, expression (57) becomes

WL ¼ pNq2w

c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 2mkBTð Þ5

q w
k3

� vR

� �
e�g w2þW2ð Þ

�
Z 1

0

dp?p
3
?e

�p2?=2mkBT

� a21 � a22
� �

cosh 2gwWð ÞJ0 cð ÞJ2 cð Þ
"
þ a21 þ a22
� �

cosh 2gwWð Þ
#

� 2a1a2 sinh 2gwWð Þ� J 20 cð Þ
%
:

ð61Þ

The integral over the perpendicular component of the
momentum is evaluated using result (A3) in Appendix A.
With the abbreviation

a ¼ 1

2mkBT
ð62Þ

and with b defined as in (18), the results

Z 1

0

p3?e
�ap2?J 20 bp?ð Þ dp? ¼ 2 mkBTð Þ2

X1
n¼0

nþ 1ð Þ 2nð Þ!
n!ð Þ3

�yð Þn

ð63Þ

Z 1

0

p3?e
�ap2?J0 bp?ð ÞJ2 bp?ð Þ dp?

¼ 2 mkBTð Þ2y
X1
n¼0

2nþ 2ð Þ!
n!ð Þ2 nþ 2ð Þ!

�yð Þn ð64Þ

follow, where

y ¼ b2

4a
¼ kBT=2mc

2

W2
0= ck1ð Þ2

¼ ck1

W0

� �2
kBT

2mc2
ð65Þ

W0 ¼
qH0

mc
: ð66Þ

The frequency W0 is the Larmor frequency in the
nonrelativistic approximation. Keeping only the first two
terms in the summation series, equation (61) becomes

WL ¼ pNq2w
2c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p w
k3

� vR

� �
e�g w2þW2ð Þ

� a21 þ a22
� �

þ a21 � a22
� �

y
# $

cosh 2gwWð Þ
"

�2a1a2 sinh 2gwWð Þg 1� 4yð Þ: ð67Þ

The number of terms to be included is determined by the
value of y. For y = 0.01 we need five terms in integral (63)
and four terms in integral (64) for the numerical results to
change less than one unit at the sixth decimal place. For
y = 0.1 the same accuracy requires seven terms in both
integrals, while y = 1 requires 21 terms in (63) and 20
terms in (64). More terms are required to achieve the
same accuracy as the value of y increases, as indicated
by Figures 2 and 3. The physics behind the numerical
values reflects the interplay of the thermal perturbations
against the perturbations of the wave mode propagating
in the plasma, as shown in (65).

5. Nonthermal Plasma

[11] It is well established that electron and ion distribution
functions in numerous astrophysical situations are not
Maxwellian. High-energy electron distribution tails with
strong density gradients appear throughout the solar system
[see Owocki and Scudder, 1983, and references therein], as
well as in the distribution of fusion alpha particles in JET
and the envisaged ITER [Paméla et al., 2003]. These
nonthermal observations and measurements are often fitted
by the so-called kappa distribution [Owocki and Scudder,
1983; Hasegawa et al., 1985; Scudder, 1992; Summers and
Thorne, 1992; Saito et al., 2000; Leubner and Schupfer,
2002; Leubner, 2004], which resembles a Maxwellian at
low-energy ranges but varies as a power law in its high-
energy tail.
[12] Another versatile distribution that is widely used is

the Weibull distribution. By changing the values of its
parameters, one can make it assume the characteristics of
other types of distributions, like the Rayleigh and exponen-
tial distributions. The Weibull and Rayleigh distributions
are widely used in wind energy analysis [Spera, 1994;
Şahin and Aksakal, 1999; Ulgen and Hepbasli, 2002], as
well as in the study of waves and fluid flows [Fonseca and
Soares, 2004; Xu et al., 2004; Mahdi and Ashkar, 2004], the

Figure 2. Absolute convergence of integral (63) for
different values of y: solid line is y = 2; dotted line is
y = 3; dashed line is y = 4; dash-dotted line is y = 5. The
different curves have been normalized to fit the same scale,
and n is the number of terms included in the series.
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modeling of particle behavior in various fields [Gille, 1999;
Ohtsuki and Emori, 2000; Cheng et al., 2003], and in the
study of mesospheric [Meek et al., 2004] and material
strength models [Zhao, 2004]. Given the considerable
literature on Weibull distributions, we would like to intro-
duce the more general class of functions

F pð Þ ¼ p=Cð Þl exp � p=Cð Þk½ �; ð68Þ

where l, C, and k are constants and the momentum is given
by p. For Weibull distributions, l = k � 1, for Rayleigh
distributions, l = 1 and k = 2, and for exponential
distributions, l = 0 and k = 1. The constant C is called the
scale factor, whereas k is the shape factor. In Figures 4–6
we explore the influence of l, k, and C on distribution (68).
In the analysis below, the kappa distribution and distribution

(68) will each be evaluated in the transfer of energy through
Landau resonances.

5.1. Kappa Distribution

[13] When normalized to the total number of particles N
over the momentum volume, the kappa distribution takes on
the form

f0 ¼
1ffiffiffiffiffi
p3

p N

C3

1ffiffiffi
k

p G kð Þ
G k� 1

2

� � 1þ p2

kC2

� �� kþ1ð Þ

; ð69Þ

where C and k are both constants and where the momentum
is defined by p2 = p?

2 + pk
2. Its derivative, as defined by (14),

is

f 00 ¼ � 1ffiffiffiffiffi
p3

p N

C5

kþ 1

k3=2
G kð Þ

G k� 1
2

� � 1þ p2

kC2

� �� kþ2ð Þ

; ð70Þ

Figure 3. Absolute convergence of integral (64). The
curves are normalized, and the notation of Figure 2 is used.

Figure 4. Influence of parameter l on the generalized
Weibull distribution (81). The curves are produced with k = 1
and C = 1.

Figure 5. Influence of parameter k on the generalized
Weibull distribution (81). The curves are produced with l = 1
and C = 1.

Figure 6. Influence of parameter C on the generalized
Weibull distribution (81). The curves are produced with l = 1
and k = 1.
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which is evaluated at resonances pk
+ and pk

�. The energy
available for transfer through the Landau mechanism is
given by (50), in which there are two types of integrals to
consider,

IA ¼
Z 1

0

J 20 bp?ð Þf 00 p2?; p�k

	 
2� �
p3?dp?; ð71Þ

IB ¼
Z 1

0

J0 bp?ð ÞJ2 bp?ð Þf 00 p2?; p�k

	 
2� �
p3?dp?: ð72Þ

In order to evaluate these integrals, we integrate over p
using the substitution p?

2 = p2 � (pk
±)2, where pk

± are treated
as constants. This makes it necessary to evaluate the Bessel
functions as well as f 00 at the resonance points pk

+ and pk
�,

which means that (50) has to be rewritten as

WL ¼ � p2q2w
2c2

w
k3

� vR

� �

� a1 þ a2ð Þ2IAjpþk þ a1 � a2ð Þ2IAjp�k
n

þ a21 � a22
� �

IBjpþk þ IBjp�k
h i o

: ð73Þ

By making a series expansion of the Bessel functions, the
Bessel products in integrals (71) and (72) become

J 20 xð Þ ¼ 1� 1

2
x2 þ 3

25
x4 � 5

32:26
x6 þ . . . ð74Þ

J0 xð ÞJ2 xð Þ ¼ x2

8
1� 1

3
x2 þ 5

27
x4 � 7

5:32:26
x6 þ . . .

� �
; ð75Þ

where x = bC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � z�ð Þ2

q
. In order to simplify the

notation, we use z = p/C and z± = pk
±/C. In the analysis

that follows, only the first two terms in series (74) and (75)
will be retained. Using the integral definition of the beta
function in terms of the trigonometric functions, as well as
the relation between the beta and gamma functions, the
results

IA ¼ 1

2
ffiffiffiffiffi
p3

p N

C

1ffiffiffi
k

p G kð Þ
G k� 1=2ð Þ

� z2� � 1þ bCð Þ2

2

2k
k� 1

þ z2� z2� � 2
� �� �( )

ð76Þ

IB ¼ 1

16
ffiffiffiffiffi
p3

p N

C

1ffiffiffi
k

p G kð Þ
G k� 1=2ð Þ bCð Þ2 2k

k� 1
þ z2� z2� � 2

� �� ��

� bCð Þ4

3

6k
k� 1

z2� � k
k� 2

	 

þ z4� z2� � 3

� �� ��
ð77Þ

are obtained. Substituting these results into (73), the final
expression becomes

WL ¼ �
ffiffiffi
p

p
q2w

4c2
w
k3

� vR

� �
N

C

1ffiffiffi
k

p G kð Þ
G k� 1=2ð Þ

�
(

a1 þ a2ð Þ2Rþ þ a1 � a2ð Þ2R�

þ bCð Þ2

2

k
k� 1

5a21 þ 3a22
� �

þ S

)
; ð78Þ

where R± and S are defined as

R� ¼ z2� � 1
� �

þ bCð Þ2

2
z2� z2� � 2
� �

; ð79Þ

S ¼ bCð Þ2

8
a21 � a22
� ��

z2þ z2þ � 2
� �

þ z2� z2� � 2
� �

� bCð Þ2

3

6k
k� 1

z2þ þ z2� � 2k
k� 2

� ��

þ z4þ z2þ � 3
� �

þ z4� z2� � 3
� ���

: ð80Þ

5.2. Generalized Weibull Distribution

[14] When normalized to the total number of particles N
over the momentum volume, distribution (68) takes on the
form

f0 ¼
1

4p
G

lþ 3

k

� �� ��1 kN
C3

p

C

	 
l
exp � p

C

	 
kh i
; ð81Þ

where p =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2? þ p2k

q
. Its derivative, defined by (14), is

f 00 ¼ 1

8p
N

C5

k
G lþ3

k

� � l� kzkð Þz l�2ð Þe�zk ; ð82Þ

where we have used z = p/C as before. This is evaluated at
resonances z+ and z�, with z± = pk

±/C. The energy available
for transfer through the Landau mechanism is given by (73),
which contains integrals (71) and (72). Using only the first
two terms of series (74) and (75), as well as the integral
definition of the gamma function, the results

IA ¼ � 1

4p
N

C
G

lþ 3

k

� �� ��1

G
lþ 2

k

� �
� bCð Þ2

�

� G
lþ 4

k

� �
� z2�G

lþ 2

k

� �� ��
ð83Þ

IB ¼ � 1

16p
N

C
G

lþ 3

k

� �� ��1�
bCð Þ2

� G
lþ 4

k

� �
� z2�G

lþ 2

k

� �� �
� bCð Þ4

2

� G
lþ 6

k

� �
� 2z2�G

lþ 4

k

� �
þ z4�G

lþ 2

k

� �� ��
ð84Þ

follow. Substituting these results into (73), the final
expression becomes

WL ¼ pq2w
8c2

w
k3

� vR

� �
N

C
G

lþ 3

k

� �� ��1

� 2 a21 þ a22
� �

G
lþ 2

k

� �
� bCð Þ2G lþ 4

k

� �� ��

þ bCð Þ2G lþ 2

k

� �
U � V

�
; ð85Þ

where the definitions

U ¼ a1 þ a2ð Þ2z2þ þ a1 � a2ð Þ2z2� ð86Þ
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V ¼ bCð Þ2

4
a21 � a22
� �

z2þ þ z2�
� �

G
lþ 2

k

� ��

� 2G
lþ 4

k

� �
þ bCð Þ2

2
z4þ þ z4�
� �

G
lþ 2

k

� ��

�2 z2þ þ z2�
� �

G
lþ 4

k

� �
þ 2G

lþ 6

k

� ���
ð87Þ

have been used.

6. Negative Charge Carriers

[15] In the previous sections the symbol q includes the
sign and magnitude of the charge. If q is taken to be only
the magnitude, then the analysis up until now concerns
the resonances of positive charged particles with the wave.
By writing explicitly �q for negative charges, the previ-
ous analysis can be repeated with the same definitions of
W, c, and m, as given by (11), (18), and (19). Instead of
ODE (17), we now solve for

df fð Þ
df

þ i c cosfþ mð Þf fð Þ � Q fð Þ ¼ 0; ð88Þ

with Q defined by (20). This has the solution

f fð Þ ¼ i2qk3

cW
w
k3

� vR

� �
f 00p?

X1
m¼�1

X1
n¼�1

Jm cð ÞJn cð Þ
1� mþ mð Þ2

� ei m�nð Þf Fm sinfþ iGm cosfð Þ; ð89Þ

where the definitions

Fm ¼ a1 � a2 mþ mð Þ ð90Þ

Gm ¼ a1 mþ mð Þ � a2 ð91Þ

have been used. By following the previous analysis closely,
we obtain the intermediate results

j 0ð Þ � E? ¼ pkE

Z 1

0

dp?

Z 1

�1
dpk f

0
0p

3
?

� a1 þ a2ð Þ2
J� mþ1ð Þ cð ÞJ mþ1ð Þ cð Þ

sin mþ 1ð Þp½ �

�

þ a1 � a2ð Þ2
J� m�1ð Þ cð ÞJ m�1ð Þ cð Þ

sin m� 1ð Þp½ �

�
; ð92Þ

j þ2ð Þ � E? ¼ pkE a21 � a22
� � Z 1

0

dp?

Z 1

�1
dpk

� f 00p3?
J� mþ1ð Þ cð ÞJ m�1ð Þ cð Þ

sin m� 1ð Þp½ � ; ð93Þ

j �2ð Þ � E? ¼ pkE a21 � a22
� � Z 1

0

dp?

Z 1

�1
dpk

� f 00p3?
J� m�1ð Þ cð ÞJ mþ1ð Þ cð Þ

sin mþ 1ð Þp½ � ; ð94Þ

with kE defined by (41). Integrating over the same
singularities as before, the total amount of energy available
for transfer through the Landau mechanism is

WL ¼ � p2q2w
2c2

w
k3

� vR

� �Z 1

0

dp?p
3
?

� a1 þ a2ð Þ2J 20 cð Þf 00 p2?; p�k

	 
2� ��

þ a1 � a2ð Þ2J 20 cð Þf 00 p2?; pþk

	 
2� �
þ a21 � a22
� �

J0 cð ÞJ2 cð Þ

� f 00 p2?; pþk

	 
2� �
þ f 00 p2?; p�k

	 
2� �� ��
; ð95Þ

where the poles pk
± are defined as in (48). The difference

between (50) and (95) is that the poles are associated with
different Stokes parameters. Indeed, (95) can be obtained by
the substitution of q ! �q in (50).
[16] For a thermalized plasma, the Maxwellian (53) is

used in (95). Repeating the analysis in section 4,

WL ¼ pNq2w
2c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p w
k3

� vR

� �
e�g w2þW2ð Þ

� a21 þ a22
� �

þ a21 � a22
� �

y
# $

cosh 2gwWð Þ
"

þ 2a1a2 sinh 2gwWð Þg 1� 4yð Þ ð96Þ

is obtained for negative charged particles.
[17] For a nonthermal plasma described by the kappa

distribution (69), the analysis of section 5.1 is repeated.
From (95) it follows that the energy available for transfer
through the Landau mechanism takes the form

WL ¼ � p2q2w
2c2

w
k3

� vR

� �

� a1 þ a2ð Þ2IAjp�k þ a1 � a2ð Þ2IAjpþk
n
þ a21 � a22
� �

IBjpþk þ IBjp�k
h io

ð97Þ

for negative charged particles, where the integrals IA and IB
are defined by (76) and (77). The final expression for WL

becomes

WL ¼ �
ffiffiffi
p

p
q2w

4c2
w
k3

� vR

� �
N

C

1ffiffiffi
k

p G kð Þ
G k� 1=2ð Þ

�
�

a1 þ a2ð Þ2R� þ a1 � a2ð Þ2Rþ

þ bCð Þ2

2

k
k� 1

5a21 þ 3a22
� �

þ S

�
; ð98Þ

where R± and S are defined by (79) and (80), respectively.
[18] If the nonthermal plasma is described by the gener-

alized Weibull distribution (81), the analysis in section 5.2
is followed using (97) for the energy available for transfer
through the Landau mechanism, where the integrals IA and
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IB are defined by (83) and (84). The final expression for WL

takes the form

WL ¼ pq2w
8c2

w
k3

� vR

� �
N

C
G

lþ 3

k

� �� ��1

� 2 a21 þ a22
� �

G
lþ 2

k

� �
� bCð Þ2G lþ 4

k

� �� ��

þ bCð Þ2G lþ 2

k

� �
U 0 � V

�
; ð99Þ

with

U 0 ¼ a1 þ a2ð Þ2z2� þ a1 � a2ð Þ2z2þ ð100Þ

and with V defined by (87).

7. Summary

[19] An analysis has been presented of the possible role of
the Landau mechanism in the transfer of energy to or from a
collisionless plasma by means of waves. The Vlasov equa-
tion (1) was perturbed by a polarized monochromatic plane
wave (5) to produce a plasma state that is axisymmetric in
momentum space. In the semi-relativistic limit (13) this
plasma state, as seen in the rest frame of the observer, was
used as the ground state for the linearized Vlasov equation
(15). With the plane wave perturbation, the linearized
Vlasov equation reduced to a first-order linear ODE (17),
which was solved in the standard way. This allowed us to
calculate the current (28) associated with the perturbed
distribution. It became possible to identify the spectral
composition of the wave modes, and also to isolate the
contribution of the various components of the wave spec-
trum, as shown by (29). Using the electric field associated
with the plane wave (37), only certain modes survived, (38)
to (40), that are capable of performing any work. The
known identity (42) allowed the simplification of the
integration along paths according to Landau’s causality
argument, so that an expression of the energy available
for transfer between the plasma and the wave through the
Landau mechanism could be written down in (50). For
waves to play a role, their frequencies have to be compa-
rable to that of the cyclotron frequency of the corresponding
charge carrier. It is remarkable that for a polarized wave
interacting with a plasma, each mode appears in some
combination of the Stokes parameters, which differs for
the different channels of transfer.
[20] This result was then applied to the specific case of a

thermal plasma in section 4, by assuming a Maxwellian
distribution in the rest frame of the observer. At the same
time, we have explored a nonthermal distribution of elec-
trons and ions which is becoming a dominant feature in
fusion plasmas and in a host of astrophysical plasmas. This
was done by considering the kappa distribution (section 5.1)
as well as a generalized form of the Weibull distribution
(section 5.2). Finally, we provided explicit expressions for
all the main results in terms of negative charge carriers in
section 6.
[21] It should be noted that the evaluation of integrals

involving Bessel function products was greatly simplified
using the results in Appendix A. The application of the main

result (50) of this paper to a Maxwellian, kappa, as well as a
generalized Weibull distribution should facilitate the direct
application of this analysis to experimental and observa-
tional data.

Appendix A: Evaluation of Integrals (63) and (64)

[22] From Gradshteyn and Ryzhik’s [1980] equation
(6.633.1) it is known that

Z 1

0

xlþ1e�ax2Jm bxð ÞJn gxð Þ dx

¼ bmgn

2mþnþ1

a� mþnþlþ2ð Þ=2

G nþ 1ð Þ

�
X1
n¼0

G nþ 1þ mþ nþ lð Þ=2½ �
n! G nþ mþ 1ð Þ � b2

4a

� �n

� F �n; �n� m; nþ 1;
g2

b2

� �
; ðA1Þ

where F is a hypergeometric function with the parameter
constraints <(a) > 0 and <(m + n + l) > �2, as wel as b > 0
and g > 0. In thermonuclear and space plasmas the Bessel
function arguments b and g are equal. It is therefore
appropriate to make use of Gauss’ identity [Gradshteyn and
Ryzhik, 1980, equation (9.122.1)]

F a; b;g; 1ð Þ ¼ G gð Þ G g� a� bð Þ
G g� að Þ G g� bð Þ ðA2Þ

with g 6¼ 0, �1, �2,. . . Thus, it follows that

Z 1

0

xlþ1e�ax2Jm bxð ÞJn bxð Þ dx

¼ 1

2a1þl=2

b2

4a

� � mþnð Þ=2X1
n¼0

� b2

4a

� �n

� G nþ 1þ mþ nþ lð Þ=2½ � G 2nþ mþ nþ 1ð Þ
n! G nþ mþ 1ð Þ G nþ nþ 1ð Þ G nþ mþ nþ 1ð Þ ðA3Þ

with the constraint n 6¼ �1, �2, �3,. . . This expression is
used consistently in the evaluation of the integrals involving
Bessel function products. It is observed that the evaluation
of the integrals involved in plasma physics are reduced to
the evaluation of mere gamma functions, certainly a trivial
task. [Stix, 1962; Miyamoto, 1989].
[23] The series in (A3) is absolutely convergent, as can be

seen from the following considerations. If un and un+1 are
the nth and (n + 1)th terms, then

unþ1

un

����
���� ¼ nþ 1þ mþ nþ lð Þ=2

nþ 1
� b2

4a

����
����

� 2nþ mþ nþ 2ð Þ 2nþ mþ nþ 1ð Þ
nþ mþ 1ð Þ nþ nþ 1ð Þ nþ mþ nþ 1ð Þ ; ðA4Þ

which becomes

lim
n!1

unþ1

un

����
���� � lim

n!1

1

nþ 2 mþ nþ 2ð Þ
b2

a

� �
; ðA5Þ

where only terms not going to zero in the limit are kept in
the numerator and denominator. The limit (A5) is zero,
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which means the series converges absolutely for all values
of b2/a.
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