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ABSTRACT

Magnetic flux in the solar photosphere forms concentrations from small scales, such as flux
elements, to large scales, such as sunspots. This paper presents a study of the decay process of
large magnetic flux tubes, such as sunspots, on a supergranular scale. 3D nonlinear resistive mag-
netohydrodynamic numerical simulations are performed in a cylindrical domain, initialised with
axisymmetric solutions that consist of a well-defined central flux tube and an annular convection
cell surrounding it. As the nonlinear convection evolves, the annular cell breaks up into many
cells in the azimuthal direction, allowing magnetic flux to slip between cells away from the central
flux tube (turbulent erosion). This lowers magnetic pressure in the central tube and convection
grows inside the tube, possibly becoming strong enough to push the tube apart. A remnant of
the central flux tube persists with nonsymmetric perturbations caused by the convection sur-
rounding it. Secondary flux concentrations form between convection cells away from the central
tube. Tube decay is dependent on the convection around the tube. Convection cells forming
inside the tube as time-dependent outflows will remove magnetic flux. (This is most pronounced
for small tubes). Flux is added to the tube when flux caught in the surrounding convection is
pushed toward it. The tube persists when convection inside the tube is sufficiently suppressed by
the remaining magnetic field. All examples of persistent tubes have the same effective magnetic
field strength, consistent with the observation that pores and sunspot umbrae all have roughly
the same magnetic field strength.

Subject headings: convection — magnetohydrodynamics (MHD) — Sun: interior — Sun: surface mag-
netism — sunspots

.
The Astrophysical Journal, 731:108 (12pp), 2011;
doi:10.1088/0004-637X/731/2/108

1. Introduction

The appearance of magnetic field on the visible
surface of the Sun ranges through many length
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scales. Magnetic elements surface in the photo-
sphere and are convected to the edges of the con-
vection cells or granules. These elements have a
diameter of up to approximately 100 km, a field
strength of 1.5 kG and a lifetime of a few minutes
(Bello González et al. 2009; Zhang et al. 1998; de
Wijn et al. 2009). Where flux elements congre-
gate, as at the boundaries of granules and super-
granules, pores form that have diameters between
2 and 4 Mm and field strengths of approximately 2
kG (Bray & Loughhead 1964; Zwaan 1992). These
pores have lifetimes of typically less than a day
(Keppens 2001). As magnetic flux accumulates in
a pore, it can grow large enough to form a sunspot
with a penumbra. Sunspots can be up to 50 Mm
in diameter and have life times of a few hours to
several weeks. When a sunspot disintegrates, its
flux remnants are convected to the polar regions
where they are observed as polar elements with di-
ameters of approximately 300 km, field strengths
of above 1 kG and lifetimes from several hours to
days (Tsuneta et al. 2008; de Wijn et al. 2009).
Excellent reviews on all aspects of sunspots are by
Solanki (2003) and Thomas & Weiss (2004).

Sunspot decay is often expressed in terms of
the temporal evolution of sunspot area. A lin-
ear decay rate indicates diffusive processes, while
a quadratic decay rate points to erosion of the
sunspot by the surrounding convection. Hathaway
& Choudhary (2008) looked at the decay rate of
sunspot groups and from this calculated the decay
rate per individual sunspot. They found that, on
average, each sunspot decayed at a rate indepen-
dent of the area of the spot, i.e. a diffusive pro-
cess. In contrast, Petrovay & Van Driel-Gesztelyi
(1997) looked at individual sunspots and found a
parabolic decay rate suggesting erosion by the tur-
bulent convection surrounding the spot. Obser-
vations of the outer penumbral boundary shows
fluctuations around an average position, indicat-
ing an interplay between convective motion and
the sunspot’s magnetic field (Kubo et al. 2008).

A reasonable approximation for the structure of
a pore is a cylindrical magnetic flux tube with in-
flowing convection surrounding it. Observations of
the Sun show patches of strong downflows around
the flux concentrations (Hirzberger 2003; Rimmele
2004; Stangl & Hirzberger 2005). Around the
edge of pores hair-like striations have been ob-
served with an azimuthal wavelength smaller than

the surrounding granular convection (Scharmer et
al. 2002; Berger et al. 2004). These striations
are believed to be magnetoconvective downflow
lanes. Needle-like structures have been observed
surrounding pores with an internal flow towards
the pore and a downflow at the end near the
flux concentration (Sankarasubramanian & Rim-
mele 2003). A pore growing in size due to accu-
mulated flux may evolve a rudimentary penum-
bral structure. This proto-penumbra is transitory
in nature and may oscillate between penumbral-
like filaments and elongated granules (Dorotovič
et al. 2002), decay (Sobotka et al. 1999) or evolve
into a fully developed sunspot penumbra (Kep-
pens & Mart́ınez Pillet 1996). The formation of
a fully formed penumbra around sunspots is usu-
ally abrupt, with a sudden change of the magnetic
field direction from vertical to inclined (Rucklidge
et al. 1995; Yang et al. 2003).

Unlike the flow surrounding pores, a sunspot
is surrounded by a moat cell that consists of a
surface flow that are flowing predominantly away
from the sunspot. The moat flow sometimes ex-
hibits azimuthal structure, with spoke-like lanes of
converging flow which have a higher average con-
centration of outwardly moving magnetic features
(Shine & Title 2001; Hagenaar & Shine 2005).
Hurlburt & Rucklidge (2000) found in a numer-
ical study of idealised axisymmetric flux tubes in
cylinders that a steady collar flow with converging
flow at the top of the convection cell is always es-
tablished around the flux tube. Following Parker’s
hypothesis (Parker 1979) that a sunspot is a clus-
ter of flux tubes held together by a collar flow,
they speculated that sunspots must also have a
collar flow. The well-known annular ring of inward
moving penumbral grains surrounding a sunspot
umbra (Thomas & Weiss 2004) may be explained
by three different mechanisms: the first is the
emergence of flux tubes through the photosphere
(Schlichenmaier et al. 1998); the second by moving
patterns caused by granular magnetoconvection in
an oblique magnetic field (Hurlburt et al. 1996);
and thirdly the presence of a collar flow around
the umbra. Observations that the inward radial
movement survives the breakup of the penumbra
in a decaying sunspot while the umbra stays intact
(Deng et al. 2007) support the presence of a collar
flow. Helioseismic measurements also support the
concept of a collar flow that ensures the integrity
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of the umbral flux tube (Gizon & Birch 2005; Tong
2005; Zhao et al. 2010). Measurements of p-modes
show that underneath the Evershed flow in the
penumbra, there exist a converging flow as well
as a downflow up to a depth of approximately 3
Mm. Below these flows there is an outflow that ex-
tends to more than 30 Mm from the sunspot axis.
However, this result is ambiguous because the flow
does not appear in f-mode measurements, which
give only an outflow to a depth of at least 10 Mm
that corresponds to the moat flow on the surface
(Gizon & Birch 2005). In addition to this, Moradi
et al. (2010) have shown that different methods of
helioseismology give different flow patterns in the
subsurface of a sunspot. As a result, the interac-
tion of solar acoustic waves with strong magnetic
flux concentrations is actively studied through ob-
servations (Braun & Birch 2008), numerical simu-
lations (Shelyag et al. 2009; Parchevsky & Koso-
vichev 2009) and analytical investigations (Gor-
dovskyy et al. 2009; Jain et al. 2009).

Numerical simulations of magnetoconvection in
the upper layer of the solar convection zone follow
two complementary strategies. The first is to in-
clude as many physical processes as are practical
given the numerical constraints. Ionisation, radia-
tive energy transfer and a numerical domain that
typically stretches from the temperature minimum
in the chromosphere down to a few Mm beneath
the visible surface of the Sun have been included
in models of three-dimensional (3D) granulation
in the quiet Sun (Stein & Nordlund 2006), two-
dimensional (2D) flux sheets in an initially unmag-
netised, stratified, convecting atmosphere heated
from below (Leka & Steiner 2001), 3D pores sur-
rounded by granulation (Cameron et al. 2007),
flux emergence of a semi-toroidal loop introduced
into a purely hydrodynamic background in statis-
tical equilibrium (Cheung et al. 2010), as well as
3D sunspot umbrae with their penumbrae embed-
ded in the surrounding granulation (Rempel et al.
2009a,b). The second strategic approach to nu-
merical simulations, which is the one we follow in
this paper, is to simplify the physics and explore
magnetoconvection in this parameter space. As
such, our upper domain boundary is 0.5 Mm be-
low the visible surface of the Sun. This allows us
to consider the interplay between magnetic field
and convection without the complications of sharp
gradients due to the stratification. It also means

that we cannot say anything about penumbral for-
mation.

The results presented in this paper is a general-
isation to three dimensions of 2D (axisymmetric)
nonlinear magnetoconvection (Hurlburt & Ruck-
lidge 2000). The axisymmetric results are char-
acterised by a magnetic flux tube at the central
axis, with uniform temperature and magnetic field
strength inside the tube. Around the flux tube
convection cells form concentric rings with the in-
ner ring converging onto the flux tube at the top
of the domain, forming a collar flow around the
flux tube. The magnetic flux bundle and the con-
vection rings around it are essentially time inde-
pendent. The larger the radii of the cylindrical nu-
merical domain, the more counter-rotating convec-
tion rings form around the central flux bundle. By
decreasing the aspect ratio of the cylindrical nu-
merical domain, time dependence was introduced
(Botha et al. 2006). For intermediate radii, a small
convection ring forming the collar flow establishes
itself around the top of the flux bundle, with a
dominating counterflow at its outside border. The
collar flow is periodically destroyed by the coun-
terflow and reforms. During this process the mag-
netic field expands radially in the absence of the
collar flow and is pushed back into a tight flux
bundle on the central axis upon the reformation
of the collar flow. Botha et al. (2008) showed that
when the numerical domain is rotated, a Rankine
vortex forms: the magnetic flux tube rotates as a
rigid body while sheared azimuthal flow (i.e. a free
vortex) forms in the surrounding convection cells.

In this paper the robustness of a magnetic flux
tube surrounded by 3D nonsymmetric convection
is presented. It is shown that a remnant of the
original flux tube persists in spite of these non-
symmetric perturbations, with secondary flux con-
centrations forming around the remnant. The
secondary concentrations form due to magnetic
flux escaping from the central flux bundle, and
their strength depends on an interplay between
the strength of the magnetic field in the simu-
lation and the vigour of the convection. In the
simulations we have used magnetic field strengths
of Q = 32, 100 and 250, where Q is the Chan-
drasekhar number. The numerical domain is a
cylindrical wedge with an aspect ratio of 3.

This study of 3D nonlinear convection was pre-
ceded by initialising the numerical simulations
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with a time independent (nonlinear) 2D solution
and perturbing the plasma in the azimuthal di-
rection (Botha et al. 2007). The linear evolution
of these perturbations showed that steady and os-
cillating instabilities with a preferred azimuthal
number formed in the convecting flow close to the
outer edge of the flux tube. A concise summary
and expansion of these results are given in Section
4 before the discussion moves on to the nonlinear
magnetoconvection results that form the bulk of
this paper.

The paper first discusses the model in the next
section, and then describes the design of the nu-
merical experiments and their initialisation (Sec-
tion 3). The evolution of the linear azimuthal
modes is summarised in Section 4, before the non-
linear results are presented in Section 5. In the
discussion we consider the influence of an increas-
ing Chandrasekhar number (Q) on the results, as
well as the effect of the azimuthal width of the
numerical domain (Section 5.1). The paper con-
cludes with a discussion and short summary of the
results (Sections 6 and 7).

2. Model

The initial temperature and density profiles in
the vertical (z) direction are given by the poly-
trope

T = T0(1 + θz), (1)

ρ = ρ0(1 + θz)m, (2)

with the 0 subscript defining the quantity at the
top of the box (z = 0), θ is the initial tempera-
ture gradient, and m is the polytropic index. The
equations for fully compressible, nonlinear three-
dimensional (3D) magnetoconvection are

∂ρ

∂t
= −∇ · (vρ) (3)

∂v

∂t
= −v · ∇v + θ(m+ 1)ẑ +

σζ0K
2Q

ρ
j×B

− 1

ρ
∇P +

σK

ρ

(
∇2v +

1

3
∇∇ · v

)
(4)

∂T

∂t
= −v · ∇T − (γ − 1)T∇ · v

+
γK

ρ
∇2T +

ζ0
ρ

∣∣∣ j ∣∣∣2 (5)

∂B

∂t
= ∇× (v ×B) + ζ0K∇2B−∇ψ (6)

with the auxiliary equations

P = ρT, j = ∇×B. (7)

The variable ψ is introduced to enforce the condi-
tion ∇·B = 0 (Dedner et al. 2002), and it evolves
through

∂ψ

∂t
= −c2h∇ ·B−

c2h
c2p
ψ, (8)

where ch and cp are constants. We use the follow-
ing notation: γ the ratio of specific heats; σ the
Prandtl number; ζ0 the magnetic diffusivity ratio
at z = 0; and Q is the Chandrasekhar number
defined as

Q =
(Bd)2

µρην
, (9)

where B is the magnetic field, d is the depth of
the domain, µ the magnetic permeability, η the
magnetic diffusivity and ν the kinematic viscosity.
The dimensionless thermal conductivity K is re-
lated to the Rayleigh number R in the following
way:

R = θ2(m+1)

[
1− (m+ 1)(γ − 1)

γ

]
(1 + θ/2)2m−1

σK2

(10)
R is a measure of the importance of buoyancy
forces compared to viscous forces in the middle of
the layer. All the other symbols have their usual
meaning. The physical quantities are dimension-
less, with the length scaled proportional to the
depth of the numerical domain, velocities scaled
proportional to the sound speed at the top of the
domain and temperature, magnetic field, density,
and pressure all scaled proportional to their ini-
tial values at the top of the numerical domain, so
T0 = 1 and ρ0 = 1.

The numerical implementation of the model
was developed specifically for these types of calcu-
lations (Hurlburt & Rucklidge 2000). The cylin-
drical grid is in the shape of a wedge with dimen-
sions

0 ≤ r ≤ Γ, 0 ≤ φ ≤ 2π/Mφ, 0 ≤ z ≤ 1, (11)

with z = 0 at the top of the domain. Sixth-
order compact finite differencing is used in the
vertical (r, z) plane and the domain has a spec-
tral azimuthal (φ) direction. The level of dealias-
ing is increased toward the central axis to main-
tain grid uniformity. For time evolution we use a
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fourth-order modified (explicit) Bulirsch-Stoer in-
tegration technique. The number of grid points in
the radial direction is typically 64× Γ, in the ver-
tical direction 64, and in the azimuthal direction
between 64 and 512.

The boundary condition in the azimuthal di-
rection is periodic. At the central axis we im-
pose regularity conditions and the domain has a
slippery, perfectly conducting, thermally insulat-
ing outer wall. The way that we impose on-axis
regularity conditions constrains the value of Mφ

to be at least 4. Both the top and bottom bound-
aries are impenetrable, with a vertical magnetic
field and with their respective temperatures fixed.
The boundaries are described in detail in Botha et
al. (2006).

3. Initialisation and design of numerical
experiments

All the numerical results in the paper were ob-
tained with the following parameter values: R =
105, σ = 1, ζ0 = 0.2, θ = 10, γ = 5/3 and
m = 1.495. The values of the Chandrasekhar
number Q and the azimuthal width Mφ were var-
ied and will be reported throughout the paper.
These physical parameter values were chosen to
describe the solar convection zone from a depth
of approximately 0.5 Mm below the visible sur-
face of the Sun to a depth of approximately 6 Mm
(Botha et al. 2006). The numerical domain is a
cylindrical wedge of one unit deep and a radius
of Γ = 3, so that the simulations are on a super-
granular scale. It is worth pointing out that the
value of the Prandtl number used here is much
larger than the value of σ in the upper layer of
the solar convection zone. In axisymmetric simu-
lations we have used σ = 1 and σ = 0.3 (Botha et
al. 2008). The result was the same qualitatively,
displaying more vigorous convection in the case
of lower σ. The same was found for the 3D nu-
merical simulations presented in this paper. The
stronger convection forced smaller time steps and
denser numerical grids, so that we used σ = 1 for
expediency in all the results presented here.

The three-dimensional simulations are ini-
tialised with an axisymmetric, or two-dimensional,
solution as shown in Figure 1. It consists of a well
defined flux tube at the central axis with a convec-
tion cell around it, forming an annular collar flow

that contains the magnetic flux at the central axis.
This solution was obtained by starting 2D simula-
tions with a uniform field and a velocity perturba-
tion. Galloway, Proctor & Weiss (1978) showed
that for an incompressible Boussinesq fluid with
vertical top and bottom magnetic boundaries, the
magnetic flux is concentrated almost entirely at
the central axis. Previous numerical results show
that this is also true for compressible fluids, with
the width of the numerical box determining the
number of convection cells forming around the
flux bundle (Hurlburt & Rucklidge 2000). We
have taken care to allow only one convection cell
to form, by adapting the value of Q to the size
of the domain. The stronger magnetic field in the
case of higher Q values causes a wider flux bundle
to form at the centre, in this way allowing us to
regulate the remaining space in which convection
forms.

The linear phase of the 3D simulations were
started by perturbing the vertical component of
the velocity in the azimuthal direction. The per-
turbation took the form of a cosine wave with
wavelength equal to the azimuthal width of the
numerical domain. By changing the width of the
wedge, we were able to measure the growth rates of
different wavelengths (Botha et al. 2007). The so-
lution with the largest linear growth-rate was then
chosen to continue into the nonlinear regime. In
order to test the robustness of the nonlinear results
obtained in this manner, we also initialised 3D
simulations with a uniform vertical magnetic field.
Flux separation occurred and eventually these re-
sults were indistinguishable from the nonlinear re-
sults obtained as described above.

4. Linear azimuthal evolution

In the linear phase the solution forms a static
axisymmetric standing wave inside the magnetic
flux tube, and one annular convection cell around
the tube, as shown in Figure 2(a). The density
profile of the solution is hardly perturbed from the
polytrope, because the atmosphere is close to adia-
batic, i.e. m is close to 1/(γ−1). In order to obtain
the location of the linear eigenmodes, we take the
azimuthal perturbation of the physical quantities,
as shown in Figure 2(b). This shows that the lin-
ear modes are situated at the edge of the magnetic
flux tube. The azimuthal size of the linear modes
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is related to the size of the magnetic flux tube.
Figure 3 shows that for small tube radii the linear
azimuthal lengths are short. As the tube radius in-
creases, its influence on the azimuthal length scale
decreases. The result is a well-defined length scale
in the limit of large radii. This is a geometric ef-
fect, with the azimuthal length of the local linear
mode dependent on the curvature of the tube ra-
dius that it samples.

Botha et al. (2007) determined that the eigen-
functions of the linear modes forming around the
magnetic flux tubes are convective in nature. As
in that paper, we found linear modes with steady
growth and modes with oscillating growth, with
the steadily growing modes occurring at low val-
ues of Mφ.

5. Nonlinear azimuthal evolution

As the solution evolves from the linear into
the nonlinear regime, the annular convection cell
around the magnetic flux tube breaks up into
many cells. The absence of a uniform collar flow
allows the magnetic field to expand into the areas
between the convection cells, which in turn lowers
the magnetic field strength near the central axis
(r = 0). Lower magnetic strength inside the flux
tube means that low levels of convection are al-
lowed to form, the maximum amplitude of which
depends on the magnetic field strength in the nu-
merical domain.

For Q = 32 the axisymmetric initial condition
is a narrow vertical flux tube at the central axis.
In this case a slight increase in tube radius al-
lows for a relatively large decrease in magnetic
field strength. It follows that after a small amount
of magnetic field has moved between the convec-
tion cells surrounding the central flux tube, con-
vection forms inside the tube that grows and be-
comes strong enough to break it up. The end re-
sult is magnetic flux between the convection cells
with only a flux tube remnant at the central axis.
This final state is shown in Figure 4 at a time
when the nonlinear magnetoconvection is well es-
tablished.

In the case of Q = 100, the axisymmetric ini-
tial condition consists of a central magnetic flux
tube that is wider than the case for Q = 32. As
soon as the annular convection cell around the flux
tube starts to break into many cells, magnetic flux

moves between the cells radially away from the
central axis. The relative change in the magnetic
field at the central axis is less than for Q = 32 and
weaker convection forms inside the flux tube. As
a consequence, it takes longer for the convection
to erode the magnetic field away from the central
axis. Eventually a steady nonlinear state forms
with magnetic flux between the convection cells
and with a reduced central magnetic flux tube.
Figure 5 shows the result for Q = 100. As the
solution evolves through time, the magnetic flux
is pushed around by the convection. In particu-
lar, the flux forming the central tube is buffeted
by strong irregular convection. This leads to the
central flux tube changing shape, with radial ten-
drils forming temporarily between the convection
cells surrounding the flux tube. Figure 6 shows
radial tendrils forming between strong convection
cells that have their genesis just inside the edge
of the flux tube. At time 673.59 the convection
cells have grown strong enough to separate flux
from the central flux tube and push flux into ra-
dial tendrils between them.

Figure 7 shows the result for Q = 250 when the
nonlinear magnetoconvection is well established.
Compared to the axisymmetric initial condition,
the radius of the magnetic flux tube is only slightly
larger when nonlinear magnetoconvection is estab-
lished. This means the weak convection forming
inside the flux tube is not strong enough to push
magnetic flux away from the central axis. The
edge of the magnetic flux tube is buffeted by the
convection around it, as in the case for Q = 100,
but fewer radial tendrils form between the convec-
tion cells and those that do form are weaker than
in the case when Q = 100. In order to see the
same breakup of the magnetic tube as for Q = 32,
one has to enlarge the radius of the numerical do-
main (Γ) so that the magnetic flux has more room
to disperse between the convection cells and in the
process lowers the magnetic field strength at the
central axis.

A quantitative measure of the breakup of the
central magnetic flux tube is provided by defining
the radial profile of the magnetic field as

|B̄(r)| = 1

nz.nφ

nz∑ nφ∑√
B2
r +B2

φ +B2
z , (12)

where nz and nφ are the number of data points in
the vertical and azimuthal directions respectively.
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This gives an indication of the size of the magnetic
field in the radial direction, i.e. the magnetisation
of the plasma as a function of the radius. The
magnetic field |B̄| = |B̄(r)| is then multiplied by
a factor of

√
Q in order to facilitate comparison of

the magnetic field strength between the different
sets of parameter values. Figures 4(d), 5(d) and
7(d) give the radial profiles of

√
Q|B̄| for Q = 32,

Q = 100 and Q = 250 respectively at different
times during the numerical simulations. All of
them show a well-defined magnetic flux tube at
the central axis at the axisymmetric initial con-
dition. The annular ring around the central flux
tube breaks up into many cells in the azimuthal
direction for all values of Q. In the case of Q = 32
and Q = 100, two concentric circles of cells form
around the magnetic flux tube. These cells have
an upflow next to the inner flux tube as well as
next to the outer boundary (Figures 4 and 5).
This convection pattern allows magnetic flux to
move between the cells in the radial direction and
to be captured between the cells at a radial posi-
tion of approximately r = 1.7. The value of the
magnetic field at these positions are similar for
Q = 32 and Q = 100, as shown in Figures 4(d)
and 5(d). These figures also show the relatively
large decrease of magnetic field at the central axis
for Q = 32 and the lesser decrease for Q = 100.
In the case of Q = 250 only one ring of convection
cells forms around the magnetic flux tube, flow-
ing toward the magnetic flux bundle at the top
of the domain (Figure 7). Figure 7(d) shows that
the magnetic flux tube radius increases slightly,
as only a small amount of flux moves between the
convection cells. The magnetic field inside the flux
tube decreases less than in the case for Q = 100, so
that weaker convection forms inside the flux tube
and the tube stays intact throughout the simula-
tion run.

Where strong flows carve into the central mag-
netic tube, the magnetic field is pushed together
and the field strength experiences a local peak
value. This can be seen in Figure 7(a) for Q = 250.
At the edge of the flux tube, indentations into
the tube is caused by strong convection pushing
against the side of the tube. The magnetic field is
also stronger at these indentations than at the pro-
trusions between them, where the magnetic field
pushes into weaker convection flows.

The interplay between the central magnetic flux

tube and the convection surrounding it can be
seen in Figure 8, where the time evolution of
|B̄| = |B̄(r)| is shown for the different values of
Q. Figure 8(a) shows that for Q = 32 at time
600, the convection inside the magnetic flux tube
becomes strong enough to push a significant part
of the magnetic flux away from the central axis.
In contrast, Q = 250 in Figure 8(c) has a mag-
netic field that is strong enough to keep the mag-
netic flux tube intact, in spite of weak convection
that forms inside the flux tube. In the case of
Q = 100, Figure 8(b) shows that weak convec-
tion starts at time 550. Eventually the convection
grows strong enough to push magnetic flux away
from the central flux tube, so that at time 1000
the nonlinear magnetoconvection with Q = 32 and
with Q = 100 look similar.

The magnetic flux that escapes from the central
flux tube tends to congregate at strong downflows
between convection cells where the convection is
converging. In the region where the convection
dominates, this is between the convection cells
where strong downflows occur. Figure 9 shows
the region of convection in green, and the loca-
tions of strong magnetic field in blue. One clearly
observes the magnetic flux remnant at the central
axis through the absence of convection as well as
the magnetic field concentrated there. The down-
ward plumes in the convection can be seen with
their associated strong magnetic field concentra-
tions. It is noticeable that the magnetic field
strength in the plumes is maximum in the top half
of the numerical domain, while the downward ve-
locities reaches their maximum in the bottom half
of the domain. The chaotic convection near the
bottom boundary in Figure 9 is a consequence of
our impenetrable boundary condition and is not
relevant to the current discussion. Where the mag-
netic field peaks, either at the central axis or in the
downward plumes, an azimuthal current forms a
ring around the magnetic field concentration. This
is shown in the vertical planes of Figures 4, 5 and
7 for all values of Q.

Figure 10 shows the close relation between the
convection and the temperature in the solution.
Everywhere an upflow occurs, the plasma is hot
relative to the surrounding temperature. As a re-
sult, the temperature perturbation on every plane
shows clearly the forms of the convection cells, as
can be seen in the top part of the numerical do-
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main. In the case of Q = 100, the upflow created
by the two concentric rings of convection cells is
observable in Figure 10 next to the magnetic flux
tube as well as next to the outer boundary. At
the plumes between convection cells where strong
downflow occurs, the plasma is cool relative to
the surrounding temperature. Figure 10 shows
the downflows together with their associated lower
temperature near the bottom of the domain.

In previous axisymmetric simulations of a cen-
tral flux tube surrounded by convection, an annu-
lar cell flowing towards the flux tube at the top of
the numerical domain was always present to keep
the flux tube intact (Hurlburt & Rucklidge 2000).
In the absence of this collar flow the magnetic flux
tube spread out radially until the collar flow was
restored (Botha et al. 2006). We observe the same
phenomenon in three dimensions. Figure 7 shows
one inward flowing collar cell that keeps the mag-
netic flux tube confined to the central axis, with
very little magnetic field present in the convection.
In contrast, the outward flowing cells of Q = 32
and Q = 100 in Figures 4 and 5 allow magnetic
flux to escape from the flux tube. It is interest-
ing that the flux tube is not completely destroyed
in these cases. A remnant of the tube is left at
the central axis, which becomes more prominent
as the value of Q increases.

The Alfvén speed in the model is defined as
c2A = σζ0K

2QB2/ρ. Figure 9 shows that the high-
est values of the magnetic field occurs at the top
of the downflows. This is true for both Q = 32
(Figure 4) and Q = 100 (Figures 5 and 9). Conse-
quently these are also the locations for the highest
values of cA in the numerical domain, since the
density increases as one moves downwards.

5.1. Effect of wedge width

The effect of the wedge width on the nonlinear
results is investigated by doubling the azimuthal
angle of the numerical domain from Mφ = 8 to
Mφ = 4 and then continuing the simulation run.
Figure 11 shows the result for Q = 32. In this
case the convection cells merge from two concen-
tric circles, each with eight cells in the azimuthal
direction, to one concentric circle consisting of four
cells in the azimuthal direction. Figure 12 shows
how initially part of the magnetic field is trapped
between the convection cells, which then moves
towards the central axis as the convection pat-

tern changes from two concentric circles to one.
Three instances from Figure 12 are plotted in Fig-
ure 11(d), with the final state showing that most
of the magnetic field are being pushed towards the
central axis.

The initial state of this simulation is similar
to that depicted in Figure 4. Here the convec-
tion forms two concentric circles of eight cells each
in the azimuthal direction, with orientation such
that the inner radial cells flow radially outward
and the outer cells radially inward at the top of
the domain, as can be seen in Figures 4(b) and
(c). During the simulation the inner cells become
weaker while the outer cells grow stronger (Figure
12). The final state in the wider wedge is shown in
Figure 11. Figure 11(c) shows the large convection
cells that formed, with strong flow moving inward
at the top of the domain. Figure 11(b) shows a
region on the boundary between the large convec-
tion cells. Here one finds weaker convection and
a magnetic field that is pushed between the two
cells away from the central axis, so that the width
of the central flux tube is larger here than at posi-
tions where the strong convection forces the mag-
netic flux against the central axis. This is clearly
visible in Figures 11(a), (b) and (c).

For Q = 100 and Q = 250 the number of cells in
the radial and azimuthal directions stays the same
when the numerical domain is widened. Figure 13
shows the simulation result when Q = 250. This
behaviour can be explained by considering the ge-
ometry of the solution. A convection cell natu-
rally wants to maintain a shape where its radial
size is approximately the same as its azimuthal
size. For low values of Q, the magnetic flux tube
has a small radius and the numerical domain con-
taining the convection a large one. In a narrower
wedge, as in Figure 4 for Q = 32 and Mφ = 8, the
size of convection cells is limited by constraints
in the azimuthal direction. This means that two
cells form in the radial direction, each of which has
approximately the same radial diameter as its az-
imuthal diameter. By doubling the wedge width,
as in Figure 11, this constraint is lifted so that the
azimuthal width becomes approximately the same
as the radial width of the convective area in the
numerical domain. Consequently one cell forms
that fit into the radial as well as the azimuthal
directions. For Q = 250 the magnetic flux tube
fills half the radius of the domain, while the other
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half contains the convection (Figure 13). In this
case the radial width of one convection cell fits
eight times into one full azimuthal rotation. As a
consequence, doubling the width of the numerical
domain has no effect on the number of cells form-
ing around the magnetic flux bundle. We conclude
that as long as the radial width of the convection
area (rc) is smaller or of equal size to the azimuthal
width of the numerical domain, i.e.

rc ≤
2πrp
Mφ

, (13)

where rp is the radius of the magnetic flux tube,
then the width of the domain will not restrict the
formation of cells in the convection around the flux
tube.

6. Discussion

This paper can be thought of as an exploration
of two physical processes: flux separation and tur-
bulent erosion. Flux separation occurs when tur-
bulent eddies expel magnetic flux to their bor-
ders where the flux concentration builds up (Weiss
1966), while turbulent erosion is the process when
convection cells push against magnetic flux con-
centrations and allow the flux to escape between
them away from the area of high concentration
(Simon & Leighton 1964).

The 2D axisymmetric solutions used as initial
conditions for the 3D numerical simulations pre-
sented here, have a well-defined magnetic flux tube
at the central axis with an annular convection cell
around it (Figure 1). Irrespective of the radius
of the domain, i.e. the number of counter-rotating
convection cells that fit into the domain, almost
all the magnetic flux in the solution gathers at the
central flux bundle (Hurlburt & Rucklidge 2000).
This final state is maintained indefinitely.

The initial magnetic flux bundles have radii
that increase with increasing values of Q. The
dimensional values for these radii are 4.75 Mm for
Q = 32, 6.22 Mm for Q = 100 and 7.86 Mm
for Q = 250. The dimensional magnetic field
strength can in principle be calculated from the
Chandrasekhar number as defined in (9), but the
measurement of µ, η and ν are uncertain in the
convection zone. Alternatively, one can compare
the effective magnetic field strength as given by√
Q|B̄|, with |B̄| defined in (12). Figures 4(d),

5(d) and 7(d) show that the value of the effec-
tive magnetic field strength, once the flux tube
has settled down, are similar (about 40), irrespec-
tive of the Q value. Furthermore, the value of√
Q|B̄| stays reasonably constant for the width of

each magnetic flux bundle, as was shown by Hurl-
burt & Rucklidge (2000). This relatively homoge-
neous umbral magnetic field is a typical feature of
sunspots (Solanki 2003).

As soon as a third dimension is introduced to
the axisymmetric solution, the annular convection
cell breaks up in the azimuthal direction into con-
vection cells that have approximately equal radial
and azimuthal diameters (Figures 4, 5 and 7). The
dimensions of the convection cells were discussed
in Section 5.1. The convection cells that push
against the central magnetic flux tube push some
of the magnetic flux between them, which reduces
the magnetic pressure inside the flux tube. This
allows weak magnetoconvection cells to form in-
side the tube, which can grow strong enough to
break the flux tube up through flux separation
(Figure 8). A remnant of the original flux tube
remains at the central axis, while the rest of the
magnetic flux is captured between the convection
cells in the numerical domain.

Most of the magnetic flux between cells gather
at the locations of the strongest downflows (Fig-
ure 9). These downflowing plumes are well known
from Cartesian simulations of magnetoconvection
(Cattaneo et al. 2003). They exhibit strong mag-
netic flux concentrations in the top layers of the
numerical domain. The velocity increases as the
flow moves downward along the plume. The mag-
netic flux gathering at these locations are not
strong enough to influence the convection pattern
around them. As a result, the flux concentrations
are easily manipulated and destroyed by the con-
vection surrounding them, similar to the final de-
struction of solar pores as observed by Sobotka et
al. (1999).

The central magnetic flux bundle is weakened
by flux slipping away from it between the con-
vection cells that exist around the flux bundle.
This process is highly dynamic, with temporary
radial tendrils forming between the cells, to be de-
stroyed again when the magnetoconvection pushes
them back to the central axis. Petrovay & Moreno-
Insertis (1997) solved the 2D axisymmetric diffu-
sion equation with a diffusivity dependent on the
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magnetic field, to show that a magnetic flux tube
decays from its outer edge to its centre, in the pro-
cess forming a sharp gradient at its edge. They
also found that a fraction of the magnetic flux
tube always remains. This idealised result will be
true when small convection cells surround a large
magnetic flux bundle. In the results we presented
in this paper, eight convection cells (Figure 4) as
well as four convection cells (Figure 11) leave a
flux bundle remnant at the central axis, provided
that the radius of the numerical domain is small
in order to limit the amount of convection cells
forming.

Unlike the idealised diffusion result of Petrovay
& Moreno-Insertis (1997), the decay of the central
flux bundle is not a steady process, but highly de-
pendent on the nonlinear magnetoconvection sur-
rounding the flux bundle. As convection cells form
inside the magnetic flux bundle, they push the flux
away from the central axis (Figure 8). The oppo-
site process occurs when convection cells are de-
stroyed next to the central flux bundle. In this
case the magnetic flux that was captured between
the cells is pushed towards the central axis, thus
increasing the radius of the magnetic flux bun-
dle (Figure 12). Thus the decay of the central
magnetic flux tube is dominated by magnetocon-
vection (Figure 8) and we cannot fit a linear or
parabolic decay rate to these numerical results.
Another possible influence of the convection on the
magnetic structure occurs when weak convection
forms inside the magnetic flux bundle. If the con-
vection is too weak to destroy the integrity of the
flux bundle, it only increases the diameter of the
flux bundle slightly, as shown in Figure 8(c).

All the simulations were done in a numerical
domain in the shape of a cylindrical wedge. The
axis of the domain fixed the centre so that trans-
lation of the flux tube as a whole is impossible,
and the axis is a natural location for magnetic
field to concentrate. These are the main differ-
ences from performing the calculations in a Carte-
sian domain. Different wedge widths, Mφ = 8
in Figures 4, 5 and 7 and Mφ = 4 in Figures 11
and 13, show that the sizes of the convection cells
around the magnetic flux tube are determined by
the distance between the edge of the flux tube and
the outer boundary. Provided that the azimuthal
width is large enough to accommodate a convec-
tion cell that fits into this radial length, the cylin-

drical wedge gives similar answers to a Cartesian
domain.

7. Conclusion

This paper presents numerical simulations of
magnetic flux tubes in a 3D cylindrical domain,
solving the nonlinear resistive magnetohydrody-
namic equations. The simulations were initialised
with an axisymmetric (2D) solution consisting of
a central magnetic flux tube and one annular con-
vection cell around it. The solution was then per-
turbed with an azimuthal velocity perturbation.

Linear modes form in the azimuthal direction,
situated on the border between the central flux
tube and the convection cell. During the linear
stage of the developing azimuthal perturbation,
the wavelength of the fastest growing mode de-
pends on the radius of the central magnetic flux
tube. For small tube radii the wavelength is small,
while it increases as the tube radius increases.
However, the dependence of the mode length on
the tube radius decreases as the tube radius in-
creases, so that there exist a well-defined length
scale in the limit of large radii.

When the nonlinear three-dimensional convec-
tion develops, the annular cell breaks up into many
cells. Magnetic flux slips between the cells away
from the central flux tube. This process is known
as turbulent erosion. The magnetic pressure in the
central tube becomes less and convection grows in-
side the flux tube that can become strong enough
to push the tube apart. A remnant of the cen-
tral flux tube persists, undergoing nonsymmetric
perturbations caused by the convection surround-
ing it. The size of the central tube remnant and
its perturbations both depend on the interplay be-
tween the magnetic field and the convection. For
Q = 32, strong convection forms at the edge of
the flux tube that pushes flux away from the cen-
tral tube. For Q = 100 weaker convection forms
inside the tube that takes longer to reached the
same final state as when Q = 32. For Q = 250,
the convection that forms inside the tube is too
weak to break the integrity of the tube. In all
cases, the effective magnetic field strength

√
Q|B̄|

in the remaining magnetic flux tube is approxi-
mately the same, regardless of the flux tube radius.
This is consistent with the axisymmetric results of
Hurlburt & Rucklidge (2000) and the observation
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that pores and sunspot umbrae of all sizes all have
roughly the same magnetic field strength (Zwaan
& Brants 1981; Solanki 2002).

The decay of the tube is dependent on the con-
vection around it. The convection can remove flux
from the tube when new convection cells form in-
side the flux tube, or add flux to the tube when
convection cells next to the flux tube are destroyed
and flux caught between the convection cells is
pushed back to the central tube. The convec-
tion can also change the shape of the central flux
tube by pushing against the magnetic flux so that
some of the flux is pressed in between convection
cells. In this way during the simulations, radial
tendrils develop between the convection cells that
surround the central flux tube. These are time de-
pendent, forming and disappearing as the convec-
tion pattern around the central flux tube changes.

Secondary flux concentrations form between
the convection cells away from the central tube.
This occurs at temporary downflowing plumes
that form between convection cells where the con-
vection converges.

The conclusion from the work presented in this
paper is that the decay of a central flux tube is
dictated by the nonlinear magnetoconvection sur-
rounding it. The formation and destruction of
convection cells around the flux tube can add or
subtract magnetic flux from the tube. As such,
the flux tube’s decay rate does not fit a simple
law. This is true when all the different parameters
are considered together as well as for each individ-
ual numerical run. A remnant of the central flux
tube always survives, with secondary flux concen-
trations between the convection cells. The more
convection cells form, the more flux is captured
between the cells and the central tube becomes
less defined.
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Fig. 1.— Initial axisymmetric state obtained with
Q = 100 and Γ = 3. In the top panel the colour
(grey in the printed version) represents the tem-
perature fluctuation relative to the unperturbed
state, the lines magnetic field and the arrows the
velocity field. In the bottom panel the colour (grey
in the printed version) represents azimuthal cur-
rent density jφ in the (r, z) plane, the arrows mag-
netic field and contours the mass density ρ. The
axis is on the left hand edge of each panel.
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Fig. 2.— 3D state obtained with Q = 500 and
Γ = 5. The solution is sampled at the vertical
(r, z) plane taken at mid-sector with Mφ = 10.
(a) is the full solution and (b) the azimuthal per-
turbations of the physical quantities. In both (a)
and (b) the top panel represents the temperature
fluctuation relative to the unperturbed state in
colour and the velocity field as arrows. In the
bottom panel colour represents azimuthal current
density jφ, arrows the magnetic field and contours
the mass density ρ. All colour scales are replaced
by grey scales in the printed version. The solution
forms an axisymmetric standing wave inside the
magnetic flux bundle, and one annular convection
cell round the flux bundle, as seen in (a). The
linear modes are located at the boundary between
the magnetic flux bundle and the convection cell,
shown in (b). The amplitudes of the linear modes
oscillate and this data set was sampled at maxi-
mum amplitude. The axis is on the left hand edge
of each panel.
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Fig. 3.— Length of linear modes in the azimuthal
direction, for different magnetic flux tube radii
(rp). The length is calculated as 2πrp/Mφ. The
stars are the values measured from our simula-
tions.
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Fig. 4.— Nonlinear solution with Q = 32 and Mφ = 8 at time 1006.81. (a) shows the horizontal midplane,
and the two vertical planes are sampled at (b) φ = 18◦ with max |B| = 16.1 and (c) φ = 45◦ with max |B| =
12.5. (d) represents the radial profile of the magnetic field strength

√
Q|B̄| with |B̄| defined in (12), at three

different times. The solid line is at time 1006.8, the dotted line at time 835.7 and the dashed line is the
profile of the axisymmetric initial condition at time 328.0. The diagnostics for the horizontal plane (a) are as
follows: in the first quadrant the colour represents jz and the contours Bz; in the second quadrant the colour
is the temperature fluctuation relative to the unperturbed state (dark is cold) and arrows are the velocity
field; in the third quadrant the colour is the temperature fluctuation relative to the unperturbed state and
contours are the mass density; in the fourth quadrant grey is magnetic field strength, with max |B| = 15.4
black and zero white. In the printed version the colour scales in quadrants one, two and three are printed
as grey scales. The diagnostics for the two vertical planes are the same as in Figure 2(a). The physics in
the two vertical planes are as follows: (b) has min(β) = 17.2, max(β) = 1.6 × 1011, min(jφ) = −118.8,

max(jφ) = 125.5, min(T̃ ) = 0.98, max(T̃ ) = 1.01; (c) has min(β) = 29.6, max(β) = 5.9 × 107, min(jφ) =

−62.0, max(jφ) = 80.3, min(T̃ ) = 0.98, max(T̃ ) = 1.01. Here β is the ratio of gas pressure over magnetic
pressure. In this solution max(Mach number) = 0.1.
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Fig. 5.— Nonlinear solution with Q = 100 and Mφ = 8 at time 1043.13. (a) shows the horizontal midplane
with max |B| = 9.4, and the two vertical planes are sampled at (b) φ = 15◦ with max |B| = 9.4 and (c)
φ = 45◦ with max |B| = 7.9. (d) represents the radial profile of the magnetic field strength

√
Q|B̄|, with |B̄|

defined in (12), at three different times. The solid line is at time 1043.13, the dotted line at time 803.5 and
the dashed line is the profile of the axisymmetric initial condition at time 357.1. The diagnostics for the
horizontal plane (a) are the same as in Figure 4 and for the two vertical planes as in Figure 2(a). The physics
in the two vertical planes are as follows: (b) has min(β) = 15.8, max(β) = 7.4 × 1010, min(jφ) = −54.8,

max(jφ) = 62.7, min(T̃ ) = 0.99, max(T̃ ) = 1.01; (c) has min(β) = 28.0, max(β) = 1.2 × 107, min(jφ) =

−46.2, max(jφ) = 51.7, min(T̃ ) = 0.99, max(T̃ ) = 1.01. In this solution max(Mach number) = 0.1.
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Fig. 6.— Nonlinear solution with Q = 100 and
Mφ = 8 at time 673.59. This dataset is taken from
the same numerical run as Figure 5. The horizon-
tal midplane is shown with max |B| = 8.62. Flux
forming radial tendrils between strong convection
cells surrounding the magnetic flux tube is shown.
The diagnostics for the horizontal plane are the
same as in Figure 4.
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Fig. 7.— Nonlinear solution with Q = 250 and Mφ = 8 at time 1034.95. (a) shows the horizontal midplane
with max |B| = 6.4, and the two vertical planes are sampled at (b) φ = 10◦ with max |B| = 4.4 and (c)
φ = 35◦ with max |B| = 6.4. (d) represents the radial profile of the magnetic field strength

√
Q|B̄| with |B̄|

defined in (12), at three different times. The solid line is at time 1034.95, the dotted line at time 794.98 and
the dashed line is the profile of the axisymmetric initial condition at time 471.34. The diagnostics for the
horizontal plane (a) are the same as in Figure 4 and for the two vertical planes as in Figure 2(a). The physics
in the two vertical planes are as follows: (b) has min(β) = 24.2, max(β) = 1.2 × 107, min(jφ) = −16.3,

max(jφ) = 32.6, min(T̃ ) = 0.99, max(T̃ ) = 1.01; (c) has min(β) = 13.8, max(β) = 7.7 × 1012, min(jφ) =

−25.7, max(jφ) = 45.5, min(T̃ ) = 0.99, max(T̃ ) = 1.01. In this solution max(Mach number) = 0.1.
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(a)

(b)

(c)

Fig. 8.— The time evolution of the effective mag-
netic field

√
Q|B̄| with |B̄| defined in (12). Black

represents max(
√
Q|B̄|) and white zero. The spa-

tial dimensions are Γ = 3 and Mφ = 8. The cen-
tral axis is along the top edge of each panel, and
the time begins when the nonaxisymmetric pertur-
bations are introduced. (a) presents Q = 32 with
max(

√
Q|B̄|) = 86.1, of which three instances are

plotted in Figure 4(d). (b) presents Q = 100 with
max(

√
Q|B̄|) = 82.7, of which three instances are

plotted in Figure 5(d). (c) presents Q = 250 with
max(

√
Q|B̄|) = 73.4, of which three instances are

plotted in Figure 7(d). The convection tears mag-
netic flux away from the the central flux bundle in
the cases of Q = 32 and Q = 100, while the flux
bundle stays intact for Q = 250.
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Fig. 9.— A 3D rendering of the kinetic and mag-
netic energies in the system, with Q = 100 and
Mφ = 8. The physical parameters are given in
Figure 5. On the left hand side is the velocity
field (v2) in green and on the right hand side the
magnetic field |B| in blue. A grey scale is used
in the printed version. The contours at the top
and bottom panels of the wedge are the vertical
magnetic field passing through these planes.

Fig. 10.— The vertical velocity perturbation on
each plane (ṽz) on the left hand side and the tem-
perature perturbation on each plane (T̃ ) on the
right hand side. The velocity is colour coded so
that upward flow is red and downward flow blue.
For the temperature red shows where the plasma
is hot and blue where it is cool relative to the
surrounding temperature. In the printed version
only the upflow and hot plasma are shown in a
grey scale. The physical parameters are as in Fig-
ure 5, with Q = 100 and Mφ = 8. The contours
at the top and bottom panels of the wedge are
the vertical magnetic field passing through these
planes.
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Fig. 11.— Nonlinear solution with Q = 32 and Mφ = 4 at time 1208.72. This simulation was initialised
from the numerical run depicted in Figure 4, with a data set taken at time 799.42. (a) shows the horizontal
midplane with max |B| = 12.2, and the two vertical planes are sampled at (b) φ = 35◦ with max |B| = 15.0
and (c) φ = 70◦ with max |B| = 9.9. (d) represents the radial profile of the magnetic field strength

√
Q|B̄|

with |B̄| defined in (12), at three different times. The solid line is at time 1208.72, the dotted line at time
1011.39 and the dashed line at time 800.23. The diagnostics for the horizontal plane (a) are the same as
in Figure 4 and for the two vertical planes as in Figure 2(a). The physics in the two vertical planes are as
follows: (b) has min(β) = 17.2, max(β) = 7.6 × 1011, min(jφ) = −44.4, max(jφ) = 68.6, min(T̃ ) = 0.98,

max(T̃ ) = 1.01; (c) has min(β) = 27.1, max(β) = 2.5 × 1011, min(jφ) = −45.7, max(jφ) = 77.7, min(T̃ ) =

0.98, max(T̃ ) = 1.01. In this solution max(Mach number) = 0.03 in (b) and 0.09 in (c).
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Fig. 12.— The time evolution of the effective
magnetic field

√
Q|B̄|, with |B̄| defined in (12),

for Q = 32 and Mφ = 4. Black represents
max(

√
Q|B̄|) = 65.5 and white zero. The cen-

tral axis is along the top edge of the panel. Three
instances from this data set are plotted in Figure
11(d). The coalescing of the magnetic flux at the
central axis is clearly visible.
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Fig. 13.— Nonlinear solution with Q = 250 and Mφ = 4 at time 901.03. This simulation was initialised from
the numerical run depicted in Figure 7, with a data set taken at time 800.83. The solution retains its Mφ = 8
structure. (a) shows the horizontal midplane with max |B| = 4.6, and the two vertical planes are sampled
at (b) φ = 5◦ with max |B| = 4.2 and (c) φ = 30◦ with max |B| = 6.4. (d) represents the radial profile of
the magnetic field strength

√
Q|B̄| with |B̄| defined in (12), at two different times. The solid line is at time

901.03, the dotted line at time 801.64. The diagnostics for the horizontal plane (a) are the same as in Figure 4
and for the two vertical planes as in Figure 2(a). The physics in the two vertical planes are as follows: (b) has
min(β) = 27.2, max(β) = 1.2 × 106, min(jφ) = −25.5, max(jφ) = 28.6, min(T̃ ) = 0.98, max(T̃ ) = 1.01; (c)

has min(β) = 13.5, max(β) = 2.8× 109, min(jφ) = −22.4, max(jφ) = 48.5, min(T̃ ) = 0.98, max(T̃ ) = 1.01.
In this solution max(Mach number) = 0.07 in (b) and 0.06 in (c).
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