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In the recent years, mater-wave interferometry has attracted growing attention due to its unique
suitability for high-precision measurements and study of fundamental aspects of quantum theory.
Diffraction and interference of matter waves can be observed not only at a spatial aperture (such as
a screen edge, slit, or grating), but also at a time-domain aperture (such as an absorbing barrier, or
“shutter”, that is being periodically switched on and off). The wave phenomenon of the latter type
is commonly referred to as “diffraction in time”. Here, we introduce a versatile, exactly solvable
model of diffraction in time. It describes time-evolution of an arbitrary initial quantum state in the
presence of a time-dependent absorbing barrier, governed by an arbitrary aperture function. Our
results enable a quantitative description of diffraction and interference patterns in a large variety
of setups, and may be used to devise new diffraction and interference experiments with atoms and
molecules.

PACS numbers: 03.75.-b, 03.65.Nk, 42.25.Fx

The wave nature of matter is both captivating and per-
plexing, and its exploration has been at the center of
experimental and theoretical research since early days of
quantum mechanics. To date, diffraction and interference
experiments have been successfully performed with parti-
cles ranging from elementary particles and simple atoms
to complex molecular clusters [1, 2]. Most spectacularly,
wave-like behavior has been convincingly demonstrated
even for such large organic compounds as C60[C12F25]10
and C168H94F152O8N4S4, each comprising 430 atoms [3].

In optics, diffraction is typically portrayed as deflection
of light incident upon an obstacle with sharp boundaries,
that can not be accounted for by reflection or refraction.
Interestingly, quantum mechanics allows for an addi-
tional, intrinsically time-dependent manifestation of the
phenomenon: Owing to the dispersive nature of quantum
matter waves, sudden changes in boundary conditions
may cause the particle wave function to develop interfer-
ence fringes akin to those in stationary (optical) diffrac-
tion problems. This phenomenon, pioneered in 1952 by
Moshinsky [4] and presently referred to as “diffraction in
time” (DIT), is at the heart of a vibrant area of experi-
mental and theoretical research concerned with quantum
transients (see Ref. [5] for a review).

In the original Moshinsky’s setup [4], a monoenergetic
beam of non-relativistic quantum particles is incident
upon a perfectly absorbing barrier (“shutter”). The shut-
ter is suddenly removed at time t = t1. In other words,
the transparency of the barrier χ(t), called the aperture
function, jumps instantaneously from 0 at t < t1 to 1
at t > t1, i.e., χ(t) = Θ(t − t1), with Θ denoting the
Heaviside step function. The removal of the shutter ren-
ders a quantum wave function with a sharp, discontin-
uous wave front. The latter disperses in the course of
time, smoothing out the initial discontinuity and devel-

oping a sequence of interference fringes. As Moshinsky
has shown, these fringes bear close mathematical similar-
ity to those in Fresnel diffraction of light at the edge of a
straight, semi-infinite screen. Moshinsky’s paradigmatic
triggered considerable interest to DIT in experimental
research with ultra-cold neutrons and atoms, and Bose-
Einstein condensates [1, 2, 5].

On the theoretical side, a number of interesting exten-
sions and variations of Moshinsky’s shutter problem have
been addressed. Moshinsky himself extended his original
result to the case of a “time slit”, in which the shutter
stays open only during a time interval t1 < t < t2, as de-
scribed by the aperture function χ(t) = Θ(t−t1)Θ(t2−t)
[6]. Scheitler and Kleber found an exact analytical solu-
tion of a related problem, in which the role of a smoothly
opening shutter was played by a time-dependent δ-
potential barrier V (x, t) ∼ t−1δ(x), with x denoting the
spatial coordinate [7, 8]. Various physical problems, re-
quiring generalization of the original Moshinsky’s setup
to describe DIT caused by an arbitrary aperture func-
tion, χ(t), have been addressed in Refs. [9–14]. The
analytical methods adopted in all these studies rely on
treating the shutter as an effective “source” boundary
of a semi-infinite coordinate space (transmission region).
The main advantage of this approach is that the trans-
mitted wave can be readily expressed in terms of χ(t)
and a time-dependent source boundary condition. A sig-
nificant difficulty with this approach however is that, in
general, there is no unique well-defined recipe for finding
the source function that would accurately mimic a given
incident wave packet (although, in some cases, efficient
approximations and exact bounds are known [12]).

In this paper, we introduce a self-consistent exactly
solvable model of DIT, free of arbitrary parameters. The
model aims to describe dynamics of an arbitrary quan-
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FIG. 1: Illustration of time-evolution of a quantum state in
the presence of a time-dependent absorbing shutter.

tum state in the presence of an absorbing time-dependent
shutter characterized by an arbitrary aperture function
χ(t), see Fig. 1. It serves as a versatile generalization
of the original Moshinsky’s problem and reduces to the
latter in the particular case χ(t) = Θ(t− t1).

The central quantity analyzed in this paper is a prop-
agator K(x, x′; t) that relates the particle wave function
Ψ(x, t) at time t > 0 to an initial quantum state Ψ0(x)
at t = 0 through [15]

Ψ(x, t) =

∫ +∞

−∞
dx′K(x, x′; t)Ψ0(x′) . (1)

The propagator satisfies the time-dependent Schrödinger
equation (TDSE) on both sides of the absorbing shutter,
positioned at x = 0, i.e.,(

i∂t +
~

2m
∂2x

)
K(x, x′; t) = 0 for x, x′ 6= 0 . (2)

Here, m denotes the mass of the particle. The propagator
is subject to the initial condition

K(x, x′; 0+) = δ(x− x′) , (3)

and is required to vanish as x→ ±∞ at negative imagi-
nary times, i.e., at t = −i|t|.

Our treatment of absorption is based on a time do-
main rendition of an approach originally introduced by
Kottler. The approach applies to diffraction of stationary
fields governed by the Poisson’s equation at spatial aper-
tures in otherwise perfectly absorbing (“black”) screens
[16, 17]. According to this approach, a wave originating
on one side of a black screen is subject to a discontinuous
jump at every point of the screen, except for points inside
possible openings (holes, slits, etc.). More concretely,
the difference of the wave amplitude on the source side
of the screen and that on the opposite side equals the
amplitude of the corresponding free-space wave, i.e., the
amplitude the wave would have if no screen were present.
A similar discontinuity condition is imposed on the nor-
mal derivative of the field. Both the field and its normal
derivative are postulated continuous across the openings.
As Kottler has shown, an exact solution of the Poisson’s
equation, subject to the above well-defined, though un-
usual, discontinuous boundary conditions, is identical to
the wave field predicted by Kirchhoff’s diffraction theory.

In our model, we consider a time-dependent generaliza-
tion of the Kottler’s discontinuity condition at the shut-
ter. Thus, we require the propagator to satisfy

K(x, x′; t)
∣∣x=0+

x=0−
= sgn(x′)

[
1−χ(t)

]
K0(x−x′, t)

∣∣
x=0

(4)

and

∂xK(x, x′;t)
∣∣x=0+

x=0−

= sgn(x′)
[
1− χ(t)

]
∂xK0(x− x′, t)

∣∣
x=0

. (5)

Here, χ(t) denotes the aperture function, ranging be-
tween 0 (shutter closed) and 1 (shutter open),

K0(z, t) =

√
m

2πi~t
exp

(
i
m

2~t
z2
)

(6)

is the free-particle propagator, and sgn(x′) = x′/|x′|
stands for the sign function. The latter identifies whether
the source is located to the left or right of the shutter.

Equations (2–5) completely specify dynamics of a
quantum particle in the presence of a time-dependent
absorbing barrier. In fact, as will be shown below, this
quantum-mechanical problem admits an exact analytic
solution valid for an arbitrary piecewise differentiable
function χ(t). The solution is given by

K(x, x′; t) = Ξ(x, x′)K0(x− x′, t) +K1(x, x′; t) (7)

with

K1(x, x′; t) =

∫ t

0

dτ uK0(x, t− τ)χ(τ)K0(−x′, τ) (8)

and

u(x, x′; t, τ) = − sgn(x′)

2

(
x

t− τ −
x′

τ

)
. (9)

Here, Ξ(x, x′) = [1+sgn(x)sgn(x′)]/2, i.e., Ξ equals 1 if x
and x′ lie on the same side of the barrier, and 0 otherwise.

For what follows below, it is useful to rewrite the prop-
agator, given by Eqs. (7–9), in an alternative form. Eval-
uating the integral in Eq. (8) by parts, we obtain

K(x, x′; t) = Ξ(x, x′)
[
1−χ(t)

]
K0(x−x′, t)+K2(x, x′; t) ,

(10)
where

K2(x, x′; t) =
1

2

(
χ(0) + χ(t)

+ sgn(x′)

∫ t

0

dτ
dχ(τ)

dτ
erf(Φ)

)
K0(x− x′, t) (11)

and

Φ(x, x′; t, τ) =

√
m

2i~t

(
x

√
τ

t− τ + x′
√
t− τ
τ

)
. (12)



3

Equations (10–12), while being mathematically equiv-
alent to Eqs. (7–9), enable a straightforward verification
of the fact that K satisfies Eqs. (2–5). Indeed, since
both K2 and ∂xK2 are continuous functions of x, the va-
lidity of the discontinuity conditions, Eqs. (4) and (5),
follows directly from Eq. (10). The validity of the ini-
tial condition, Eq. (3), can be also verified straightfor-
wardly: K(x, x′; 0+) = [Ξ + (1 − Ξ)χ(0)]K0(x, x′; 0+) =
δ(x−x′). The fact that K satisfies the TDSE is confirmed
by a direct substitution of Eqs. (10–12) into Eq. (2).
(Here, it is convenient to take into account the identity

∂tΦ + x−x′
t ∂xΦ + i ~mΦ(∂xΦ)2 = 0.) Finally, we note that

uniqueness of the solution can be established in a stan-
dard way [15].

It is important to point out that, due to nonunitarity
of quantum evolution in the presence of absorption, the
propagator K, in general, does not fulfill the composition
property, i.e.,

K(x, x′; t) 6=
∫ +∞

−∞
dξ K(x, ξ; t− τ)K(ξ, x′; τ) . (13)

This can be readily seen by considering the simple case
of a time-independent, completely absorbing barrier, for
which χ = 0 and K = ΞK0.

Although not valid generally, the composition property
holds in the following important special case. Consider
a scenario, in which the absorbing barrier acts only up
to some time tf . In other words, suppose the aperture
function χ is such that χ(τ) = 1 for all τ > tf . It can
then be shown that K satisfies

K(x, x′; t) =

∫ ∞
−∞

dξ K0(x− ξ, t− τ)K(ξ, x′, τ) (14)

for 0 < tf < τ < t. The physical picture offered by
Eq. (14) is apparent: Once the absorbing shutter has
been switched off, the wave function evolves in accor-
dance with the free-particle propagator.

Equations (7–9) offer the following physical interpreta-
tion of the wave function evolution. The full propagator
K is a sum of ΞK0, describing propagation in the case of
a completely absorbing barrier (χ = 0), and K1, repre-
senting contribution of a barrier of nonzero transparency.
In the transmission region, i.e., for x and x′ such that
Ξ(x, x′) = 0, the expression for K1, Eq. (8), conforms to
the Huygens-Fresnel principle [18]: The probability am-
plitude at the point x and time t, produced by a point
source at x′ and time 0, can be viewed as that produced
by a fictitious source, located at the origin (between x
and x′); the strength of the fictitious source is deter-
mined by the free-particle wave function at the origin,
modulated by the aperture function.

In certain cases, the integral in Eq. (11) can be evalu-
ated explicitly. One important example is that of a “time
grating”, characterized by a “staircase” aperture function
χ(τ) = χ0Θ(t1 − τ) +

∑N−1
n=1 χnΘ(τ − tn)Θ(tn+1 − τ) +

χNΘ(τ − tN ), where 0 ≤ χj ≤ 1, with 0 ≤ j ≤ N , and
0 < t1 < t2 < . . . < tN < t. In this case, the integral in
Eq. (11) reduces to

∑N
n=1(χn+1 − χn)erf[Φ(x, x′; t; tn)],

rendering a closed form expression for the propagator.
In particular, χ(t) = Θ(t − t1) leads to a propagator
coincident with that in the original Moshinsky’s shutter
problem [18].

A diffracted wave function, Ψ(x, t), resulting from an
arbitrary initial state, Ψ0(x), can now be obtained by
numerically evaluating the integral in Eq. (1). As an
illustration, we consider diffraction of an initially lo-
calized Gaussian wave packet. Adopting atomic units,
m = ~ = 1, we consider a coherent state ψq,p(x) =
(π)−1/4 exp[− 1

2 (x − q)2 + ip(x − q)], with the average
position q and momentum p, and set the initial state to
be Ψ0(x) = ψ−10, 5(x). Figure 2 shows the wave function
Ψ(x, t) at time t = 3 diffracted at two different time grat-
ings χ(τ), shown in the insets of Figs. 2a and 2c. The
elementary, one-period cell of the first grating, Fig. 2a, is
given by 0×Θ(τ)Θ(∆t−τ)+1×Θ(τ−∆t)Θ(2∆t−τ), and
that of the second grating, Fig. 2c, by 0×Θ(τ)Θ(∆t−τ)+
0.5×Θ(τ−∆t)Θ(2∆t−τ)+1×Θ(τ−2∆t)Θ(3∆t−τ), with
∆t = 0.056. (The value χ = 0.5 means that the shutter
allows only a half of the probability amplitude through,
while absorbing the other half.) The probability densi-
ties |Ψ(x, t)|2 for the two gratings are shown in the main
panels of Figs. 2a and 2c, and the corresponding Husimi

distributions, H(q, p) =
∣∣∣∫ +∞
−∞ dxψ∗q,p(x)Ψ(x, t)

∣∣∣2, with

the asterisk denoting complex conjugation, are presented
in Figs. 2b and 2d, respectively. (Phase-space repre-
sentations, akin to H(q, p), have been previously used
for establishing classical-quantum analogies in the dy-
namics of diffracted particles [19].) The central bright
peaks in Figs. 2b and 2d are localized around the point
(q, p) = (5, 5), which is the average phase-space location
of the particle in the absence of a shutter. Additionally,
in the case of the first grating, three separated diffrac-
tion peaks – one in the reflection region, q < 0, and two
in the transmission region, q > 0, – are clearly visible
in Fig. 2b. On the contrary, in the case of the second
grating, Fig. 2d, diffraction peaks overlap substantially,
forming a distinct pattern of probability naughts, i.e.,
points in phase space “avoided” by the diffracted parti-
cle. We point out that, in general, the diffraction pattern
sensitively depends on the initial wave packet and aper-
ture function, making diffraction on time gratings well
suited for spectroscopic analysis of quantum states.

So far, we have shown that Eqs. (7–9), or equivalently
Eqs. (10–12), give an exact solution to a quantum dynam-
ical problem, defined by Eqs. (2–5). A natural question
is however in order: Does this dynamical system accu-
rately model physical reality? In what follows, we argue
that the proposed system should indeed provide a good
description of the motion of a quantum particle in the
presence of a purely absorbing (but not reflecting, in the
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FIG. 2: Diffraction in time of an initially Gaussian wave packet. Figures (a) and (b) show, respectively, the probability density
and Husimi representation of the diffracted wave packet for the aperture function given in the inset of (a). Similarly, figures
(c) and (d) correspond to the aperture function given in the inset of (c). All quantities are given in atomic units, m = ~ = 1.

classical sense) barrier. The key building block of our
model is a time-dependent extension of the Kottler’s dis-
continuity conditions, Eqs. (4) and (5). The latter, in
the case of stationary waves governed by the Poisson’s
equation, are mathematically equivalent to Kirchhoff’s
description of diffraction. Predictions of the Kirchhoff’s
theory, in turn, are generally found in good agreement
with experimental data in the transmission region, while
somewhat lacking accuracy in the reflection region [20].
Therefore, at the very least, it is reasonable to expect
the propagator K(x, x′; t) to correctly describe quantum
wave dynamics in the transmission region. Moreover, if
the absorbing shutter is in effect only until some final
time tf , so that χ(t) = 1 for all t > tf , then K(x, x′; t),
being an analytic function of x at any time t > tf , must
correctly describe the dynamics of the diffracted particle
in both the transmission and the reflection regions.

Nevertheless, in the absence of a compelling local the-
ory of absorption, the ultimate answer to the question of
how accurately the proposed model describes physical re-
ality can only be given by an experimental investigation.
To this end, atom-optics systems appear to be partic-
ularly suitable. Remarkably, recent progress in control

and manipulation of ultra-cold atoms has made it pos-
sible to perform diffraction and interference experiments
with a single, isolated atom, corresponding to a quantum
wave packet highly localized in space [21]. At the same
time, strong ionizing radiation has been used to realize
an optical diffraction grating, similar in effect to an ab-
sorbing nanostructure (mechanical) grating [22]. Utiliz-
ing these technologies, one might envision a single-atom
DIT experiment, in which quasi-one-dimensional motion
of an atom is “intercepted” by a time-dependent absorb-
ing shutter produced by a transversely-oriented, pulsing
sheet of ionizing radiation.

In conclusion, we have addressed a self-consistent
mathematical model of diffraction in time and found its
exact analytical solution in form of a time-dependent
propagator. The latter enables a quantitative descrip-
tion of diffraction of an arbitrary initial quantum state
at an absorbing shutter governed by an arbitrary aper-
ture function. We believe that our model will prove use-
ful in the areas of coherent quantum control, quantum
metrology, in designing new diffraction and interference
experiments with atoms and molecules, and, more gen-
erally, in exploring foundations of quantum physics.
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