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Abstract

It is well-known that there are no general approaches for observer and controller design for
nonlinear systems. Instead, focus is placed upon design for classes of systems. On the other
hand, a wide variety of dynamical systems belong to the class of state-affine systems.
Amongst these are biological wastewater treatment processes, which are essential in order
to prevent pollution in the environment and prevent disease in the consumption of recycled
water. An interesting aspect found in biological wastewater treatment systems, and many
typical industrial processes, are time-delays. In almost all systems there are time-delays
and nonlinearities and it is not surprising that time-delay and nonlinear systems have
received a great deal of attention in mathematics and control engineering.

This project introduces new methodologies for the design of controllers and observers for a
class of state-affine systems and a class of linear time-delay systems.

Firstly, new observable and controllable canonical forms are introduced. These are then
used to establish new controller and observer design methodologies for a class of state-
affine systems. In particular, an adaptive observer design is established. The methodologies
are simple since they are based upon linear techniques.

Secondly, a full-state controller and a separation principle are established for a class of
single-input single-output linear time-delay systems. The designs are based on a new
stability criterion and are derived from first principles.

Finally, the new observer design methodology for the class of state-affine systems is used
to produce observers for the estimation of biomass concentration in a biological
wastewater treatment bioreactor. The observers are applied in theory and in simulation,
where a full and a partial knowledge of the kinetic rate of reaction of biomass are
considered. In addition, the performances are shown both in the absence and in the

presence of measurement noise for a variety of influent flow characteristics.
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Chapter 1

Introduction

1.1 Introduction

There have been many developments in modern control theory during the last few decades.
There is no doubt that further significant progress will be made in this area in the future due
to the rapid development of powerful computers, which will inevitably permit the implemen-
tation of sophisticated feedback control algorithms. In addition, modern control theory has
generated a huge wealth of interesting research problems that have attracted the attention of
not only control theoreticians and engineers, but also mathematicians, physicists and com-
puter scientists. Some of the latest hot research topics in modern control theory include the
analysis of chaotic systems and time-delay systems.

Reflecting upon the progress of feedback control theory, it is readily apparent that key
historical events such as the Industrial Revolution, the Second World War and the beginning
of the computer age, have largely influenced its development. The Industrial Revolution
of the late 18th and early 19th century began in Britain with the advent of the steam en-
gine. Inevitably, the use of steam-powered systems resulted in the development of regulation

systems for the control of system variables such as speed, pressure, and temperature. The



Second World War also provided considerable advancements in control theory, which were
characterised by developments in flight, ships and weapons guidance control. However, it
is the computer age that has given birth to the term modern control theory and, as such,
it is standard to categorise results from 1960 onwards as modern control. In contrast, re-
sults yielded prior to 1960 are referred to as classical control. The classical control theory is
mainly characterised by the frequency-domain approach, which is only appropriate for linear
time-invariant systems and is mostly adequate when dealing with single-input/single-output
systems. Modern control theory, however, is mainly characterised by the use of time-domain
approaches rather than frequency-domain approaches to describe and analyse a control sys-
tem. In effect, it is not at all surprising that the appearance of the time-domain approach for
control system design has coincided with the development of powerful digital computers,
which have facilitated not only control design procedures, but also the implementation of
control techniques for systems of increasing complexity in real time.

It is somewhat difficult to give a complete account of all of the developments in control
theory in the last few decades due to the wide range of new concepts, approaches and results
that have since been generated. However, a broad summary of the main achievements and
progress is hereafter given.

From the beginning of the 1960’s up to the 1970’s, the foundations of linear time-invariant
systems theory, using the state-space approach, were established. The concepts of observ-
ability and controllability were developed [1], [2] and linear feedback control and linear
observers for time-invariant systems were constructed. In addition, the Kalman decompo-
sition [1] and Kalman filter [3] were derived. In the 1980’s, significant advancements were
made in nonlinear control theory through the use of new mathematical tools such as differ-
ential geometry [4], Lie algebra [5], [6] and differential algebra [7]. Since then, a number

of new concepts were introduced such as Lyapunov stability [8], class K functions [9], zero



dynamics, relative degree and so on [5], [10], [11]. In addition, many control analysis and
design techniques were invented such as feedback linearisation [12], passivity-based control
design [13], backstepping [14], sliding mode control [15], high-gain observers [16], [17],
the extended Kalman filter [18], and many more. It has subsequently been shown that many
results from the linear control theory cannot be readily extended to the nonlinear case. For
example, unlike linear systems, nonlinear observability depends upon the inputs [19], and the
so-called separation principle does not necessarily hold for nonlinear systems [20]. Indeed,
such realisations have significantly marked this period.

In the last couple of decades, knowledge-based approaches appeared on the scene. Neural
networks [21], fuzzy logic [22], artificial intelligence [23] and the genetic algorithms [24]
are some of the techniques that are currently used to deal with uncertain systems or systems
whose models are not perfectly known. While there is still a lot of ongoing research on
the foregoing topics, a number of new research topics seem to dominate the scene, such as
model-based fault detection [25], chaos control [26] and time-delay systems [27].

With regards to industrial control, it can also be observed that control systems have found
new areas of applications during the last few decades. In effect, alongside traditional areas
such as mechanical, electrical and electromechanical systems - for control of robots and elec-
trical motor drive systems - feedback control has found applications in other areas including
chemical processing, medical sciences, economics, and biotechnology. In such areas, feed-
back control can have a variety of uses including composition control of polymers, regulation
of medication, regulation of inflation, and control of biological wastewater treatment.

Biological wastewater treatment is an interesting and very important process. In fact, it
is essential for the prevention of pollution in the environment and prevention of disease in
the consumers of recycled water. With around 70 millzon people added to the planet each

year, it is predicted that feeding humanity will require an additional water volume of around



5600km?/year by 2050 [28]. Hence, with such a phenomenal global demand, it is easy to
appreciate the need for organised use of water. This further affirms the need for contributions
towards wastewater treatment techniques.

In this work, we focus our attention on biological wastewater treatment systems. We
consider the problem of biomass estimation, which is useful for its control. In this respect,
we consider the structure of biological system models, which turn out to be largely of the
state-affine form. Therefore, to give a general framework of control of biological wastewater
systems, we mainly consider the problem of control of state-affine systems that include the
models of biological wastewater treatment systems. In addition, as with many industrial
processes, biological wastewater treatment systems also contain time-delays. We therefore
attempt to consider the problem of time-delays involved in biological wastewater treatment

systems.

1.2 The aims of the thesis

With regards to the above, the main aims of the thesis are to:

Develop controller and observer design methodologies for a class of state-affine sys-

tems.

Establish new estimators of biomass concentration in an aerobic fermentation process.

Derive a control design strategy for a class of time-delay systems.

Design an observer-based controller for the class of time-delay systems considered.

1.3 The objectives of the thesis

The specific objectives of the thesis are to:



1.4

Investigate and study the canonical structure of a bioprocess consisting of an aerobic

fermentation process.

Use the canonical structure to give new controller and observer design methodologies

for a class of state-affine systems.
Study and compare the performance of the controller and observer in simulation.

Apply the observer design methodology developed to the estimation of biomass con-

centration in an aerobic fermentation process in theory and simulation.

Study and compare the performance of the biomass observer under measurement noise

and uncertainty in the model of the specific growth rate.

Synthesise a control design strategy for a class of time-delay systems with delay in the
state and the output with the intent to apply the results obtained to biological wastewa-

ter treatment systems.

Establish a separation principle for the class of time-delay systems considered.

Scope of the thesis and literature review

It is well-known that controller and observer design methods for linear systems are well-

established. However, most theories for linear systems cannot always be easily extended to

the nonlinear case. For example, with regards to stability, the frequency-domain approaches

used in the linear case, such as pole location, are not applicable to nonlinear systems. Instead,

other techniques based upon the time-domain are considered, the most commonly used of

which is based upon stability criterion introduced by A. M. Lyapunov in 1892 (see Appen-

dix C for definitions of stability). Consequently, the mathematical tools required to study



nonlinear systems are quite elaborate, such as those previously mentioned. There are also
further difficulties with regards to feedback control design in the sense of knowing whether
or not it is, in fact, possible to do so. Indeed, if a linear system is stabilisable, then it is
always possible to design a feedback controller that will stabilise the system. However, for
nonlinear systems this is not always true [20].

It is well-known that there are no general approaches for controller and observer design
for nonlinear systems. Therefore, focus is placed upon classes of systems upon which the
type of controller or observer employed are specific to that class of systems. As a result,
controllers and observers are subdivided into various classes for which a specific, yet not
unique, theory seems to apply.

As previously mentioned, a number of recent nonlinear control techniques have been
developed such as integrator backstepping approaches, sliding mode, passivity, input-state
linearisation, and the very commonly used methods of feedback linearisation (see e.g. [5],
[15], [29], [30], [31]). As far as observer design for nonlinear systems is concerned, tech-
niques used include the Extended Luenberger Observer (ELO) [32], the Extended Kalman
Observer (EKO) [32], and sliding mode observers [33]. Another popular method, mentioned
previously, is that of high-gain observers, which were introduced in the 1980°s [16] and have
since spurred a number of works in this area [17], [34]. However, the main drawback of
high-gain observers is that they are generally not suitable for applications where measure-
ment noise is to be considered, since they tend to amplify the noise.

In the process of control design, it is customary to study the canonical forms a system
possesses. Therefore, one important topic of research in control systems theory is the search
for canonical forms of dynamical systems. The main reason for this is that canonical forms
allow us to highlight essential properties and characteristics of systems by mere inspection

and, in particular, allow the development of a unified theory for their analysis. They also



permit the classification of systems into various families. For instance, it is well-known
that controllable and observable linear time-invariant (LTI) systems can be transformed, by
a change of coordinates, into the so-called Brunovskii or Jordan controllable and observable
forms, respectively. In fact, the latter has been further developed into a more generalised
form [35]. In addition, the Kalman canonical decomposition provides a general framework
for the controllability and observability analysis of linear systems [36]. With regards to non-
linear systems, uniformly observable systems (or systems that are observable for all inputs)
can be steered into a triangular form [37], [38].

In this work, we focus upon the development of new estimation and control methods for
special classes of state-affine systems that are observable for all inputs. The attraction to this
class of systems originates from the very interesting and important application of biological
wastewater treatment systems. The control of an overall biological wastewater treatment sys-
tem is generally very complex. However, in common industrial applications it can be reduced
to the control of a simple nonlinear microbial growth reaction. The term "simple" here refers
to a reduced model of order two, involving the control and monitoring of a biomass (micro-
organisms) and a substrate (organic content) concentration, even though the reaction remains
a very complex one. The complexity arises due to insufficient knowledge of the nonlinear
kinetic rate of reaction and the lack of cheap and/or reliable monitoring equipment for the
on-line measurement of biomass concentration. Several models of the specific growth rate
(SGR) have been proposed, such as the Monod and the Haldane models (see Appendix B),
but do not provide a complete description of the SGR. Consequently, one interesting problem
would be to estimate the biomass concentration, for monitoring and control purposes, using
either a partial knowledge of the kinetic rate of reaction or perhaps without the use of any
a priori model of the kinetic rate. The development of observers for biomass concentration

is aimed at providing reliable concentration values whilst saving on the expense of biomass



monitoring equipment (capital and running costs), which are not yet fully developed. It is
also important to consider estimation in the presence of measurement noise and if, in the
estimation, the noise can be attenuated.

Along with biological wastewater treatment, a variety of systems can be described in the
state-affine form, and as such, a number of works have been done in the area of observer and
controller design for classes of state-affine systems. Some are based upon transformation
into a state-affine form [39], and many are based upon methods of linearisation [1], [10]. An
observer for state-affine systems is given in [40], and classifies the inputs for which conver-
gence can be achieved. On the other hand, an observer design is considered for unknown
inputs in [41] and an exponential observer for continuous-discrete time state-affine systems
is constructed in [42] where sufficient conditions on the inputs and sampling times are given.
Indeed, as mentioned previously, in the design of observers for nonlinear systems, attention
must be paid as to what inputs are applied such that the system remains observable. In fact,
singular inputs have also been considered in [43], which proposes a persistent observer for
bilinear systems such that the system observability is maintained.

The present work considers special classes of state-affine systems that can be expressed
in, or transformed into, the so-called Extended Jordan Canonical form, which is a concept
that is introduced in this work. The main reason for introducing these canonical forms is that
linear design techniques can be applied to synthesise observers and controllers for a class
of state-affine systems, which, as mentioned previously, the bioprocess considered in this
research belongs to.

Over the past couple of decades, there have been a number of results on biomass estima-
tion for the bioprocess considered in this work [32], [44], [45], [46], [47]. Extensive research
in this area can be found in [44] who illustrate some classical estimation techniques such

as the application of the Extended Luenberger Observer (ELO) and the Extended Kalman



Observer (EKO) and also asymptotic observers [32], [45]. Other main estimation methods
presented in the literature are high-gain observers [45], adaptive observers [32], [45], and
interval observers [32], [46]. However, there is little consideration for estimation in the pres-
ence of measurement noise, and for those works that do consider this [32], [45], [46], there is
a need for considerable trade-offs with regards to noisy estimations and convergence times.
Indeed, there is a requirement for the development of biomass estimation methods for the
microbial growth bioprocess; which is one of the problems considered in this work.

Another interesting aspect found in biological wastewater treatment systems are time-
delays, which are typically introduced in the dynamics of material transportation in pipes
and vessels, and in the form of lags in measurement equipment. In fact, time-delays are
natural occurrences in many physical, industrial and engineering systems. The analysis and
control of time-delay systems (TDSs) are generally much more problematic than those of
delay-free systems with regards to system response-time and stability. Clearly, the issues of
control system stability and performance of systems containing delays are of theoretical and
practical importance.

A number of approaches have been proposed to deal with the control and estimation
design problem for time-delay systems. These include LMI-based delay-dependent stabil-
ity [48], adaptive control [49]-[51], passification of LTI time-delay systems [52], the Smith
predictor {53], adaptive Smith controllers [54], robust guaranteed cost control of uncertain
systems [55] (based on Lyapunov-Krasovskii functional techniques) and sliding mode con-
trol [56], [57] (Lyapunov-based approaches). The TDSs considered in the literature include
those with delays in the state, or with some combination with input [58] and/or output [59],
[60]. There are a number of classes of systems that have been considered including LTI sys-
tems [61], linear autonomous systems [62], uncertain time-delay systems [63], control-affine

systems [64], and stochastic chaotic systems [65]. There are also monographs on observer



design for time-delay systems that make use of Lyapunov functionals proposed for the sta-
bility analysis of time-delay systems. In particular, the most widely used functionals are
those of the Lyapunov-Krasovskii and Lyapunov-Razumikhin types and derivations thereof
(see e.g. [66] and [67]). Types of estimation include state estimation [68], parameter esti-
mation [58], and estimations of decay rate of linear systems solutions [69]. For the linear
time-delay case, a number of estimation approaches applicable to linear systems have been
proposed [70]-[72]. In [70], a full-state observer design for LTI systems with a delay in
the state has been proposed, taking on a completely original approach and introducing new
stability criteria called («, 7)-stability. Another approach [72] for linear TDSs is based upon
a technique of coordinate transformation such that, in the new coordinates, all of the delay
terms are associated with the output only, and can be easily dealt with through the use of
output injection.

In the branch of robust control, results can be roughly split into two classes: The first
consists of systems with input or output delays, and the second in state delays. However,
there are few results present in the literature for TDSs which consider both cases and it is
clear that the awareness of multiple delays in the system necessitates more precise control.

Despite the attention received by TDSs, this difficult field of research remains very much
an open problem since there is still no general method to deal with time-delays in dynamical
systems. In fact, the question of a general methodology for observer design for linear time-
delay systems is not yet established. Furthermore, one cannot be sure that a linear time-delay
system will remain stable when controlled via an observer; assuming that both observer and
controller are synthesised separately. This is true for the non-delayed case where it is shown
that there is a separation of the poles of the observer and the controller, and is known as the
separation principle.

In this thesis, a class of linear time-delay systems, with delay in the state and output, is
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studied with the intention to propose a controller design methodology, as well as to establish
a separation principle for the considered system. The present work is distinctive from other
work in this area in that it exploits the features of the characteristic equation of the system
to derive the controller gain. A controller design methodology is therefore proposed by
assigning a particular structure to the characteristic equation. No a priori control design

approach was set in advance; that is, the controller was designed based on first principles.

1.5 Contributions

The main contributions of this work are listed below:

1. The concept of Extended Jordan Controllable and Observable Canonical forms is in-

troduced.

2. Algorithms for transforming a class of nonlinear systems into partial Extended Jordan
Controllable Canonical (EJCC) and Extended Jordan Observable Canonical (EJOC)

forms are given.

3. A controller design for a class of state-affine systems that can be partially transformed

into the EJCC form is proposed.

4. A constant tuning parameter and an adaptive tuning parameter observer design method-
ology are given for a class of state-affine systems in the EJOC form. In addition, the

robustness of the adaptive observer is also shown.

5. Anobserver design methodology for a class of state-affine systems that can be partially

transformed into the EJOC form is given.

6. A control design methodology for a class of linear time-delay systems with delay in
the state or delay in the state and output is proposed.
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7. A separation principle for a class of linear time-delay systems with delay in the state

or delay in the state and output is established.

8. The obtained observers are used for the estimation of biomass in a biological wastewa-
ter treatment process. The resulting observers are applied in theory and in simulation
where performance is shown, both in the absence and in the presence of measurement
noise. The adaptive-gain observer is also applied where only a partial knowledge of
the kinetic growth rate of reaction is assumed, both in the absence and in the presence

of measurement noise.

1.6 Thesis structure

The thesis is broken down into nine chapters: The present chapter gives a brief history of
the general development of modern control. The scope of the thesis and a literature review
are also given, which highlight important areas of work in the field of analysis, control and
estimation of classes of dynamical systems.

Chapter 2 presents the control design approach used and the classes of systems consid-
ered in this work.

Chapter 3 introduces the concept of Extended Jordan Observable and Controllable Canon-
ical forms (EJOC and EJCC, respectively) and their relation to the Brunovskii canonical
forms. Such forms are intended to facilitate the design of observers and controllers, using
only linear design methods, for the class of systems considered and constitute the 1st main
contribution of this thesis. Algorithms for the transformation of a class of nonlinear systems
into the EJCC and EJOC forms are also given and are the 2nd contribution of this thesis.

Chapter 4 presents a control design using the EJCC form for a class of state-affine sys-

tems. This is the 3rd main contribution of this thesis.
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Chapter 5 presents three observer designs using the EJOC form for a class of state-affine
systems. Observers 1 and 2 are used for systems that are already in the EJOC form. The
former uses a constant tuning parameter and the latter uses an adaptive tuning parameter
in its gain. Observer 3 is used for systems that are transformed partially into the EJOC
form. Observers 1 and 2 constitute the 4th main contribution of this thesis whilst Observer 3
constitutes the 5th main contribution.

Chapter 6 gives a control design and a separation principle for a class of linear time-delay
systems. The concept of («, r)-stability is also introduced. These designs constitute the 6th
and 7th main contributions of this thesis.

Chapter 7 provides background details on the importance of biological wastewater treat-
ment, which is the application considered in this work. The main treatment processes in-
volved are then outlined, and the dynamical model that is used to describe the simple micro-
bial growth reaction that takes place in most wastewater treatment systems is given. Finally,
monitoring and control difficulties in biological wastewater treatment are presented, along
with details of work done to resolve these issues.

Chapter 8 focuses on the application of the observer designs given in Chapter 5 to bio-
logical wastewater treatment systems. The model given in Chapter 7 is used to design new
estimators of the biomass concentration in bioreactors. The performance of each observer
is analysed in simulation. Overall, this constitutes the 8th and last main contribution of this
work.

Chapter 9 presents the final conclusions and discussions of all the theoretical and sim-
ulation work in the thesis. In addition, possible directions for further research work are

suggested.
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Chapter 2

Control Design Approach and Classes of

Systems Considered

In this chapter, we shall describe the general background of the control design approach
(mainly state-space) undertaken in this work and introduce the classes of systems considered
for both the delayed and the delay-free cases.

The main purpose of a control system is to modify or alter the performance of a system
such that it behaves in a desired way. Such an alteration in behaviour is mainly aimed
at achieving either maximum production or at regulating a variable at a fixed set-point or
within a reasonable bound. Common examples of control applications include temperature
control of furnaces, altitude control of satellites, speed control of motors, voltage regulation
of generators, and composition control of chemical processes, to mention a few. There has
been a considerable amount of research contributions in the area of control systems design
for both linear and nonlinear dynamical systems over the past four decades, especially since
the introduction of the state-space approach to control design, which is in fact, the approach
that is used throughout this thesis.

The state-space approach to control design consists of examining a system, not only from
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the available measurements (inputs and outputs) of the system, but also from the indepen-
dent internal variables (state variables) describing the system. Consequently, systems are
described by a set of first-order differential equations characterising the system rather than
using a single closed-form differential equation of a certain order. As a result, a linear sys-
tem is described by a set of first-order linear differential equations and, likewise, a nonlinear
system is described by a set of first-order nonlinear differential equations.

The theory of linear time-invariant systems (LTT) with no time-delay is well-established.
In fact, a general approach to linear feedback control and observer design for the non-delayed
case is readily available. However, the theory of time-delay systems is far from complete.
Indeed, there is no general approach to linear feedback control and observer design for linear
time-delay systems. As for nonlinear systems control, there is no general approach either,
since most theories that are established in the linear case cannot always be easily extended
to the nonlinear case. Indeed, there is no general control strategy that can be applied to every
kind of system. Instead, we consider classes of nonlinear systems for which a specific control
design strategy is employed. As a result, due to the various theories involved, nonlinear
control systems design has become a highly mathematical discipline.

In what follows, a classification of dynamical systems from a state-space point of view

is given. Firstly, systems free of time-delay are presented.
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2.1 Description of systems from a state-space point of view

2.1.1 Systems without delay
General nonlinear systems

A general nonlinear system is usually described by

z = f(z,u)
(2.1
Yy = h,(l' ) u)
where z € R™ is the n-dimensional state vector, u € R™ is the m-dimensional input vector,
and y € RP is the p-dimensional output vector and f : R*xR™ — R™and h : R*xR™ — RP
are assumed to be smooth functions.

Sometimes we can obtain an even more general system by including a time dependency

in the vector fields f and h; that is

z = f(z,u,t)
(2.2)
y = h(z,u,t)
where f : R” x R™ x RT — R™ and & : R™ x R™ x R* — RP. However, in this thesis, we

shall mainly be concerned with the first class of systems; that is, with no time dependency.

Note that in the above systems, when u = 0, the systems are then said to be autonomous or

free.

All other classes of non-delayed systems are special cases of the above nonlinear system.

State-affine systems

State-affine systems are a special case of the general nonlinear system (2.1) where f(z,u) =
F(u,y)x + g(u,y) and h(z,u) = H(u,y)z. More precisely, a state-affine system is given

by
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z = F(u,y)z + g(u,y)
(2.3)
y = H(u,y)z

where /' and H are matrices of appropriate dimensions, and g is a smooth nonlinear function

inu and y.

Control-affine systems

Control-afline systems are the special case where f(z,u) = f(z)+> v, gi(x)u; and h (z, u)
= h(z); that is

&= f(x)+ 30 gi(x)u

2.4)
y = h(z)
Bilinear systems
The bilinear system is a special case of the state-affine system and is described by
z=Az+Bu+) -, uGz
(2.5)
y=Hzx
where A, B, GG, and H are system matrices of appropriate dimensions.
Linear time-invariant (LTI) systems
Linear time-invariant systems are special cases of bilinear systems and are given by
& (t) = Az (t) + Bu(t)
(2.6)

y(t)=Cz ()

where A, B, and (' are system matrices of appropriate dimensions.
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Linear time-varying systems

When the matrices of an LTI system are time-dependent, we obtain a linear time-varying

(LTV) system; that is

2.7)

where A, B, and C are system matrices of appropriate dimensions. This is a special case of

system (2.2).

Some properties of nonlinear systems

The behaviour of nonlinear systems is generally more complex than that of linear systems.

Some properties of nonlinear systems include:

e They often have more than one equilibrium point.

e They can display oscillations of fixed amplitude and fixed period without applying an

external input.

e As parameters change, the stability of the equilibrium point can change (as in linear
systems also) along with the number of equilibrium points. This is known as bifur-
cation; the quantitative change in parameters that leads to the qualitative change in

system properties.

e They can display a behaviour known as chaos. This is simply that the output is ex-
tremely sensitive to initial conditions and can be unpredictable. If initial conditions
or external inputs cause the system to operate in a highly nonlinear region, then the

probability of chaos increases [10].
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2.1.2 Systems with time-delays

Unlike ordinary differential equations, time-delay systems are infinite dimensional, and are
described by Functional Differential Equations (FDEs). A general nonlinear time-delay sys-

tem is described as

& (t) = flz(t),z(t — 71), ult — 72))
y(t) = h(z(t — 13))
where x € R, u € R™,y € RP,and f : R® x R™ — R®and h : R* x R™ — RP? are
assumed to be smooth functions. The time-delays 7, 75 and 73 are assumed to be bounded.
There are more general and precise descriptions of time-delay systems than that presented
above. However, this description of TDSs is employed as a matter of consistency with the
description of systems without delay given in the previous section. It is clear that various
sub-classes of systems such as state-affine, control-affine, bilinear and linear can also be

described in the delay case.

2.2 Classes of systems considered

In this work, we mainly consider some classes of nonlinear systems, and some classes of

linear time-delay systems with some special structural properties.

Nonlinear systems considered

We consider the class of systems given in (2.3) and the following sub-class of control-affine
systems:

z = F(z)z + G(z)u. (2.8)
Note that when F'(z) = F(y) and G(z) = G(y), then system (2.8) is a sub-class of (2.3).

The matrices F(z), G(z), F (u, y), and H (u, y) have special structural properties as will
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be detailed in Chapters 4 and 5.

Time-delay systems considered

In this thesis, we consider linear time-delay systems that are special cases of the following

main class of linear time-delay systems:

©(t) = Az (t — 71) + Az () + Bu(t)

y(t) =Cz (t — 12)
where z € R", u € R, y € R, and A, B, and C are of the Brunovskii observable or
controllable form (detailed in Chapter 3) depending whether the problem of observer or
controller design is considered, respectively. The time-delays 7, and 75 are bounded where

0 < 79 < 7;. The matrix A satisfies a matching condition that is detailed in Chapter 6.
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Chapter 3

The Extended Jordan Canonical Forms

As mentioned in Chapter 1, one important topic of research in control systems theory is
the search for canonical forms of dynamical systems. This is mainly because we can eas-
ily recognise essential properties and characteristics of a system by mere inspection when
canonical forms are used. Furthermore, the use of canonical forms allows the development
of a unified theory for the analysis of systems. It also permits the classification of systems
into various families.

In this chapter, we shall recall the Jordan and Brunovskii canonical forms, which are
commonly used in control systems analysis and design. We shall then introduce the concept
of Extended Jordan Observable and Controllable Canonical forms. Indeed, we shall see that
the Extended Jordan Canonical forms are extensions of the Jordan and Brunovskii canonical
forms. We show how a class of nonlinear systems can be partially transformed into such a
form. Furthermore, we show the importance of such canonical forms in observer and control
design in the subsequent chapters. It is important to note that if systems are controllable
and observable, then they should remain so, under a change of variable. Therefore, it is
assumed throughout this chapter that the systems at hand are controllable when dealing with

controllable canonical forms, and are observable when dealing with observable canonical

21



forms.

3.1 The Jordan and Brunovskii canonical forms

3.1.1 The Jordan controllable canonical form

Consider the following single-input linear time-invariant system:
= Fz+ Gu 3.1

where z € R?, v € Rand F € R™*" and G € R™ ! are constant matrices. It is well-known
that any matrix F' € R™*" can be transformed into the Jordan form or at best be completely
diagonalised if the eigenvalues of F' are all distinct [73]. Suppose that F' is diagonisable,
then there exists a similarity transformation z = P,x where the matrix P, is composed of n

linearly independent eigenvectors (modal matrix) such that

z=Dz+ Bu
where
M O 0 by
0 X o by
D:PdFPd“l: and B = P, =
. . 0
0 0 M\ b,

We then have a set of n decoupled first-order equations of the form

Z; = Nz + bu.
It is clear that if b; = 0O, then the ith state variable or mode will not be controllable. Conse-
quently, the above system will be completely controllable if the matrix B has no zero rows.

Therefore, as mentioned above, the controllability status of the system can be determined by
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mere inspection.

Now, if the matrix F’ is not diagonisable, it can still be transformed into a Jordan form.
Here, again the controllability of the system can be determined by a simple inspection. In-
deed, suppose that the matrix £ has one eigenvalue, say A1, of multiplicity order r, while the

others are distinct. Then, there exists a similarity transformation ¢ = Pz (P; non-singular)

such that
€ = A + Bu
where
™ 7
/\1 1 0 0 '_'
by
0 ST 0
by
0 X 1
A=l & 0 x0T : and B =
b,
)\2 0
0 0 B
bn
0 0 o | 0 Anepra) - -

That is, we have one Jordan block of order r. Itis clear that the input applied to the last row of
the Jordan block will influence the chained mode above the matrix diagonal. More precisely,
if b, = 0, then the state variables corresponding to the Jordan block are not controllable.

Therefore, one can conclude that a system in Jordan form that has only one Jordan block
per eigenvalue is completely controllable if and only if the entry of the matrix B correspond-
ing to the bottom row of each Jordan block is non-zero.

Now, in the extreme case where the system has only one eigenvalue A of multiplicity
order n, we would have only one Jordan block of order n. In that case, the matrix A will be

of the form
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—/\ 1 0 o- _Bl-
0 A b
A=) . .. . 9 and B =
1
0 -« -~ 0 X b,

and we will require b, # 0 for the system to be completely controllable.
If A = 0, we have a special case of the Brunovskii controllable canonical form. The

general Brunovskii controllable canonical form is explained in a subsequent subsection.

3.1.2 The Jordan observable canonical form

Suppose that we have an output equation associated with the system (3.1):
y=Hz 3.2)

where y € R and H is a constant matrix. Assume that the pair (¥, H) is observable. Then,

by using the above transformation ¢ = Pz, the transformed output equation is given by
y=HP;¢=C¢t= G Gy - G - &, | &
In that case, it is obvious that the system is completely observable if and only if the entry of

the matrix C, corresponding to the last column of each Jordan block, is non-zero. This result

can be obtained by duality; that is, by replacing H by GT and F by FT [73].

3.1.3 The Brunovskii controllable canonical form

Consider again the single-input system (3.1). Assume that the pair (F, G) is controllable.
Then, it can be shown that there exists a transformation z = P,z such that the above system

can be transformed into
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z=A.z+ Bu

where ) ] -
0 1 0 0 0
1 0
A, =P FP ' = 0 U and B = P.G =
0 0 1 0
4y —Gpy e o —ay 1

Furthermore, it can be shown that the a;’s are the coefficients of the characteristic equation

of F:
p(s) = 8"+ as" ' +aps" P+ -+ an98” + an 15 + 0y, (3.3)

The above canonical form is called the Brunovskii controllable canonical form and the pair
(A, B) is called the Brunovskii controllable pair [73]. Note that the coefficients are deliber-

ately in reverse order with respect to the conventional expression to help us later.

3.1.4 The Brunovskii observable canonical form

Consider again the single-input system (3.1) with the output equation (3.2). Then, by duality,

it can be shown that there exists a similarity transformation z = P,z such that

z2= A,z + Bu
y=0z
where
——al 1 0 Oﬂ
—a; 0 1
A, = S0 . .0 andC’z[l 0 ... 0]. (3.4)
1
—a, 0 - 0
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Furthermore, it can be shown that the a;’s are the coefficients of the characteristic equation

of F:
p(s) = 8" +as" 1+ s 24 -+ ap_08® + Ap1S + ay,. (3.5)

The above canonical form is called the Brunovskii observable canonical form and the pair

(Ao, C) is known as the Brunovskii observable canonical pair [73].

3.2 The Extended Jordan Canonical forms - Linear case

From the Brunovskii canonical forms, one can observe that the matrices A, and A, can be

decomposed as

0 1 0 0 0
1
A, = 0 .o 0 T —Qp —Qpo1 - o —a
0 0 1 0
1
_O 0 O_ 1]
= A+ BL
and
_ - _ .
0 1 0 0 —
1 —ad9
Ao = |0 0|+ 10 0
0 0 1
0 0 0 —ay,
= A+ KC.
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Note that the matrix

(0 1 o 0
1
A=1o 0
0 0 1
L() 0 - .. 0

is a Jordan block with a single eigenvalue 0 with multiplicity of order n.
In [35], the question to whether the matrix A can be extended to a more general Jordan

block of the form

_a g 0 0-
0 a @

Jap = 0
0 a pB
0 0 a

where a and [ are arbitrary numbers with 8 # 0, was considered. More precisely, the
following question was asked: Assuming that the pairs (F,G) and (F, H) are controllable

and observable, respectively, do there exist similarity matrices F. and P, such that

Foz B 0 0 | -0-
0 « 15} 0
b =PFP ' =] : .. .. .. and B = P.G =
0 0 « Jé) 0
ln oo I, a+l 1

and
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_ll-l—a g 0 - O—
Is a B
V5 =PFP ! = : 0 . . 0 andHPo_lzCz[l 0o ... 0}?
a
In 0 -+ 0 «

In fact, it was shown in [35], that such similarity matrices P, and P, do exist, and a procedure
to compute the former was given. As a result, the following single-input linear system:
2 =®yp2+ Bu
is said to be in the Extended Jordan Controllable Canonical (EJCC) form.
Similarly, the single-output system
2 =W,z + Bu
y=Cz

is said to be in the Extended Jordan Observable Canonical (EJOC) form.

3.3 The Extended Jordan Canonical forms - Nonlinear case

In this work, we investigate the possibility of extending the above notion of Extended Jor-
dan Canonical forms to nonlinear systems. In effect, consider the following single-input

nonlinear system:
= f(z,u). (3.6)
Suppose that the above system is controllable. Assume that there exists a diffeomorphism

z = ((z) such that the above system is transformed into

2= ®up(u,2)z+ Bu (3.7)

28



where

.0
z= C(x)f(a:, u) = ®u5(u, 2)z + Bu
d$ I=<_1(Z)
where
- -
a(u,2)0;  Bu, 2) 0 e 0
0 alu,z)ds  B(u,z)
Pog(u, 2) = E 0
0 e 0 o, 2)0p_1 B(u, z)
i ln(u,2)  looa(u,2) - lo(u,z)  alu, )0, + 1 (u, 2)
and
T
B=1lp ... ... 01
with constants d; # 0; 4 = 1,...,n and where a(u, z) and S(u, z) are two functions such

that 8(u, z) # 0 for all = € R™ and u € U where i/ C R is a set of admissible inputs.

If such a transformation z = ((xz) exists, then we say that the above system is in the
Nonlinear Extended Jordan Controllable Canonical (NL-EJCC) form. In addition, we call
the pair of matrices (®,z(u, 2), B) an extended Jordan controllable pair.

Note that matrix ®,z(u, 2) can be decomposed as
Dos(u, 2) = (a(u, 2)A + B(u, 2)A) + BL (u, z)
where A = diag [0y, ..., 6,) and

L(u,z) = {ln(u, z2) lpa(u,z) - li(u, z)} :
Under the above assumptions, the system (3.7) is controllable and the pair ($,g(u, 2), B) is
controllable. Indeed, by calculating the controllability matrix
C= {B Pup(u,2)B -+ &5'(u, z)BjI
n(n-1)

we can see that detC = (—f)" 2 (u, 2). Since 8 (u, z) # 0 for all v and z, we conclude

that the pair (®o4(u, 2), B) is controllable.
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Similarly, consider the above system with an output equation

y = h(z)

where y € R. Consider a transformation z = v(z) such that the above system is transformed

into
2 =V.s(u,2)z+ g (u,z)
(3.8)
y=0Cz
where
z = aya(x)f(xu) = Uup(u,2)z + g (u, z)
z z=v~1(z)
where
Liu, 2) + afu, 2)61  B(u, 2) 0 e 0
l2(u7 Z) a(u, 2)52 B(U, Z)
Yap(u,z) = : 0 0
ln—1(u, 2) : o ofu, 2)0n-1 Blu, 2)
I (u, 2) 0 0 alu, 2)0y,
and
Cz=h(z=v"(2)) =2 = [ 10 --- o}z

with constants §; # 0;¢ = 1,...,n and where g (u,z) = (g1 (u,2),...,9x (u,2)) has a
lower triangular structure; i.e. g; (u, z) = g (21, 22, . . . , 2, U).

If such a transformation, z = v(x) exists, then we can say that the above system is
in the Nonlinear Extended (or generalised) Jordan Observable Canonical (NL-EJOC) form.
Furthermore, we call the pair of matrices (V,z(u, ), C) an extended Jordan observable pair.

Note that matrix ¥,g(u, z) can be decomposed as
op(u, 2) = (a(u, 2)A + B(u, 2)A) + L (u,z) C

where A is as given above and
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T

L(u,z) = \ly(u,2) lo(u,z) - Ila(u,2)
Under the above assumptions, the system (3.8) is observable and the pair (¥ ,4(u, z), C) is

observable. Indeed, by calculating the observability matrix

C

CV,s(u, 2)

_C‘Ifggl (u, z)-

we can see that det O = 6@;;1) (u, z). Since § (u, z) # 0 for all u and 2z, we conclude that
the pair (¥ ,5(u, 2), C) is observable.

Throughout this work, we mostly consider the matrix A either as the identity matrix for
simplicity, or as A = Q = diag|[1,2,...,n]. The particular choice of the latter form will
help us in the design of adaptive observers, as we shall show in Chapter 5.

Remark 3.1

It is not obvious to derive the two transformations z = ((z) and z = v(z) such that
a general nonlinear system is transformed into the NL-EJCC and NL-EJOC forms. Such
a problem is not tackled in this work. However, there exist some classes of systems that
are naturally of the above canonical form such as biological reactors, as we shall see in the
subsequent chapters.

On the other hand, it is possible to categorise some classes of systems that can be partially
transformed into the above class of systems, as we shall show next.

Finally, since the acronyms NL-EJCC and NL-EJOC are quite lengthy, we shall use the
acronyms EJCC and EJOC used in the linear case, when we refer to the nonlinear case as

well.
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3.4 Some special classes of systems in partial EJCC form

Consider the following special class of systems:

&= F(z)x + G(z)u

(3.9)

where z € R™, u € R and the matrices F'(z) and G(z) are dependent on the state and are

given as

fu(z)

i fr ()

fln(x)

fnn(x)

91(z)
and G(z) =

gn(T)

(3.10)

Given some bounded real-valued functions a(z) and 8(z) with 0 < |B(z)| < B for all

r € R", we consider the problem of constructing a transformation z = M,g(z)z = ¢ ()

such that

z=®u5(2)z + Bu+n(z)z

where

a(z)  Blz)
0 a(x)
0
i ln(CL') ln—l(-r)

andn(z) = Mag(z)My5(z)

z=p~1(z)
0 o
B(z)
0
0 ofz) B(x)
b(z) ale)+h(a) |

r=¢~1(z)

and M,p(z)G(z) = B

z=p~1(z)

(3.11)

(3.12)

with B of the form previously given. Note that we have assumed that the diagonal matrix

mentioned above is the identity matrix.
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In what follows, we shall show that such a transformation exists if the following assump-

tions are made:

A3.1) The rank of the controllability matrix

is equal to n for all x € R™.

A3.2) The functions f;;(z) and g;(z); 3,7 = 1,...,n, and their respective time derivatives

are continuous and bounded for all z € R”.

Assumption A3.1) implies that system (3.9) is controllable in the rank sense for all z €
R™. In such a case, we say that the pair (F'(z), G(x)) is controllable for all z € R™.

The main procedure for the construction of the matrix M,z(x) is summarised in the
following lemma:

Lemma 3.1. Let (F(z),G(z)); F(z) € R™", G(z) € R™! be a controllable pair for
all z € R™. For some given bounded real-valued functions a(x) and f(z) with 0 < |5(z)| <

B for all z € R™, define the row vector Log(x) = [ln(Z), ln_1(%), ..., l1(z)] such that

1

D)

k
Cka® (z) + Z a; () CFta* (z) (3.13)
i=1

with C* = (T_EW and the a;(x) s are the coefficients of the characteristic equation of F(x):
det (AL, — F(z)] = A" + ay ()N + -+ a1 (2)N + an(z).
Then, the pair (F(z), G(x)) is equivalent to the pair (Jas(x) + BLog(z), B).
In addition, the similarity matrix Mog(x) such that the following two equalities:

Map(z)F(z) M35 (2) = Jup(x) + BLag(2) and Mop(z)G(z) = B (3.14)

are satisfied is given by

Mog(z) = Yo (z)U™ ' (z) (3.15)
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where

U(z) = [G(z), F(z)G(z), ..., F" z)G(z)] (3.16)
and

Yos(z) = [B, (Jas(z) + BLag(2))B, ..., (Jas(z) + BLag(z))" ' B] . (3.17)

Proof of LLemma 3.1:
The proof of this lemma follows along the same lines as given in [74].
First of all, it is easy to check that the pair (J,s(z) + BLag(x), B) is controllable for

every vector Log(z) = [ln(2), ln-1(2), ..., l1(x)]. It can be shown that det Y,5(z) =

(—=B8) 2 . (x). Hence, Y,5(x) is non-singular and its determinant is independent of L,z (z).

We then study the characteristic equations of F'(z) and J,g(x) + BLag(x). Firstly, recall
that Jog(z) = a(z)l, + B(x)A. It can be verified for any Los(z) = [In(2), ln-1(2), ...,
l(z)] € R, that
det [AL, — (B(x)A + BLag ()] = A" = li(z)A*" = B(z)lo(z) A" 2 —
= B (@)1 (2)A = 877 (@)l ().
Consequently, since
det (AL, — (Jag(z) + BLag(z))] = det [A, — (a(z)I, + B(z)A + BLag(x))]
= det [(A = a(z)) I, — (B(z)A + BLas(z))]
it is clear that

det [, — (Jog(z) + BLog(z))] = X —h(z)\"

where A = (A — a(z)).

Now, assume that the characteristic equation of F'(z) is equal to
det (A, — F(2)] = A" + a1 (2)A" + -+ 4 a1 (2)A + an(z).
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For the pairs (F(z), G(z)) and (Ja5(z) + BLyg(xz), B) to be equivalent, the characteristic

equations of F'(x) and J,5(x) + BL,s(z) should be equal. Hence,

det [\, — F(z)] = det[A, — (Jus(z) + BLag(2))]

= )\n —+ al(x))\"—l 4+ an—l(x)/\ + an(iﬁ)
= O ta@) +a@) C+alz) " +--

e an*l(x) (X + Oé(l')) + an(x)

1 <n-—2

= N =L)X =B @) L)X = = B ()" ().

Using the binomial expansion of (X + a(m))n—i, one can show that
det [A\,, — F(x)] = N+ (a:)Xn_1 Fo At Pt (2)X F ()

where

ri(z) = Cro’(z) +ai(2)CpT10" 7 (2) + aa(w)Cria" 2 (2) + - -

n

c ot ay (2)C (T D (@) + 4 ()

n-—

= Chaf(z) + Z a;(2)CE LR ().

=1

It is easy to see that det [A],, — F'(x)] = det [AL, — (Jap(z) + BLys(z))] if the elements
of L,p(z) are given as in (3.13).

Note: The index of the vector L,g(z) is deliberately indexed in the reverse order so as to
simplify the formula (3.13).

This completes the proof of Lemma 3.1. g

The application of the formula (3.13) for the construction of the vector L,z(z) can be,
at times, tedious. As a result, an algorithm, involving only matrix manipulation, for the

construction of the matrix M,z(x) is given in the following subsection.
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3.4.1 Algorithm for EJCC form transformation
i) First, compute Vo = [B, JogB, ..., o5 B].

i) Then, construct the matrix U = [G, FG, ..., F"1Q].

iif) Compute Qop = VagU ' FUV ;' — Jop.

iv) Then, calculate Nog = SQZL,S, where

—n—1

S:{B,ZB,...,A Bl . (3.18)
v) Compute Yog = [B, apB, ..., 825 B], where @5 = Jog + Nag.
vi) Finally, define M, = Y,3U ™!, which is the desired similarity matrix.

The argument of the various matrices was dropped for clarity of notation.

Remark 3.2

1) It can be verified that the matrix N,s (z) can be decomposed as N,g () = BL,g ()
where L,z (z) is the row vector whose components are given by formula (3.13). More
precisely, N,g () is an n X n matrix which is zero everywhere except the last row -
which is, in fact, the vector L,z (z). Consequently, the above algorithm provides an
alternative method to compute the similarity matrix M,z (z) without explicitly com-

puting the vector L,g («) by using formula (3.13).

2) If a(z) = 0 and S(z) = 1 in the matrix J,s(z), then the matrix M,g(x) will permit to

obtain the usual Brunovskii controllable canonical form.

3) Finally, note that in the special case where F(z) = (J,s(z) + BLag(z)) and G(z) = B,

then Y,5(z) = U(z) and in which case M,5(z) = I,,.

We now give some examples of systems which can be partially transformed into the
EJCC form or which are already in the EJCC form. We begin with the latter case.
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3.4.2 Example 3.1

Consider the system

jjl X1 COS X +2£L‘2
= (3.19)
Ty r18inxy + x9cosT] + U
which can be written as
1 COS X1 2 T 0
= + U, (3.20)
To sinz; cosz; Zo 1

It 1s clear that system (3.20) is of the form (3.9) with

COS L1 2 0
F(z) = and G(z) = = B.

sinz; cosz; 1

The above system also satisfies the Assumptions A3.1)-A3.2). Indeed,

Ul) = | G(z), F(z)G(z)
0 2

1 coszy

Therefore, U(x) is of full rank for all z € R2. Also, the entries of F(x) and G(z) and their
respective time derivatives are continuous and bounded for all = € R2.

In addition,

COS T 2

sinr; cosx;

COS X1 2 0
= + [ sinz; 0 } :

0 COS X1 1

Therefore, F(z) is of the form J,s(z) + BLag(x) with a(z) = coszy, f(z) = 2 and

Las(z) = { snz, 0 }
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As aresult, (see Remark 3.2) we have

Therefore, this system is already in the EJCC form.

3.4.3 Example 3.2

Consider the system

T 211 C08Ty + To
= (3.21)
To 1 sin? 1+ U
which can be written as
a';1 2cos T 1 T 0
= + U. (3.22)
Lo sin®z; 0 To 1

It is clear that system (3.22) is of the form (3.9) with

2cosxy 1 0
F(z) = and G(z) = =B

sin®z; 0 1

and satisfies the Assumptions A3.1)-A3.2). Indeed,

Therefore, U(x) is of full rank for all z € R?. In addition, the entries of F'(z) and G(z)
and their respective time derivatives are continuous and bounded for all z € R,
We will now transform the above system into the EJCC form.
We first compute
A0 2cosx; 1

det [A\]; — F(z)] = det —

0 A sinz; 0
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A—2cosz; —1
= det

—sin® 2, A
= M —92\cosz; —sin?z;
= N +ay(z)) + az(2)

where a;(z) = —2cos z; and ay(z) = — sin® z;.
By applying Lemma 3.1, we have

hiz) = —[2a(z) + ai(z)]

= —2[a(z) — cosz]

and
lo(z) = ~ﬁ [0*(z) + a1(z)a(z) + as(z)]
= —E% [0®(z) — 2 cos zra(x) — sin® z4] .

If we choose a(z) = coszy and f(z) = az) + ¢ = cosz; + ¢ where ¢ > 1 is a constant,

then

Lop(e) = (@) bl = | —L— o],

cosxy + ¢
Therefore, the pair (F(z), G(z)) is equivalent to the pair (J,5(z) + BLag(z), B), where

T1 T 0
Jasle) + Bragle) = | 7 P [ ! o}

coszry+c¢
0 COS I 1 1

COS Iy coszy + ¢

1

—_— COS T
L cosz+ ¢

and

0 coszy+c
Yop(z) = [B, (Jag () + BLag(z))B] =

1 cosS Ty
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Hence,
. coszi+c¢ 0O
Mag(z) = Yop(z)U™ () =
COSs X1 1
Consequently, if we define the transformation z = M,s(z)z, then the above system will
transform into

2= (Jap(z) + BLup(z)) 2 + Bu + Mag(x)MOjﬁl(x)z

where

sinxy 0

—T1 cosxi—+c

Map(z) M4 (z) =

. _sinzy
1 cosxri+c O

3.5 Some special classes of systems in partial EJOC form

Consider the following special class of systems:

= F(z)z + G(z)u

y=H(x)z
where z € R”, u € R and the matrices F'(z), G(x), and H (x) are dependent on the state
and are given as in (3.10). Assume that the pair (F (z), H (z)) is observable. Then, given
some bounded real-valued functions a(z) and () with 0 < |8(z)| < B for all z € R", we

consider the problem of constructing a transformation z = M,s(z)z = ¢ () such that

2=Vo(2)z+b(z)u+n(z)z

y=0Cz

where

Vap(2) = Map(z)F(z) Mg (2)|

a=p=1(2)
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Wop(z) = 0 0 :
lp-1(x) alz) B(x)
i I.(z) 0 0 a(:c)J i)
b(2) = Mop (@) GOy 1(2) = Maal M3 ()], and H (5) M (w) = €

with C' of the form previously given.
In what follows, we shall show that such a transformation exists if the following assump-

tions are made:

A3.3) The rank of the observability matrix

H(z)
H (z) F(z)
T(z) =
H (z) F*(z)
is equal to n for all z € R"™.
A3.4) The functions f;;(z) and g;(x); 4,7 = 1,...,n, and their respective time derivatives

are continuous and bounded for all x € R™.

Assumption A3.3) implies that system (3.9) is observable in the rank sense for all z € R™.
In such a case, we say that the pair (F'(z), H(z)) is observable for all z € R™.

Here, again we have assumed that A = /. It should be clear from the context that the
matrix M,p(x) is not the same as in the previous section even though the notations are the

same.
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The main procedure for the construction of the matrix M,z(z) is summarised in the
following lemma:

Lemma 3.2. Let (F(z), H(z)), F(z) € R™", H(z) € R'*" be an observable pair for
all x € R™. For some given bounded real-valued functions a(z) and B(x) with 0 < |B(z)] <

B for all x € R™, define the column vector Log(x) = [l1(z), l2(x), ..., l,(2)]” such that

k

1 _—_
(z) = ———— CFa®(z) + Z a;(2)CF Lo (z) (3.23)
B (CE) 1=1
with C* = (—n-%k—, and the a;(z)’s are the coefficients of the characteristic equation of F(zx):
det ML, — F(2)] = A" + ay () A" 1+ - + ano1(2) X + an(z). (3.24)

Then, the pair (F(z), H(z)) is equivalent to the pair (Jag(x) + Laog(x)C, C).

In addition, the similarity matrix M,g(z) such that the following two equalities:
Mg () F(z)M_g(z) = Jag(z) + Lap(z)C and H (z) Mgg(z) =C (3.25)

are satisfied is given by

Mop(z) = W5 (2)Y (@) (3.26)
where
H(x)
H (z) F(z)
T(z) =
_H (z) F”"l(a:)_
and

Wag(z) = | . (3.27)




Proof of Lemma 3.2:
The proof of this lemma is similar to that of Lemma 3.1. First of all, it is easy to check

that the pair (Jog(z) + Lag(x)C, C) is observable for every vector L,s(z) = [l1(z), lo(z),

n{n—1)

<oy In(z)]T. It can be shown that det Wos(x) = 8~ 2 (z). Hence, W,s(x) is non-singular
and its determinant is independent of L,g(x). We then study the characteristic equations of
F(z) and Jog(z)+ Lag(x)C. Firstly, recall that J,4(z) = a(z)I,+ B(x)A. It can be verified
forany Log(z) = [l1(z), lo(2), ..., l.(2)]T € R, that
det [A, — (B (z) A+ Lag(z)C)] = A" = L(2)A*™" = B (z) la(z)A" % ~ -+
= B (@) i (@) — B (@) ().
Consequently, since
det [A, — (Jag(z) + Lag(z)C)] = det [A, — (a(z)], + B(z)A + Lag(z)C)]
= det [(A — a(z)) I, — (B(z)A + Las(z)C)]
it is clear that

det [\, — (Jag(z) + Lap(2)C)] = X —L(z)A"

where A = (A — a(z)).

We now assume that the characteristic equation of F'(z) is equal to
det (A, — F(z)] = A" + a1 (z)A" " + -+« + an_1 (@)X + an(z).

For the pairs (F(z), H(z)) and (Jup(z) + Lap(z)C, C) to be equivalent, the characteristic

equations of F'(z) and J,s5(z) + Lag(z)C should be equal. Hence,
det[A, — F(z)] = det[AL, — (Jap(z) + Lap(z)C))

= N4 a ()N a1 (2N + an(z)
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= ((+a@)" +a@ C+a@)" "+ +tu(z) X+ a(z) + an(z)

b ~n—1 —2

= XN =L@\ =@ L)X = = B(2)" ().

Using the binomial expansion of (X + o (:c))n_i, one can show that

n—1

det [\, — F(z)] = X"+ ri(@2)A" 4 4+ ra_1 (@)X + 70 ()

where
ri(z) = Cpof(z) + ai(z)Cplia(x) + ax(2)Cplia*(a) + -
o ak_l(:v)C’s:E::Bak_(k*l)(m) + ax(z)

= CFa(z) + Z a;(z)CFtak (1).

i=1

Recall that if the characteristic equations of F'(z) and Jug(z) + Lag(x)C are the same,

then the pair (F'(z), H(z)) is equivalent to the pair (Ju5(x) + Lag(x)C, C). Then, it is easy

to see that det [A],, — F'(z)] = det [AL, — (Jag(2z) + Lag(z)C)] if the elements of Los(z)

are given as in (3.23).

This completes the proof of Lemma 3.2.

The application of the formula (3.23) for the construction of the vector L,s(z) can be,

at times, tedious. As a result, an algorithm, involving only matrix manipulation, for the

construction of the matrix M,g(x) is given in the following subsection.

3.5.1 Algorithm for EJOC form transformation

i) Define R, =
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HF
ii) Construct the matrix T =

HFn—l

iif) Compute Xop = R s TFY ™ Rog — Jag.

iv) Then, calculate Eop = T X1;T, where

- . (3.28)

v) Construct ¥, = J,5 + Eug.

C

CV¥up
vi) Compute W, =

n—1
_C\I!a g !
vii) Finally, define M, 5 = W, Y, which is the desired similarity matrix.

The argument of the various matrices was dropped for clarity of notation.

Remark 3.3

1) It can be verified that the matrix E,s(z) can be decomposed as E,g(z) = Lqog(z)C
where L.g(x) is the column vector whose components are given by formula (3.23).
More precisely, E,s(z) is an n x n matrix, which is zero everywhere except the first

column - which is, in fact, the vector L,g(z). Consequently, the above algorithm pro-
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vides an alternative method to compute the similarity matrix M,z(z) without explicitly

computing the vector L.g(x) by using formula (3.23).

2) If a(z) = 0 and B(z) = 1 in the matrix J,s(z), then the matrix M,z(z) will permit to

obtain the usual Brunovskii observable canonical form.

3) Note that in the special case where F(z) = (Jas(z) + Lag(z)C) and H(z) = C, then

Was(z) = T(z) and in which case M,z(z) = I,.

Finally, it should be noted that since the functions a(x) and 5(x) 5# 0 are fairly arbitrary,
one can always aim at choosing «(z) and S(z) such that the matrix M,z (z) is almost con-
stant. It is this flexibility in choosing a(z) and 5(z) that helps in the design of observers and
controllers for some classes of nonlinear systems. This is also the main motivation behind

the search for the Extended Jordan Canonical form.

3.6 Summary

In this chapter, we have introduced the concept of the Extended Jordan Observable and
Controllable Canonical forms. We have also shown how a class of nonlinear systems can be
partially transformed into these forms. Moreover, we have provided algorithms to generate
the required transformations. These new canonical forms were introduced in order to help
facilitate the design of controllers and observers for some classes of nonlinear systems. This
is demonstrated in the subsequent chapters. In particular, in the next chapter, we give a
control design for a class of control-affine systems using the Extended Jordan Controllable

Canonical form.
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Chapter 4

Control Design using the Extended

Jordan Controllable Canonical Form

4.1 Introduction

In the previous chapter, we have defined the notion of Extended Jordan Canonical forms. In
this chapter, we shall exploit this canonical form to design controllers for a class of nonlinear
systems. The main motivation for employing this canonical form is twofold:

1) It allows the design of nonlinear controllers using only linear design techniques.

2) The Extended Jordan Canonical forms allow some design flexibility due to the ar-
bitrary choice of functions in the main diagonal and non-zero functions above the main
diagonal in the Jordan block. This, in turn, allows the simplification of the control function.

To clarify the above two points, let us first consider a simple system of order two. Indeed,
consider the following system:

i‘l —xle_““ + Z9

&= = = f(z). (4.1)

Ty —Toe " 41
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Suppose we wish to stabilise this system to the origin. Then, there are various ways one can
achieve this objective. For example, recent nonlinear techniques can be applied such as inte-
grator backstepping approaches, sliding mode, passivity, input-state linearisation, feedback
linearisation and so on (see e.g. [5], [15], [29], [30], [31]).

The most commonly employed method is feedback linearisation. In effect, if we employ

the feedback linearisation method, we first must make the following change of variable:

zal z1 x1
2 Lyzy —x1e7" 4 x4

It is easy to check that the Jacobian matrix of ¢(z) is

Op(z) 1 0
oz

-

zie —e ™ 1

and the determinant of which is non-zero. Therefore, z = ¢(x) is indeed a diffeomorphism

and under this change of variable, we have

Z'l Z9

29 29216~ — 2707 — 2172 4y

Consequently, a feedback linearising control law would be
U(Z) = (2221€-Z1 - 2328_21 - 216—2z1) + k/'121 -+ ]{3222

where k; and k9 are chosen such that the closed-loop system

Z1 )

22 klzl -+ /{3222
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is stable. In terms of the original coordinates, we have
u(z) = (—z16™™ + T3) [—me“ml +2e7" 4 kg} + ze7 % 4 k.

It is clear that the above feedback linearising control law is fairly complicated to implement.
However, a simple inspection of the above system (4.1) shows that it is already in the EJCC

form. In effect, the above system can be written as

which is in the EJCC form (3.11) with a(z) = —e™, f(z) = 1 and Log = [O 0} .

In compact form, the system is written as
& =—e "z + Az + Bu

where

BN
Il
v
I

and I, is the 2—dimensional identity matrix. We shall now show that a simple linear con-
troller

u(z) = kyzy + ko = Kz (4.2)
where K is a vector such that (A 4+ BK) is stable, will suffice to stabilise the system at the
origin. First note that under the feedback (4.2) the closed-loop system is given by

i =—e "Lz + (A+ BK)xz.

Let V(z) = z¥Px be a candidate Lyapunov function where P is a symmetric positive

definite (SPD) matrix such that
P(A+BK)+ (A+BK)'P=-Q
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where () is an SPD matrix. Then,
V(z) = 2'Pi+iTPz
= —2¢"¢"Pr+ 2" [P(A+ BK)+ (A+ BK)"P|]z
= 2 "zTpPy —2TQxz <0.

Hence, the above linear controller (4.2) is sufficient to control the nonlinear system (4.1).
Figure 4-1 and Figure 4-2 show the behaviour of x; and x4, respectively, under the feedback
linearising (FL) controller (solid line) and the simple linear controller (dotted line). In both
controllers, the same gain was used: k; = —1 and ky = —2.

To summarise, we observe that the EJCC form allows the design of simple controllers
for classes of nonlinear systems.

We are now going to generalise this design procedure for the class of systems which can

be put into a partial EJCC form as mentioned in the previous chapter.

------------ FL controller | ) ~-FL controller |
4 (\\ ~~~~~~~ Linear controller I L Linear controller|
\\ {
3r \\
A
20 1N
0N\
1 A
i \\
‘ e -4
OF § e
6|
Ea
-2 : . ; ‘ ' -8 : ; : ‘ ‘
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Time Time

Figure 4-1: Profile of z1 under the feedback linearising controller ~ Figure 4-2: Profile of @2 under the feedback linearising controller
(solid line) and the simple linear controller (dotted line) (solid line) and the simple linear controller (dotted line)
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4.2 Control design for a class of nonlinear systems using

Extended Jordan Controllable Canonical forms

We consider the problem of a controller design for the following special class of systems:
&= F(z)z + G(z)u (4.3)

where z € R”, u € R and the matrices F'(z) and G(z), which are dependent upon the state,

are given as

_ . _ -

Su@) - fin(2) 91(z)
F(z) = : : and G(z) = : . (4.4)

far(z) o fan(®) gn(2)

We assume that:
A4.1) The rank of the controllability matrix
Ulz) =| G(z) F(z)G(x) Fr=1(z)G(x)
is equal to n for all z € R™.

A4.2) The functions f;;(z) and ¢;(z); 4,j = 1,...,n, and their respective time derivatives

are continuous and bounded for all x € R"™.

A4.3) The origin is an equilibrium point for the autonomous system.

Now, since the pair (F(z), G(z)) is a controllable pair for all z € R”, we can define
a similarity matrix M,g(z) given by (3.15) such that relation (3.14) is satisfied for some
arbitrary bounded real-valued functions a(z) and §(z) with 0 < |8(z)| < B, forall z € R™.
In particular, one can try to choose, if possible, the functions a(z) and S(x) such that the
upper bound of M,g(z)M_;(z) does not exceed a certain desired value. In what follows,

we shall make the following additional assumption:
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A4.4) We assume that there exists a bounded real-valued function a(z) with 0 < |a(x)| <
a1 and a strictly positive bounded real-valued function §(x) with 0 < 8, < f(z) < 5,

such that 0 < oy < B and HMag(x)Ma”‘g(a:)H <o < By — .

Now, consider the control law defined by
u(z) = — [Lap(2) + B(z) K] Mag(z)x (4.5)

where

i) K is arow vector chosen such that the matrix A — BK is Hurwitz.
i) Log(x)isasin (3.13) and M,p(x) is as in (3.15).
iii) a(z) and B(x) are chosen such that Assumption A4.4) is satisfied.

We can now state the following:
Theorem 4.1. Assume that system (4.3) satisfies Assumptions A4.1)-A4.4). Then, the
origin of the following closed-loop system:

= F(z)x + G(z)u(x) (4.6)
where u(x) is defined as in (4.5), is globally asymptotically stable.
Proof of Theorem 4.1:
Consider the closed-loop system (4.6). Let z = M g(z)x.
Then,
z = Mu(z)t + Mag(z)z
— Map(@)F(2) Mo (2)7 + Mag(2)G(w)u(a) + Mas(2) Mz (2)2
= [Jap (z) + BLas(x)]z + Bu(z) + Mag(a:)M;/;(:v)z

= [a(z)l, + B(z)A + BLas(x)]z + Bu(z) + Maﬁ(x)Mojg(x)z
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By replacing u(z) = — [Lag(z) + B8(2) K] Mag(z)x = —Lag(z)z — B(x) K 2, we obtain
z=a(z)lz+ B(z) (A - BK) z + Mus(z) M (7).
On the other hand, since A— BK is Hurwitz, there exists a symmetric positive definite matrix
P such that
(A- BK)' P+ P(A- BK) = —I,.
Let V(z) = 27 Pz be a candidate Lyapunov function. Then,
V(z) = 227Pz
= 2a(z)z" Pz — B(z)||z||* + QZTPMQQ(QE)M;; ()z
< 2a(@) 1P = Boll2ll* + 2/l PIl-| Mas (2) M5 ()]|-[|2|I?
< 2a|[PllIzl? — Bollzll® + 20| Pl || Map(z) Mg (). [|2]>
By using Assumption A4.4), we obtain
V(2) < 200 ||P|l]|2]1* = Boll=lf® + 2co]| P|.]| ]|
Now, we can always choose K such that || P|| < % and in which case, we have
V(z) < adllelf® = Bollzll* + coll2lI*
< —(By—on—co)fl2)? <0
owing to Assumption A4.4).

This completes the proof of Theorem 4.1. g

Remark 4.1

1) If F(z) = F and G(z) = G where F' and G are both constant matrices, then Mys(z) =
M.z is obviously constant and the u(z) defined by (4.5) amounts to the classical state

feedback control for linear time-invariant systems.

2) Assumption A4.4) is somewhat restrictive. It might not always be possible to find a(x)
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and S(x) such that 0 < 3, < B(z) and “Mag(x)M;;(a:)” < By — a;. This would
naturally impose some particular structure on F'(z) and G(z). In general, one should
aim to choose a(z) and §(z) such that the matrix M,z(z) becomes a constant matrix
or at least as close as to a constant matrix so that the term Ms(z)M. o () will be
almost zero. This can sometimes be done through the inclusion of some preliminary

compensation as Example 4.2 given below shows.

3) Finally, it should be realised that the condition that 3, — a; —c¢g be positive is conservative.
If a(z) = —y(x)+v(x) where y(z) is positive for all z € R", then 8, — |v(z)|—co > 0

would be a sufficient condition for V (2) to be negative.

4.2.1 Example 4.1

Consider the system

1 T1C08 X1 + 279
= 4.7)
To Ty18inx; + x9cosxy + U
which can be written as
i1 CoS T1 2 1 0
= + U. (4.8)
To sinz; cosx; o 1

It is clear that system (4.8) is of the form (4.3) with

COS T 2 0
F(z) = and G(z) = =B

sinx; €osxI 1

and satisfies all the Assumptions A4.1)-A4.3). Indeed,
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Therefore, U(z) is of full rank for all z € R? The entries of F(z) and G(z) and their
respective time derivatives are continuous and bounded for all z € R2.

In addition,

oS I 2

sinzy cosx;

I ] 1
COS X1 2 0
= + [ sinz; 0 }

0 COS 1 1

L -

Therefore, F(x) is of the form Jugs (z) + BLag(z) with a(z) = coszi, f(z) = 2 and

Los(z) = [ sinz; 0 } As aresult, (see Remark 4.1), we have
Mep(z) =
01
Since 5(x) — a(z) = 2 —cosz; > 0 and M,g(x)Map(z)~ = 0, we can design a controller

of the form (4.5):

u() = —[Las(z) + B(x)K] Mag(z)z

< [ 0) 2w )]

T2

= - (Sil’l X1+ 2]4)1) Tr1 — 2]625172
where k; and ko are chosen such that the eigenvalues of the matrix

3 0 1
A—BK =
—k1 —ko

lie in the left-half complex plane. For example, k; and k2 can be chosen as k; = 1 and

ko = 1.
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4.2.2 Example 4.2

Consider the system

) —2r1 +sinz; 4+ axs
= . (4.9)
o —Z5CO8 T1 + U COS 21,
This example 1s borrowed from [10] where it is shown that the following control law:
1 . .
U= ———— (—2azy — 2sinz; — cosx; sinx; + 2x; cos 1) (4.10)
a cos 21

is a feedback that stabilises the system at the equilibrium point (0, 0) using the input-state
linearising method. We shall apply the control design method given in the previous section
and compare the results obtained.

First, let us apply the preliminary control

1 .
Uy = (—23:2 + (mn:vl) Ty + ToCOSTT + v) . (4.11)
T

CcoS 211 1

By applying (4.11) to (4.9), we obtain

1 —2x1 +sinzy + axs
.’tg ——21’2 -+ Sizfl To + VU
which can be written as
T -2+ §‘2ﬂ a T 0
= ' + v. (4.12)
&9 0 —2 4 #ao T2 1
It is clear that system (4.12) is of the form (4.3) with
-2+ _—Sigfl a 0
F(z) = and G(z) = =B
0 -2+ sinz; 1

xy

and satisfies all the Assumptions A4.1)-A4.3).
If we choose a(z) = —2 + ﬂ;—f’—l and B(x) = a, it can readily be seen that system (4.12)

is already of the extended Jordan controllable form with Ls(z) = [ 0 0 J . Consequently,
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10
Myg(z) = . As aresult,

v(z) = -0 (z) Kz = —akizy — akyxs

where k; and k, are chosen such that the eigenvalues of the matrix

A— BK =
—k1 —ko

lie in the left-half complex plane. For example, k; and ks can be chosen as k; = 1 and ky = 2.

For this choice of k; and ks, the overall control law is given by

. ,
U= (—axl —2(1+a)zs + (s1nx1> 3:2+:Jc2cosa:1> . (4.13)
cos 221 T
Since ar(z) = —2 4 A and |¥BE} < 1, it is clear that the above controller will work

ﬁﬁuy¢%§¢:a—1zmmmmazL

Figure 4-3 and Figure 4-4 show the profiles of x; and x5 obtained by applying controllers
(4.10) and (4.13). The proposed method is shown in solid lines and the input-state linearising
method is shown in dotted lines. The poles of the linearised system obtained by the input-

state linearising method, and the poles of the matrix A — BK involved in the proposed

method were both placed at —1. Consequently, the comparison is justifiable. It can be seen

that the controllers have similar performances.
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Figure 4-3: Profile of 1 using the input-state linearising method Figure 4-4: Profile of xo using the input-state linearising method

(dotted line) and the proposed EJCC method (solid line) (dotted line) and the proposed EJCC method (solid line)
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4.3 Conclusions

In this chapter, we have proposed a controller design methodology for a class of single-input
nonlinear systems which can be transformed, partially, into the Extended Jordan Controllable
Canonical form. It is shown that such a canonical form facilitates the design of a controller
since it provides additional degrees of freedom in tuning the controller parameters. In addi-
tion, only linear design techniques are used for the controller design, which has been shown
to compare well with an input-state linearising controller.

In the next chapter, we shall tackle the issue of observer design for a sub-class of state-

affine systems and highlight some difficulties associated with this.
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Chapter 5

Observer Design using the Extended

Jordan Observable Canonical Form

5.1 Introduction

In the previous chapter, we have proposed a controller design methodology for systems in
EJCC form. In this present chapter, we shall attempt to propose a methodology for observer
design for systems which can be put into a partial EJOC form. We shall see that this is not an
easy matter, especially for systems in the general EJOC form (3.8) as described in Chapter
3. Indeed, consider the class of systems described by equation (3.8). Suppose that we wish

to design an observer for the system (3.8) of the following form:
2= U,5(u, )%+ g(u,2) + K(y — C2)

where K is the gain of the observer, possibly depending on the measured variables v and y.

By setting e = z — 2, we can see that the error dynamics are given by
¢ = Wap(u,2)z — Yog(u,2)2 — KCe + [g(u, 2) — g(u, 2)]

- [‘Ijaﬁ(uv 2)'2 - qjﬂﬁ(“? 2)2] — KCe+ [\I]aﬁ(ua Z) - \Ilaﬂ(u’ 2)] z+ [g(u’ Z) - g(uv 2)]
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é = (Vap(u, 2) - KC) e+ [Vag(u, z) — Vap(u, 2)] 2 + [g(u, 2) — g(u, 2)] .
Firstly, it is important to realise that, in general, it is not easy to design a K such that the ma-
trix (Wog(u, £) — KC) is stable. Next, since z is not measured, some assumptions are needed
for the compensation of the residual terms [U,p(u, 2) — Wop(u, 2)] z and [g(u, 2) — g(u, 2)].
Some boundedness or Lipschitz continuity assumptions might be used for that purpose.
However, these assumptions are too restrictive.

On the other hand, if we consider a sub-class of the above systems where the ma-
trix W,p(u, z) depends only on the input and the output (i.e. Wop(u,2) = V,p(u,y) and
g(u,z) = g(u,y)), then the residual terms will become zero. Therefore, the only prob-
lem that remains to be solved is to find the appropriate gain K that will make the ma-
trix (Was(u,y) — KC) stable. Because of the these observations, we shall, in this chap-
ter, consider the problem of observer design for the above system in EJOC form when
Uop(u, z) = Yag(u,y) and g(u, z) = g(u,y). Then, we show how this observer can be
adapted to design observers for a class of state-affine systems that can be partially trans-
formed into the EJOC form. As in the controller design case, we shall see that the interesting
feature of the EJOC form is that it provides additional degrees of freedom to tune the ob-

server gain.

5.2 Observer 1 - Observer design for a sub-class of

single-output systems in EJOC form

Consider the following sub-class of systems in EJOC form:

2= Uap(u,y)z + g(u, y) (5.1)

y=~02
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where z € R*, v € R™ and y € R. The matrices V,5(u, y) and C are given as

h(uw,y) + a(u,y)dr  Blu,y) 0 0 —
ba(u, y) a(u,y)dz Blu,y)
Vop(u,y) = 2 0 0 and
Lot (u, y) : o ow )b Bluy)
i In(u,y) 0 - 0 a(u, y)dn
2 A

Note that matrix ¥,4(u,y) can be decomposed as

Uos(u, y) = (a(u,y)A + B, y)A) + Lag (u,y) C

where A = diag [04, ..., d,] and

T
Laﬁ (u, y) = ll(u, y) ZQ(U, y) Tt ln(ua y)

For the case of Observer 1, we have A = [, where [, is the n-dimensional identity
matrix. It is assumed that 5 (u,y) # 0 for all w and y. As stated in the previous chapter, this
assumption ensures that the above system is observable for all u; 1.e. the system is uniformly
observable.

Since 8 (u, y) # 0 for all u and y, this means that 3 (u, y) is either a strictly positive or a

strictly negative function. Consequently, we shall make the following assumptions:

A5.1) There exists a set of admissible inputs &/ such that for all « € U/, the matrix

C

CWas(y,
T(u,y) = e y) (5.2)

| Cvtu,y)
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is of full rank for all y € R.

A5.2) We shall assume that the function g(u,y) and the entries of the matrix ¥,g(u, y) are

smooth and bounded.

A5.3) We assume that there exist 8, > 0 and 3, > 0 such that 5, < |B(u, y)| < f;.

Now, consider the following system:

2= Uap(u,y)2 + g(u,y) + K(u,y)(y — C2) (5.3)
where
° f((u, y) = 6 (u,y) D;CIKO + Log(u, y), where

1 1 and
AU T
o2 8

c

e Dy = diag ei
e K is a constant vector chosen such that the matrix A — K,C is stable.

We can now state the following:
Theorem 5.1. Assume that system (5.1) satisfies Assumptions A5.1)-A5.3). Then, the

system (5.3) is an exponential observer for system (5.1) if:

D) 0. > 0when a(u,y) < 0and f(u,y) > 0 for all v and y.
ii) 6. < 0when a (u,y) < 0and 8 (u,y) < 0 forall uwand y.
iii) 9. > 0, for some Oy > 0 when o (u,y) > 0and B (u,y) > 0 for all v and y.

iv) 0. < 0, for some 0, < 0 when o (u,y) > 0 and 3 (u,y) < 0 for all u and y.

Proof of Theorem 5.1:
Defining the estimation error as e = z — z, we have

e=TU,ge — KCe
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e = \Ifage — [ﬂDé;lKo -+ Laﬁ] Ce
= (Jog + LagC)e — AD; KoCe — LosCe
(Jus — BD;1KC) e.

Note that the arguments of the various matrices have been dropped for the sake of simplicity.

Since Jop = al, + BA and

— 0 1 0 0 -
0 0 1
A= 0 (5.4)
0 1
0 0 0

we have
é=al,e+f (Z — D(;(}KOC’) e.

Now, let € = Dgy_e. Then,

& — Dyeé
= aDg.e+ D, (Z — De_clKOC’) e
= aDy,Dy'e + 8Dy, (A — Dy KoC) Dy 'e.

It can be verified that Dy AD, " = §.A and CD; ' = 0.C. Consequently,

¢ = ale+ 0. (A— KoC)e.

Now, since the matrix (A — KC) is stable, there exists a symmetric positive definite matrix
P such that

(A— KoC)TP+ P(A~ Ko C) = ~1,. (5.5)
Consider the following candidate Lyapunov function V' (¢) = & Pe. Then, we have

V =" pe +eT Pe.
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Since ¢ Pe is of dimension 1 x 1, i.e. a number, we can use its transpose and obtain
V = 2¢TPe
= 2ae’ Pe +280.e" P (A — KoC)e.

It can be shown that a pre-multiplication of (5.5) with €7 and a post-multiplication of (5.5)

with ¢ yields terms of dimension 1 x 1:
eT(A - KoO)Y'Pe + eTP(A — KoC)e = —eT Ie.

Therefore, we can use a transpose:

T

e"(A— KoC)"Pe = (7 (A — KoC) ' Pe)” =e"P(A— KoC)e

to obtain
eT(A — KoC) Pe + " P(A — KyO)e = 26T P(A — KoO)e = —¢e.
Hence,
V = 20eTPe+280.TP (A KoC)e
= 2aeT Pe — 30, ¢.

First note that 7 Pe and £7¢ are always positive. For ¢ () — 0 as t — +00, we require

V (g) < 0. Therefore, if a (u,y) < 0 and S (u,y) > 0, it suffices to choose . > 0 such that

V (g) < 0. Similarly, if & (u,y) < 0 and 8 (u, y) < 0, it suffices to choose 0. < 0 such that

1% (€) < 0. Therefore, the only two critical cases that are left are:

o Case5.1: a(u,y) > 0and 8 (u,y) > 0.

e Case5.2: a(u,y) > 0and S (u,y) < 0.

Case 5.1

In this case,

1% () = 2ae’ Pe — B0.£Te < 20maxe’ Pe — 0.7
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where amay i the upper bound of « (u,y). On the other hand, we know that there exists
¢y > 0 and ¢y > 0 such that

c1ele < T Pe < czeTg.

In effect, c; and ¢, are the smallest and largest eigenvalues of P, respectively. Therefore,

Vv < 20maxCoe’ € — 80,7
< (2amaxty — Boble) e”e
where j is the lower bound of § (u,y) as mentioned in Assumption A5.3). Hence, for
V (¢) < 0, we require
20maxC2 — Bob. < 0.

Therefore, it suffices to choose

Case 5.2
In this case,

V = 20eT Pe — 50,.£7¢

IA

20maxe’ Pe — B0.eTe

IN

20maxel Pe + 3,0, ¢
< Q0maxCoele + BT
< (20maxC2 + 816.) eTe.
Hence, in order for V (g) < 0, we require
2QmaxCs + 16 < 0.

Therefore, it suffices to choose
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Note that the arguments of the functions were dropped for brevity.

This completes the proof of Theorem 5.1.

5.2.1 Example 5.1

We now give a simulation example to illustrate the performance of the observer. Consider

the 2nd-order system expressed in the EJOC form (5.1) as

-
T1 a(u,y) Blu,y)| |z 0
= +
Ty 0 alu,y)| |z2 1
_ -
¥y = 11 0 =T
L 2

T
where u is a step input. Note that here, A = I and Log(u, y) = [0 0} .

We shall consider the following cases:

. _ . . 1
o Case53: a(u,y) =-18(u,y) = Eaay

e Case5.4: a(u,y) = -1, 8 (u,y) = —;lfl;q.

e Case 5.5: a(u,y) =1; 8 (u,y) = =

x%—{—l .

o Case5.6: a(u,y) =1;8(u,y) = —;%—1;{.

For each case considered, the gain is given by

~ |
K= = ﬁ (ua Z/) D;clKO + La,B (U, y)
¥y
with

Dy, = diag [_1_ L}

0. 62
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and K is chosen as

That is,
20,5 (u,y)

626 (u,y)

K=

To appreciate the magnitude of gain required to attain such performances, a selection of

profiles of the observer gains 1), and v, are also given.

Simulation results

Observer 1 - Case 5.3 In this case, as we have seen previously, any positive value of 4,

will work. The fixed simulation parameter values used are shown in Table 5.1.

2 (0)=1]7:(0) =1
22 (0) =2 | 22 (0) =4

Table 5.1: Observer 1 - Case 5.3 and Case 5.4 parameter values

Figure 5-1 and Figure 5-2 show the observer performance with a choice of 8, = 1 and
6. = 5, respectively. From these, it is clear that a larger magnitude of 6. results in a faster
convergence performance. Figure 5-3 shows a failure in convergence for a choice of 6, =

-0.2.

Observer 1 - Case 5.4 In this case, as shown previously, any negative value of 6. will
work. The fixed simulation parameter values used for Case 5.4 are shown in Table 5.1.
Figure 5-4 and Figure 5-5 show the observer performance with a choice of . = —1 and
6. = —5, respectively. From these, it is clear that a larger magnitude of 6, results in a faster
convergence performance. Figure 5-6 demonstrates the positive limit of . = 0.76 at which

convergence can still be achieved.
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Figure 5-2: Estimation of g where 8. = 5 for Case 5.3
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Observer 1 - Case 5.5 In this case, for successful estimation, it is required that we choose
g, > 3"%—2"% = f,. However, for the sake of this example, we will not determine the value
of ¢y to find the range of .. We will, however, show the values of 6. at which the simulated
estimation performances are no longer successful.

It should be noted here that when a (u, y) > 0, the system (5.6) is unstable. Hence, in
order to clearly illustrate the convergence performance of the observer, very low initial state

values have been chosen. The fixed simulation parameter values used for Case 5.5 are shown

in Table 5.2.

1 (0) = 0.01 | 21 (0) = 0.01
72 (0) = 0.01 | 25 (0) = 1

Table 5.2: Observer 1 - Case 5.5 parameter values

Figure 5-7 and Figure 5-8 show the observer performance with a choice of 6. = 4 and
0. = 7, respectively. From these, it is clear that a larger magnitude of 4, results in a faster
convergence performance. The range of 6. is demonstrated in Figure 5-9 where a choice of

6. = 2.5 results in a failure of convergence.

Observer 1 - Case 5.6 Here, for successful estimation, it is required that we choose
g, < iag“ﬂﬂ = f,. Again in this case, we will show examples of values of §, at which
1

the simulation estimation performances are successful and when they are not. The fixed

simulation parameter values used for Case 5.6 are shown in Table 5.3.

) (0) = (.01 ZE\Q (O) =2

Table 5.3: Observer 1 - Case 5.6 parameter values

Figure 5-10 and Figure 5-11 show the observer performance with a choice of 6, = —3
and 8. = —7, respectively. Clearly, a larger magnitude of 6. results in a faster convergence
performance. Again, we demonstrate the range of 6., where in this case a choice of 6, =

—1.83 results in a failure in convergence as shown in Figure 5-12.
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Figure 5-8: Estimation of zp where 8. = 7 for Case 5.5
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5.2.2 Concluding remarks 1

An exponential observer design methodology has been given for a sub-class of state-affine
systems. The design is facilitated by expressing the system under observation in the EJOC
form and uses a constant tuning parameter §.. Consequently, the construction of such an
observer is simple and straightforward. It has been shown in theory and in simulation that the
observer is capable of exponentially estimating the state variables of the sub-class of single-
output state-affine systems considered. It is shown that the observer can be tuned using only
a single tuning parameter ., and that convergence is achieved more quickly when using a
larger magnitude of which. However, as with any constant-gain observer, there must be a
trade-off between the level of acceptable transient peaks, and an acceptable time period for
convergence.

A major drawback of this observer is that its tuning parameter is constant and may not
always be suitable where o (u,y) > 0. In this case, it has been shown that 6. must be either
greater than fy = go"g%@ or less than 6; = :29"3“11"—(12 depending on whether 3 (u,y) > 0 or
B (u,y) < 0, respectively. Indeed, if « (u, y) takes on large values over a finite interval, the
values of 8, and §; might be too conservative, as illustrated in Figure 5-13. Note that for
t > ty, a(u(t),y(t)) is fairly small. Consequently, for ¢ > t;, low magnitudes of §, and
f; might just suffice. Hence, it is important to design an observer whose tuning parameter

follows the variations of « (u, y). This is the main purpose of the next section.

a(u.y)

Figure 5-13: Profile of a varying o (u () , y (¢)) illustrating large values over a finite time period and low values thereafter
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5.3 Observer 2 - Adaptive observer design for a sub-class

of systems in EJOC form

In the previous observer design, the tuning parameter 6, is chosen constant and depends upon
the upper and lower bounds of the system parameters « (u,y) and 5 (u,y). Consequently,
as mentioned above, certain cases may arise where « (u,y) varies significantly over time,
and the constant-gain observer may not be suitable for that case. In addition, the presence of
measurement noise may cause « (u, y) to vary significantly. One solution to this problem is
to make the parameter 0, vary with respect to o (u, y).

Indeed, consider again the above system (5.1) where A = 2 = diag [ 1 2 -« n ]

The observer is now defined as
&= ap(u,y)2 + g(wy) + K(u,y)(y ~ C2) (5:8)
where
o f((u, y) = 6 (u,y) D;:KO + Lop(u, y), where

A Ao A with 8, (t) = a(u(t) ,y (t))8a(t), and

a

o Dy =diag

e K, is a constant vector chosen such that the matrix A — K,C is stable.

Note that we have changed the notation of the tuning parameter 6. to 8, to symbolise its
adaptive nature.

We then state the following:

Theorem 5.2. Assume that system (5.1) satisfies Assumptions A5.1)-A5.3). Then, the
system (5.8) is an exponential observer for system (5.1).

Proof of Theorem 5.2:

Following the same line of proof as in Theorem 5.1, we have
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e = (Jaﬁ - ﬁDe‘alKoC') e
= (a2 + BA - BD;'KoC) e
= afle+ [ (Z — D(;;lKOC’) e
where e = z — Z. The arguments of the various matrices have been dropped for the sake of
convenience.
At this stage, it is important to remark that if & = 0 and Ky = [C},C?, ..., C™]T where
CP = (—nf—p!)!l;!, then the eigenvalues of the matrix I' = 8 (A — D, ' K,C) are equal to —[30,.
Hence, the sign of the product 34, will be of crucial importance for the stability of the above
error dynamics. Also note that by varying 6, the poles of the observer will be varied. The
dynamics of #, will be chosen such that the influence of the first term, af2e, of the error

dynamics is eliminated.

Indeed, let € = Dy_e. Then,

& = Dgé+ Dye (5.9)
= OéDgaQe + BDBG (Z - Dé;lKOC) €+ Dgae
= aDg,OD; e + BDq, (A — Dy  KoC) Dy'e + Do, Dy e

= Dy, 0D, e + fDs,AD, e — BDs, Dy  KoCDy e + Do, Dy e.

Since  and Dy, are diagonal matrices, it is easily shown that D, 2Dy, ! = Q. It can also be

_ _ . 0,
shown that Dy, AD; ' = 0,4, CD;"' = 6,C, and Dy, D, = —@_Q' Consequently, we can

a

simplify (5.9) to
. — 0.
¢ = afe+ 0, (A—-KC)e— é—Qa (5.10)

= (a— %) Qe + B0, (A — KoO) .

Since 8, = ab,, we have

& =0, (A-KiC)e. (5.11)
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Now, since the matrix (A — K,C) is stable, there exists a symmetric positive definite matrix
P such that
(A—KoC)'P+ P(A— KoC) = —I,.
Defining the candidate Lyapunov function V' (g) = €T Pe, we obtain
V o= 27pe
= 2¢"P (B0, (A— KoC)e| = —f0ue"e.
It is clear that if the product 50, > 0 for all ¢ > 0, then V < 0. It is therefore necessary to

show when this is the case.

Note that

Therefore, by integrating the above equality, we obtain

In0, (t) — Inf, (t) = / o (u(r),y (1) dr

to

or equivalently

Hence,

0. (£) = 6. (to) exp (/ta(u (r) ,y(T))dT) . (5.12)

to

Therefore, the sign of 8, (¢) is determined by the sign of 6, (to) since the exponential term is
always positive.
Hence, to ensure that 8 (u (t),y (¢)) 0.(t) is positive for all ¢ > 0, we choose 0, (to) as

follows:
o If5(u(t),y(t)) > 0forallt > 0, then we choose 8, (tg) > 0.
e If B (u(t),y(t)) < 0forallt > 0, then we choose 6, (t5) < 0.
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Remark 5.1

Note that if 8, (¢y) > 0 and a(u(t),y(¢)) > 0 for all ¢ > 0, then 4, (¢) will grow
indefinitely. Also, if 6, (t;) < 0 and « (u(t),y (t)) > 0 for all ¢ > 0, then |6, (¢)| will
grow indefinitely. In practice, |0, (t)| cannot be chosen excessively high since this will result
in an amplification of noise. Similarly, if 6, (fp) > 0 and a (u(t),y (¢)) < 0 for all £ >
0, then 6, (¢t) will tend to 0 as ¢ — o0, which may not always be desirable as far as
tuning is concerned. This is also true if 8, (t5) < 0 and « (u (t),y (¢)) < O for all ¢ > 0.
Consequently, it is important to place bounds on the maximum and minimum allowable

values of 4, (t). More precisely, the additional constraint on 8, (¢) is placed as follows:
o If |0, (t)] > |Fmax|, then 6, () = Opax.
® Ifl(ga (t)l S Igminla then Ha (t) = gmin-

The choice of the two threshold values 6,,;, and 6,,., depends on the application that is
being considered. The upper and lower bounds can be calculated as in the previous section
related to the constant tuning parameter observer. For example, when 8 > 0, we would
choose

e > 2
Bo
Indeed, when 6 = 0,,.,, we would have, from equation (5.10),
& = aQle + BOmax (A — KoC) €.
Choosing again the Lyapunov function V' = €7 Pe, we would have, after some computation,
V = 2asTPQe— BOmaxaTe
< 2lq] !eTPQe:( — BOmaxele
< 2o Toele — BOmaxe’e
for some ¢, > 0.
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That is,
V< (2]|alte — BOmax) ele < (201C2 — Byl max) ele.

Therefore, we choose 0.5 as

20&1—0—2

emax >
Bo

It can also be verified that 6,;, can be simply chosen as 6,,;, > 0.

Note that the arguments of the functions were dropped for simplicity.

This completes the proof of Theorem 5.2. U

5.3.1 Example 5.2

We now give a simulation example to illustrate the performance of the adaptive-gain ob-

server. Consider the 2nd-order system expressed in the EJOC form as

z; alu,y)  Blu,y) | |z alu,y) 0f |z 0
_ n + (5.13)

Z9 0 20(u, y) | |z2 0 O |z2 T1U

Yy = Iy

T
where v is a step input, A = Q = diag [1 2] s Log (u,y) = [a (u,y) 0} , || = 3, and

Bu,y) =

I—Qlﬁ ' Note that in this system, a(u,y) is chosen such that its sign is constant
1

throughout in order to clearly illustrate the performance in each of the following cases:

Case 5.7: a (u,y) = —%; B(u,y) = 11

Case 5.8: o (u,y) = —3; B (u,y) = — "

- x%—f—l )

Case 5.9: a (u,y) = 3; 8 (u,y) = ;%lﬁ

[ ]
g
@

CaseS.lO:a(u,y):%;g(’ )Z”&?lﬂ'
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For each case considered, the observer gain is given by

T
K= Lpl %} = B (u,y) Dy Ko + Lag (u,y)

with K chosen as

with 0, = a (u,y)b,.

Simulation results

Observer 2 - Case 5.7 The results obtained are similar to those given by Observer 1 where
the constant 6. was used (see Figure 5-1) and are not repeated here. Instead, we show a
comparison between the gains of Observers 1 and 2 that achieve the same convergence per-

formance. The fixed simulation parameter values used for Case 5.7 are shown in Table 5.4.

Table 5.4: Observer 2 - Case 5.7 and Case 5.8 parameter values

Figures 5-14 and 5-15 show the profiles of ¢, and v,, respectively, of the adaptive Ob-
server 2 where 0, (0) = 4 with lower bound 0,,,;, = 0.04, and of Observer 1 with constant
tuning parameter 6. = 1. Figure 5-16 shows the behaviour of the adaptive tuning parame-
ter. From these results, it is clear that the use of the adaptive tuning parameter ¢, gives a
gain profile converging to a much smaller magnitude than when using the constant tuning

parameter 6.

Observer 2 - Case 5.8 The fixed simulation parameter values used here are shown in Table
5.4. The results obtained are similar to those given by Observer 1 where constant 0, was used
(see Figure 5-4) and are not repeated here. As in the previous case, we show a comparison

between the gains of Observers 1 and 2 that achieve the same convergence performance.
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Figures 5-17 and 5-18 show the profiles of v); and v,, respectively, when using Observer
2 with adaptive tuning parameter 6, (0) = —1.5 with lower bound 6.;, = —0.015, and
when using Observer 1 with the constant tuning parameter 6. = —1. Figure 5-19 shows the
behaviour of the adaptive tuning parameter. Once again, it is clear that the use of the adaptive
tuning parameter 6, gives a gain profile converging to a much smaller magnitude than when

using the constant tuning parameter ..
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Figure 5-16: Profile of adaptive tuning parameter for Case 5.7
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Observer 2 - Case 5.9 When « (u, y) > 0, the system (5.13) is unstable. Hence, to clearly
illustrate the convergence performance of the observer, very low initial state values have been

chosen. The fixed simulation parameter values used for Case 5.9 are shown in Table 5.5.

21 (0) = 0.01 | 21 (0) = 0.01
22 (0) = 0.01 | Z5 (0) = 1

Table 5.5: Observer 2 - Case 5.9 parameter values

Here, the varying tuning parameter 6, increases in magnitude. To compare with Observer
1, there are two main options for setting the initial value 6, (0). The first is to set 6, (0) =
Omax = 0., which will give a virtually identical performance as Observer 1. The second
option is to set |0, (0)| < Opax = 0., which will result in a slightly slower convergence
performance, but with a much less harsh initial value of gain. Here, the second option is
chosen. Figure 5-20 shows the convergence performance of the adaptive tuning parameter
observer with a choice of 8, (0) = 3 with upper bound 6,,,, = 4. Figures 5-21 and 5-22
show the profiles of ¢/, and v,, respectively, when considering Observer 2 with the adaptive
tuning parameter ¢, and when considering Observer 1 with the constant tuning parameter
6. = 4. Figure 5-23 shows the profile of the adaptive tuning parameter.

As expected, the estimation convergence time of Observer 2 is slower than when using
a constant 6. > 6, (0), as given previously. However, the adaptive technique allows for a
much gentler initial effort in the observer gain, which can be useful where a high initial effort

1s undesirable.

Observer 2 - Case 5.10 The fixed simulation parameter values used for Case 5.10 are

shown in Table 5.6.

1 (0) = 0.01 | 71 (0) = 0.01
72 (0) = 0.01 | 22 (0) = 2

Table 5.6: Observer 2 - Case 5.10 parameter values
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As in the previous case, we set |0, (0)| < Opax = 0. Figure 5-24 shows the convergence
performance of the adaptive tuning parameter observer with a choice of 6, (0) = —2 with

upper bound 0.« = —3. Figures 5-25 and 5-26 show the profiles of ¥, and 1., respectively,

when using Observer 2 with the adaptive tuning parameter 6, and when using Observer 1

with the constant tuning parameter §, = —3. Figure 5-27 shows the profile of the adaptive

tuning parameter.
As expected, the estimation convergence time of Observer 2 is slower than when using

a constant |6.] > |0, (0)|. However, again we note that the adaptive technique allows for a

much gentler initial effort in the observer gain, which can be useful where a high magnitude

initial effort is undesirable,

10 : — —
: v, Adaptive :

ey, Constant

4 5 00 1 2 3 4 5 6 7 8
Time Time
Figure 5-20: Adaptive estimation of zg for Case 5.9 Figure 5-21: Comparison of +/; for constant 8. and adaptive 8,
for Case 5.9
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for Case 5.9

Figure 5-23: Profile of adaptive tuning parameter for Case 5.9
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5.3.2 Concluding remarks 2

An exponential observer design methodology has been given for a sub-class of state-affine
systems. As with the constant tuning parameter Observer 1, the design is facilitated by
expressing the system under observation in the EJOC form. However, the main difference
is that the current observer uses an adaptive tuning parameter ¢, in its gain. Indeed, the
adaptive tuning parameter behaves in accordance with the magnitude and sign of a (u,y)
and is lower and upper bounded by the limits 8,,;, and 0,,.x, respectively. The reason for the
use of these bounds is twofold. Firstly, 0,1, is set in place for o (u, y) < 0 where the tuning
parameter 0, tends to the specified 0., as t — oco. The use of 0, provides an additional
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degree of freedom in tuning the observer with regards to speeds of convergence. Secondly,
Omax 1s used to cater for o (u,y) > 0 where the tuning parameter 6, tends to the specified
Omax as t — oo. The use of 0., ensures that an increasing magnitude can be limited as
desired. In the former case, where 0, decreases in magnitude, an initial value 4, (0) of high
enough magnitude can be selected such that convergence is quickly achieved. Thereafter, 6,
can be fixed at a constant low magnitude. This can be particularly useful when considering
measurement noise since a lower amplification or even attenuation of noise can occur. In the
latter case, where 6, increases in magnitude, the tuning parameter can be allowed to ramp
up to a desired value rather than be initialised at that value. Hence, estimation performances
can be improved in systems where constantly high magnitudes would otherwise result in
larger transients in the estimation profile. The increasing gain of the adaptive observer would
provide an estimation containing lower magnitudes of transients, although with a longer
convergence time. Therefore, a trade-off between acceptable transients and convergence
times must be made for a given system.

Finally, the example given here considers a constant « (1, y). However, it must be em-
phasised that this adaptive-gain observer is particularly useful when considering a system
where the magnitude and sign of a (u, y) does change. Indeed, for the case of o (u, y) with
varying magnitude and polarity, the adaptive tuning parameter varies with the changes in
a (u,y) and operates between both the upper and lower bounds. If either bound is reached,
then the tuning parameter remains constant at that value until the sign of & (u, y) changes. In
effect, unlike when using Observer 1, an efficient gain is given that is capable of guaranteeing
exponentially stable error dynamics, without remaining unnecessarily high. Consequently,

the adaptive Observer 2 will be particularly useful when considering measurement noise.
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5.4 Observer 3 - Observer design for a sub-class of single-

output state-affine systems partially transformable into

EJOC form

The previous system (5.1) is already in the EJOC form. As stated earlier, it is not easy to
characterise nonlinear systems that can be transformed into this form. However, it was shown
in Chapter 3 that some classes of systems can be transformed into a partial EJOC form. As a
matter of fact, some classes of state-affine systems can be transformed into the partial form.
In this section, we shall consider this particular class of state-affine systems and indeed their
transformation into the EJOC form. In effect, consider the single-output state-affine systems
described by (2.3).

We assume the following:

AS5.4) There exists a set of admissible inputs I/ such that for all u € U/, the matrix

H (u,y)

T(u,y) = . y).F(u’ v (5.14)

H (u,y) F*~H(u,y)

is of full rank for all y € R.

A5.5) The function g(u, y) and the entries of the matrix F'(u, y) are smooth and bounded.

Comment 5.1

Since the matrix T (u, y) is non-singular for every u € U/ and y € R, according to the
result presented in Chapter 3, there exists a similarity matrix Myg(u,y), for some given
functions a(u,y) and 8(u, y), such that
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MO(B(U’ y)F(U, y)Mcjﬁl (U, y) = \I/Otﬁ (’LL, y) - Jaﬂ(ua y) + Laﬂ (u7 y)c

H(u,y)My(u,y) = C

where Jos (4, y) = a (u,y) I, + 5 (u,y) A.

We must note that since the functions o(u,y) and B(u,y) are arbitrary, we are free to
choose them as we wish, as long as 5(u,y) # 0 for all v and y. As mentioned in Chapter 4,
we generally choose these functions such that the norm of the term Mos(u, y) M, 5 (u,y) is
as small as possible. Also, we have shown that the case where a (u,y) > 0 for all u and y
does induce some difficulties in designing the gain of the observer. Consequently, it is always
desirable to choose o (u,y) < 0 for all u and y. Hence, we shall present here the observer
design procedure for the particular choice where 5(u,y) > 0 and a(u,y) < 0. Obviously,
the design procedure can be applied for other choices of a(u, y) and S{u,y) # 0.

In effect, consider the system given by
& = F(u,y)i + g(w,y) + Kag(u,y) (y — H(u,y)1) (5.15)

where
o Kop(u,y) = Mg (u,y) (B(u,y) Dy Ko + Lag (u,y)), where
o Dy, = diag 9_1C 51;5 _91? with 8, > 0,
o M.s(u,y) is given as in (3.26) with B(u,y) > 0 and o(u,y) < 0, Lag(u,y) is as in

(3.23) and C' is of the form given in (5.1), and

e K is a constant vector chosen such that the matrix (Z — KC) is Hurwitz where Alis

the constant matrix (5.4).

Note that 6. represents a constant tuning parameter.

We now make an additional assumption:
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AS5.6) We assume that there exists an integer p > 0 and a real ¢y > 0 such that

Co

| Do Mtas (w, 9) M3 () D3| < 25,

The main result of this section can be summarised in the following theorem:

Theorem 5.3. Assume that system (2.3) satisfies Assumptions A5.3)-A5.6). Then, there
exists 0g > 0 such that for all 0. > 6y, the system (5.15) is an exponential observer for
system (2.3).

Proof of Theorem 5.3:

Defining the estimation error as e = x — Z, we have
é=Fe— M;[8D; Ko+ Log)He.
Consider a transformation on the error as € = M,s(u, y)e. Then,

Magé -+ Mage

ol -
l

= MugFM; e — (BDy Ko+ Lag)HM z& + MogM 4 e
= (Jap + LagC)e — (8D Ko + Lag)Ce + MagM e
= Jup€ — BDy KoC& + MagM te
= aé+ B(A— Dy KoC)e + MagM .
Now, let ¢ = Dy_é. Then, using the observations made previously, we have
¢ = alne + B0. (A — KoC) € + Do, MogM 5 Dy le.

Now, since the matrix (A — KoC) is stable, there exists a symmetric positive definite matrix
P such that

(A - KoO)'P+ P(A— Ko C) = —1I,.
Consider the following candidate Lyapunov function V' (g) = £ Pe. Then,

V =27 Pe
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= 20e”Pe +260.e" P (A — KoC) e + 26" PDy, MagM; Dy e
= 2ae" Pe — f0.7e + 26" PDy, MogM 5 Dy .
Using the inequality

|7 PDa MapM 3 DG e

| < el 171 || Do, Mg M2 D7
we have
V < 20eTPe — 0.7¢ + 2 |le||* | P| HDQCMaﬁM;gD;jH .
Using Assumption AS5.6), we have
V< 20c"Pe— B0, el + 260 IPY <l 5
< 20e"Pe - <ﬁ9c —2¢ || P|| g;;) llel®.
Now, since « (u, y) < 0, we require

1
Bl = 2c||Pll 55 > 0

p 2¢o || Pl 3%
‘ B
2¢o || Pl
oot >
B
2¢o || P
6, > ™H——.
8

Therefore, it is clear that choosing 6. > 7%/ % = fy, where the product .5 > 0, yields
V < 0. Note that the arguments of the various matrices have been dropped for convenience.
This completes the proof of Theorem 5.3. O

Remark 5.2

1) The main advantage of the above observer is that the gain

Kap(u,y) = M5 (u,y) (8w, y) Dy Ko+ Lag(u,y))

is designed in a systematic way. Unlike the extended Kalman filter or observer, it does

not require any additional dynamical equations such as matrix Riccati equations to
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update its gain. Therefore, there is less computational effort to update its gain.

2) In the special case where M,g(u,y) and L,g(u, y) are constant, the observer amounts to

the classical Luenberger observer.

3) The dependence of the gain on u and y provides a certain degree of adaptiveness to the

gain of the observer.

4) The Assumption A5.6) is quite restrictive since it is not easy to characterise systems

< £, However, it can be shown that if

for which ]lDQCMaﬂ(U, y)Mojﬁl(Ua y)Def 124

M,p(u,y) is lower triangular, then such an assumption is obeyed.

5) One can also attempt to design an observer with an adaptive tuning parameter 6,, as in
Section 5.3 for the class of state-affine systems (2.3). However, this would not be
an easy task since the tuning parameter 6, has to take into account the residual term

Ms(u, y)M 5 (u,y)€ induced by the transformation matrix Meg(u, y).

5.4.1 Example 5.3

We now give a simulation example to illustrate the performance of the observer. Consider

the 2nd-order system

;

o 1

Iy = —I4 + Ef_ﬁmQ

To = —Iy + ULy (5.16)
Y=

\

where u is a step input. Notice that the system (5.16) is of the form (2.3) where
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and

H(u,y) = {1 01 =C.

It is clear that the above system is already in the EJOC form with a(u,y) = —1 and
B(u,y) = ;Qlljﬁ These are functions that are dictated by the system. However, to show
the flexibility of the observer design, we shall choose « (u,y) = —1 and § (u,y) = 1 and
find the corresponding transformation matrix M,g(u, y).

By applying the algorithm given in Chapter 3, one can show that

1 0
Maﬁ (u7 y) =

It can readily be verified that

Mag(u, y) F(u,y) M5 (u,y) =

and H(u,y)M;ﬁl(u, y) = [1 0} =C.
Consequently, the observer for system (5.16) is given by
T =% + 5511%53\2 + 4, (y — 71)
Ty = —Tp + uzy + U, (y—71)

where

(0
Kog(wy)= | = M5 (u,y) (B(u,y) D5 Ko+ Lag (u,y))

¥

oo of =

with
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More precisely, we have

v, = 20,

Simulation results

Here, we show the observer performance where « (u,y) and 5 (u,y) are fixed and where

8. is the constant tuning parameter. The parameter values used in this example are given in

Table 5.7.

I

7, (0) = 4

Table 5.7: Parameter values used for the comparison of Observers 1,2 and 3

Figure 5-28 and Figure 5-29 demonstrate the effect of the tuning parameter 6., show-
ing the observer performance where 6, = 0.9 and 6, = 3, respectively. Clearly, a larger

magnitude of 6. results in a faster convergence.

5 - T I S [ sl
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\
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AN 9t \\. ......
sttt -——.‘..__,* e e e
0 - : 0
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Time Time
Figure 5-28: Estimation of z3 where 8. = 0.9 Figure 5-29: Estimation of g where 8. = 3

We now give a comparison between the gain of Observers 1, 2 and 3 where a (u,y) < 0
and (3 (u,y) > 0. More precisely, for Observer 1 we consider Case 5.3; for Observer 2 we
consider Case 5.7; and for Observer 3 we choose « (u,y) = —1 and 8 (u,y) = 1. The
performances given by each observer are as shown in Figure 5-28.

Figures 5-30 and 5-31 show the profiles of ¢; and 1),, respectively, with:
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o Constant tuning parameter 6, = 0.9 (using the transformation method).

e Adaptive tuning parameter 6, where 6, (0) = 4 with lower bound 6,,;, = 0.04, for the

non-transformed case.

o Constant tuning parameter 6. = 1 for the non-transformed case.

4 8
l Wy~ 8 Trans. ] | —— v, - 8, Trans
I 0 ' 7
; |
3|[ R O 8, Non-Trans. 1 [ W, 8, Non-Trans
Y | 6 H
% | - K i [ - %
i ‘, e 7R Non-Trans. ] : ‘ o Yy~ B Non-Trans.
i j 5 !
| B
|

10 20 30 40 o 10 20 30 40

Time Time
Figure 5-30: v, for constant 6. using the transformation method Figure 5-31: 45 for constant . using the transformation method

and constant 6. and adaptive 8, for systems already in EJOC form  and constant 8. and adaptive 8, for systems already in EJOC form

5.4.2 Concluding remarks 3

An exponential observer design methodology has been given for a sub-class of state-affine
systems that can be transformed into the EJOC form.

As in the case of Observer 1, Observer 3 also uses a single constant tuning parameter
6., and convergence is achieved more quickly when using larger magnitudes of which. The
example given here considers a constant « (u, y) (before transformation). However, in some
cases, as shown in Chapter 8, the current observer can prove to be particularly useful when
considering a system where the magnitude and sign of « (u,y) does change. Indeed, the
tuning of the observer can be achieved by setting « (v, y) and § (u, y) constant and selecting
the tuning parameter 6. appropriately. Hence, the parameters « (u,y) and 5 (u,y) can be
chosen rather than be dictated by the system. Consequently, we have additional degrees
of freedom in tuning the observer, such that excessively high values of 0. are not always
required.
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5.5 Observer 4 - Adaptive observer design for a sub-class
of systems in EJOC form in the case of partially known

parameters

We now consider the case where only a partial knowledge of the system parameters is avail-

able. Consider the system

z= (Vap(u,y) + AVop(u,y)) z + g (u, )
(5.17)

y=0Cz
where U, 5(u, y) and g (u, y) are given as in (5.1) with A = Q = diag [ 12 ... ] and

where AU, g(u,y) contains the unknown portion of the system parameters. Then, consider

the observer
2= (ap(u,y) + AVas(u,9)) 2 + g(u,y) + K (u,9)(y — C2) (5.18)
where AW, 5(u, ) is an approximation of the unknown AW, 5(u, y) and
o K(u,y) =f(u,y) D; Ko + Lag(u, y), where

SRR with 0(t) = a(u,y)0,(t), and

a

o Dy = diag
e K, is a constant vector chosen such that the matrix A — K,C is stable.
The error dynamics are given as

&= p4b, (Z — K()O) e+ DeaA\I’agZ - DeaA—\ﬂag%\.

Then, following the same lines of proof as given in Section 5.3, we define the candidate

Lyapunov function V(g) = T Pe, and obtain

V =27 Pe
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V = 2TPIB0, (A— KoC) €] + 26" PDy, AV 52 — 26" PDy, AT 157
= —B0,eTe +26TPDy, AV 52 — 26T PDy, AT ,57.

We then propose the hypothesis:

Hypothesis 5.1. For ||AWUqs2 — U,pZ|| < k|2 — Z||, where k is a constant, the system
(5.18) is an asymptotic observer for system (5.17).

As with Observer 2, we use the two threshold values 0,,;, and 6,,,,,. Hence, under Hy-
pothesis 5.1, the necessary values of each of these bounds can be derived following a similar

proof as given in Section 5.3.

5.5.1 Concluding remarks 4

An asymptotic observer design methodology has been given for a sub-class of state-affine
systems with parameter uncertainty. As in the case of Observers 1 and 2, the design is for
systems already in the EJOC form. It is shown in theory under Hypothesis 5.1 that the
observer is capable of asymptotically estimating the states of the sub-class of state-affine
systems considered, where only a partial knowledge of the parameters are assumed. The
observer gain uses an adaptive tuning parameter 6, whose dynamics are of the form described
in Section 5.3. Indeed, the discussions of magnitudes of 6, and constant and varying o (u, y)

given in Section 5.3, are also applicable here.

5.6 Summary

Here, we have given four observer design strategies. The first two designs use a constant
tuning parameter and an adaptive tuning parameter, respectively, and are facilitated by ex-
pressing the systems under observation as a sub-class of systems in the Extended Jordan

Observable Canonical (EJOC) form. The third observer design methodology is facilitated
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by a partial transformation of the system under observation into a sub-class of systems in
the EJOC form. Finally, the fourth observer is designed for the case of uncertain system
parameters and uses an adaptive gain. The design methodology follows the same lines as
those of the previous adaptive observer, and estimations converge to within a bounded error.

The construction of all of the observer designs proposed is simple and straightforward,
as 1is their implementation. For the case of known parameter values, it has been shown in
theory and in simulation that Observers 1-3 are capable of exponentially estimating the state
variables of the single-output systems considered. It has also been shown that these observers
can be tuned using only a single tuning parameter and that convergence is achieved more
quickly when using larger magnitudes of which. The profiles of the observer gains give a
good indication of relative performances if measurement noise is to be considered. In fact,
the stability of each of these observers is dependent upon the magnitude and sign of the
entry appearing in the main diagonal of the extended Jordan block. As a result, the distinct
advantage of using Observer 2 is the obtention of desirable performances due to using more
efficient or gentler ramping gains.

The performance of Observer 4 is illustrated in a simulation example in Chapter 8 for
the estimation of biomass concentration in a bioreactor, where not all system parameters are

fully known.
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Chapter 6

A Control Design Strategy for a Class of

Linear Time-Delay Systems

So far in this work, we have considered the design of controllers and observers for systems
assuming that no delays are present. However, as mentioned in Chapter 1, time-delays are
natural occurrences in many physical, industrial and engineering systems, and their presence
can be attributed to a number of factors. Sources include limited capabilities of information
processing units, the location of measuring devices and transmission of system data, and
the dynamics present in the transportation of materials in pipes and vessels in industrial
processes. The stability analysis and control of time-delay systems (TDSs) are generally
much more problematic than those of the delay-free case. Hence, the structural features of
TDSs result in the need for non-standard analytical approaches. Consequently, the study of
time-delay systems is indeed a current and hot topic of research.

In this chapter, we shall propose a control design methodology for a class of single-input
single-output (SISO) linear time-delay systems expressed in the well-known Brunovskii con-
trollable form. This work makes use of a new stability criteria that guarantees asymptotic

stability at least in the sense of Krasovskii and is given in two main sections. The first pro-
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poses a state feedback control design for linear time-delay systems under the assumption
of a full-state measurement. The second section uses the result obtained in the first section
in combination with a modification of a result on an observer design for linear time-delay
systems [70] and proposes a separation principle for the same class of linear time-delay sys-
tems. The class of systems considered are SISO linear time-invariant (LTT) delay systems of

the form shown below:

i(t)=Az(t — )+ Az (t) + Bu(t); t>0
(6.1)

y(t) =Cx(t —19)

wherez € R™, u € R, y € R, A is of some special form, which will be described later, and
it is assumed that the system (6.1) is controllable and observable. The state delay is denoted
by 7, and the output delay is denoted by 75 and are assumed to be known.

We firstly consider the case where the elements of the matrix A are all zero such that

system (6.1) is given as

i(t) = Azt — 71) + Bu(t); t>0
(6.2)

y(t) = Cx (t — 79)
where the initial condition z(t) = g(t), —71 <t < 0 where ¢(t) is a continuous function on

the interval [—71, 0].
6.1 A control design for a class of linear time-delay systems

In this section, we propose a full-state feedback control for the following system:
t(t) = Acx(t — 7) + Beu(t); t>0 (6.3)

where the system matrices A, and B, are in the Brunovskii controllable canonical form:
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_ 0 1 O 0 _ FO_
0 0 1 0
A=+ =+ . - o |adB, =] : |, (6.4)
60 0 -~ 0 1 0
ay Qg - e ay 1

a full knowledge of the state vector z is assumed, and 7 denotes the time-delay.
A systematic construction of the controller will be given such that the system under
control is asymptotically stable.
The primary concern is to stabilise the system by using a control law of the form shown
below:
u(z (t)) = Lz(t — 7). (6.5)
Under such a control law, the closed-loop system is given by

() = (Ao + B.L) 2t — 7). (6.6)

The main difficulty in the design lies in the choice of control gain L such that the closed-
loop system (6.6) is asymptotically stable in some sense. In the non-delayed case, the design
of a state feedback controller is straightforward. However, there is no general approach,
using linear techniques, for the design of a linear state feedback controller for the system
considered (6.3) whenever 7 # 0. Indeed, this is still an open problem.
By taking the Laplace transform of system (6.6), the characteristic equation can be de-
rived as
p(s) =det [s] — (Ac + B.L)e™*T]. (6.7)
The characteristic polynomial (6.7) is said to be asymptotically stable if all of the zeros of

p(s) = 0 are situated in the left-half of the complex plane. However, the presence of the
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exponential term e~ means that the characteristic equation (6.7) has an infinite number of
roots and therefore it is difficult to determine, explicitly, all the roots of the equation. In
effect, the characteristic polynomial (6.7) is called a quasi-polynomial. It is then very dif-
ficult to explicitly determine all of the solutions or roots of p (s) in order to prove stability.
It is because of this difficulty that several approaches to controller design for time-delay
systems have been introduced such as spectral decomposition theory, finite spectrum assign-
ment technique, and delay-independent approaches. Consequently, several less restrictive
definitions of asymptotic stability have been derived in the literature such as y—stability (see
e.g. [75]) and asymptotic stability in the sense of Krasovskii. For control and observer de-
sign purposes, asymptotic stability in the sense of Krasovskii is most commonly used and is
defined as follows (see [76] and [77]):

Definition 6.1. The characteristic equation (6.7) is said to be asymptotically stable in
the sense of Krasovskii if all the solutions of p(s) = 0 are situated in the semi-plane {s :
Re(s) < —a; a > 0}.

The shaded region of Figure 6-1 depicts the Krasovskii stability region. The constant « is
referred to as the stability margin of the characteristic equation. It is shown in [76] and [77]
that a sufficient condition for asymptotic stability of (6.6) is that its associated characteristic
equation is stable in the sense of Krasovskii.

In order to give a constructive and systematic design of a controller gain such that the
closed-loop system is asymptotically stable, we use a new definition of asymptotic stability,
which was recently introduced in [70]. The new stability criteria is called (v, r)-stability and
is stronger than stability in the Krasovskii sense. It is defined as follows:

Definition 6.2. The characteristic equation (6.7) is said to be (o, r)-stable if all the
solutions of p(s) = 0 are situated in the semi-plane {s : Re(s) < —a;a >0} N{s:[s| >

r >0}
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The («, r)-stability region is depicted by the shaded region in Figure 6-2. We shall say
that an LTI system is (a, r)-stable if its corresponding characteristic equation is stable in
the sense of Definition 6.2. It can easily be seen that, in general, (o, r)-stability is stronger
than Krasovskii stability. More precisely, if a system is («, r)-stable then it is stable in the
Krasovskii sense for similar values of «; since the Krasovskii stability region is included in

the («, r)-stability region.

P4
Im(s)
% 7
0 Re(s)
Figure 6-1: Krasovskii stability region
Im(s)
: T \\
=G, —+ i
' 0 ’ Re(s)

Figure 6-2: (ax, 7)-stability region

6.1.1 Control gain design

We now give a constructive and systematic design of a gain L for the controller (6.5) such
that the characteristic equation of its closed-loop dynamics is asymptotically stable in the
sense of Definition 6.2. This will automatically guarantee that the closed-loop system is

stable in the Krasovskii sense, which will, in turn, guarantee that the closed-loop system is
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asymptotically stable.

Consider the control law given by equation (6.5) and define L as follows:

L(0c,0c,7) = —Lo— Ly (0, a, 7) (6.8)

where
Ly = { a; ay --- a, | and (6.9)
Ly (0, 00,7) = [ gre—mxeTCn ... QRem2eTC2 g el (6.10)

where 6, > 0 denotes the controller gain tuning parameter, . > 0 denotes a stability margin

and C? = H(‘Ei_ﬁ' Subscripts of ¢ that are present from this point in this chapter denote

design with respect to a controller.

Note that when the control law (6.5) is applied with L defined as in (6.8), the elements
of the last row of A, are essentially replaced with the elements of L; (6., a, 7); thus giving
A. anew set of poles or eigenvalues.

Applying the choice of gain (6.9) and (6.10) to (6.8) yields the control law
w(z(t)) = —Lox (t —7) — L1 (O, e, T) (8 — 7). (6.11)
We can now state the following:
Theorem 6.1. Let . > 0 be an arbitrary positive constant. Then, for all 0, € [0,r.], the
origin of the closed-loop system
&(t) = Acx(t — 7) + Bou(z(t)) (6.12)
where u(x (t)) is described by (6.11), is (., r.)-stable.

Proof of Theorem 6.1:

First notice that the matrix A. can be decomposed as A, = A + B.Lg, where
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01 0 0]
00 1

A= 0

0 - 0 1

00 -+« .- 0

By applying the control law (6.11) to system (6.3), we obtain the following closed-loop
system:
t(t) = Acx(t — 7) — BeLox(t — 7) — BoLyz(t — 7).
Since A. = A + B.L, we have
(t) = Az(t—7)+ B.Loz(t — 1) — BoLoz(t — 7) — B Lyz(t — 7)
= (A—B.Ly)z(t—7). (6.13)
By taking the Laplace transform of (6.13) (with zero initial conditions), we obtain
sX(s) = (A= B.Li) X (s)e™".
Hence, the characteristic equation of system (6.13) is given as
p(s) = det(s] — (A— B.Li)e ™) (6.14)
= det M(s)
where the characteristic matrix is

M(s)=sl — (A—B.L)e ™. (6.15)

The aim is to obtain an expression of the characteristic equation of the form (s + §.e~ (o))"

from which we shall show the system (6.3) is (., 7.)-stable. Note that
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(A - B.L)e™

In order to clearly show the coefficients of the characteristic polynomial, we now perform a

0 e™ 0 0
e TS
0
0 0 e’ 7s
___ercr 622 _6:.Ch
enOcT TS e2acT eTs eteTeTs

transformation upon the characteristic matrix M (s).

We define the diagonal matrix A, as

Then, a pre-multiplication and post-multiplication of the characteristic matrix M (s) by A,

and A, respectively, gives

Ea 0 |
0 en=Drs
0
0 0 e

AM(s)A;T = Ay [s] = (A—B.Li) e ™| A
= SAJAT'— A, (A—B.L) e ™A
= sl — (ASZAs‘l - ASBCLlA;‘l) e 7",
It can be checked that
AAAN' =¢e™A and A,B, = B.e"*

so that

AM(s)ATH = sI — (A — B.L1AY) .

Since the determinant of a product of matrices is equal to the product of the determinants

of the matrices, and that the determinant of the inverse of a matrix is the reciprocal of its
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determinant, we have

p(s) = det M(s)

= det(AsM(s)As_l).
In effect,
det(A,M(s)A[Y) = det (A) . det (M(s)) . det (A1) .
On the other hand,
det (AA7Y) = det (A,).det (A7)

= det (/) =1.

That is,
P

¢ det (Ay)

Therefore,

p(s) = det (M(s)) = det(A;M(s)A) = det (sI — (A — B.LiAY)) .

The special structure of the matrix A — B,L; A7t is

- 0 1 0 0 —
1
A—-B.LiAJT = : 0
0 cee e 0 1
—CnrgrelstedT Lo L (2R Astae)T  _(O1g e (stae)T

from which it is clear that
pls) = "+ O™ [foe o]
+C2s" 2 (27T o [CRTeTTT]

= (54 feCam)" (6.16)
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Hence, the solutions of the equation

p(s) = (s+ 006_(”%)7)“ =0 6.17)
satisfy the following equality
§ = —f e (FaT — _g g7 (6.18)
or equivalently
se’T = —f.e7", (6.19)

Note that s = 0 is not a solution of (6.18) or (6.19) since 6. > 0. The main problem from here
lies in the fact that the solution s appears as both a factor and an exponent of e. Consequently,
it is not easy to explicitly find all the solutions of equation (6.19). However, our main concern
is to find the conditions under which all the solutions of (6.19) have negative real parts.
Indeed, consider a solution sy of (6.17) with a magnitude 7 > 0 and an argument . That
is, so = p + jw with |so| = /12 +w? = r and arg{sy} = ¢. The solution s, can also be

written as so = r¢’?. Hence, by replacing sq in (6.19), we have
s0e’T = relPelrtIvT
= pelPelTelwT
=  pehTei(etwr)
= —0.e %" + ;0.
Since e/(#+7) = cos (¢ + wT) + jsin (¢ + wT), we have
retT cos (¢ + wr) = —0.e7%" (6.20)
and
ret” sin (¢ + wt) = 0. (6.21)

Since r # 0 and e*” # 0, we have, from equation (6.21), sin (¢ + w7) = 0, which implies

that
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o +wr=km, k€L (6.22)

On the other hand,

—0 7T

rerT

cos (¢ + wr) = < 0.

Since ¢ + wT = km; cos (¢ + wT) = cos (k7) is negative if and only if £ is odd. In which

case cos (km) = —1F = —1. Hence,
e’ufr g ece_ac’r
r
That is,
0. 0.
pT =1In (—) +lne ™" =1In (—> — QT
T T
or
1 0.
U= —a.+ —In (—) . (6.23)
T T

Note that sy has to be the solution of (6.19). It can be verified that it also yields the above
two conditions (6.22) and (6.23).

Since sy was chosen arbitrarily, this means that any other solution s of (6.19) with real
part 4 and imaginary part w will have to satisfy (6.22) and (6.23).

We are now going to find conditions on 8., 7, and a. under which the solution of (6.19)
is (a, rc)-stable for some 7, > 0.

For this, first of all, we need:

T o<
g ~¥S g
This implies that
T
— <kr—wr<—_—.
5 ToWT <
That is,
3
—lm—{—z < —wT < -k7r+—7r~
2 2
or
3m

/mr—g>w7'>/€7r—7.
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Hence,

T
< km——
wT w 2
or
1 T
<= (& ——>.
w T(W 2

The minimum upper bound on w is satisfied by & = 1, where

< 17
W< ==,
T2
Also,
3
>k — —
wT T >
or

Therefore, the maximum lower bound on w is satisfied by £ = 1, where

< 1lr
w > ———.
T2

Note that if 7 — 400, then w — 0. This means that the region of stability will eventually
shrink; which is the penalty to be paid for large 7.

Next, if we choose 0 < 0, < r., where r, is an arbitrary positive constant, we show that
the solution of (6.19) is (v, 7. )-stable.

Suppose |s| = r > r., then from (6.23), we have

1 0. 1 f.
p=—-a,+-In{—}<-a.+—-In{—1|.
T T T Te

Since 0, < r.; In (ﬁ—) < 0. Hence, y < —a.

Next, we show that ;1 > 0if r < r.. Indeed,

1 0.
pz—acﬂ——ln(—) >0
T r

implies that
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In &> > QT
T
That is,
= > T
or
r < f.e7%",

Since a.7 > 0, we have e~ < 1. Therefore,
r<f.<re.
This completes the proof of Theorem 6.1. U

Remark 6.1

1. Note that in the non-delayed case (7 = 0) all the poles of the closed-loop system (6.12)
will be located at —6, in the left-half complex plane when controller (6.11) is applied
with 7 = 0.

2. The above control design technique can be extended to the following class of systems:

i(t) = Azt — 1)+ Az(t) + Bo(t); t>0 (6.24)
where z € R™, v € R and A is of the special form A = B_K for some vector K € R™.
Indeed, if we apply the preliminary control

v(t) = —Kz(t) + u(t) (6.25)
to system (6.24), we obtain
t(t) = Acx(t — 7) + Beu(t); t>0

which is of the form described by system (6.3). Hence, the complete stabilising feed-

back for system (6.24) is given by
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v(z(t)) = —Kz(t) + u(z(t))

where u(z(t)) is given by (6.11).

6.1.2 Example 6.1

In this subsection, we shall illustrate the previous design methodology through an academic

example. Consider the following 2nd-order single-input system:

2(t) = Acx(t — 0.2) + Beou(t) (6.26)
where
x(t) = , A= and B, =
zo(t) 1 2 1

The above system is of the form (6.3) with a time-delay 7 = 0.2s. Consequently, by applying
the previous design methodology, the control law that will stabilise the system at the origin
is given by

w(z(t)) = —Loz(t — 7) — Ly(0e, o, T)(t — 7)

e[ 2]

Ly (GC’aC’T) = [ 936‘20167 20.e7%7 }

where

and

= { f2e—04ac 99 =020 }
with ., 8. > 0. Hence,
wz(t)) = — (L4 62e7%%) 21 (t — 0.2) — 2 (1 + e %) 25 (t — 0.2).
The closed-loop system is given by

&(t) = Az(t — 0.2)
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~ 0 1
where A =

t_gge—o,mc — 90, 70 20
Simulation results

Several sets of simulations were carried out to show the behaviour of the closed-loop system.
Here, we have chosen a, = 0.1 and r. = 3 so that 0 < 8, < 3. Figure 6-3 and Figure 6-
4 show the profiles of z; and x,, respectively, when 6. = 1. It can be seen that the state
variables converge to the origin as expected. Figures 6-5 and 6-6 show the profiles of z; and
xg, respectively, when 6, = 3. Here, it can be seen that the convergence is much quicker.

In general, the use of higher values of ¢, (which implies larger values of r.) results in a
quicker convergence performance. This is because the poles are pushed further to the left
in the left-half complex plane. Indeed, as one would expect in such a case, a larger control
effort is needed to achieve this. This is confirmed in Figure 6-7, where it is clear that larger
values of 0. yields larger transient peaks. Therefore, there is a trade-off between the desired
magnitude of 7, and the amplitude of acceptable transient peaks and control effort. This

trade-off obviously depends on an individual system’s operating parameters.
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6.1.3 Concluding remarks 5

To summarise, a controller for a class of single-input linear systems with known delay has
been designed where the design is based on the specific choice of controller gain such that
the closed-loop system is asymptotically stable in the sense of (., 7.)-stability. The asymp-
totic stability of the resulting closed-loop system is stronger than Krasovskii stability. It is
also easy to prove since (a, r.)-stability is proven using polar form rather than cartesian.
Furthermore, the system can be easily tuned via one parameter 6. and it is shown that the
use of higher values of ¢, results in a quicker convergence performance. However, in such a
case, the larger control effort needed to achieve this can result in system behaviour contain-
ing larger transient peaks. Therefore, a trade-off is required between the desired convergence
time and the amplitudes of acceptable transient peaks and control effort.

The stability of the closed-loop system is delay-dependent. In fact, the conditions on
6., 7, and o, under which the closed-loop system is (a, 7.)-stable have been shown where
larger values of 7 results in a shrinking stability region.

Most work in control of time-delay systems use either the eigenstructure assignment or
the Lyapunov-based methods. In addition, these methods rely on the definition of asymptotic
stability employed. The present work is distinctive from other work in this area in that it
exploits the features of the characteristic equation of the system to derive the controller gain.
In fact, no a priori control design approach was set in advance; that is, the controller was
designed based on first principles.

It should be noted that this work is applicable to the cases of delay in the state only and
delay both in the state and the output, where the value of the output delay can be any value
less than or equal to that of the state delay.

The main drawback of this work lies in the fact that a full-state measurement is assumed
to be available on-line. This was assumed for the sake of the control design and is, of
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course, often not the case in the real world where physical system constraints or the expense
or indeed the non-existence of sensors to measure state variables restrict the availability
of information on the system state vector. It is therefore important to consider a control
strategy that incorporates some kind of estimation technique. Such a control strategy design

is presented in the next section.

6.2 A separation principle for a class of linear time-delay

systems

In this section, we develop the controller proposed in the previous section in conjunction
with a result on an observer design for linear time-delay systems and propose a separation
principle for a class of single-input single-output (SISO) linear time-delay systems of the

following form:

&(t) = Acx(t — 71) + Beu(t); t>0
6.27)
y(t) = Cz (t — 72)
where z € R, u € R, y € R, the pair (A, B.) is in the Brunovskii controllable canonical

form and

O: c1 Cp - Cn

In addition, it is assumed that the system (6.27) is observable.

It should be emphasised that the separation principle presented here is applicable to the
following case: 0 < 79 < 74. For simplicity, it is assumed that any value 79 > 0, is increased
in the design such that 7, = 7. Consequently, any delay term used from this point onwards
will be denoted as 7. The design for the class of systems considered is therefore not too

restrictive.
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The design of a linear state feedback controller and a linear full-state observer for non-
delayed systems is fairly straightforward. In addition, the control of the system via the
observer is also possible even though the two syntheses are done independently of each
other. In effect, the stability of the combined system is guaranteed and it is found that there
is a separation of the poles of the observer and the poles of the controlled system without
the observer. This observer-based control strategy is the well-known separation principle.
However, in the delayed case it is not at all clear that a separation principle can be established.
This is mainly because there is no general approach for the design of a linear state feedback
controller and a linear full-state observer for the system (6.27) whenever 7 # 0. In addition,
there are several definitions of asymptotic stability for time-delay systems, which implies
that the types of stability and convergence should be made precise when designing observers
and controllers for such systems. In the separation principle proposed here, we will use the
(o, 7)-stability criteria previously described. More precisely, we will use the results of the
time-delay control design given in the previous section and the results of [70] to establish a
separation principle for the class of linear time-delay systems considered (6.27). However,
before using the observer in [70], a preliminary transformation is required in order to make

it compatible with the controller.

6.2.1 Preliminary results

Now, consider the following SISO linear time-delay system:

#(t) = Aoz(t — 7) + Bu(t); t>0 (6.28)
y(t) = Coz(t - T)

where z € R", u € R, y € R and the pair (A,, C,) are in the Brunovskii observable form:
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-dl 1 0 0—
as 0
A, = 0,
1
—dn 0 - OJ
Co = 10 -+« oo 0

and B is a constant n—dimensional column vector. The time-delay 7 is assumed to be
known and we have the initial condition z(t) = h(t), —7 < ¢ < 0 where h(t) is a continuous
function on the interval [—7, 0].

Consider the linear observer defined by

3(t) = Ai(t — 7) + Bul(t) + K (y(t — 1) — Coi(t — 7)) (6.29)
where
K = KO + K1
with
T
Ko = [al as an}
and
T
K, = {906_“"70}1 fre2007C2 ... 026‘”"‘”6’4

where 6, > 0 denotes the observer gain tuning parameter, o, > 0 denotes a stability margin
and C? = 17!(7?17)—!' Subscripts of o that are present from this point in this chapter denote

design with respect to an observer. Note that K is the 1st column of A,.

Theorem 6.2 [70]. Let r, > 0 be an arbitrary positive constant. Then, for all 8, € [0, 1,),

the system described by (6.29) is an asymptotic observer for system (6.28).
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More precisely, it is shown in [70] that the error dynamics of the observer are (v, 7,)-

stable.

Now, assume that the pair (A,, B) is also controllable. Then, there exists a similarity

matrix P such that the system (6.28) can be transformed into the controllable form (6.3).

Indeed, by setting z(t) = Pz(t), we have
z(t) = Acz(t — 1) + Beou(t)
y(t) = Cx(t —7)
where PA,P~' = A, PB=B.and C,P~! = C.
As aresult, by setting Z(¢) = PZz(t), an observer for system (6.30) is given by
#(t) = A&t — 7) + Ba(t) + PK (y(t — 1) — C&(t — 7)) .

6.2.2 Observer-based control

In this section, we are going to study the stability of the following overall system:
z(t) = Ax(t — 7) + Bu(z(t))
2(t) = Ad(t —7) + Beau(#(t)) + PK (y(t —7) = C(t — 7))
where u(Z(t)) is the estimated feedback control
w(z(t)) = Lz (t —7)
where L is defined as in (6.8).
This is equivalent to studying the stability of
#(t) = [Ac + B.L)z(t — 7) — BcLe(t — 1)
£(t) =[A.— PKCle(t—7)
where e(t) = z(t) — £(¢).

Recall that the matrix A, can be decomposed as A, = A + B,Lg, where
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(6.33)
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-0 1 0 0—
0 0 1
y 0 (6.35)
0 0 1
00 -+ - 0

Then, since L = —Lg — Ly, we have A, + B.L = A — B.L;. Similarly, the matrix A, can
be decomposed as A, = A + K,C,. Since A, = PA,P~! and C,P~! = C, we have
A, = PAP
= P(A+ KoC,) P!
= A+ PK,C

where A = PAP~!. Therefore, A, — PKC = A — PK,C.

Consequently, system (6.34) can be written in matrix form as

(6.36)

We can now state the following:

Theorem 6.3. Let v, > r. > 0 be arbitrary positive constants. Then, for all 0, € [0,1,]
and for all 0, € [0, r.] such that 8, > 0., the origin of the augmented system (6.34) is

(o, T)-stable.

Proof of Theorem 6.3:

Consider system (6.36). For simplicity, by setting

116



the system can be written as

§(t) = FE(t — ).

The characteristic equation of (6.37) is given by

q(s) = det(slo, — Fe™™%)

where /s, is the 2n—dimensional identity matrix. It can be verified that
q(s) = det (s[n —e7* (Z — BCLl)) x det <3In —e 7 (A\ — PK10)> .

Recall that for any row vector L = [I1, s, ..., l,] and for any column vector

K = collky, ka, . .., ky), we have
n.(A) = det (A, — (A - B.L))
= A"+ A"+ A+
and
n,(\) = det (M, — (A= KC,))

= N AN T BN 4 k.
In particular, if we choose [; = p"~ (=D~ and k; = 0°C%, then

n(A) = (A+p)" and

1,(A) = (A+0o)™
Now, consider

pe(s) = det(sl, —e ™ (A— B.L))

= det {e_”[n (se”[n - (Z — BCLl))}

= det (e””[n) det (se”In - (;1_ - BCLl)) .

By using the above observation, and with L; defined as previously (6.10), we obtain

det (SGTSIn - (Z — BcLl)) = (se™® + f.e7T)".
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This can readily be seen by replacing A by se™ and p by 6.e7%" in (6.38). Hence,

pe(s) = €77 (se™ + f 7"
S G (6.40)
Now, with
M, = (sh— e (A - PE,C))
consider

po(s) = det(M,)
= det(P 'M,P)
= det (s[n e [P—UTP - P“lPchPD
— det (s, — e (A= KiCy))

Using a similar reasoning as above, it can be shown that

n

Pols) = (s + fe™TeIT)", (6.41)
As a result,

q(s) = pe(s)po(s)

= (s+ 966_(”%)7)” (s+ 006“(8“’“’)7)” .

The new compact form of the characteristic equation means that now all solutions can be
accounted for, and it can be deduced from [70] and the previous section that obtaining a
characteristic equation in such a form results in an (a, r)-stable system. Indeed, from this
we can see that, as in the non-delayed case, the set of poles of the combined system (6.37) is
the union of the control poles and the estimator poles. Hence, a separation principle is also

verified in this case. The control poles satisfy

s+ e~ (T = (6.42)
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and the observer poles satisfy

§ + B et = (6.43)

Since the response of the observer should be quicker than that of the controller, we choose
6, > 0. > 0. It is shown in the previous section that if 0 < 8, < r., where r. is a positive
number, then all complex numbers s which satisfy the equation (6.42) are given by s =
B, + jwe such that \/pu2 + w? = r > r. and where p, and w, satisfy i, = —a. + 2 In (&)
and w.T + ¢ = km, where £ is odd.

Note that 4, < —a, since Qf < 1. As a result, the controlled system (without the ob-
server) is (o, 7.)-stable. Consequently, the controlled system is also Krasovskii stable with
stability margin a.; hence asymptotically stable.

Similarly, if 6, is chosen such that 0 < 8, < r, for some positive number r,, then all
complex numbers s which satisfy the equation (6.43) are given by s = p, + jw, such that
V2 +wZ =7 >r,and where p, and w, satisfy u, = —a, + 31n (%) and wor + ¢ = k,
where k is odd. As a result, the observer is (a,, 7, )-stable.

This completes the proof of Theorem 6.3. U

Remark 6.2

In the same sense as the controller of the previous section, the above separation principle

design technique can be extended to the following class of systems:

i(t) = Agx(t — 1) + Az(t) + Bo(t); t>0
(6.44)

y(t) =Cx(t —72)

where z € R, v € R, y € R and A is of the special form A = B,L, for some vector
Lg € R™. Indeed, if we apply the preliminary control
v(t) = —Lagz(t) + u(t) (6.45)

to system (6.44), we obtain
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t(t) = Acx(t — 71) + Beu(t); t>0
y(t)=Czx(t — 79)

which is of the form described by system (6.27).

6.2.3 Example 6.2

Consider the simple mechanical system as shown in Figure 6-8, consisting of a mass m of

lkg and a delayed input force u(t — 7).

X1

m = u{t-1)

Figure 6-8: Simple mechanical system

From Newton’s 2nd Law of Motion, it can easily be seen that
§(t) = ult — )

where y is the displacement. By setting z; (t) = y (¢) and z3 (t — 7) = ¢ (t), we obtain the

following system:

Ty (t) = u (t) (6.46)
v =)
where
.fbl 0 1 T - T 0
o] =10 .

Ig(t) 0 0 CL‘Q(t——T) 1

It is clear that system (6.46) is of the form (6.27) and is also in both controllable and ob-
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servable form. Consequently, by using the controller design procedure previously given, we
obtain

u(z(t)) = =02 gy (t —7) — 20,67 xy (t — 7). (6.47)
By following the observer design procedure, we obtain

T(t)=AZT(t—7)+Bu() + Kyt —7) =% (t — 7))

where K = col | 9¢ e—aoT Hie_Qa”
Where observer-based control is considered, we have the controller expressed in terms

of the estimated state variables as
u(Z (b)) = —02e 2" (t — 7) — 20,7 Ty (t — 7)
and the observer given as

TH)=AZT(t-7T)+Bu@EW)+Ky(t—71)—7 (t—1)).

Simulation resuits

Simulations of the above observer and controller were carried out with the following numer-
ical values: ¢, = 3,0, = 2, 7 = 0.2 and o, = «a, = 0.1. This choice of gains is in line with
the necessity to have the observer respond more quickly than the controller, such that reliable
estimated state values are provided to the controller. The performance of the observer-based
control strategy is compared to that, when a full knowledge of the state is assumed, as in the
previous section. Figure 6-9 shows the convergence of z; to the origin when the feedback
control (6.47) is applied to the system. Figure 6-10 shows the performance of the observer
in open-loop when a step input is applied to the system. It can be seen that the estimate £o
(dotted line) of the non-measured variable converges to its real value x5 (solid line) within
2.5 seconds. The convergence rate can be increased by choosing a larger value of 4,. Figures

6-11 and 6-12 show the performance of the closed-loop system when it is controlled via the
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observer. It is clear from these results that the observer-based closed-loop system has good

convergence properties with regards to the stabilisation of the state variables to the origin.
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Figure 6-11: Profile of @1 when w(£ (t)) is applied

Figure 6-12: Profile of 2 when u(Z (t)) is applied

6.2.4 Concluding remarks 6

To summarise, a separation principle for a class of linear time-delay systems has been es-
tablished where the design is based on the specific choice of asymptotic stability criteria.
Indeed, the criterion used is («, 7)-stability, which is stronger than stability in the Krasovskii
sense. It is shown that there is a separation of the poles of the observer, and the poles of
the closed-loop system without the observer - as in the non-delayed case. Furthermore, the

design is based on first principles.

122



Simulations were conducted to demonstrate the good convergence performance of the
controller, the open-loop observer, and the closed-loop system controlled via the observer.
The magnitude of the observer gain tuning parameter 6, was chosen to be greater than that
of the controller gain tuning parameter 6. in order to have the observer operate more rapidly
than the controller. Indeed, the controller and observer can each be easily tuned using only
one tuning parameter, where higher values of each result in quicker convergence perfor-
mances. However, the same trade-off, with regards to transient peaks, as described for the
controller in the previous section, applies here.

It should be noted that this work is delay-dependent in the sense that for larger values
of 7, the performances of the controller, the open-loop observer, and the observer-based
controller become poorer. Indeed, larger values of 7 result in a shrinking of the (., 7.)- and
(e, T,)-stability regions, as indicated in the previous section.

Finally, it should be emphasised that this work is not restricted to the consideration of
a delay in the state alone. Indeed, it can deal with a delay in the state (7;) and a delay in
the output (72). The reason behind this is simple; when no delay is present in the output
measurements, it is introduced and used in the controller and observer. In both the state-
delayed case, and state- and output-delayed case, the values of delay used in the controller
and observer must be equal to the state delay itself. Consequently, this work is applicable to
the case 0 < 7, < 73 since the output delay 75 can always be increased such that 7o = 7

and subsequently be used in the observer-based controller.
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Chapter 7

Focus of Application: Biological
Wastewater Treatment and Progress in

the Determination of Biomass

7.1 The need for clean water

The need for water to sustain humanity is phenomenal and comes in a variety of forms,
which include direct consumption, bathing, cleaning, and is of course essential and vastly
used in the production of food. The provision of clean, safe and reliable water supplies to
homes, businesses and industries in the UK and other developed countries in the world is a
service which is taken almost for granted in modern times. In the developing world, how-
ever, this basic human right is not yet fully available. It is estimated that 2.4 tzllion people in
the world are without improved sanitation facilities, and in 2002 approximately 1.1 billion
people were still using water from unimproved sources [78]. Inevitably, the risk of using
untreated water leads to pollution and disease. The most frequent human diseases related to

poor water supply and sanitation include diarrhoea, intestinal worms, trachoma, schistosomi-
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asis, and cholera. The consequences of these resulting diseases are indeed terrible. Globally,
according to the World Health Organisation (WHO) [79], around 2 million people die each
year, most of which are children under the age of 5 and countless others suffer from poor
health. Indeed, it is reported that 90% of wastewater in developing countries is untreated. In
Latin America, 98% of domestic sewage is discharged directly into the nearest streams, and
all of India’s major rivers are similarly polluted [80].

Organisations such as UNICEF and WaterAid are continuing to help the countries of the
world to engage these problems, with the ultimate goal, according to WHO [78], being the
provision of water, sanitation and good hygiene for all by 2025.

According to the State Hydrological Institute in St. Petersburg, the total amount of wa-
ter on Earth today is estimated at 1.4 billion km?> [80]. The water making up the world’s
Oceans is too salty for consumption or irrigation and accounts for 97.5% of the total volume.
The majority of the remaining 2.5% is locked up either in the polar ice caps or elsewhere
as permanent snow [80]. Freshwater lakes and rivers, from which we obtain most of our
water, contain only around 90, 000km® (0.26% of the 2.5% freshwater supply of the world).
Sources of freshwater that are being tapped include those that have accumulated over millen-
nia and are effectively non-renewable, so will consequently deplete. The renewable sources
are actually unevenly distributed across the globe. In effect, the World Meteorological Or-
ganisation states a more realistic figure of readily available freshwater is 12, 500km?.

Today, the vast necessity of water, especially in the production of food, affirms the need
to recycle water. Indeed, based upon a daily intake of 3000kcal per person per day, it is re-
ported that such a consumption represents a water depletion of 3500( per person per day [28].
In addition, feeding humanity currently requires a consumptive water use of 6800km3 /year,
where 1800km?/year is in the form of irrigation. With around 70 million people added

to the planet each year, humanity will require an additional 5600km?/year by 2050 [28].
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Hence, since the self-cleaning capabilities of water are finite, it is clear that improved effi-

cient use of water must include efficient treatment of wastewater.

7.2 The development of clean water in the UK

The task of developing clean and safe water supplies in the UK has greatly tested the engi-
neering skills and ingenuity of inventors for hundreds of years. Most of the 19th and 20th
centuries saw the most significant changes in water supply and sewage disposal methods and
the learning curves that evolved. Indeed, up until 1847, there was no central government
supervision of water supplies, and typical disposal methods for wastewater comprised of re-
turning it to waterways untreated, causing environmental pollution and risking public health.
After a number of large-scale fatal outbreaks of Cholera in the UK, and consequently a num-
ber of reports [81] on the state of sanitation in towns in Britain, Parliament were persuaded
to commence the task of overseeing water supply and sewage disposal, and began with the
passing of the Public Health Act 1848. From the late 19th century, water supply and sewage
disposal methods were developing well, but were treated as separate issues. In the 1960’s,
there was still a divide between water supply, sewage treatment, and the recreational use of
water. However, the recognition of the increasing demand for water from limited sources
and of the continuing disposal of sewage into waterways brought about the realisation that
the issues could no longer be treated separately [82]. Consequently, water management in
England and Wales was reorganised into ten Regional Water Authorities (RWA) through the
passing of The Water Act 1973. The duties of each RWA include the supply of water and
the disposal of sewage in such a way as to aid the recreational use of water. Recently, The
Water Act 2003 made significant impacts upon water management and regulation in England

and Wales, bringing in changes in abstraction licensing, water resources notices, regulation,

126



and water management [83]. Indeed, water should be acknowledged as a valuable resource
and should be used wisely by all sectors of society. Hence, together with the phenomenal
global demand for water, it is easy to appreciate the need for such organised use of water
in order to prevent pollution in the environment and prevent disease in the consumption of
recycled water. This awareness further affirms the need for contributions towards wastewater

treatment solutions.

7.3 Biological wastewater treatment

The treatment of wastewater comprises the three main stages: collection, treatment, and
disposal. Wastewater is collected from homes, businesses, industries (after a pre-treatment),
and storm drains via an intricate network of sewers and is transported primarily by the force
of gravity to wastewater treatment (WWT) plants. The WWT plants remove impurities from
the wastewater stream so that the water can be safely returned to waterways for reuse. More
specifically, WWT prevents pollution in waterways and prevents disease in consumers of
recycled water. The impurities that are removed from the stream are either transported to
landfill sites (grit, debris etc.) or undergo further treatment (sludge) so that they can be used
in agricultural applications. Generally, WWT plants only accept direct wastewater from
domestic dwellings. Industrial plants usually have to treat their own before returning it to
waterways or to the domestic treatment system.

The main stages that are found in WWT plants are preliminary, primary, secondary, and
tertiary treatment and are summarised below:

Preliminary Treatment - Screens and shreds large polluting bodies and removes grit.

Primary Treatment - Uses clarifiers to remove settled particles and floating oils.

Secondary Treatment - Biologically removes pollutants using bioreactors.
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Tertiary Treatment - Removes pathogenic micro-organisms.

The secondary treatment stage is also known as biological treatment and is the appli-
cation focussed upon in this research work. The type of biological treatment considered is
the Activated Sludge Process (ASP), which is currently the most widely applied biologi-
cal wastewater treatment method in the developed world for the treatment of domestic and
industrial wastewaters [84]. The conventional ASP is comparable to one of the naturally
occurring purification processes that takes place in lakes and rivers; the microbial aerobic
oxidation of nutrients. In this process, bacteria and other free-living micro-organisms sus-
pended in the water body utilise organic matter and oxygen for cell metabolism and growth.
Similarly, in the ASP, an inoculum is introduced into a carefully controlled environment
containing nutrient-rich wastewater capable of sustaining cell metabolism and growth of
micro-organisms. The carefully controlled environment takes the form of treatment units
called bioreactors. Figure 7-1 shows the general arrangement of secondary treatment in a
conventional ASP configuration using the continuous flow reactor type. The conditions are
adjusted such that micro-organisms are able to thrive and transform the impurities into more
easily removable forms (additional micro-organisms and C'O;). The nutrient reactions in-
volved in the biological treatment of wastewater can be classified into the removal of organic
carbon, nitrogen, and phosphorus and can be aerobic, anaerobic, and anoxic, although aero-
bic is more widely used since it is more rapid. The conventional ASP biologically removes
organic carbon by using heterotrophic micro-organisms growing aerobically or anoxically.
In the aerobic case, typical methods involve treatment using aeration basins into which the
wastewater is directed and supplied with air, or sometimes pure oxygen, from feed points
along the bottom of the chamber. The type of nutrient reaction considered in this work is the

aerobic removal of carbon.
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Figure 7-1: Arrangement of Secondary treatment in conventional Activated Sludge Processes

i Sludge discharge to
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7.3.1 The aerobic bioprocess model considered

There are a number of types of bioreactors available in which biological treatment can take
place. However, the most common types are stirred tank reactors taking the form of fedbatch
and continuous stirred tank reactors (CSTR). The general reactor arrangement of the latter is

illustrated in Figure 7-2, showing the reactor with one inflow and one outflow.

(r\\ /ﬁ\\) Qutlet
s x ky oo
: Sout=S
- Kour=X
Bioreactor

Figure 7-2: Continuous Stirred Tank Reactor arrangement

The bioprocesses can be described by the following microbial growth reaction:
S— X (7.1)

where S Substrate (organic content) concentration and X: Biomass (micro-organisms) con-
centration.

Upon making a number of assumptions about the process, the modelling of either type
of reactor using mass balance equations enables the derivation of the following dynamical

model, describing a wide class of bioprocesses:
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S(t) = D (t) (Sin (t) = S (1)) — Yap (£) X (2)
(7.2)
Xt)=pt)X@)— D)X (@)
where p is the specific growth rate (SGR) of biomass; D is the dilution rate; S;, is the
influent substrate concentration, and Y, is the yield coeflicient for substrate concentration.

The descriptions of the SGR that are generally used in industrial WWT plants are usually of

the form of the well-reputed Monod law:
(7.3)

or the Haldane law:

foS

“~_KS+S+5}§

where .. 1s the maximum specific growth rate, K is the saturation constant, K is the

e | 1420/
Mo = Hmax Kz .

The Haldane law is a development of the Monod law and is useful in situations where sub-

inhibition parameter, and

strate inhibition is important (i.e. at very high concentrations).

For details of the modelling derivation, see Appendix B. It is, in fact, the microbial
growth reaction (7.1) and the dynamical model (7.2) that are considered in this work, with
the specific growth rate given by the Monod law (7.3).

Note that the model (7.2) is very widely used and accepted for the description of the
bioprocess considered when dealing with control and estimation strategies (see e.g. [32],

[44], [45], [85], [86]).
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7.4 Main problems in the control of aerobic biological

treatment

Here, we detail some difficulties faced in the control and monitoring of aerobic carbon re-
moval processes and present a detailed account of work done that focus upon such difficul-

ties.

7.4.1 Specific growth rate of biomass

The specific growth rate (SGR) of biomass is of special importance since it governs the
actual dynamics of the bioreactor. Unfortunately, it is very difficult to measure directly. In
general, the SGR is a nonlinear function of the state of the process and, consequently, the
whole process is nonlinear.

Several dozen models for the SGR have been developed for very specific systems that
require on-line measurement of all variables involved. In fact, biochemical experiments have
clearly shown that the SGR varies with time and is influenced by many physio-chemical and
biological factors, amongst which some important ones are: substrate concentration, biomass
concentration, temperature, pH level, dissolved oxygen (DO) concentration, light intensity
and various inhibitors of microbial growth. Some of the many models that have been derived

can be seen in Appendix B.

7.4.2 Determination of biomass concentration

The maintenance of appropriate biomass levels is vital to the success of the ASP process
and, therefore, knowledge of biomass concentration is essential if effective control is to be
attained (see e.g. [32], [44], [47], [85]). However, there is currently a lack of reliable and

inexpensive equipment to provide on-line measurements of the biomass concentration and
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it is usual to use some indirect measurement techniques. Methods for the determination of

biomass concentration are given next.

Measurement of biomass

The concentration of viable biomass present in wastewater treatment plants is not measured
on-line. Instead, most full-scale UK operators make the assumption that the active micro-
organisms are directly proportional to Mixed Liquor Suspended Solids (MLSS) concentra-
tion. Hence, they use readily available monitoring methods to measure the MLSS and use
the simple proportional relation as an indicator of biomass concentration. The use of this
measurement has a number of downfalls. Historically, measurement of MLSS has been con-
ducted gravimetrically on grab samples and can mean a delay of up to 2 or 3 days before
obtaining the result. Therefore, real-time monitoring and control cannot be implemented
since operation would be on the basis of data which is no longer valid. However, monitor-
ing equipment for the on-line measurement of MLSS are now available [87], but are as yet
not used throughout the industry. In fact, they do not necessarily provide reliable values of
MLSS since they use a related parameter to infer the MLSS value, usually using methods
of optical absorption. The problems arise from the assumption of a constant relationship
between the absorption and solids concentration. This assumption is not true, since it is af-
fected by a number of factors such as particle size and possible chemical species that can
absorb at the same wavelength [88].

Besides the efforts required in obtaining information on the MLSS, other problems can
actually arise as a result of using this data. Since the MLSS measurement is a total measure
of the dry weight of suspended matter, it is not actually possible to distinguish the type of
activity of the different important classes of micro-organisms (heterotrophs and autotrophs).

This is clear if one considers that the suspended matter is made up of both inorganic and
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organic matter. Indeed, the inorganic matter contains no biological activity, and the organic
matter contains a complex variety of organic material, some of which is responsible for the
consumption and oxidation of organic components (heterotrophic and autotrophic micro-
organisms), and some of which is not. In fact, using the value of MLSS would not indicate
the relative abundance of the heterotrophic and autotrophic micro-organisms. Hence, two
sludge samples with identical MLSS values can possess completely different levels of viable
biomass concentrations [88].

This inaccurate method has spurred a number of efforts to develop monitoring equipment
for the on-line measurement of biomass concentration. As a result, there are now emerging
monitoring equipment designed for just this [87]. In a recent publication [89], the accuracy of
on-line viable biomass measurements was investigated. The equipment under study was the
Biomass Monitor (BM 214-M, Aber Instruments Ltd., Aberystwyth, UK) used for on-line
viable biomass measurement of activated sludge from a brewery wastewater treatment plant.
It was shown that there existed satisfactory correlations between the on-line measurements
and off-line analysis. However, the on-line measurements had a very poor signal to noise
ratio, and off-line filtering was necessary to provide satisfactory results. In addition, the cost
of the monitor was around £8, 500, which was actually the lowest priced monitor in the
range.

Indeed, robust methods for the on-line monitoring of biomass concentrations are still
not yet as established as those for the on-line monitoring of substrate concentration (see
Appendix B), and alternative methods, such as estimation of biomass, remain very much an

appealing solution, as detailed in the next section.
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7.5 Estimation of biomass using observers - a comparative

literature study

An approach that has received much attention in recent years for the determination of bio-
mass concentration is observer-based estimation. Different types of state observers have
been considered for application to a number of bioprocesses under various assumptions (see
e.g. [32], [44], [47]). Cases considered include the problem of state estimation where it
is assumed that the kinetic rates of reaction are known and where they are not known. To
give an appreciation of the difficulties involved in such a problem, and indeed improvements
that can be made in designing observer-based estimators for such systems, some well-known

results are given in the following.

Known Kkinetic reaction rates For the case of known kinetic reaction rates, [32] and [44]
consider a well-known standard form of observer. The approach is to consider a linearised
tangent approximation of the resulting error dynamics around some desired equilibrium
point. The problem from here is to choose appropriate values of matrix gain such that the re-
sulting linear time-varying system has desirable stable properties. Two standard solutions are
presented to do this. These are the design of an Extended Luenberger Observer (ELO) and
an Extended Kalman Observer (EKO). The gains for the ELO are calculated such as to as-
sign some pre-specified negative real values to the eigenvalues of the linearised time-varying
error dynamics. In doing so, the error term will asymptotically converge to the equilibrium
point. The updating of the gain of the EKO requires the computation of the solution of three
dynamical equations. These solutions supply the two gain terms required. Simulation exam-
ples show the performance of both observers when applied to the simple microbial growth

reaction (7.1) in a single tank reactor that is considered in this work. It is assumed that the
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substrate concentration .S is measured on-line and that the structure of the specific growth
rate is known, as are all parameters involved in its description. The structures used to rep-
resent the specific growth rate are the Contois law and the Haldane law. Convergence when
using either observer can be achieved in around 10 hours through appropriate assignment of
eigenvalues and choice of initial conditions for the EL.O and EKO, respectively. However,
the gain terms involved are complex, especially considering the significant computational
effort required to update the gain of the EKO. Also, the stability and convergence properties
are only valid over a given operating point and it is difficult to guarantee stability over wide
ranges of operation. Furthermore, there is no consideration of estimation in the presence of
measurement noise.

Another work, which shows biomass estimation based upon a full knowledge of the
process is found in [45]. The process considered is the growth reaction (7.1) and its descrip-
tion uses the Monod law to represent the specific growth rate. They show the performance
of a high-gain exponential observer, originating from an idea established in [17], to estimate
the biomass using on-line measurement of substrate concentration. An additive white noise
is considered on the measurement of S with amplitudes equivalent to 10% of the measured
value. As expected, due to the nature of high-gain observers, convergence is rapid at less than
3 hours. However, it is well-known that high-gain observers perform poorly in the presence
of measurement noise. Hence, it is not surprising that the estimation result obtained contains
noise with growing amplitudes of 15% of the noise-free simulation, after which point no
further results are shown. Clearly, such observers are unsuitable when noisy measurements
are to be considered.

From the foregoing results, it is clear that much more can be done to improve the state
estimation for the class of systems considered, even with a fully known model. On the other

hand, since the description of the kinetic rates of reaction are quite involved, it is also clear
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that the assumption of a full knowledge of kinetic rates is quite severe. It is, therefore,
important to consider biomass estimation based upon little or no knowledge of the specific
growth rate. Work that has been done in this area includes the consideration of classical [32],

asymptotic [32], [44], and adaptive observers [32].

Unknown kinetic reaction rate An approach presented in [32] and [44], involves the use
of asymptotic observers where it is assumed that all knowledge of the kinetic rates is not
available. The idea is to make a state partition of measured and unmeasured components
and then perform a state transformation such that in the new description, the dynamics are
independent of the reaction rates. From this point, an asymptotic observer is used to provide
an estimate of the transformation variable and, in turn, together with on-line information of
the measured components, derives an estimate of the unmeasured component. However, the
speed of the convergence dynamics cannot be arbitrarily assigned, and are determined via
the value of the dilution rate. Examples of an anaerobic digestion process can be found in
[32] and [44] that illustrate the slow convergence dynamics of the asymptotic observers with
convergence achieved at around 50 hours. This is not entirely unexpected due to the nature
of the class of systems considered, which are detectable only. However, the application of
such asymptotic observers to systems which are observable, such as the microbial growth
reaction described by (7.1), would result in an estimation strategy to which arbitrarily fast
convergence dynamics cannot be assigned, since the convergence speed would also be dic-
tated by the process at hand. Also, performance in the presence of measurement noise is not
considered.

In [47], an observer is proposed for the estimation of biomass concentration for the aer-
obic bioprocess (7.1) for batch and continuous modes of operation. The observer is synthe-

sised under the assumption that the Oxygen Uptake Rate (OUR) is measured on-line. Ex-
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pressions describing the biomass and biomass growth dynamics are derived, but are linear.
Consequently, the method uses standard linear stability criteria in the selection of appropriate
observer gain such that, in a noise-free case, the error dynamics are exponentially stable and
Bounded Input Bounded Output (BIBO) stable in the case of noisy measurements of OUR.
With respect to the measured value, the amplitude of noise considered on the measurements
of OUR is 10%. The results show the performance of the observer when applied to the con-
tinuous process under steady-state operation. The estimation of the biomass concentration,
in the absence of measurement noise, converges to within 13% of the simulated value in 20
hours and converges to the simulated value after 40 hours. In the presence of measurement
noise, the estimation of the biomass concentration again converges to within 13% of the
simulated value in 20 hours and to within 2% of the simulated value in 40 hours. The con-
vergence performance is clearly slow, and it must also be emphasised that these results are
obtained using linear error dynamics and are based upon convergence to a constant biomass
concentration.

Another work considering the microbial growth reaction (7.1) with unknown kinetic rates
can be found in [45]. The estimation strategy presented is based upon an idea given in [44].
The approach uses an asymptotic observer to estimate the biomass using on-line measure-
ments of substrate concentration. A change of variables is made, resulting in a dynamical
system independent of the kinetic rates. The asymptotic observer takes the form of the sys-
tem with no correction term. The estimation of the transformation variable provided by the
observer is then used in an algebraic manipulation to give a value of the biomass concentra-
tion. Simulation results show the performance when an additive white noise is considered
on the measurements of S with amplitudes equivalent to 10% of the measured value. The
estimation is shown with very low levels of noise (< 1% of simulated real value), but with an

extremely slow convergence time. In fact, the performance is shown only for up to 30 hours,
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in which time convergence is not attained since the dynamics of which are dictated only by

the bioprocess.

Partially known kinetic reaction rates

Alternative approaches for state estimation in bioprocesses involve the consideration that the
models of kinetic rates of reaction are known, but that the values of the parameters of which
are poorly known.

In [32], the ELO is considered for the estimation of biomass for the simple microbial
growth reaction (7.1) for poorly known parameters. It is assumed that the substrate concen-
tration 1s available on-line and that the structure of the specific growth rate is given by the
widely used Monod law. It is considered that the uncertainty lies in either the parameter
Hmax OF the parameter K. A simulation example shows the performance when considering
an error of 10% in K. A slow performance results when using low gains with convergence
attained at around 60 hours, whilst the use of higher gains results in faster dynamics at the
expense of considerable offsets. In fact, the work in [32] was given in order to illustrate the
need to develop observers that can handle parameter uncertainties in such bioprocesses. As
a result, the same authors have proposed some observer designs for such cases. In fact, they
consider poorly known parameters as design parameters for state estimation. The idea is to
calculate the poorly known parameter value that would satisfy a zero steady-state condition.
Firstly, an ELO is used with appropriate choice of gains such that the error terms go to zero.
The next step is to derive an expression for the badly known parameter. To do this, the time
derivatives of the estimation errors are set to zero, such that the system operating conditions
are of that in steady-state. An expression for the steady-state error is given and from this, an
expression for the poorly known parameter is derived. The poorly known parameters con-

sidered are either the saturation constant X, or maximum specific growth rate 1. In each
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individual case, the value of K, and . €an be chosen such that the zero steady-state error
for the estimation of X is guaranteed. The values of gain, and hence the rates of conver-
gence, are heavily dependent upon the dilution rate D and yield coefficient Y if zero steady-
state performance is to be attained. This is evident in the simulation examples, which show
the performance of the observer when considering the microbial growth reaction (7.1). The
simulation results show the biomass estimation X profile converging to that of the simulated
biomass X at around 90 hours, and the substrate estimation S profile converging to a biased
profile from that of the simulated substrate S. The performance is then shown for a square
wave influent substrate concentration S;,,, although the system is initialised in steady-state.
Simulation results show convergence of the biomass at around 100 hours, although small
offsets are apparent at later periods of time. As before, the substrate estimation converges to
a biased value with a large offset. It is clear that such an approach is very slow and does not
necessarily hold true for time-varying dilution rates.

From the foregoing results presented, there is still a clear need to develop a class of ob-
servers that can perform well with system parameter uncertainties, which are typically found
in biochemical processes. As a result, further work has been done in this area by [32], who
Introduce adaptive state observers as one possible improvement. The approach considers the
use of a model of the specific growth rate with known structure and known nominal para-
meter values, where only one poorly known parameter is considered per measured variable.
The aim is to estimate both the state and the unknown portion of the poorly known para-
meters. Hence, the observers are described as being adaptive due to the nature of adapting
to the estimations of the unknown portion of the poorly known parameters. The biological
process considered is the microbial reaction (7.1) where it is assumed that measurements of
substrate concentration S are available on-line. The observer contains an additional dynam-

ical equation representing the dynamics of the estimated unknown portion of the parameter,
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which is thus treated as an extra state. The idea is to obtain a linear time-varying form of
the error dynamics with an input that asymptotically decreases to zero. To do this, an as-
ymptotic observer is also used to give estimations of biomass, which are subsequently used
in the adaptive observer. The reason for this is to have the term in the error dynamics that is
associated with the uncertainties, asymptotically decrease to zero. Simulation results show
the convergence performance of the state observer strategy with 10% positive error on g,
Convergence of the biomass estimation is achieved around 60 hours. They also present the
performance of the same observer when the inlet substrate concentration S;, is a square
wave. The system is initialised in steady-state and convergence occurs around 40 hours. The
estimation profile of the unknown portion Ay, .. also converges to the constant value used
in the process model in around 40 hours. The case where y,,,, is assumed to be known
and where K is assumed to contain an error of 10% is also treated. Here, convergence is
achieved at around 40 hours. However, in both cases, they state that the error dynamics are
linear and time-varying, and claim that with the system matrix of which being bounded, the
problem has been simplified to the case of appropriate choice of gains, and hence eigen-
values, such that the stability of the error dynamics can be ensured. This sole reliance upon
eigenvalues is not sufficient to ensure the stability of such error dynamics, which are not LTI

In each of the foregoing cases, there is no indication of what profile of dilution rate is
considered, even though it is actually a component of the gains used. Furthermore, there
is no consideration of measurement noise, which is a very important factor if the observer
is to be robust for practical implementation. Indeed, it is well-known that although good
estimation results may well be obtained using observers with high enough gains, the use
of such observers can often lead to very poor performance in the presence of measurement
noise.

Alternative approaches to the problem of biomass estimation for processes with partially
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known kinetic rates include the consideration of error observers and interval observers [45],
[46], [85]. Bounded error observers with constant and time-varying gains are proposed in
[45] for application to the microbial reaction (7.1). It is assumed that the specific growth rate
1 depends only upon the measured substrate concentration .S and is not exactly known. It is
also assumed that 4 1s known to exist between two bounds such that for a partially known
4, the error dynamics do not necessarily converge to zero, but to a bounded value. The per-
formance of the constant-gain observer with gain § = 1 is very slow with convergence to
within 5% of the simulated biomass profile not achieved until around 30 hours. It is also
shown that using a higher constant gain § = 3 results in an offset of 21% of the simulated
biomass profile. There is also no consideration of measurement noise. Time-varying gains
are then considered to improve the performance. The idea is to assign a rapid initial con-
vergence, which then reduces to a rate equivalent to 0.1~71. In doing this, two gains are
considered. The first is an exponentially decaying function, and the second takes the form
of a sigmoidal decay, neither of which are derived as a result of the observer design method-
ology, but rather from a choice of known decreasing functions. Simulation results show
that the best convergence performance is achieved when using the sigmoidal gain. How-
ever, although convergence to within 5% of the simulated biomass profile is achieved, there
is no consideration of measurement noise. Furthermore, no indication is given as to what
magnitude of error in 4 is considered.

In a recent work [85], an interval observer is proposed for state observation in a bio-
process containing uncertainties on the process parameters and/or in the inputs. It is assumed
in the work that the kinetics model structure is known but is described using the uncertain
process parameters. The process considered is described by the microbial growth (7.1) where
it is assumed that the substrate concentration S is available from on-line measurements. The

design is based upon the process at hand possessing the property of cooperativity, for which
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interval observers can be constructed. In order to obtain a cooperative system, a system vari-
able transformation upon the system considered is required, along with the choice of suitable
gains, of which there are four. The error dynamics are considered to be linear, although they
claim that the methodology can be applied to more complex systems, and lower and upper
bounds on the initial value of the estimate of biomass deny any arbitrary choice. The first
case considers a specific growth rate described by the Monod law and with an uncertainty in
Hmax With an error of £50% of the nominal value. The interval observer provides estimates
of the upper and lower bounds of the biomass concentration, the errors of which reduce to
within 5% of the simulated value at 50 hours when using constant high gains. However,
measurement noise is not considered.

A further case is considered where the uncertainty in the specific growth rate y is in the
form of an upper and lower bound described using the Monod law (u,,, = 0.495h~1) and
Haldane law (g, = 0.16h7!, K, = 5g/l, K; = 25g/l), respectively. A nominal profile
of the specific growth rate is given using the Monod law (u,,.,, = 0.33). A square wave
of known inlet substrate concentration S;, is used and again it is assumed that the substrate
concentration S is available from on-line measurements. Their results show the biomass esti-
mation error reducing to within 2% of the simulated value around 60 hours. This is followed
by consideration of uncertainty on the output measurements. More precisely, a Gaussian
white noise is added to the measurements of S with amplitudes of 5% of the measured value.
As in the previous case, a square wave of known influent substrate concentration 5;,, is used.
With the gain set to half the value used in the previous noise-free case, the results show
a worsened estimation performance with regards to the offset. The biomass estimation re-
duces to within 10% of the simulated value in 50 hours with no clear improvement thereafter.
This interval observer has a performance equivalent to a simple interval observer proposed

in [46], with the exception of a smoother estimation in the presence of measurement noise.
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The observer in [46] produces an estimation profile containing noise with amplitudes of 10%
of the estimation value, whilst the observer given in [85] provides an estimation profile con-
taining noise with amplitudes of 5% of the estimation value. The use of Monod and Haldane
as upper and lower bounds of the specific growth rate is a good idea. However, the values
of substrate considered have a maximum value of 1.5g/{. Up until this concentration, the

profile given by the Haldane model is less than that of the nominal value by only 10%.

7.6 Summary

From the foregoing literature study, it is clear that there is a need to develop a class of ob-
servers for the estimation of biomass concentration for processes described by the microbial
reaction (7.1). In particular, there is a distinct lack of consideration with regards to measure-
ment noise, and in those cases which do consider this factor, the results are either estimations
containing an amplified version of the measurement noise considered (e.g. high-gain ob-
servers), or estimations with low levels of noise, but with extremely long convergence times
(asymptotic observers), which in some cases are so slow that the convergence point is not
even shown. There is also a distinct lack of consideration with regards to different possible
parameter values, such as the varying influent characteristics, different concentration values
of substrate and biomass, and different values of yield coefficient.

It is important to consider biomass estimation, both in the absence and in the presence
of measurement noise, where the kinetic rates of reaction are known and where they are not
fully known. In each case, it is important to have good performance with regards to response
times, convergence, low levels of noise in the estimation, or a combination thereof. In ad-
dition, the estimation performance should also be considered for various possible parameter

values.
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The following chapter presents four observers, based on the design methodologies given
in Chapter 5, for the estimation of biomass concentration in the absence and in the presence
of measurement noise for a variety of operational conditions. Furthermore, we also consider

estimation for known and partially known specific growth rates.
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Chapter 8

Estimation of Biomass Concentration in

a Bioreactor

As established from the beginning of this thesis, one focus of this project is upon estimation
strategies for some classes of dynamical systems with application to wastewater treatment
systems. In line with this, the work presented in this chapter applies the observer design
strategies given in Chapter 5 for the estimation of biomass concentration in the bioprocess
described by the microbial growth reaction (7.1) and represented by the model (7.2). In fact,
the model (7.2) belongs to a class of single-output state-affine systems and has been used to
represent the bioprocess (7.1) in many works (see e.g. [32], [44], [45], [47], [85], [86], [90]).
The model of the specific growth rate considered is the well-reputed Monod law (7.3).

Two cases are considered. In the first case, we assume full knowledge of the specific
growth rate, whereas in the second, we assume only a partial knowledge of the specific
growth rate. In each case, we consider estimation both in the absence and in the presence of
measurement noise where it is assumed that measurements of the substrate S are available
on-line.

Firstly, we present estimation in the case of a full knowledge of specific growth rate
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where the gains of Observers 1-3, along with their construction, are given. Secondly, simu-
lation results showing the estimation performances achieved by each observer are presented
together in order to provide a clear comparison between them. Finally, we give the adaptive
observer along with simulation results for estimation in the case of a partial knowledge of

specific growth rate.

8.1 Biomass estimation for known SGR - Observer 1

Consider the biological system described by (7.2). Assuming that the substrate concentration
S 1s measured, and by setting the coordinates of the system as: z; = 5,29 = X,andu = D,

we obtain the following state-space representation of system (7.2):

.

Ty = W(Sin — T1) — YsuZo

Cbg = (,LL-——U) i) (81)

y=x
\

where we use the Monod law (7.3).

The above system can be expressed in the EJOC form:

z=Vop (u,y) 2 +9(v.y)

(8.2)
y=Cz
where
Pog (u,y) = Jag (u, y) + Lagp (v, y) C
with
Jap (W, y) = ) , Lap (u,y) = ) , C= [1 0]
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and

U (Sm - £E1)
g(u,y) =
0

Here, a (u,y) = (¢ — u) and g (u,y) = =Yu.

Firstly, to show that the system is observable, we study the observability matrix, given

by
C 1 0
T(u,y) = = . (8.3)
It is clear that det[Y(u,y)] = —Y,u and it is easily verified that this term is never zero.

Firstly, the yield coefficient, Y, is a non-zero constant. Secondly, the only situation in which
the term p = %ﬁ’% would be zero is if the washout equilibrium were reached. More pre-
cisely, the specific growth rate would be zero if all of the micro-organisms were dead. Since
this is clearly not an operating range to be considered, the system (8.1) is observable. More-
over, Assumption AS5.1) is satisfied in that there exists a set of admissible inputs such that
the observability matrix (8.3) is of full rank for all y € R. In addition, by practical consider-

ations, the functions g (u,y), @ (u,y), and 8 (u, y) are all bounded. We can, therefore, using

the results of Chapter 5 - Section 5.2, design an observer as follows:

where

N (0
Ry =| = B(u,y) Dy Ko + Lag(u,y)

(2

T
with Ky = [ 2 1 ] . That is,
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¢1 _2}/5/L0c - (/J' - U’)

with 6, < 0, since 3 (u, y) < 0.

8.2 Adaptive biomass estimation for known SGR

- Observer 2

In this section, a new observer design for the estimation of biomass concentration, using the
model (7.2), is presented. Such a model has been employed in [45] and [90] for the estima-
tion of kinetic rates and biomass concentration using high-gain observers. As mentioned in
Chapter 1, one of the main shortcomings of high-gain observers is that they have a tendency
to amplify measurement noise. Consequently, there is a need to design either low-gain ob-
servers or adaptive observers in order to handle measurement noise. Therefore, we propose
an observer for the estimation of biomass concentration with an adaptive tuning parameter.

Consider again the biological system (7.2) expressed in its state-space form described by
(8.1).

With a slight modification, the resulting system can be expressed in the EJOC form:
z=Vog (u,y) 2+ g(u,y)
y=Cxzx
where
\Ilocﬂ (U’v y) = ‘]aﬂ (U, y) + La,@ (U, y) C

with
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(p—u) (p—u)
;. Yeu T
) Laﬂ (U, y) =
0 (p—wu) 0

and C and g (u, y) are as given for (8.2). Here, we have an EJOC form with new « (u,y) =
(L;l) and the same 3 (u,y) = —Y,pu, with respect to those in (8.2).

Again, by practical considerations, the functions ¢ (u,y), a (u,y), and 8 (u,y) are all
bounded. In addition, 8 (u,y) # 0 for all u and y. We can, therefore, design an observer

with an adaptive tuning parameter (given in Chapter 5 - Section 5.3) as follows:

571 = u(Sin — 1) — YspuZo + ¢y (21 — 21)
(8.4)

532=(M—U)Sﬁ2+¢2($1—5%1)

where

. (4
Rwy)=| | =8(uy)D; Ko+ Lap(u,y)

(2

T
with Ky = {2 1} . Indeed, K, is chosen such that the matrix A — K,C is stable where

_ 01
A=
00
The gain vector K (u,y) is then given as
_ ¥ ~2Y.ub, - 5%
K(u,y) = =
2 ~Yaul,

with 8, = g‘-“—;ﬂéa and with 8,(ty) < 0, since 3 (u,y) < 0.
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8.3 Biomass estimation for known SGR using the EJOC

transformation method - Observer 3

The previous observer designs presented are for biomass concentration estimation based
upon the model (7.2), which is already in EJOC form where the functions a(u,y) and
B(u,y) are more or less dictated by the system. Now, we consider the transformation of
the bioprocess (7.2) into EJOC form, such that we can freely choose the values of a(u, y)
and 3(u,y).

Consider again system (8.1) expressed in the EJOC form (8.2). This system contains
functions & (u,y) = (¢ — u) and S (u,y) = —Y,u. Here, we will use the algorithm given
in Chapter 3 - Subsection 3.5.1 to transform the system (8.1) into an EJOC form, where we

1

shall choose o (u,y) = —3, 8 (u,y) = 1 and find the corresponding transformation matrix

Maﬁ(ua y)

Indeed, it can be shown that

and it can be checked that

Maﬁ (.u7 y)\Ifaﬂ(u, y)Ma—ﬂl (U’7 y) e \p(—%,l) (’LL, y)'

Consequently, the observer for system (8.1) is given by

I = w(Sin — x1) — Youds + 1 (z1 — 21)
By = (1 — u) Bg + thy(z1 — £1)

where
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"
Kas(w,) = | | = M2(u,y) (B, y) Dy Ko + Lap(u,1))

W2 |

and Ky = [2 1}. That is,

% = 296+1+:U’_u

(u=p=Pb+1+pu—u) (Bi+5-4-17)
pYs wYs

"»/)2_—‘

where 6, > 0, since 3 (u,y) > 0.

8.4 Simulations for known specific growth rate

Here, we evaluate each observer in simulation under various operating conditions, showing
the performances for four sets of nominal parameter values both in the absence and in the
presence of measurement noise. The consideration of the different sets is concerned with the
influence of different initial concentrations of substrate and biomass, and also the influence
of the value of yield coefficient Y;. For the sake of brevity, the results of Set 1 are presented
here and the results of Sets 2-4 can be seen in Appendix A where it will be found that the
results follow the same format as given in this section. The parameter values used are given
in each case presented.

Equilisation basins are often used in conjunction with pumps and other flow control
equipment in wastewater treatment systems to dampen the effects of harsh influent flow
rate changes. The aim is to have a constant flow rate and dampened variations in influent
pollutant concentrations. Therefore, we also show the performance of each observer under
different influent conditions for each set of parameters considered. In fact, only some of

these different influent characteristics are considered in the literature. Generally, either a
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constant, a step or a square wave with time periods of the order of days are used to represent
the dilution rate D.

In this work, three profiles of dilution rate are taken into account. Indeed, we show the
performances of the observers when considering a constant dilution rate, a stepping dilution
rate, and a typical influent flow rate profile of domestic wastewater treatment plants. The
profiles of varying dilution rates used are based upon typical hourly variations found in
domestic wastewater treatment plants [91], which can be seen in Figure 8-1. The daily
profiles used for the stepping and typical dilution rates are given in Figures 8-2 and 8-3,
respectively.

For each dilution rate considered in each set of parameters, we also consider a constant
and varying influent substrate concentration S;,,. Where a varying influent substrate concen-
tration is considered, the daily profile used is as shown in Figure 8-4.

It is important to consider such a variety of scenarios, especially since the gains of each
observer each contain the terms p, Y;, and D, and will more noticeably affect the perfor-
mance in the presence of measurement noise. Indeed, as previously stated, one of the aims
of this work is to also consider the performance of the proposed estimation strategies in the
presence of measurement noise. To do this, a further set of simulations have been conducted
where the output in these cases is of the form y = 5 + ¢ where ¢ is an additive noise. Am-
plitudes of ¢ considered are equal to 5% and 10% of the measured value S and are typically
considered in the literature [47], [85].

The choice of parameter values used is based upon those typically found in the literature

[32], [44], [45], [47], [85], and in WWT plants [91].
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Figure 8-2: Stepping dilution rate profile based upon typical hourly
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8.4.1 Estimation under clean measurement - Parameter Set 1

The parameter values used in Set 1 are given in Table 8.1.

X(0) = 2.4g/1

X(0) = 0g/!

5(0) = 3(0) = 0.8¢/1

K, =4g/l
Y, =3
ky =2
ko =1

Table 8.1: Set 1 parameter values

The tuning parameters used for Observers 1-3 for estimation under clean measurement

are summarised in Table 8.2. For Observer 3, a choice of a (u, y) = —% is used. Note CS;,,:

Constant S;,,; SS;,,: Stepping S;,..

Figures 8-5 to 8-10 show the performance of Observer 1. It can be verified that these

convergence performances can also easily be achieved when using either Observer 2 or Ob-
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Observer D Constant D Stepping D Typical
1 CSin | 6.=-3 f.=-3 f.=-3
SSin | 6. = -3 0. = -3 0. = -3
2 CSin | 0.(0)=-3.716,(0)=-376,(0)=-3.7
SSin | 6.(0)=-33]6,(0)=-33]6,(0)=-3.3
3 CSin | 0.6=0.075 |8.6=0.075 |8.,8=0.075
SSin | 0.6 =0.1 0.0 = 0.06 6.8 =0.08

Table 8.2: Observer tuning parameter values - Set 1

server 3. However, for the sake of brevity, those results are not shown here. Instead, to give
an appreciation of the effort required of each observer gain, which results in the same per-
formance, we show and compare the profiles of gain 1/, of each observer. These profiles are

shown in Figures 8-11 to 8-16.
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Concluding remarks 7

The observers were tuned to give the same convergence performances in order to compare
the gains of each. For parameter Sets 1 and 2, where the lower initial substrate concentration
is considered, it is evident that the gain 1, with the overall highest magnitudes are yielded
by Observer 1. For the same parameter sets, the adaptive tuning parameter 6, of Observer
2 varies accordingly with changes in magnitude and polarity of « (u,y) and often results
in a decreasing gain 1, of much lower magnitudes than those of Observer 1. However,
for Sets 1 and 2 the gain v, 1s lowest when using Observer 3. This actually illustrates
the main advantage of Observer 3, especially compared with Observer 1, in that a constant
tuning parameter can be used that does not have to be excessively high to ensure stable
error dynamics. This flexibility is due to the transformation of the system at hand into the
EJOC form, providing additional degrees of freedom in tuning the observer. However, this
advantage is only true for parameter Sets 1 and 2, since in Sets 3 and 4 it is seen that Observer
3 yields v, with the largest magnitudes. Indeed, it is shown in parameter Set 3, where
the higher initial substrate concentration is considered with high yield coefficient, that the
magnitude of gain 1), is the lowest when using Observer 2. The results for parameter Set
4, where the higher initial substrate concentration is considered with low yield coefficient,
show that gain 1, is lowest when using Observers 1 or 2. Indeed, where the profiles of 1,
of Observers 1 and 2 are very similar, we have chosen a constant 6, = .. The reason for
such a choice is due to the fact that the adaptive tuning parameter, in this case, would have
otherwise grown in magnitude, and although we could have allowed 6, to ramp up to the
constant value, the same convergence time would not have been attained.

It is clear from the simulation results that very good performances are achieved when
using any of the proposed Observers 1-3 for each set of parameters and different influent
characteristics. It should be noted that in each case, a faster convergence performance can
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be attained through choosing a larger magnitude of observer tuning parameter. However, the
best overall performances, with regards to the use of efficient gains, are those of Observer
2. This discussion of gain magnitudes leads us on to the evaluation of the observers in the

presence of measurement noise.

8.4.2 Estimation under noisy measurement - Parameter Set 1

The parameter values used in Set 1 are given in Table 8.1. For this set of values, we consider
an additive noise € with amplitudes equal to 5% of the measured value S. We also show the
performances of Observers 2 and 3 for an additive noise e with amplitudes equal to 10% of
the measured value S.

The tuning parameter values used for Observers 1, 2, and 3 are shown in Table 8.3. Note,
no limits were required in this case for the adaptive tuning parameter 6,. Also note CS;,,:

Constant S;,,; SS;,: Stepping S;,.

Observer D Constant D Stepping D Typical
1 CSin | b.=-3 0, = -3 0. =-3
SSin | 0. = —3 f.=-3 f.= -3
2 CSin | 0,(0) ==3.710,(0)=-=37]0,(0)=-3.7
SSin | 0,(0)=-3316,(0)=-3316,(0)=-33
3 CSin | 0.6=0.075 |60.86=0.075 |6.,8=0.075
SSin 1 0:.8=0.1 6.8 = 0.06 6.8 =0.08

Table 8.3: Tuning parameter values under noisy measurement - Set 1
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Concluding remarks 8

It is clear from the simulation results that very good performances are achieved for each set
of parameters (see Appendix A) and different influent characteristics when using any of the
proposed Observers 1-3 in the presence of measurement noise. When considering noise with
amplitudes equal to 5% of that of the measured substrate concentration, the worst estimation
performances are yielded under parameter Set 1 for the cases of stepping and typical dilution
rates. Under this set, Observer 1 gives estimations containing noise with amplitudes of up
to 30% of the simulated noise-free biomass profile for stepping and constant influent sub-
strate concentrations, respectively. However, for similar convergence times, the best overall
performances with regards to the presence of noise in the estimations are distinctly yielded
from Observers 2 and 3. In fact, for the same parameter values and influent flow conditions
under which Observer 1 yields the worst performances, those yielded from Observers 2 and
3 contain noise with amplitudes of less than 5% of the simulated real biomass concentration.
This is not surprising when considering the profiles of their gains in the case of estimation
under clean measurement. In most cases (see Sets 1, 3 and 4), these two observers provide
estimations containing noise with amplitudes of less than 4% of the simulated noise-free
biomass profile and in some cases less than 2%, whilst attaining convergence times of 12
hours. It seems that Observer 3 is particularly well-suited for parameter Sets 1 and 2, giving
slightly better results than Observer 2. However, Observer 2 performs well for any of the
parameter sets considered. It was, in fact, intended that the adaptive nature of this observer
would improve the estimation performance when considering measurement noise. Indeed,
Observer 2 out-performs Observer 3 in parameter Sets 3 and 4 where convergence times of
the former estimation profiles are quicker by up to 8 hours and contain lower amplitudes of
noise. It should also be noted that for parameter Sets 3 and 4, Observer 1 produces good
estimation profiles containing noise with amplitudes of less than 5% of the simulated real
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biomass concentration.

When considering measurement noise with amplitudes equal to 10% of that of the mea-
sured substrate concentration, the estimation profiles given by Observers 2 and 3 contain
noise with amplitudes of less than 10% of the simulated noise-free biomass profile with
convergence attained around 12 hours.

Since there are very few results in the literature that consider measurement noise in the
estimation of biomass concentration, it is difficult to make accurate comparisons. However,
it can be noted that recent biomass estimation results from leading researchers in this field
[46] and [85] consider an additive noise with amplitudes of 5% of that of the measured value
for partially known specific growth rates, and similar parameter values used herein. With
regards to a percentage of the noise-free profiles, the resulting estimations contain noise
with amplitudes of 10% [46] and 5% [85] and convergence to offsets is achieved in around
50 hours. In addition, it should be highlighted that performances of Observers 2 and 3 are
better than those of constant high-gain observers, which tend to amplify measurement noise.
For example, a high-gain observer is illustrated in [45] where an additive noise with average
amplitudes of 10% of the measurement is considered. Although the convergence is achieved
in less than 5 hours, the resulting biomass estimation contains noise of growing amplitudes
up to 15% of the simulated biomass profile. In fact, performance is shown for 30 hours only
at which point it seems the noise continues to grow.

We conclude that the adaptive tuning parameter observer gives the best overall perfor-
mance for the various parameter values considered, where in some cases the noise has been
attenuated by factors of up to five. It should also be noted that better performance with re-
spect to noise can be attained through a compromise with convergence times. This is actually
illustrated in the next section where we show the performance of Observer 4 where only a

partial knowledge of the specific growth rate is assumed.
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8.5 Adaptive biomass estimation for partially known

specific growth rate - Observer 4

Here, we show the performance of Observer 4 for the case of biomass estimation with only a
partial knowledge of the specific growth rate. It is assumed that the structure of the specific
growth rate is known, but that not all parameters of the model used are perfectly known. The
model used is the Monod law, where it is assumed that some nominal value of .. = 1.«

is known so that we can decompose p as follows:

. [I’maXS + :umaxS . /Aj’maxS
K.+ S K, +S K,+S

= o+ ou
where 1, is the known nominal part and dx is unknown. Then, the system (7.2) is expressed

as

S = D(Sin— S) = Y (o + 0u) X
. (8.5)

X =(pug+ou)X - DX

Using the same change of variables as before: z; = S, z9 = X, and v = D, we obtain the

following state-space representation of system (8.5):

p

fl = —‘Y; (/’LO + (S,LL) Ty -+ U(Sm, — Il)

\ T2 = (g + 6p — u) o : (8.6)

Y =T
\

The above system can be expressed as
z = (F(u,y) + AF (u,y)) 2 + g (u,y)
y=Cz

where

Fu,y) = Jag (u,y) + Lap (u,y) C
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with

and C and g (u, y) are as given in (8.2). The unknown portions are given in

0 —You
AF (u,y) =

0  du

Here, o (u,y) = Qi%ﬂ and 8 (u,y) = =Y.,
In such a case, using the result of Chapter 5 - Section 5.5, the observer of the above

uncertain system is given by

T = —Yapughs ~ Yilighs + u(Sim — 1) + 1y (21 — 31)
;f;Q = (ILLO — ’U,) JAfg -+ ﬁOfQ + ¢2 (-'151 - :El)

where i, is an approximation of the unknown portion d and

A B || =2 G+ ) 6 — )
K(u’ y) = =

(2 —Y, (1o + 7o) 02

with

i) = W +§°) i) 0.(t);  Ba(to) < O.

8.6 Simulations for partially known specific growth rate

We now show the performance of Observer 4 where we assume only a partial knowledge of
the specific growth rate . More precisely, we assume the structure of p is of the form given
by the Monod law (7.3) and that the maximum specific growth rate parameter p,,,, is not
perfectly known. In the model of the bioprocess, we use i, = 0.3h7!, and assume that we
know that y_ .. 1s somewhere around this value, but we don’t know the exact value. However,

from a knowledge of the bioprocess, we assume that we know p,,. is at least 0.15h7" and
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at the most is 0.45h7%, i.e. +50% of Hmax- Therefore, for the negative unknown case, we
use a nominal known value g ,,.. = 0.15A7%, and for the positive unknown case, we use a
nominal known value ud,.. = 0.45h~!. We then make an estimate of what the unknown
portions are. For the negative unknown case, we use an estimate of iy ... = +0.06A 71, and
for the positive unknown case, we use an estimate of 7ij .. = —0.06A~1. Therefore, in the
observer we use values of +30% of ..

Using Observer 4 for the positive error on p,,,, will give an estimation profile with a
negative error with respect to the real biomass concentration. Similarly, using Observer 4 for
the negative error on p,,,, Will give an estimation profile with a positive error with respect to
the real biomass concentration. In fact, if two observers of the form of Observer 4 are used,
one with a positive and one with a negative error on p,,, then the uncertainty in the biomass
estimation will have a definite bound. This is what is shown in the following simulation
results. In fact, for the positive error on p_ ., we use Observer 4 with a constant 6, = 4,
and for the negative error on 4. .., we use an adaptive 6,. The choice of 8, = 6, is due to
the fact that in the case of a positive error on x_,,, we would have §, > 0. An increasing
tuning parameter could be used with a maximum bound, but for illustration purposes it is not
deemed necessary here.

For the sake of brevity, we do not consider all of the scenarios as in the known case.
Instead, we present the performance of Observer 4 under parameter Sets 1 and 2 for constant,
stepping, and typical dilution rates, and using a stepping influent substrate concentration, the
profiles of which are as given in the previous section. We also consider estimation both in
the absence and in the presence of measurement noise for amplitudes equal to 5% and 15%

of the measured value of substrate concentration .S.
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8.6.1 KEstimation under clean measurement - Parameter Set 1

The fixed system parameter values used are as given in Table 8.1. In all cases, the tuning

parameter values used are given in Table 8.4.

Positive unknown Negative unknown
D Constant | 6, (0) = —1.1, Opin = —1.1 | 0, (0) = —4, Oy = —1.6
D Stepping | 6, (0) = —0.8, Opin = —0.8 | 0, (0) = =3, O = —1
D Typical | 8,(0) = —0.8, Opmin = —0.8 | 0, (0) = =3, Opin = —1

Table 8.4: Observer 4 tuning parameter values for the partially known case - Set 1
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8.6.2 Estimation under noisy measurement - Parameter Set 1

The parameter values used are as given in Table 8.1, and the tuning parameter values used

are given in Table 8.4.
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The errors in the estimation profiles in the clean case are summarised in Table 8.5 with

percentages given with respect to the magnitude of the real simulated biomass concentration.

D Constant | D Stepping | D Typical
Positive error 17% 5% 5%
Negative error 8.5% 1.9% 1.9%

Table 8.5: Magnitudes of offsets as a percentage of the actual biomass value

The better performances are obtained for the more realistic influent dilution rate profiles.
However, the positive estimation errors in each case are much bigger than the negative er-
rors. The reason is due to the choice of higher values of #, where the observer uses the
lower limit g + 7y . This choice is made in order to attain similar convergence times of
the real and estimated substrate concentration S, as those attained resulting in the negative
estimation error. Consequently, a larger gain is experienced in the estimation of the biomass
concentration, which yields larger offsets. Generally, a higher choice of 6, results in a better
estimation of S, and an estimation of X with larger offsets. Note that better results can be
obtained if lower values of 8, are considered such that the convergence of the measured and
estimated values of substrate concentration S occurs at a later point in time.

The magnitudes of the noise present in the biomass estimation profiles when considering
an additive noise with amplitudes equal to 5% of the measured value of substrate concen-
tration S are summarised in Table 8.6. The magnitudes of the noise present in the biomass
estimation profiles when considering an additive noise with amplitudes equal to 15% of the
measured value of substrate concentration S are summarised in Table 8.7. The percentages

are given with respect to the magnitude of the real simulated biomass concentration.

D Constant | D Stepping | D Typical
Positive error on p < 1% < 2% < 2%
Negative error on < 1% <2% < 2%

Table 8.6: Noise present in the estimations for 5 percent measurement noise
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D Constant | D Stepping | D Typical
Positive error on p < 3% < 7% < 7%
Negative error on g < 3% < 7% < 7%

Table 8.7: Noise present in the estimations for 15 percent measurement noise

8.6.3 Concluding remarks 9

We have shown the performance of Observer 4 where we consider the parameter Sets 1 and
2 (see Appendix A) for the case of partially known parameters under constant, stepping, and
typical dilution rates, all of which use a stepping influent substrate concentration. As for the
case of a known specific growth rate, we consider estimation both in the absence and in the
presence of measurement noise.

The partially known parameter considered is p,,, where we assume an error of £30%
of u,.... The nominal, upper, and lower bounds used for the specific growth rate are given
by the Monod law. Consequently, the differences between the nominal profile and the upper
and lower profiles are +30%, respectively.

The smallest estimation errors occur under stepping and typical variations in dilution
rate, at less than 2% of the simulated real biomass concentration and most other errors are
under 5%. The biomass estimations reach their offset values within 26 hours where the
observer is tuned according to convergence of the measured and estimated values of substrate
concentration at 12 hours. Indeed, the tuning is far superior as compared to when using an
ELO as highlighted in [32], which results in large offsets in S. It should be emphasised
that although the worst offset was +17% of the simulated real biomass concentration, this
can be improved through a reduction in magnitude of the tuning parameter. In doing so, the
convergence of the measured and estimated values of substrate concentration .S will occur at
a later point in time. In addition, the biomass convergence time will be longer. Therefore,

the performance attained is based upon the desired performance with respect to a trade-off
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between offset magnitudes and convergence times.

This work compares well to prominent results for partially known specific growth rates
[32], [45], [46], [85] with regards to magnitudes of the biomass estimation offset and the
time taken to converge to the offset. In [45], an adaptive observer is proposed for biomass
estimation with a bounded error in y. However, the magnitude of the error considered is
not stated, there is no consideration of measurement noise, and the convergence to the offset
is twice as long as that of Observer 4. In fact, the adaptive nature of the tuning parameter
6, of Observer 4 results in very good performances in the presence of measurement noise
for amplitudes equal to 5% and 15% of the measured value. Indeed, the noise is attenuated
by a factor of 5 and between 2.14-2.5 for constant and varying dilution rates, respectively,
whilst convergence to offsets occurs at 26 hours. These performances also compare well
with the foregoing results in the literature [46], [85], which consider measurement noise
with amplitudes of 5% of the measured value. In those works, the noise is multiplied by a
factor of 2 and 1, respectively, and convergence to offsets (with convergence errors of 10%
of the simulated real biomass profile) is much slower, in the region of 50 hours. In fact, the
use of lower gains in Observer 4 results in longer convergence times, but with smaller offsets

and also better performance in the presence of measurement noise.

8.7 Biomass estimation for time-delayed bioprocesses

It can be shown that the work on LTI systems with delays, established in Chapter 6, can be
applied to the bioprocess considered in this work. However, to do this, one would need to
assume a constant specific growth rate. Since such an assumption is unrealistic, we have
not pursued this here. In fact, the work on time-delay systems should be extended to the

nonlinear case when considering systems such as the bioprocess in this work. However, the

174



extension of the time-delay work to the nonlinear case is beyond the scope of this thesis.

8.8 Summary of biomass estimation

The problem of biomass estimation for known and partially known specific growth rates of
biomass has been tackled. The observers presented are based upon expressing or transform-
ing the bioprocess at hand in, or into, an Extended Jordan Observable form. Hence, the
observers are also applicable to other processes that can be expressed in this form or that
can be transformed into which. In addition, the observers presented here are simple, and the
design is facilitated by the particular expression of the system used. Consequently, one main
advantage of the proposed observers lies in the simplicity of design. The structure of the
gains results in observers that are easy to implement, especially when considering the well-
known extended Kalman observer, which requires a large computational effort to update its
gain. Moreover, application of the extended Kalman observer and the extended Luenberger
observer (see [32] and [44]) to the bioprocess considered in this work is based upon meth-
ods of linearisation, for which stability and convergence is restricted to certain regions of
operation.

The simulations carried out here demonstrate the good convergence performance of each
observer when the single tuning parameter of each is chosen appropriately. Furthermore,
the performances are illustrated in the presence of various influent flow characteristics and
different parameter values, all combinations of which are not generally considered in the
literature.

When considering either known or partially known specific growth rates, the choice of
initial biomass concentration is not confined to any kind of interval as it is in [85]. Indeed,

the initial value can be arbitrarily chosen. In addition, this work does not assume or rely
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upon any initial or otherwise steady-state conditions as in some other results (see [32] and
[47]).

The constant tuning parameter Observer 1 possesses good convergence performance un-
der clean measurement when compared to any observer present in the literature. However,
performance in the presence of measurement noise in some cases necessitated further devel-
opment, which came in the form of the adaptive Observer 2.

Observer 2 demonstrates very good performance, both in the absence and in the pres-
ence of measurement noise. The observer uses an adaptive tuning parameter which varies
according to changes in the system input and output. Consequently, it can use an efficient
gain such that the observer is capable of fast convergence performances whilst attenuating
measurement noise. Indeed, for a known specific growth rate, this observer provides the best
overall biomass estimation performances.

The main advantage of Observer 3 lies in the fact that for some sets of parameter values,
we have more control over the stability of the error dynamics in the sense that with the entries
of the extended Jordan block held at constant low values and with appropriate polarity, we
can choose a constant tuning parameter that does not have to be excessively high to ensure
exponentially stable error dynamics.

Observer 4 uses an adaptive tuning parameter and demonstrates good performance for
uncertainty in the specific growth rate, both in the absence and in the presence of measure-
ment noise. As when using Observer 2, an efficient gain is used such that the observer is

capable of fast convergence performances whilst attenuating measurement noise.
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Chapter 9

Conclusions and Future Work

This chapter draws conclusions on the important results achieved in this work. A discussion
of directions for future work is also given. Finally, a list of the publications generated as a

result of this research is given.

9.1 Conclusions

The main focus of this work has been on the development of new methodologies for the
design of observers and controllers for a class of nonlinear systems and time-delay systems,
with the aim to apply the obtained results to the estimation of biomass concentration in
a biological wastewater treatment reactor in theory and in simulation. Consequently, this
project has generated several contributions to knowledge, introducing new methodologies
for the design of observers and controllers for a class of state-affine systems and a class
of linear time-delay systems. The reason for the interest in state-affine systems is mainly
because the class of bioreactors considered falls into this category of systems. Consequently,
the observer designs proposed for the state-affine case have been applied in theory and in

simulation to biological wastewater treatment.

177



The designs were based on the concept of Jordan controllable and observable forms in-
troduced in [35] for linear systems. Therefore, first and foremost, the concepts of the Jordan
controllable and observable canonical forms were extended to the class of state-affine sys-
tems. The main motivation behind this is that the more general form helps in the design
of observers and controllers for sub-classes of state-affine systems. It has been shown that
there exist some classes of systems that are naturally of the so-called Extended Jordan Con-
trollable and Observable Canonical (EJCC and EJOC, respectively) forms. It has also been
shown that some classes of systems can be partially transformed into EJCC and EJOC forms
and algorithms to do so have been given, herein. These canonical forms were used in this
work to establish new controller and observer design methodologies for classes of state-affine

systems. The designs established are summarised below.

o A controller for a class of control-affine and a sub-class of state-affine systems, which

can be partially transformed into a class of the EJCC form.

e A constant tuning parameter observer for a sub-class of state-affine systems, which are

already in a sub-class of the EJOC form.

e An adaptive tuning parameter observer for a sub-class of state-affine systems, which
are already in a sub-class of the EJOC form. The robustness of this adaptive observer

was shown under parameter uncertainty.

e A constant tuning parameter observer for a sub-class of state-affine systems, which

was partially transformed into a sub-class of the EJOC form.

In the case of the controller design, it was shown that the use of the EJCC canonical
form facilitates the design procedure and provides additional degrees of freedom in tuning

the controller parameters. Moreover, the construction of the transformation matrix and the
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expression of the system in the EJCC form provide components of the controller gain. In
addition, only linear techniques are used for the controller design, which has been shown to
compare well with an input-state linearising controller.

The first two observer designs were facilitated by expressing the systems under observa-
tion as a sub-class of systems in the EJOC form and use a constant and an adaptive tuning
parameter, respectively. In order to show the flexibility of the approach, the third observer
design methodology was given for systems that can be partially transformed into a sub-class
of systems in the EJOC form. Similar to the foregoing controller, the construction of the
transformation matrix provides components of the observer gain, as does the expression of
the system in the EJOC form itself. The fourth observer is designed for the case of uncer-
tain system parameters such that estimations given converge to within a bounded error. The
design of each observer is based upon the use of linear techniques and consequently their
construction is simple and straightforward. Implementation of the observers is also simple,
with each having excellent convergence properties. It is shown that the observers can be
tuned using only a single tuning parameter, and that convergence is achieved more quickly
using larger magnitudes of which. In particular, the adaptive-gain observer has a number of
advantages as compared to the case of using a constant tuning parameter, or any high-gain
observer. Indeed, an efficient gain is given that is capable of guaranteeing exponentially
stable error dynamics, without remaining unnecessarily high.

The foregoing work on controller and observer design is for systems that contain no
delays. However, the problem of designing controllers and observer-based controllers for a
class of linear time-delay systems (TDSs) has also been tackled in this work. Consequently,
a full-state controller and a separation principle have been established for a class of SISO
linear time-delay systems with known delays in the state and output. The designs are based

on a new stability criterion and are derived from first principles.
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The controller has been designed based on the specific choice of controller gain such that
the closed-loop system is asymptotically stable in the sense of a recently introduced stabil-
ity criterion called (a, r)-stability, which is stronger than stability in the Krasovskii sense.
Furthermore, the system can be easily tuned via one parameter, higher magnitudes of which
result in a quicker convergence performance. However, in such a case, the larger control ef-
fort needed to achieve this can result in system behaviour containing larger transient peaks.
Therefore, a trade-off is required between the desired convergence time and the amplitudes
of acceptable transient peaks and control effort.

This work on TDSs is distinctive from others in this area in that it exploits the features
of the characteristic equation of the system to derive the controller gain. In fact, no a priori
control design approach was set in advance; that is, the controller was designed based on
first principles.

The time-delay controller synthesised in this project assumes that a full-state measure-
ment is available. Since this is often not the case in practice, it is important to consider the
possibility of establishing some kind of observer-based controller. Indeed, the possibility of
combining the foregoing controller with a recent observer for the same class of TDSs was
explored. As aresult, a separation principle for the class of SISO linear TDSs considered has
been established, based upon asymptotic stability in the sense of («, 7)-stability. In addition,
the controller and observer are tuned individually, each using only one tuning parameter.

Both the controller and the observer-based controller strategy proposed are applicable to
LTI systems with known delays in the state and output. In fact, they can be used where there
is a delay in the state only or if there are delays both in the state and the output. In addition,
the value of the delay in the output can be any value less than or equal to that of the state
delay.

Finally, as previously mentioned, the application of interest in this research has been on
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the biological treatment of wastewater. Difficulties in the control of such systems arise due to
insufficient knowledge of the nonlinear specific growth rate of reaction and the lack of cheap
and/or reliable monitoring equipment for the on-line measurement of biomass concentration.
Consequently, one focus of this research has been upon the estimation of biomass concentra-
tion in a biological wastewater treatment bioreactor. The new observer design methodologies
for the class of state-affine systems that have been established in this research have been ap-
plied in theory and in simulation to the estimation of biomass, both in the absence and in the
presence of measurement noise. Two main cases have been considered. In the first case, we
assumed a full knowledge of the specific growth rate of biomass, whereas in the second, we
assumed only a partial knowledge of the latter.

In the case of a known specific growth rate, the observers were applied under a variety
of influent flow characteristics and parameter values, both in the absence and in the presence
of measurement noise. The performances attained compare very well with current results
in the literature (see e.g. [45], [46], [47], [85]) with regards to convergence, time-response,
and presence of noise in the estimation profiles. In fact, it was intended that the adaptive
observer would improve the estimation performance when considering measurement noise.
Indeed, the adaptive observer gives the best overall performance for the various parameter
values considered.

In the case of a partially known specific growth rate, the robustness of the adaptive ob-
server was shown where only +70% of the maximum specific growth rate of reaction is used
in the observer. Again, estimation under different influent characteristics is considered, both
in the absence and in the presence of measurement noise. The smallest estimation errors
shown are less than 2% of the simulated real biomass concentration and most are under 5%.
It is also shown that noise is attenuated by factors of 5 and 2.14-2.5 for constant and varying

dilution rates, respectively, and convergence to offsets occurs at 26 hours. These perfor-
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mances compare well with the foregoing results in the literature [46], [85], which consider
measurement noise with amplitudes of 5% of the measured value. In those works, the noise
is multiplied by a factor of 2 and 1, respectively, and convergence to offsets, with conver-
gence errors of the order of 10% of the simulated real biomass concentration, is much slower,
in the region of 50 hours.

We can conclude that the most successful biomass estimations yielded from this research
are those of the adaptive observer. Indeed, the adaptive nature of this observer can result in
attenuation of noise with good convergence times, which might even be better than if a noisy
direct measurement of biomass concentration were possible or affordable. Furthermore,
the performances are illustrated in the presence of various influent flow characteristics and
under different parameter values, all combinations thereof are not generally considered in
the literature.

Although the aspect of time-delays in wastewater treatment processes was of interest in
this work, we have not shown biomass estimation in the presence of delays. The reason for
this is that the controller and observer-based controller given in this research would not be
suitable for application to the bioprocess considered. This unsuitability originates from the
need to assume a constant specific growth rate. However, such an assumption is unrealistic
and, consequently, we have not pursued this here. In fact, the work on time-delay systems
should be extended to the nonlinear case when considering systems such as the bioprocess
in this work. However, the extension of the time-delay work to the nonlinear case is beyond

the scope of this thesis.
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9.2 Future work

One focus of this research has been to establish new methodologies for the design of ob-
servers and controllers for a class of state-affine systems. As a result, a controller design
methodology and a number of observer design methodologies have been proposed based
upon the EJCC and the EJOC forms, respectively. The operation and performances of the
controller and observer designs have been illustrated separately. That is, no observer-based
controller has been given. Consequently, based upon the foregoing designs, it would be in-
teresting to investigate the possibility of establishing a separation principle for the class of
state-affine systems considered in this work. Furthermore, the possibility of applying such
an observer-based control strategy to a wastewater treatment bioreactor in simulation and in
practice can also be explored.

As previously mentioned, the foregoing EJOC observer designs have been applied in
theory and in simulation to the problem of biomass estimation. In particular, an adaptive-
gain observer has been applied to the case of a partially known specific growth rate, and
gives an estimation profile that is bounded to an interval. However, it would be interesting
to investigate the possibility of establishing an estimation strategy for the estimation of the
specific growth rate based upon the EJOC form.

Almost all systems contain time-delays, including many industrial processes such as bi-
ological wastewater treatment, which has been the application of interest in this research.
Hence, in this work, interest has been placed upon observation and control of systems con-
taining time-delays. As a result, a controller and a separation principle have been proposed
and are applicable to LTI time-delay systems. However, if these results were to be applied
to the bioprocess considered in this work, then one would have to assume a constant specific

growth rate, such that the system under observation belongs to the latter class of systems. As
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mentioned previously, this assumption is far too restrictive. Therefore, one area for future
work would be on the extension of the time-delay controller and observer-based controller,
established in this research, to the state-affine case.

Finally, all of the work in this research has been based upon SISO systems. Hence, one
further suggestion would be to extend these results to the MIMO (Multi-Input Multi-Output)

casc.
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Appendix A

Biomass Estimation Simulations

A.1 Estimation for known SGR - Parameter Set 2

Here, we show the simulation results for the estimation of biomass concentration for para-
meter Set 2 under different dilution rates D and infiluent substrate concentrations S;,. The
parameter values used are given in Table A.1. The tuning parameters used for Observers 1-3
for estimation under clean measurement are summarised in Table A.2. For Observer 3, a
choice of a (u,y) = —% is used. Note that where no maximum or minimum value is indi-

cated for Observer 2, neither was required since good results were obtained without. Also,

note that CS,,: Constant S;,,; SS;,,: Stepping S;,.

X(0) =2.4g/1 K, =4q/l
X(0) =0g/1 Y, =10
S(0) =5(0) =08g/l | ky =2
i = 0.3h ] k= 1

Table A.1: Set 2 parameter values

As in the results for estimation using parameter Set 1, for the clean measurement case,
we show the estimation profile given by Observer 1. We then show the profiles of the gain

1, of Observers 1-3 for the same estimation performance.
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Observer D Constant D Stepping D Typical
1 CSin | 0. =-3 0. =-3 .= -3
SSin | .= -3 6. =-3 f.= -3
2 CSzn 9[1 = emax = -3 00, = Qmax = Oa = emax = -3
SSin | 0, (0) = —3.6 0, (0) = —3.6 0, (0) =—3.6
3 CSin | 0.86=03 0.6 =0.3 6.8 =0.3
SSin | 0.8 =0.12 0.6 =0.6 6.8 =0.6

For each observer, we also consider an additive noise ¢ with amplitude equal to 5% of
the measured value S. We also consider an additive noise € with amplitude equal to 10% of
the measured value S and show the performance of Observer 2 for a stepping S;,, and the
performance of Observer 3 for both a constant and stepping S;,. Note that for this set of
parameter values, it is shown through Figures A-7 to A-9 that the profile of the gain 1, of
the adaptive-gain observer is equivalent to that of the constant-gain observer for constant .S;,,
where the tuning parameter is 8, = 6. = —3. The reason for such a choice is such that we
obtain the same convergence time, and a ramping 6, would not give this. Hence, for 6, = 6,

the performances, in the presence of measurement noise, yielded by Observers 1 and 2 are

similar.

The tuning parameter values used for Observers 1-3 under measurement noise are sum-

marised in Table A.3. Note that where no maximum or minimum value is indicated for

Table A.2: Observer tuning parameter values under clean measurement - Set 2

Observer 2, neither was required since good performance was achieved without.

Observer D Constant D Stepping D Typical
1 CSin | 0.=-1 0.=—1 f.=—1
SSin | 0. = —1 6. =-1 .= -1
2 CSm ea = emax = —1 ga - gmax = ea = emax = -1
SSin | 0. (0) = —3.6 6, (0) = —3.6 0, (0) = —3.6
3 CSin | 6.6=03 0.6=03 0.6 =0.3
SSin | 0.0 =0.12 6.8 =0.6 0.8 =0.6

Table A.3: Observer tuning parameter values under noisy measurement - Set 2

187




A.1.1 Estimation under clean measurement

Observer 1 - Constant S;,,
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Figure A-1: Performance of Observer 1 for parameter Set 2 with
constant S;, = 5g/1 and constant D = 0.1~A~1
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Figure A-2: Performance of Observer 1 for parameter Set 2 with
constant S;, = Bg/! and stepping D
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Figure A-3: Performance of Observer 1 for parameter Set 2 with
constant S;, = 5g/l and typical D
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Figure A-4: Performance of Observer 1 for parameter Set 2 with
stepping S;,, and constant D = 0.1A~1
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Figure A-5: Performance of Observer 1 for parameter Set 2 with
stepping S;n, and stepping D
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Figure A-6: Performance of Observer 1 for parameter Set 2 with
stepping S, and typical D
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Gain of Observers 1,2 & 3 - Constant .S;,, Gain of Observers 1,2 & 3 - Stepping S;,
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A.1.2 Estimation under 5% measurement noise
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Stepping S;,, & constant D
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Stepping S;, & typical D

2.5 s ——
.......... X i
2 Mxest }
L
1.5+
E
it
0.5;{‘
[ .
0 :
0 24 48 72 96 120

Time (h)

Figure A-25: Performance of Observer 1 for 5% measurement noise
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Figure A-26: Performance of Observer 2 for 5% measurement noise
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A.1.3
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Figure A-28: Performance of Observer 2 for 10% measurement
noise for stepping S;, and constant D = 0.1h™1
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Figure A-29: Performance of Observer 2 for 10% measurement
noise for stepping S, and stepping D
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Figure A-30: Performance of Observer 2 for 10% measurement
noise for stepping S;,, and typical D
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Figure A-31: Performance of Observer 3 for 10% measurement
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Figure A-34: Performance of Observer 3 for 10% measurement noise for stepping S;,, and constant D = 0.1~™1
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Figure A-36: Performance of Observer 3 for 10% measurement noise for stepping S;,, and typical D
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A.2 Estimation for known SGR - Parameter Set 3

Here, we show the simulation results for the estimation of biomass concentration for para-
meter Set 3 under different dilution rates D and influent substrate concentrations .5;,. The
parameter values used are given in Table A.4. The tuning parameters used for Observers
1-3 under clean measurement are summarised in Table A.5. For Observer 3, a choice of
au,y) = —% 1s used. Note that where no maximum or minimum value is indicated for
Observer 2, neither was required since good performance was achieved without. Also note

CSin: Constant S;,; S.S;,: Stepping S;,.

X(0) = 0.5g/1 K, = g/l
X(0) = 0g/1 Y, = 10
5(0) = 3(0) = 10g/1 | k1 = 2
Pnayx = 0.3071 ky=1

Table A.4: Set 3 parameter values

Observer D Constant D Stepping D Typical
1 CSin | .= -3 0. =3 0.= -3
SSin | 0. =3 0.=—3 0. = —3
2 | CSi [0a(0)=—-25]6,(0)=—-25]6,(0)=-25
SSin | 0,(0)=-2816,(0)=-2816,(0)=-28
3 CSin | 0.8 =4 0.8 = 0.0 =4
SSin | 0.8 = 9.5 =5 0.6=5 |

Table A.5: Observer tuning parameter values under clean measurement - Set 3

As in the results for estimation using parameter Set 1, for the clean measurement case,
we show the estimation profile given by Observer 1. We then show the profiles of the gain
1D, of Observers 1-3 for the same estimation performance.

For each observer, we consider an additive noise e with amplitudes equal to 5% of the
measured value S. We also show the performances of Observers 2 and 3 for an additive noise
e with amplitudes equal to 10% of the measured value S.

The tuning parameter values used for Observers 1, 2, and 3 under noisy measurement are
summarised in Table A.6. Note that where no maximum or minimum value is indicated for

195



Observer 2, neither was required since good performance was achieved without.

Observer D Constant D Stepping D Typical
1 CSin | .= —-0.7 6. = —045 8. = —0.45
SSin | 8. =-0.7 6. = —0.45 6. = —0.45
2 CS;, [ 6,(0)=-07]6,(0)=-0.7]6,(0)=-07
SSin | 6,(0) =—-0.7]6,(0)=-0.7 | 6,(0) =—-0.7
3 CSin | 0.6 =0.1 0.6 =0.1 6.8 =0.1
SSin | 8.8 =10.2 6.0 =02 6.6 =02

Table A.6: Observer tuning parameter values under noisy measurement - Set 3
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A.2.1 Estimation under clean measurement
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Figure A-37: Performance of Observer 1 for parameter Set 3 with

constant S;,, = 5g/1 and constant D = 0.1h~1
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Figure A-38: Performance of Observer 1 for parameter Set 3 with

constant Sy, = 5g/l and stepping D
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Figure A-39: Performance of Observer 1 for parameter Set 3 with

constant Si, = 5g/! and typical D
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Figure A-40: Performance of Observer 1 for parameter Set 3 with
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1 ——
3
PN —X
/N X o
/ \, e est ||
0.751 ) / \\\ — i
/ AN
> 0.5 i ™~
o 0.5(7 .
i \\\
H \\»\ ‘
i ]
0.25% :
B |
0 L N . H
0 4 8 12 16 20 24
Time {h)

Figure A-41: Performance of Observer 1 for parameter Set 3 with

stepping S;, and stepping D
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Figure A-42: Performance of Observer 1 for parameter Set 3 with
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Gain of Observers 1,2 & 3 - Constant S;, Gain of Observers 1,2 & 3 - Stepping 5,
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A.2.2 Estimation under 5% measurement noise
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A.2.3 Estimation under 10% measurement noise
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A.3 Estimation for known SGR - Parameter Set 4

Here, we show the simulation results for the estimation of biomass concentration for para-
meter Set 4 under different dilution rates D and influent substrate concentrations 5;,,. The
parameter values used are given in Table A.7. The tuning parameters used for Observers
1-3 under clean measurement are summarised in Table A.8. For Observer 3, a choice of

a(u,y) = ~% is used. Note CS;,,: Constant S;,,; SS;,,: Stepping S;,,.

X(0) = 0.5g/! K, =4g/1
X(0) = 0g/1 Y, =3
S(0) = 3(0) = 10g/1 | k1 = 2
i =03k 1 ke =1

Table A.7: Set 4 parameter values

Observer D Constant D Stepping D Typical
1 CSin | 0.=-3 6. = -3 f.=-3
SSin | 0. = -3 0. = -3 0. = -3
2 CSm 0o = emax = -3 ea = Hmax = —3 Qa = emax = -3
SSZTL 90, - Hrnax = -3 90. = Hmax = —3 ea - emax =—3
3 CSin | 0:.8=1 0.6=1 0.6=1
SSin | 8.6 =1 6.8=1 0.0=1

Table A.8: Observer tuning parameter values under clean measurement - Set 4

As in the results for estimation using parameter Set 1, for the clean measurement case,
we show the estimation profile given by Observer 1. We then show the profiles of the gain
1), of Observers 1-3 for the same estimation performance.

For each observer, we consider an additive noise ¢ with amplitudes equal to 5% and 10%
of the measured value S. The tuning parameter values used for Observers 1, 2, and 3 under

noisy measurement are summarised in Table A.9.
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Observer D Constant D Stepping D Typical
1 CSin | 0. =-17 .,=-13 0.=-1.3
SSin | 8. = —1.7 6.=-1.3 0.=-13
2 CSin | 0o = Omax = —1.7 | 0 = Oax = —1.3 | 0y = Oppayy = —1.3
SSin | 0o =Omax = =17 | 8, = Opax = —1.3 | 0, = O = —1.3
3 CSin | 0.8 =0.05 0.0 =0.05 6.8 =0.05
SSin | 8.8 =0.05 6.6 =0.05 6.8 =0.05

Table A.9: Observer tuning parameter values under noisy measurement - Set 4
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A.3.1 Estimation under clean measurement
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A.3.2 Estimation under 5% measurement noise
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Stepping S;, & constant D
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A.3.3 Estimation under 10% measurement noise
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A4 Estimation for partially known SGR - Parameter Set 2

Here, we show the performance of Observer 4 for the case of biomass estimation with only
a partial knowledge of the specific growth rate using parameter Set 2. Constant, stepping,
and typical dilution rates D, and a stepping influent substrate concentration S;,, are used.
Estimation is considered both in the absence and in the presence of measurement noise with
amplitudes equal to 5% and 15% of the measured value of substrate concentration S. The
parameter values used are as given in Table A.1. In all cases, the tuning parameter values

used are given in Table A.10.

Positive unknown | Negative unknown

D Constant | §, = O = —0.35 | 0, (0) = —1.5, O, = —0.5
D Stepping | 0, = Opin = —0.25 | 6, (0) = —1, Oy = —0.35
D Typical | 6, = Oppin = —0.25 | 0, (0) = —1, Oy = —0.35

Table A.10: Observer 4 tuning parameter values for the partially known case - Set 2

A.4.1 Estimation under clean measurement
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Appendix B

Bioprocess Background Information

B.1 Specific growth rate of biomass

The specific growth rate can be described using a multiplication of individual terms:

p(t) = p(S) p(X)pu(So) p(pPH) p(T) . ..

where S: substrate concentration; X: biomass concentration; S,: dissolved oxygen con-
centration; pH: potential of hydrogen; and 7. temperature. Some models that have been

developed are now shown in the following subsections.

B.1.1 Influence of the substrate concentration

Michaelis-Menton law (1913) or Monod law:

S

_ Hmax

=K +3

where (., 1S the maximum specific growth rate, and K is the Michaelis-Menton (or sat-
uration) constant. The Michaelis-Menton constant is the value of substrate concentration at

which the specific growth rate is equal to half its maximum value.
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Tessier (1942):

Blackman:

u o= ’“’%j*s ifS < K,

if S > K,

lLl’ max

which is a combination of 1st-order kinetics for S < K, and zero-order kinetics for S > K.
Haldane
The Haldane law is a development of the Monod law and takes into account inhibition in

enzyme-substrate reactions. The model takes the form:

oS

“*KS+S+%

where K is the inhibition parameter, and

K
= 1+2 ° .
Ho Hmax ( + Kz)

Haldane’s model is useful in situations where substrate inhibition is important (at very high

concentrations). The maximum specific growth rate occurs at

S =V KSKi.

B.1.2 Influence of the biomass concentration
Verhulst (1838), logistic model:

M(X) = Hmax (1 - aX)

where a = 3(1— is the inhibition constant.
max

Contois (1959):

Pmaxd

F= K Xx+5
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This is clearly a function of S and X.

B.1.3 Influence of pH level

Microbial growth takes place only if temperature and pH are within ranges of admissible
values. Few models for this pH dependency are presented up to now. One possibility is a

bell-shaped function:

1
Kprr = Kmax'l + 10pK1—pH  1(pH-pK>

where pK; and pK, are the low and the high pH with half of the maximum activity.

B.1.4 Influence of temperature

This is usually modelled by an Arrhenius-type law:

p(T) = ale“% — 026_% —b

where £; and E, are activation energies, R is the gas constant (8.314.J.g.mol/K), and a;,
a9, and b are constants. This expression shows that the specific growth rate increases contin-
uously with temperature until a maximum value T}, (at which the cells die). This is often
simplified to

u(T) = K107 =) or Fopy g~ T2)

where 6 is around 1.03 to 1.05 for most processes.
B.2 Bioprocess model derivation

The modelling method used can be found in [32]. The basis of the model derivation is
the simple and well-known premise of conservation of mass and energy. For the system
considered, the basis is simply what goes into the tank either remains there or exits at some

point. The general mass balance equation, in this case, is expressed as:
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Rate of change of massintank = Rate of massinlet — Rate of mass outlet
+Rate of mass produced
— Rate of mass consumed.

B.2.1 General model of component concentration

With the system expressed in terms of simple mass balance equations, expressions of the
concentrations of interest can be derived and subsequently can provide a model of the biore-
actor. The first step is to express the mass balance in terms of concentration and liquid

medium volume, where mass m is expressed as
m=CV

where C' denotes concentration, and V' is the liquid medium volume in the tank. Throughout
the modelling procedure, there are a number of assumptions made about the system. The
first assumption made is that nutrient densities are equal and constant. The mass balance can

then be written as

d(CV)
dt

= CinQin — CoutlQour TV

where C;, and C,,; are the inlet and outlet component concentrations, respectively, ();, and
Qo are the inlet and outlet volumetric flow rates, respectively, and ¢ denotes the conversion
rate of C'. The production rate is denoted by +¢ and the consumption rate by —¢.

The next assumption is that of perfect mixing, implying that the concentration consid-
ered, C, is homogeneous throughout the liquid medium. It is, therefore, assumed that the
concentration at the bioreactor outlet is the same as that at any other point in the tank. A
further assumption is made based upon a constant-volume tank. From basic modelling, the

rate of change of liquid medium volume in the tank is given by

dV
—d-t— - an - Qout-
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For a constant-volume tank,

av
i 0
which implies
Qin = Qout-

Following some simple manipulation, the mass balance equation can be simplified to

N A E

C = DCyp—-C)xto
where D = %ﬁ denotes the dilution rate.
B.2.2 Microbial growth reaction

Consider the following microbial growth reaction taking place in the bioreactor:
S— X

where S denotes the limiting substrate concentration and X denotes the biomass concen-
tration. The first assumption in this instance, is that only the substrate S is present in the
inlet.

The biomass model can be expressed as

X=-DX =% ¢y
and the substrate model is given as
S =D (Sm—5) + dg.
With the transport dynamics expressions established, the final stage of the modelling
process is to express the conversion dynamics, i.e. the concentration conversion rates ¢ and

¢g. In line with a widely accepted assumption, introduced by Monod in 1942, we consider

that a reaction rate p is given as

p=pX



where the coefficient i is the biomass’ specific growth rate. For biomass, the conversion rate

is equal to the reaction rate p:
bx = puX ®.1)
and the conversion term for the substrate is given as
ps = Ysp = YsuX
where Y is a yield coefficient expressed as

one gram of substrate consumed

Y, :
biomass produced (g)

In biochemical engineering, the yield coefficient V" is standardised with respect to the bio-

mass X, and is expressed as

. biomass produced (g)
~ one gram of substrate consumed’

More specifically, it is the amount of biomass produced when one unit of substrate is con-
sumed by the reaction. This standardisation corresponds to the form of the biomass conver-
sion rate in (B.1).

The complete model of the bioreactor is then expressed as

where p is the specific growth rate (SGR) of biomass; D is the dilution rate; S;, is the influent

substrate concentration, and Y is the yield coefficient for substrate concentration.
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B.3 Measurement of substrate concentration

In this work, the methods considered to provide estimations of the biomass concentration
are observer-based and assume the on-line measurement of the substrate concentration is
readily available. Therefore, it is important to establish that the on-line measurement of the
substrate concentration is, in fact, viable. Indeed, there are a number of methods available
for the determination of organic content in wastewater. These include standard analysis of
global parameters such as Biological Oxygen Demand (BOD), Chemical Oxygen Demand
(COD), and Total Organic Content (TOC). The determination of these parameters has, for
many years, been performed via off-line laboratory-based analytical techniques, which can
be time-consuming. Traditionally, the level of organic pollution is measured by a standard
5-day test called the BOD;. First published in 1917, the technique determines the amount
of dissolved oxygen required by heterotrophic bacteria to oxidise organic material in the 5-
day period. To ensure a fair test is conducted, a small amount of micro-organism seed is
initially added to each sample being tested. From the results, the concentration of organic
pollution in the sample can be determined. An alternative test that has also been widely used
is the COD test. The COD test is similar in function to the BOD test in that both provide an
indirect measurement of the amount of organic compounds in water. The performance of the
COD test involves the use of chemical reagents to fully oxidise organic material into carbon
dioxide and water. The total quantity of oxygen required to do this is known as the chemical
oxygen demand. From this, the organic content in the samples can be easily determined in a
matter of hours. A test that provides results much quicker than BOD or COD, and which has
become more common, is the TOC test. Although results can be achieved within minutes,
this test measures only the organic content in the water and therefore no other substances

that may contribute to the metabolism and reproduction of the micro-organisms (biomass)
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are included [92]. From this, it is indicative that measurement of organic loading levels given
by BOD and COD methods provide the most reliable values, and are, in fact, used by the
RWAs in the UK.

In recent decades, much attention has been focussed upon the need to develop on-line
monitoring techniques for the measurement of organic loading such that wastewater treat-
ment processes can be monitored and controlled in real time [92]. There are a number of
on-line TOC, COD, and BOD monitoring devices now available to do this [87]. It has been
shown that on-line biosensor-based BOD monitors can give values of organic content that
compare well with traditional methods within minutes [87], [93], [94], [95], [96].

It is clear that on-line measurement of the substrate concentration is, in fact, viable when

considering observer-based estimation of biomass concentration.
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Appendix C

Theoretical Concepts - Stability of

Dynamical Systems

The very first concept considered when studying a dynamical system is the stability of its
equilibrium point(s). The analysis and resulting determination of system stability is para-
mount in concluding whether the desired, correct and safe operation of a system will be
attained, and what additional external stabilising influence is required. The stability of a
system is concerned with its behaviour near its equilibrium point(s). This intuitive idea is
actually very complex for nonlinear and time-delay systems in particular. Consequently, a
large variety of definitions have been proposed. The main objective of the theory of stability
1s to be able to draw conclusions on the system behaviour without actually calculating its

solution.

C.1 Stability of nonlinear systems

We are now going to present some of the definitions that are mainly used in the literature [6],

most importantly: Lyapunov stability, asymptotic stability, uniform stability, and exponential
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stability.

Consider the general autonomous nonlinear system
z=f(tz(t),t>0 z(0)=m (C.1)

where f : R” x Rt — R™ is continuous. Since f is continuous, we are assuming that the
above system has a unique solution corresponding to each initial condition. This is true, in
particular, if f is a global Lipschitz function. Note that f is global Lipschitz if there exist

finite positive constants 7" and &, such that
If@tz) = fEl <kllz—vyl, Yo,y € R, vt € [0,T]. (C2)

A function satisfying the Lipschitz condition (C.2) is said to be Lipschitz continuous,
and is continuously differentiable.

Recall also that a state z. € R" is an equilibrium point for system (C.1) if f (¢, z.) = 0,
Vvt > 0. In what follows, we shall assume that z. is an equilibrium point for system (C.1).
We also denote by z(¢, g, o), the solution of (C.1) at time instant ¢ corresponding to the
initial condition zg = z(to, to, Zo)-

Definition C.1. Lyapunov stability: The equilibrium point z. of system (C.1) is stable or

Lyapunov stable if for all € > 0, there exists 6(e,to) > 0 such that
H.CEO — er < (5(8,t0) = Hl‘(t,to,l‘o) — l‘ell <e Vi>t

On the other hand, the equilibrium point x. is unstable if z. is not Lyapunov stable.
Definition C.2. Uniform stability: The equilibrium point x. of system (C.1) is uniformly

Lyapunov stable if for all € > 0, there exists 6(¢) > 0 such that
|zo — ze|| < d(e) = ||z (¢, to, mo) — x| < €, VE > 1.

Equivalently, when 4 depends only on €, the equilibrium point z. is said to be uniformly

stable.
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Lyapunov stability does not guarantee that the solution z(¢, o, zo) will converge to the
equilibrium point z.. It simply says that the solution will remain in some region around the
equilibrium point as time passes, but will not necessarily ever approach it, so long as the
initial condition was within a certain distance, 0, of the equilibrium point. A system with a
limit cycle, in particular, is stable in the sense of Lyapunov.

As a result of such a bounded type of stability definition, the notions of attractivity,
asymptotic stability, and exponential stability are defined.

Definition C.3. Attractivity: The equilibrium point x. of system (C.1) is attractive or

convergent if for each ty € R*, there exists an n(ty) > 0 such that
lzo — ze|| < n(to) = z(to + t,t0,Z0) — T ast — .

Definition C.4. Uniform attractivity: The equilibrium point z. of system (C.1) is uni-

ormly attractive if there exists a number n > 0 such that
y n
lxo — ze|l <1, to > 0= (to + t,to, T0) — Ze as t — oo, uniformly in ty and xo.

By combining the above definitions, we obtain the important notion of asymptotic stabil-
ity and uniform asymptotic stability.

Definition C.5. Asymptotic stability: The equilibrium point x. of system (C.1) is asymp-
totically stable if it is stable and attractive. It is uniformly asymptotically stable if it is both
uniformly stable and uniformly attractive.

In many practical situations, such as in the convergence of observers, exponential stabil-
ity is preferred to asymptotic stability.

Definition C.6. Exponential stability. The equilibrium point z. is exponentially stable if

there exist constants r, a,b > 0 such that
|z (to + t,t0, Zo) — Ze|| < a0 — z.|| exp (—bt), Vt, to > 0, Vx4 € B,

where B, is a ball of radius 7.
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The above definitions are local in nature in the sense that they describe the behaviour
of the system solution initialised near the equilibrium point. In other words, there is some
region around the equilibrium point in which the initial condition vectors will lead to asymp-
totically or exponentially stable responses. This region is called the zone of attraction to the
equilibrium point.

The following definitions are given in the sense of the global behaviour of system trajec-
tories.

Definition C.7. Global uniform asymptotic stability: The equilibrium point z. is globally
uniformly asymptotically stable if (1) it is uniformly stable, and (ii) for each pair of positive
numbers M, € with M arbitrarily large and ¢ arbitrarily small, there exists a finite time

T =T (M,¢) such that
lzo — zel|l < M, to > 0= ||z (to +t,to, z0) — ze|| <&, VE 2> T (M,e).

This definition says that the solution will converge to the equilibrium point and remain
there as time passes (since T (M, ¢) is finite), in response to any initial condition (since M
is arbitrarily large).

Definition C.8. Global exponential stability: The equilibrium point x. is globally expo-

nentially stable if there exist constants a,b > 0 such that
|z (to + t, to, zo)|| < a||xo — ze|| exp (—bt), Vt, tog > 0, Vzp € R™.

It is worth noting that these kinds of definitions can only be satisfied for systems having
a single equilibrium point at which the system can come to rest. This is the case of linear
systems, where the origin is the unique equilibrium point.

In practice, the study of stability is done using Lyapunov’s second, or direct, method.
This consists of defining a Lyapunov function with appropriate properties; the existence of

which will imply the type of desired stability. The second method allows the determination
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of stability without having to solve the system equations (or find the eigenvalues in the linear
case). Consequently, it is a useful method for nonlinear and time-varying systems where
the solution of the state equations is very difficult to find in general. Recall that Lyapunov’s
first method comprises studying the stability of a nonlinear system in the vicinity of an
equilibrium point by calculating the eigenvalues of a linearised model of the nonlinear system
around the equilibrium point. This method is not considered here since the stability of linear
systems is shown in the next section.

Note that we can always consider . = 0 since we can always bring the equilibrium point
to the origin by a change of coordinates. In what follows, we shall effectively assume that
such is the case.

Definition C.9. Lyapunov function: A Lyapunov function for the system (C.1) is a real-
valued function V (x,t), which possesses the following properties:

i) V(z,t) is of class C* such that V (z.,t) = 0.

ii) V(z,t) is positive definite. In other words, there exists a non-decreasing real contin-
uous function o such that o(0) = 0 and 0 < a(||z||) < V(z,t), for all t and for all x # 0
with a(||z||) — oo as ||z]| — oo.

iii) V (z,t) is negative definite. In other words, there exists a non-decreasing real con-
tinuous function v such that v(0) = 0 and the time derivative V (z,t) of V (x,t) along the
trajectories of system (C.1) is such that: V (z,t) < — v(||z||) < 0 for all t and for all z # 0.

iv) There exists a non-decreasing real continuous function 3 such that $(0) = 0 and
V(z,t) < B(||z||) for all t.

The following theorem shows that the existence of such a Lyapunov function is a neces-
sary and sufficient condition for uniform asymptotic stability of system (C.1).

Theorem C.1. The origin of system (C.1) is uniformly asymptotically stable if and only

if system (C.1) admits a Lyapunov function.
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The properties on V' (x, t) can be weakened according to the type of stability desired. We
therefore have the following corollary:

Corollary C.1. The origin of system (C.1) is:

a) Stable if and only if system (C.1) admits a Lyapunov function which satisfies conditions
i), ii) and the following condition: iii*) V(x,t) < 0 for all t and for all .

b) Uniformly stable if and only if system (C.1) admits a Lyapunov function which satisfies
conditions i), ii), iii*) and iv).

Corollary C.2. For the autonomous system

z = f(z), f(0) =0 (C.3)

the asymptotic stability is guaranteed by the existence of a Lyapunov function V (x) of class

C1, such that:

1. V(ze) =0,
2. V(z) >0 Vz#0,
3. V(z) — o0 as ||z|| — oo, and

4. V(z) <0, Vz#£D0.

C.2 Stability of linear time-invariant systems

In general, the Lyapunov direct method can also be applied to linear systems, whether they
are time-varying or time-invariant. However, for time-invariant systems of the form

= Az, z € R"” (C.4)

the concept of positive and negative definite functions are readily defined in terms of quadratic

functions involving positive and negative definite matrices, respectively. More precisely, the
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quadratic form V(z) = z Pz, where P is a Symmetric Positive Definite (SPD) matrix,
1s usually employed as a candidate Lyapunov function. Having chosen an SPD matrix P,
the derivative of V' (z) with respect to time, along the trajectories of the system (C.4), is

calculated to test for negative definiteness:
V(z) = a'Pi+iTPx
= 2TPAz + 27 ATPz = 2T Qu

where

PA+ATP = Q. (C.5)
The equation (C.5) is called an algebraic Lyapunov equation. If the matrix () turns out to
be negative definite with the particular choice of P, then the origin of system (C.4) will be
asymptotically stable.

Note that since the origin is the only (trivial) isolated equilibrium point of system (C.4),
we generally speak of the asymptotic stability of the system rather than the asymptotic stabil-
ity of the origin. It is also clear that asymptotic stability of the LTI system (C.4) also means
global asymptotic stability of the latter since there is only one critical point.

Another interesting feature of the above LTI system is that its eigenvalues can also pro-
vide information regarding the stability of the system. Indeed, it is known that any matrix
A can be transformed into the Jordan form by a change of coordinates. Let z = Sz be a

transformation such that SAS—! = J, where J is in Jordan form. More precisely,
2=81t=SA8"12 = Jz.

We know that the diagonal elements of J are the eigenvalues of A. In addition, z(¢) =

et 2(0) = >l 2T pi;t et where r is the number of distinct eigenvalues of A; Ay, . . .,

A-; m; is the multiplicity of the eigenvalues );, and p;; are interpolating polynomials. It is

clear that 2(t) — 0 as t — oo if the eigenvalues of A are all negative. This result is
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summarised in the following theorem:
Theorem C.2. The autonomous LTI system (C.4) is globally asymptotically stable if and
only if all the eigenvalues of A have negative real parts, that is, all the eigenvalues of A lie

in the left-half complex plane.

C.3 Linear time-varying systems

The stability criteria which can be applied to the analysis of LTI systems does not necessarily
apply to those with time-varying parameters. The stability analysis of such systems is more
complicated than that of LTI systems. A commonly used stability analysis technique is the

frozen coefficient method. More precisely, for the following time-varying system:
() =A{t)z(t), x € R"

the eigenvalues of the matrix A(¢) are calculated for each fixed time ¢4, ¢5... and so on. If the
eigenvalues are in the LHS of the s-plane, for all time, and if the coeflicients and eigenvalues
are not varying too rapidly, then the system is said to be stable. However, this is not strictly
true for all time-varying systems and care must be taken when using such a technique. It
is actually possible that some time-varying systems with negative real eigenvalues can be
unstable (see [6]). It is also possible for some time-varying systems to have an eigenvalue
in the RHS of the s-plane, and yet be stable under certain conditions. In such a case, further

analysis of a different kind may be required.

C.4 Stability of linear time-delay systems

The stability analysis of time-delay systems (TDSs) is much more complex than that of the

delay-free case. The behavioural characteristics and structural features of TDSs can require
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non-standard analytical techniques for the determination of system stability.

Consider the LTI delayed system
z(t) = Az (t) + Agx (t — 7) (C.6)

and the functional

V(z:) = 27 (t) Pz (t) + /0 e (t+6)Sz (t+06)do (C.7

~T

where 6 € [—7,0]. Clearly, the functional (C.7) is an extension of the classical Lyapunov
functions [67]. It is said that system (C.6) is asymptotically stable if there exist positive

symmetric matrices P, S, and R satisfying the Riccati equation
ATP+ PA+ PASTTAIP+S+R=0

or equivalently, the linear matrix inequality (LMI)

ATP+PA+S PA,
< 0.

ATp -5
This is a Krasovskii-based method for the determination of stability of systems of the form
(C.6). 1t is clear that the use of such stability criteria means that the design of observers and
controllers for such systems is not straightforward.

Other methods include the consideration of rational approximations. The idea is basi-
cally to truncate the infinite series involved to an approximation and thus treat the infinite-
dimensional system as a finite-dimensional one. However, this can lead to problems with
regards to controller design for delayed systems. Indeed, for the case of a linear constant-
delay system, a controller that can stabilise Pade approximations is not sufficient to ensure

stable behaviour of the real system [67].
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