Effects of hydrophobicity on splash erosion of model soil particles by a single water drop impact

Ahn, Sujung, Doerr, Stefan, Douglas, Peter, Bryant, Robert, Hamlett, Christopher, McHale, Glen, Newton, Michael and Shirtcliffe, Neil (2013) Effects of hydrophobicity on splash erosion of model soil particles by a single water drop impact. Earth Surface Processes and Landforms, 38 (11). pp. 1225-1233. ISSN 0197-9337

PDF (Postprint of Published Manuscript)
Postprint_Ahn_ESPL_vol_38_p1225_2013.pdf - Accepted Version

Download (583kB) | Preview
Official URL: http://dx.doi.org/10.1002/esp.3364


Raindrop impact can be a major contributor to particle mobilization for soils and other granular materials. In previous work, water repellent soils, comprised of hydrophobic particles, have been shown to exhibit greater splash erosion losses under multiple drop impact. However, the underlying principle differences in splash behavior between hydrophobic and hydrophilic granular surfaces have not been studied to date. In this study the effects of particle hydrophobicity on splash behaviour by a single water drop impact were examined using high-speed videography. Water drops (4 mm in diameter) were dropped on beds of hydrophilic and hydrophobic glass beads (sieved range: 350–400 µm), serving as model soil particles. The drop velocity on impact was 2.67 m s-1, which corresponds to ~30% of the terminal velocity of a raindrop of similar size. The resulting impact behaviour was measured in terms of the trajectories of particles ejected from the beds and their final resting positions. The response to the impacting water drop was significantly different between hydrophilic and hydrophobic particles in terms of the distance distribution, the median distance travelled by the particles and number of ejected particles. The greater ejection distances of hydrophobic particles were mainly the result of the higher initial velocities rather than differences in ejecting angles. The higher and longer ejection trajectories for hydrophobic particles, compared with hydrophilic particles, indicate that particle hydrophobicity affects splash erosion from the initial stage of rainfall erosion before a water layer may be formed by accumulating drops. The ~10% increase in average splash distance for hydrophobic particles compared with hydrophilic particles suggests that particle hydrophobicity can result in greater net erosion rate, which would be amplified on sloping surfaces, for example, by ridges in ploughed agricultural soils or hillslopes following vegetation loss by clearing or wildfire.

Item Type: Article
Uncontrolled Keywords: soil, hydrophobic, superhydrophobic
Subjects: F200 Materials Science
F300 Physics
F800 Physical and Terrestrial Geographical and Environmental Sciences
Department: Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering
Related URLs:
Depositing User: Glen McHale
Date Deposited: 02 Jan 2014 10:04
Last Modified: 17 Dec 2023 14:49
URI: https://nrl.northumbria.ac.uk/id/eprint/12418

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics