
Northumbria Research Link

Citation: Vickers, Paul and Alty, James (2000) Musical Program Auralisation: Empirical
Studies. In: ICAD 2000 - The 6th Meeting of the International Conference on Auditory
Display, 2-5 April 2000, Atlanta, GA.

URL: http://www.icad.org/websiteV2.0/Conferences/ICAD20...
<http://www.icad.org/websiteV2.0/Conferences/ICAD2000/PDFs/VickersAlty.pdf>

This version was downloaded from Northumbria Research Link:
https://nrl.northumbria.ac.uk/id/eprint/11283/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

Musical Program Auralisation: Empirical Studies

 Paul Vickers James L Alty
 Liverpool John Moores University Loughborough University
 School of Computing & Mathematical Sciences Dept. of Computer Science
 Byrom Street Loughborough
 Liverpool, L3 3AF, UK Leics, LE11 3TU, UK
 +44 (0)151 231 2283 +44 (0)1509 222648
 p.vickers@livjm.ac.uk j.l.alty@lboro.ac.uk

ABSTRACT
Program auralisation aims to communicate information about program state, data, and behaviour using audio. We have
argued that music offers many advantages as a communication medium [1]. The CAITLIN system [4, 16, 17, 18] was
constructed to provide auralisations within a formal structured musical framework. Pilot studies [4, 16] showed that
programmers could infer program structure from auralisations alone. A study was conducted using twenty-two novice
programmers to assess a) whether novices could understand the musical auralisations and b) whether the musical experience
and knowledge of subjects affected their performance. The results show that novices could interpret the auralisations (with
accuracy varying across different levels of abstraction) and that musical knowledge had no significant effect on performance.

A second experiment was conducted with another twenty-two novice programmers to study the effects of musical program
auralisation on debugging tasks. The experiment aimed to determine whether auralisations would lead to higher bug detection
rates. The results indicate that, in certain circumstances, musical auralisations can be used to help locate bugs in programs
and that musical skill does not affect the ability to make use of the auralisations. In addition, it the experiment showed that
subjective workload increased when the musical auralisations were used.

Keywords
Music, auralisation, debugging, Pascal

INTRODUCTION
Within the field of auditory display, program auralisation, or the mapping of program data to sound, has attracted increasing
levels of interest. Brown and Hershberger [7] were among the first to suggest using sound to aid the visualistion of software.
Jameson’s Sonnet [9], Bock’s Auditory Domain Specification Language [6] and the LISTEN Specification Language [5]
developed the idea. Jameson developed the Sonnet visual programming language to add audio capabilities to a debugger,
while ADSL and LSL added audio to programs at the pre-processing stage. However, formal evaluation has been sparse. We
constructed the CAITLIN1 system to study the effects of musical program auralisations on the debugging tasks of novice
Pascal programmers.

The CAITLIN auralisations have a musical framework as music offers much as a communication medium [1]. Pilot studies
[4, 16] suggested that music can convey information about program behaviour. In this paper we describe two experiments.
The first aimed to discover whether musical auralisations could be understood and interpreted by novice programmers. The
second study explored how the CAITLIN system could be used to assist bug location.

Details of the CAITLIN musical auralisation approach are given elsewhere [4, 16, 17, 18]. In summary, auralisations are
effected by mapping the constructs of a Pascal program (IF, CASE, REPEAT, WHILE and FOR) to short musical tunes
(motifs). The key aspects of a construct (points of interest), such as entry and exit and evaluation of Boolean expressions are
assigned a motif whose content is consistent with the structure and harmony of the other motifs in the construct. A hierarchic
approach was taken to the motif design to allow the taxonomy of the Pascal constructs to be maintained [4].

MOTIF RECOGNITION STUDY
This study investigated how novice programmers interpreted musical auralisations. Additionally, as the system is intended
for use by programmers regardless of musical expertise, it was hoped that the study would show no significant difference in
performance across subjects with varying levels of musical knowledge and experience.

1 See www.cms.livjm.ac.uk/caitlin for more details

SUBJECTS
Twenty-two undergraduate students on computing courses at Loughborough University took part. Twenty-one subjects were
male, although this gender imbalance is typical of undergraduate computing courses in the UK. The mean age of the subjects
was 21 (min. 19, max. 23). The musical experience and knowledge of the subjects were assessed by means of a
questionnaire. All subjects had an average of two years’ programming tuition, and all had written programs in Pascal. On
average, the subjects had experience of five programming languages (min. 2, max. 7).

TASK
The study comprised two tests. Test 1 required subjects to listen to and identify forty construct auralisations. Test 2 presented
pairs of auralisations that were either nested, or sequential. In all, sixty construct auralisations were used in the two tests. Half
the auralisations were of iteration constructs, half of selections. Auralisations were of differing length, depending on the
construct type. The auralisations were generated by the CAITLIN system using a Boss DS-330 multi-timbral synthesiser and
were played to subjects over a stereo amplifier and speakers in a tiered lecture theatre. The volume was adjusted so that the
music could be heard well at the back of the room. The speakers were placed close together to mask any stereo effects.

Construct

CASEIF-THEN IF-ELSE

Selection

CASE-
ELSE FOR-TO

FOR-
DOWN

FORsIFs CASEs
WHILE&
REPEAT

WHILE REPEAT

Iteration

Figure 1. Construct identification worksheet

Subjects recorded their response by ticking a box on a chart, each box representing a specific construct (see figure 1). In test
2, there were two box charts per exercise and an additional box in which subjects could state whether the pair was sequential
or nested. The auralisation technique was explained and examples given. A practice test was run in which twenty
auralisations were played. Each was played three times, during which time subjects wrote down what construct they thought
was being played. Immediate feedback was given so the subjects could check their answers. Following this, subjects
completed the questionnaire that was used to gather information about their musical background and programming
experience.

SCORING
Because of the hierarchic nature of the constructs and the corresponding auralisations, the worksheets allowed subjects to
give different levels of answer. For example, if a subject thought an auralisation represented a FOR… TO loop then they
would tick the box labelled ‘FOR-TO’. This is the most precise level of identification which we call specific identity, that is,
precise construct identification is achieved. If the subject could identify the loop as a FOR but was unsure whether it was a
FOR… TO or a FOR… DOWNTO then they could tick the higher level box labelled ‘FORs’. This is identifying the construct
at its sub-class level. The lowest level of identification (class level) is where, in this instance, the subject can identify the
auralisation as a loop as opposed to a selection, but cannot be more specific. This would involve the subject ticking the
‘Iteration’ box on the worksheet.

In the first test, subjects had to tick the box on the worksheet that they thought matched the auralisation being played. Each
auralisation was played three times. The auralisations comprised ten unique selections and ten unique iterations. These were
randomly arranged into two sets of twenty, each unique auralisation occurring once per set. The second listening test was
similar to the first: twenty auralisations were presented in ten pairs. The reason for playing pairs of auralisations was to see
whether subjects could correctly discriminate between sequential and nested constructs. That is, would the auralisations allow
subjects to hear the difference between say, an IF nested within the body of a WHILE loop and a WHILE loop followed by
an IF? Twenty unique auralisations were used, ten iterations and ten selections. Five pairs were nested the other five were
sequential. Each pair of constructs was played three times.

RESULTS
Scores could be correct at one of three levels. If a construct was correctly identified, then a specific identity score was given.
A sub-class score was given if the subject either ticked the correct sub-class box (e.g. ‘IFs’ for an IF or an IF… ELSE), or
mistook a construct for its sibling (e.g. confusing an IF for an IF… ELSE). A class-level score was given if a subject ticked
the correct class box (e.g. ‘Iterations’ for a WHILE) or ticked the wrong sub-class level box (e.g. ‘FORs’ for a WHILE —
both are iterations), or ticked the wrong specific identity box (e.g. confusing a FOR… TO for a WHILE).

In the first listening test, the mean identification of specific identity by subjects was 46%. A further 30% of subjects achieved
identification at the sub-class level (either deliberately, or by identifying a construct as its sibling), and another 21% at the
class level. This gives an mean absolute misidentification rate of 3%, that is, 97% of subjects managed to identify constructs
at at least one of the three identity levels. 5% of the iterations (22 out of 440 iteration observations) were misidentified as
selections. None of the selections was incorrectly identified as an iteration.

In the second test, ten pairs of auralisations were played to twenty-one subjects (subject 15 did not participate). Five of the
pairs were of nested constructs, the other five of sequential constructs. The results are comparable with those for the first
listening test, there being no significant difference between the two in terms of auralisation identification rates (specific
identity=49%; sub-class=35%; class=14%). It is interesting that similar results were obtained even though subjects were
required to identify two constructs-per-exercise rather than one. In half the cases, the constructs were nested which meant that
subjects were listening to interleaved auralisations. That this did not impair performance is encouraging. Furthermore,
subjects scored highly in identifying the nestings and sequences (mean= 97.5%).

DISCUSSION
One objective was to see whether subjects’ musical skill influenced their performance. The questionnaire measured four
related (non-orthogonal) variables: level of interest in listening to/performing music, experience of playing an instrument,
level of singing expertise, and score on a musical knowledge quiz. The data from the questionnaire were analysed by
multiple-linear-regression to see whether any of the factors influenced the scores. For each of the two listening tests the
music data were analysed for their effect on the correct scores at the specific identity and sub-class levels. The results indicate
that musical knowledge and experience had no significant effect on subjects’ ability to recognise constructs at the specific
identity or sub-class levels. In fact, the best predictor of a subject’s score is a value approximating the mean of the sample2.

The mean specific identity scores were 46% and 49% in tests 1 and 2. If subjects merely guessed the specific identity of the
constructs, then we could expect one out of every eight responses (12.5%) to be correct by chance alone, there being eight
constructs from which to choose (figure 1). Also, we would expect half the specific identity scores to be greater than 12.5%
and half to be less. For test 1, three specific identity scores (no.’s 7, 19, and 31) were less than 12.5% and the remaining 37
were higher. This is a highly significant difference (χ2=15.62, 1df, p<0.01). Considering the lack of confusion between
iteration and selection classes, a more conservative approach would be to assume, for any given auralisation, that subjects
knew whether it was an iteration or selection. This reduces the choice to one amongst four. In this case, we observe that
seven exercises had specific identity scores less than the 25% attainable by guessing. Again, we see that these scores are still
significantly higher than would be obtained by guesswork alone (χ2=8.05, 1df, p<0.01).

Separate analysis of the selections and iterations reveals where the main difficulties with identification lay. If we again
assume that subjects could distinguish between iterations and selections (recall that identification at the class level was
97.5%) then for any of the twenty selection auralisations, subjects could get one in four of them correct by guesswork. Thus,
we would expect half (ten) of the specific identity scores to be greater than and half to be less than 25%. In fact, six of the
twenty selections had scores <=25% at the specific identity level and fourteen had scores higher. This difference is not
significant (χ2=0.94, 1df, p>0.1). For the iterations, there is no evidence for guesswork (χ2=5.83, 1df, p<0.02). The six
selection constructs with the low scores were the IF… ELSE and CASE… ELSE suggesting that the motifs for the selection
constructs were not sufficiently different. However, we must be cautious not to conclude that guesswork alone was involved
in selection identification. A low score does not necessarily mean that subjects incorrectly identified a construct. For instance,
in exercise 6, five subjects only attempted identification at the sub-class or class levels.

Furthermore, subjects were not faced with just eight choices, but could select higher nodes in the hierarchy charts. Analysis
of the sub-class scores further suggests that more than guesswork was involved. A construct could be identified at its sub-

2 For test 1, specific identity scores, the constant term (17.414) in the resultant regression model (y = 17.414 + (.225 ×
musical score) – (2.531 × play) + (1.063 × interest) – (.840 × sing)) is the best predictor of a subject’s score (p=0.057).
None of the four factors is a significant predictor of correct score (p=0.740… 0.893)

class level by one of two ways: either, the subject deliberately selects the sub-class box on the score sheet, or, the subject
misidentifies the construct as its sibling, resulting in a sub-class identification by default. In test 1, of those observations
scored correct at the sub-class level (261 in all), 59% were deliberate, 41% by default. This means that of those constructs
identified at the sub-class level, just under half were as a result of confusing a construct with its sibling. We may conclude
that subjects generally understood what they were hearing, but that at the level of specific identity, construct motifs were still
not distinct enough from their siblings. Where there is evidence of guesswork is in the disparity between mistaken
identification of iterations as selections and vice versa. Recall that no selections were misidentified as iterations whilst 5% of
iterations were incorrectly identified as selections. This suggests that, when in doubt, subjects assumed the construct to be a
selection. There is evidence of this practice. Subject 7 wrote: “… The loops, especially nested, were easier to spot and so
anything that wasn’t, I assumed to be a selection”.

The Role of Context
The information presented to the subjects in this experiment was without context. That is, subjects had no domain
information to help them understand the problem. Alty and Rigas [3] identified the importance of context for blind users
using a musical diagram reader. They identified three levels of perception that are important when using auditory interfaces:
detectable mapping, perceptual context, and reasoning. These may be rephrased as uniqueness level, metaphorical level and
semantic level [18]. Uniqueness (or detectable musical mapping) refers to a construct auralisation’s ability to be uniquely
identified and not confused with another. The metaphorical level (or perceptual context) is where, given a detectable
mapping, the motif creates expectation of the part of the listener. The motif is interpreted in domain terms and meaning can
be ascribed to it, although the listener may not necessarily be able to reason about the global interactions. The semantic level
(or reasoning level) is where the listener develops high-level structures in the mind to understand the domain from a higher,
or more abstract viewpoint.

According to Alty and Rigas [3] the production of unique mappings is necessary but insufficient for a successful auditory
interface design; the contribution of the metaphoric and semantic levels is needed. In the program auralisation domain, the
construction of unique motifs provides mappings between the program domain and the auditory domain at the uniqueness
level. At this level, little meaning is attached, and all that is heard is a collection of different tunes. At the metaphoric level
the listener interprets the audio messages in the context of the other domain messages, thus setting up expectations. Here,
users would recognise the tunes as constructs. Metaphors are built in the mind of the listener allowing recognition of the
rising and falling tune as an IF statement, or the pleasing flute melody as a FOR loop. Once this level is achieved then
expectations arise. On recognising a WHILE loop, the listener would expect to hear the tunes representing the various points
of interest of the WHILE statement, that is, one or more major or minor chord devices followed by the tune signifying the
end of the construct.

At the semantic level, listeners begin to form gestalts and start to reason about what the audio messages mean. If the
construct is a WHILE statement, that means it is a loop and we would then expect to hear one or more evaluations of the
controlling condition and the consequent execution of the statement block when the condition is true. Further, within the
statement block (and before the closing point of interest is sounded) we would anticipate hearing other statements (either
simple statements represented by a single percussive sound, or further constructs with their own motif sequence). The listener
is no longer simply hearing a set of different and recognisable tunes, nor even a collection of constructs, but a program and its
various branches and interactions. Alty and Rigas claim that the level of mental activity required to perform at this level is
likely to increase the memorability of the interface. In an experiment using the diagram reader [3], they found that subjects’
accuracy improved greatly if a contextual clue regarding the nature of the picture being described was given. For instance, the
outline of the letter E was recognised most by subjects who were told that the diagram was a letter; subjects who were given
no clue about the picture scored much worse.

This experiment is, in effect, a test of subjects’ short-term memory and their ability to discriminate between some subtle and
some gross differences in motifs. The best level of perception that might reasonably be achieved by this experiment is the
metaphoric level, that is, subjects would start to hear auralisations not as separate tunes, but as constructs. If subjects do not
move beyond the uniqueness level, then the test is simply one of memory and the subject’s ability to correctly repeatedly
assign the various unique tunes to one of eight possibilities.

In a real programming and debugging situation subjects would be listening to auralisations at the same time as having access
to the program source (even blind programmers would have some textual/verbal representation of the code). The extra
context provided by the presence of other constructs and understanding of the aims and structure of the program would allow
users to move beyond the metaphoric level into the semantic level. Therefore, that specific identity scores are not high is not
of concern as we would expect the added context of the program source to fill in the gaps. Of course, it would be preferable
to specify the auralisations such that they are identifiable regardless of context.

CONCLUSIONS
In programming, we are not really trying to identify a construct’s place on a taxonomy chart. Programmers are not interested
in this. The programmer will already know from the source code what constructs have been used and whether or not the
various selections have ELSE branches or not. The auralisations simply have to be recognisable within a given context. What
is of interest is the structure of the program under consideration, not the categorisation of the various language constructs. Of
course, such a hierarchic design should allow a programmer to listen to an auralisation at varying levels of abstraction. To
understand program flow it may be enough simply to hear that there is some form of selection here, some form of unbounded
loop there; exact details can be gleaned from the listing. With training and continued use, users may become adept at
distinguishing between all the construct auralisations even without contextual clues. It remains to study how the auralisations
can be used in debugging tasks. The following sections describe such an experiment and discuss its results.

PROGRAM DEBUGGING STUDY
We showed above that the CAITLIN auralisations can communicate information about Pascal programs. The motivation
behind this study was to explore the effects of musical program auralisation on program debugging by novices. Auralisations
offer a theoretical advantage over static program analysis techniques (flow graphs etc.) because they are immediate and can
be generated during program execution. Therefore, it could be hoped that immediate musical representations of program
execution would assist novices with debugging. It was also hoped that no significant difference in performance across
subjects with varying levels of musical knowledge and experience would be seen.

SUBJECTS
Twenty-two undergraduate computing students at Loughborough University took part in the experiment These were not the
same subjects used in the first experiment described above. Nineteen subjects were between 20 and 29 years old, three were
19 years old or younger. All but one reported a western-style cultural upbringing. Seventeen subjects had two or more years
of programming tuition, the other five had at least one year’s tuition. On average, the subjects had experience of four
programming languages (min. 2, max. 7). The subjects had no prior experience of program auralisation and so a tutorial (with
examples) explaining the philosophy of the technique was given.

EXPERIMENT
The two main questions addressed by this research were:
• Do subjects locate more bugs with the additional auralisation information than without?
• Does the musical experience of subjects affect their ability to make use of program auralisations?

The experiment comprised eight different debugging exercises, numbered A1 to A8. For each, subjects were given a
specification for the program, a pseudo-code program description, sample input data, the expected output data and the actual
output data. Each program was syntactically correct and contained a single logical error (bug).

Subjects were allowed as long as they needed to read the program documentation. When ready to locate the bug, they were
given the program source code and had a maximum of ten minutes to locate the bug. The eight tasks were performed in order
beginning with A1. Half the tasks had accompanying auralisations. The treatment (auralisation) was given to alternate tasks.
Half the subjects had the treatment applied to tasks A1, A3, A5 and A7; the other half had the treatment applied to tasks A2,
A4, A6 and A8. Thus, every program was tested in both the treatment and non-treatment states so that any differences
between programs (such as complexity) would not influence the results. As each subject performed tasks in both states, any
differences between the subject groups were balanced, although analysis of the data (see below) showed that the experiment
still contained a bias despite the attempts to balance it.

The tests were administered by a specially written worldwide web application that collected timing information,
questionnaire responses, NASA TLX scores (a measure of workload as perceived by the subject [8, 13]) and subject protocol
data. All subject data were stored in data files on the host server3.

The auralisations were prepared prior to the session and stored as MPEG-1 Layer 3 (MP3) audio files. The dynamic range of
the music was not great so a sampling rate of 22.05KHz and a bit-rate of 40Kbit/second were used. (near-CD-quality MP3
requires a 44.1KHz sampling rate and a bit-rate of 128Kbit/second). This allowed the files to be compressed to about 10% of
their original size (2.2 Mb instead of 22 Mb in the case of the largest file). The application used an embedded Windows
Media Player control which gave subjects facilities for playing, stopping, pausing, rewinding and forward-winding the

3 The experiment can be attempted on-line at www.cms.livjm.ac.uk/caitlin/experiments. Note, the site will only work with
Microsoft Internet Explorer 4 or above; Netscape’s browsers are not currently supported.

auralisations. CAITLIN allows auralisations to be played at different tempi. This feature was not available in the experiment
as pre-prepared auralisations were used. Therefore, for each exercise two auralisations were provided: one at 120 beats-per-
minute (slow) and one at 140 beats-per-minute (normal). Either auralisation could be accessed by pressing an appropriately
labelled button.

Bug Types
The current mappings between program and musical event domains necessarily restrict bug types that can be investigated
with the present CAITLIN system. As the system does not address assignments or sub-program calls other than by a
percussive sound for each, errors that can be investigated experimentally are those that involve, or manifest themselves
through, branches in program flow. That is, we are restricted to experiments that involve the class of programs in which the
bugs affect program flow. A program whose bug involves an incorrect assignment (such as incorrect interest calculation in a
mortgage application) would not be a member of this class unless the result of the assignment caused a perturbation in the
program’s flow (e.g. the incorrect calculation of the mortgage’s annual repayment results in a selection process involving the
buyer’s salary and the annual repayment giving a wrong decision).

Therefore, there are two classes of bug that we can investigate using the current CAITLIN system:
• Ill-formed simple Boolean expressions, or combinations of such predicates, directly causing perturbations in the

program’s flow.
• Incorrect assignments that manifest themselves indirectly through incorrect program flow.

Meehan et al. [10, 11] classified bugs as either overt (where the program fails at compilation or run-time causing an error
message to appear) or covert (where the program runs to completion but the output is not as expected). This experiment, then,
was concerned with covert bugs, but also could find non-terminating loops.

RESULTS
One mark was awarded for each bug that was correctly located. This gives a maximum possible score of 8 overall and 4 for
each of the two states (auralised and normal). Table 1 shows the raw results with a 1 representing a correct response and zero
an incorrect answer. Each row of the table holds the results for an individual subject, with the scores for each exercise held in
the columns. Scores for exercises that were undertaken in the auralised mode are shown with a shaded background. Note,
exercises were completed in order from A1 to A8 and the scores are arranged on the table to show the differences between
auralised and normal exercises. The last row of the table shows the McCabe cyclomatic complexity measure for each
program. (It is a function of the number of decision nodes in a program [14].) The two rows above it show the number of
subjects who correctly located the bug in the program in the auralised and normal states.

Subject A1 A3 A5 A7 A2 A4 A6 A8 Auralised Normal
102 1 1 1 1 1 1 1 1 4 4
104 1 1 1 1 1 1 1 1 4 4
106 1 1 1 0 1 1 1 1 3 4
108 0 0 0 0 0 1 0 0 0 1
110 1 1 0 1 1 1 1 0 3 3
112 1 1 0 1 1 0 1 1 3 3
114 0 1 0 1 1 1 1 1 2 4
116 0 0 0 1 1 1 1 0 1 3
118 1 1 1 0 1 1 0 1 3 3
120 1 1 1 1 0 1 1 1 4 3
122 1 1 1 0 1 1 0 1 3 3
103 0 1 1 1 1 1 1 0 3 3
105 1 0 0 0 1 1 0 0 2 1
107 0 1 0 1 1 1 1 1 4 2
109 0 0 0 1 1 0 0 0 1 1
111 0 0 0 1 0 0 0 0 0 1
113 0 1 0 1 1 1 1 1 4 2
115 0 1 0 1 1 1 1 1 4 2
117 1 1 0 0 1 1 1 1 4 2
119 0 1 0 0 1 1 1 1 4 1
121 0 1 1 1 1 1 1 1 4 3
123 0 0 0 1 1 1 0 1 3 1

Auralised 8 9 6 7 10 9 7 7
Normal 2 7 2 8 9 10 8 8

Complexity 7 3 18 6 8 5 6 6 Avg Complexity = 7.375

Table 1. Raw data scores

A paired two-tailed t-test performed on the raw data showed no evidence that the auralisations had an effect on performance
overall (either positive or negative, t(21)=1.40, p=0.175). To see whether subjects’ musical skills affected their performance,
the questionnaire from the motif recognition study (above) was used. As before, the data from the questionnaire were
analysed by multiple-linear-regression to see whether any or all of the musical factors had an influence on the scores. The

regression model4 indicated that musical knowledge and experience had no significant effect on the debugging scores.

DISCUSSION
The results indicate that the musical experience and knowledge of subjects did not appear to have an effect on either the
correct or incorrect scores; that is, subjects with little musical knowledge did no better and no worse than subjects with more
musical skill.

From the raw data we do not yet find conclusive evidence that the auralisations led to any improvement in the bug location
rate of the novice programmers. However, we need to return to the matter of program complexity. We stated earlier that each
experimental program was tested in both auralised and non-auralised states in order that differences in individual program
complexity would be balanced across the subjects. However, closer inspection of the results shows that program complexity
may still have affected subjects’ performance. From table 1 we can see that the mean complexity of the exercises that were
auralised for the even-numbered subjects (A1, A3, A5, & A7) was 8.5 compared with 6.25 for the odd-numbered subjects’
auralised exercises (an increase of 36%). Furthermore, this higher-complexity program group (A1, A3, A5, & A7) had an
average bug location rate of 7.5 (68%) in the auralised state (subjects 102-122) compared with 4.75 (43%) for the non-
auralised state (subjects 103-123).

Thus, despite the attempts to balance effects due to complexity, we observe that a bias exists in experiment; that is, the even-
numbered subjects had auralised programs of a higher mean complexity than the odd-numbered subjects. In addition, the
performance of subjects on these programs was higher in the auralised state than in the non-auralised state. This effect is
particularly noticeable for exercises A1 and A5. By cross-tabulating the correct scores against whether or not the auralisation
was applied and looking for effects of the auralisation on the individual exercises we see that exercises A1 (r=6.6, 1 df,
p=0.01) and A5 (r=3.8, 1 df, p=0.049) stand out as having significantly higher results in the auralised state compared with the
non-auralised state.

The bug in program A1 was one with which, in our experience, novices repeatedly have difficulty [15]. The program had the
following WHILE loop

WHILE (name <> zeds) AND (mark <> 0) DO

in which a logical AND was used instead of a logical OR (the specification for the program was that the loop would
terminate upon finding a record with ten uppercase zeds in the name field and a zero in the mark field). Such an error is often
made when learning to program. We attribute this to the tendency to ascribe imprecise natural language meanings to precise
logical operators. Because this error is made so often by novices [15], we considered it hard to spot from the program
documentation alone (after all, the Boolean expression sounds right when read aloud). It is pleasing that subjects seemed able
to make use of the auralisation to locate the bug. It is clearly audible from the auralisation that the loop has not iterated
sufficient times to process all the input data. Furthermore, the output generated by the program gave no direct clue as to the
bug’s location.

The very same category of bug was to be found in the second program, A2. This time there was no significant difference in
locating the bug between those using and those not using the auralisation. This is not unreasonable as, having solved an
identical class of problem in the previous exercise, the subjects how had a repertoire of case history against which to compare
this problem [12]. However, there is one major difference between programs A1 and A2. In A2, the actual and expected
outputs gave a clue as to the nature and location of the bug. The expected output showed all the input records whilst the
actual output showed only three of the records. This leads one to suspect a fault in the controlling WHILE loop. Program A1
had no such clues in its output. Other studies have shown that novices tend to search output for clues (e.g. Nanja and Cook
[12]). This strategy would not work for program A1 because of the lack of output clues. The auralisation provides an
alternative form of output as it is possible to hear the loop executing too few times.

The other program that had a significantly higher proportion of correct results in the auralised state was A5. This program
had the highest complexity value of all (18 compared to a mean of 7.375) as it had four complex IF statements which made
liberal use of DeMorgan’s rewrite rules. As with A1, the output from this program gave no indication as to which of the four
compound IF statements was in error.

4 The constant term (2.568) in the resultant regression model (y = 2.568 – (0.139 × musical score) – (0.0023 × play) +
(1.077 × interest) + (0.242 × sing)) is the best predictor of a subject’s score (p=0.057). None of the four factors are
significant predictors of correct score (p=0.416… 0.890)

Figure 1 shows how the correct scores were distributed in the normal and auralised states respectively. The first histogram
shows a relatively flat distribution for the scores on non-auralised exercises. When the auralisations were added, the score
distribution changed to that shown in the second histogram.

Normal Correct

4.03.02.01.0

10

8

6

4

2

0

Std. Dev = 1.10
Mean = 2.5
N = 22.00

Auralised Correct

4.03.02.01.00.0

10

8

6

4

2

0

Std. Dev = 1.32
Mean = 2.9
N = 22.00

Figure 1. Score distributions of raw data

Although the original t-test did not show this to be significant, there appears to be a general trend towards improved scores
when the auralisations are applied. Above, we discussed the effect of program complexity on the experiment and we noted
that there was an inadvertent bias in the grouping of the auralised and non-auralised exercises for the two subject groups.
Therefore, it is reasonable to weight the bug location scores to take program complexity into account by multiplying a score
(0 or 1) by its program’s complexity and then dividing by the mean complexity of the eight exercises. The weighted scores
are given as table 2.

The weighted scores were used to carry out a further t-test to see whether, when adjusted for complexity, the experiment
shows an improvement in bug location scores in the auralised condition. With this adjustment we observe a significant
difference between the scores in the auralised and non-auralised states (t(21)=2.10, p<0.05). What this suggests then, is that
auralisations do help where the complexity of the program makes more traditional debugging methods harder to apply. This
analysis compares favourably with results obtained on Alty et al.’s PROMISE project [2] in which the use of sound was
found to be unhelpful for easy tasks but became increasingly useful as task complexity increased. Further experimentation is
necessary to explore this.

Subject A1 A3 A5 A7 A2 A4 A6 A8 Auralised Normal
102 0.95 0.41 2.44 0.81 1.08 0.68 0.81 0.81 4.61 3.39
104 0.95 0.41 2.44 0.81 1.08 0.68 0.81 0.81 4.61 3.39
106 0.95 0.41 2.44 0.00 1.08 0.68 0.81 0.81 3.80 3.39
108 0.00 0.00 0.00 0.00 0.00 0.68 0.00 0.00 0.00 0.68
110 0.95 0.41 0.00 0.81 1.08 0.68 0.81 0.00 2.17 2.58
112 0.95 0.41 0.00 0.81 1.08 0.00 0.81 0.81 2.17 2.71
114 0.00 0.41 0.00 0.81 1.08 0.68 0.81 0.81 1.22 3.39
116 0.00 0.00 0.00 0.81 1.08 0.68 0.81 0.00 0.81 2.58
118 0.95 0.41 2.44 0.00 1.08 0.68 0.00 0.81 3.80 2.58
120 0.95 0.41 2.44 0.81 0.00 0.68 0.81 0.81 4.61 2.31
122 0.95 0.41 2.44 0.00 1.08 0.68 0.00 0.81 3.80 2.58
103 0.00 0.41 2.44 0.81 1.08 0.68 0.81 0.00 2.58 3.66
105 0.95 0.00 0.00 0.00 1.08 0.68 0.00 0.00 1.76 0.95
107 0.00 0.41 0.00 0.81 1.08 0.68 0.81 0.81 3.39 1.22
109 0.00 0.00 0.00 0.81 1.08 0.00 0.00 0.00 1.08 0.81
111 0.00 0.00 0.00 0.81 0.00 0.00 0.00 0.00 0.00 0.81
113 0.00 0.41 0.00 0.81 1.08 0.68 0.81 0.81 3.39 1.22
115 0.00 0.41 0.00 0.81 1.08 0.68 0.81 0.81 3.39 1.22
117 0.95 0.41 0.00 0.00 1.08 0.68 0.81 0.81 3.39 1.36
119 0.00 0.41 0.00 0.00 1.08 0.68 0.81 0.81 3.39 0.41
121 0.00 0.41 2.44 0.81 1.08 0.68 0.81 0.81 3.39 3.66
123 0.00 0.00 0.00 0.81 1.08 0.68 0.00 0.81 2.58 0.81

Complexity 7 3 18 6 8 5 6 6 Avg Complexity = 7.375

Table 2. Weighted bug location scores

Time Taken
We found that the auralisations did not significantly affect the time taken to locate the bugs, although the result was a
boundary case (t(21)=1.98, p=0.06). The subject protocol data gathered during the experiment indicate that subjects were
playing the auralisations (on average twice for both the normal-speed and slower-speed versions). If the auralisations were
truly having no effect on bug location, then the implication is that despite playing the auralisations subjects were simply
ignoring them. Alternatively, it may be that when faced with auralised exercises subjects spent the time they would have
spent examining the documentation for clues listening to the auralisation for clues instead. In that case it could be argued that
the auralisations were useful.

If the auralisations were beneficial, how may the timing results be interpreted? Consider exercise A5 which scored
considerably better in its auralised state. The problem in this exercise was to decide which of four very similar looking IF
statements contained the bug. The output provided no clues as to which of the IFs was faulty and so the only way to solve the
problem with the documentation alone was to evaluate each of the compound Boolean expressions in order to find the error.
This is a time-consuming task. However, the auralisation provides evaluations of the Boolean expressions automatically.
Therefore, in theory at least, the auralisations are able to provide information that takes longer to find in the non-auralised
state. As the auralisations take time to listen to, then it could simply be that the listening time balances out the extra reasoning
time, thereby resulting in no overall change in the time taken to locate the bug.

Subject Workload
Subjects were asked to assess their workload after each exercise using the NASA task-load index (TLX) categories. At the
end of the experiment the TLX weighting factors were weighted by subjects to reflect their overall perceived influence. The
ratings collected from each exercise were adjusted using the weight values to give an overall workload score per-exercise-
per-subject. Subjects evaluated their workload for each auralised and non-auralised exercise and so the means for the subjects
were analysed for differences using a two-tailed t-test. The t-test showed a significant increase in perceived workload when
using the program auralisations (t(21)=2.12, p=0.046).

Prior to the study the subjects had no experience of the theory and practice of program auralisation. Therefore, it is
reasonable to expect the workload to increase when this unfamiliar technique is presented. Further experimentation would be
able to determine whether subjects who are practised in the technique still have higher workload scores when using
auralisations in debugging tasks.

CONCLUSIONS
We conclude that there is a strong case for claiming that musical program auralisation is helpful, although further verification
is needed. For programs of relatively high complexity, where the output offers few clues about the nature of the bug,
significant evidence was found for the auralisations having a beneficial effect. Several issues have been raised that indicate
that further experimentation is warranted. In this study, programs with typical novice programming errors and high cyclical
complexity measures benefited from having the technique applied to them. Further studies will be able to confirm this and
indicate what kinds of program lend themselves to being debugged with an auralisation approach. It was also observed that
some people appeared to have difficulty with the debugging process itself (see subjects 108 and 111 in table 1). It is possible
that such individuals will not benefit from using auralisations until their programming and debugging skills have reached
some particular standard.

Musical knowledge and expertise had no effect on subjects’ performance. Additionally, there is no evidence to suggest that
lack of musical experience led to poorer performance in the auralised condition, and, therefore, we remain confident that the
musicality of the CAITLIN system is not an obstacle. Further experimentation along the lines suggested above would help to
determine whether this confidence is misplaced. The analysis of perceived workload shows that, in this study, the
auralisations had a significant impact on the subjects. This is not, of itself, an undesirable result if the final outcome is that
more bugs are located.

In summary, we have found that music can convey information about program events. Secondly, we suggest that it can play a
complementary role in the programming process, particularly in the location and diagnosis of bugs. Future work will attempt
to define more precisely the relationship between auralised and non-auralised debugging with a view to creating a full
auralised programming environment.

Although this research did not address the needs of blind and visually-impaired programmers, the results suggest that a
musical program auralisation system could be applied to that branch of assistive technology. Full user studies would need to
be undertaken, but given that existing sighted programmers have shown that auralisations can communicate program
information in the absence of any context whatsoever, it is not unreasonable to hope that the system can be adapted and
extended for use by the blind.

REFERENCES
1. Alty, J. L., Can We Use Music in Computer-Human Communication?, in People and Computers X, D. Diaper and R.

Winder, Eds. Cambridge: Cambridge University Press, 1995

2. Alty, J. L., Bergan, J. and Schepens, A., The Design of the PROMISE Multimedia System and its Use in a Chemical
Plant, Loughborough: Loughborough University 94/P/0112, 1994.

3. Alty, J. L. and Rigas, D. I., Communicating Graphical Information to Blind Users Using Music: The Role of Context, in
Proc. CHI98 Conference on Human Factors in Computing Systems (Los Angeles, CA, April 18-23, 1998), ACM Press,
pp. 574-581

4. Alty, J. L. and Vickers, P., The CAITLIN Auralization System: Hierarchical Leitmotif Design as a Clue to Program
Comprehension, in Proc. The Fourth International Conference on Auditory Display (Palo Alto, November 3-5, 1997),
Xerox PARC, Palo Alto, CA 94304, pp. 89-96

5. Boardman, D. B., Greene, G., Khandelwal, V. and Mathur, A. P., LISTEN: A Tool to Investigate the Use of Sound for
the Analysis of Program Behaviour, in Proc. 19th International Computer Software and Applications Conference
(Dallas, TX, Aug. 9-11, 1995), IEEE

6. Bock, D. S., ADSL: An Auditory Domain Specification Language for Program Auralization, in Proc. Second
International Conference on Auditory Display, ICAD '94 (Santa Fe, NM, Nov. 7-9, 1994), Santa Fe Institute, pp. 251-
256

7. Brown, M. H. and Hershberger, J., Color and Sound in Algorithm Animation, Computer, 25 (12), 1992, pp. 52-63.

8. Hart, S. and Staveland, L., Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical
Research, in Human Mental Workload, P. Hancock and N. Meshkati, Eds. Amsterdam: North Holland B.V, 1988, pp.
139-183

9. Jameson, D. H., Sonnet: Audio-Enhanced Monitoring and Debugging, in Auditory Display, vol. XVIII, Santa Fe
Institute, Studies in the Sciences of Complexity Proceedings, G. Kramer, Ed. Reading, MA: Addison-Wesley, 1994, pp.
253-265

10. Meehan, D., Knowledge-Based Advising in the Domain of Scientific Programming, Ph.D. Thesis, University of
Liverpool, 1993.

11. Meehan, D., Leonard, J. and Schonfelder, J. L., An Intelligent FORTRAN Adviser for Postgraduates and Researchers, in
Proc. CALISCE 91 International Conference on Computer Aided Learning and Instruction in Science and Engineering
(Lausanne, Switzerland, 1991), pp. 409-415

12. Nanja, M. and Cook, C. R., An Analysis of the On-Line Debugging Process, in Proc. 2nd Workshop on Empirical
Studies of Programmers (1987), pp. 172-184

13. NASA Human Performance Research Group, “Task Load Index (NASA TLX) v1.0 computerised version,” : NASA
Ames Research Centre, 1987.

14. Pressman, R. S., Software Engineering: A Practitioner's Approach, 3 ed. London: McGraw-Hill, 1992.

15. Rimmer, A., Pardoe, J. and Vickers, P., Interactive Program Assessment Using SPROUT, in Proc. 3rd Annual
Conference on the Teaching of Computing (Dublin, Ireland, 1995), CTI/Dublin City University, pp. 285-294

16. Vickers, P., CAITLIN: Implementation of a Musical Program Auralisation System to Study the Effects on Debugging
Tasks as Performed by Novice Pascal Programmers, Ph.D. Thesis, Loughborough University, 1999.

17. Vickers, P. and Alty, J. L., CAITLIN: A Musical Program Auralisation Tool to Assist Novice Programmers with
Debugging, in Proc. Third International Conference on Auditory Display (Palo Alto, Nov 4-6, 1996), Xerox PARC, Palo
Alto, CA 94304, pp. 17-24

18. Vickers, P. and Alty, J. L., Towards some Organising Principles for Musical Program Auralisation, in Proc. ICAD '98
International Conference on Auditory Display (Glasgow, 1-4 November, 1998), British Computer Society

