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Abstract

Background: Heidenreich et al. (Risk Anal 1997 17 391–399) considered parameter identifiability in the context of the two-
mutation cancer model and demonstrated that combinations of all but two of the model parameters are identifiable. We
consider the problem of identifiability in the recently developed carcinogenesis models of Little and Wright (Math Biosci
2003 183 111–134) and Little et al. (J Theoret Biol 2008 254 229–238). These models, which incorporate genomic instability,
generalize a large number of other quasi-biological cancer models, in particular those of Armitage and Doll (Br J Cancer 1954
8 1–12), the two-mutation model (Moolgavkar et al. Math Biosci 1979 47 55–77), the generalized multistage model of Little
(Biometrics 1995 51 1278–1291), and a recently developed cancer model of Nowak et al. (PNAS 2002 99 16226–16231).

Methodology/Principal Findings: We show that in the simpler model proposed by Little and Wright (Math Biosci 2003 183
111–134) the number of identifiable combinations of parameters is at most two less than the number of biological
parameters, thereby generalizing previous results of Heidenreich et al. (Risk Anal 1997 17 391–399) for the two-mutation
model. For the more general model of Little et al. (J Theoret Biol 2008 254 229–238) the number of identifiable combinations
of parameters is at most rz1 less than the number of biological parameters, where r is the number of destabilization types,
thereby also generalizing all these results. Numerical evaluations suggest that these bounds are sharp. We also identify
particular combinations of identifiable parameters.

Conclusions/Significance: We have shown that the previous results on parameter identifiability can be generalized to much
larger classes of quasi-biological carcinogenesis model, and also identify particular combinations of identifiable parameters.
These results are of theoretical interest, but also of practical significance to anyone attempting to estimate parameters for
this large class of cancer models.
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Introduction

Models for complex biological systems may involve a large

number of parameters. In principle it may well be that some of

these parameters may not be observed, or be possible to be derived

from observed data via regression techniques. Such parameters are

said to be unidentifiable or non-identifiable, the remaining

parameters being identifiable.

There is a substantial literature on identifiability in stochastic

models in various contexts [1,2,3]. Catchpole and Morgan [3]

considered identifiability and parameter redundancy and the

relations between them in a general class of (exponential family)

models. Catchpole and Morgan [3] defined a set of model

parameters in an exponential family model to be redundant if the

likelihood can be written using a strictly smaller parameter vector;

otherwise they are irredundant. Rothenberg [1], Jacquez and Perry

[4] and Catchpole and Morgan [3] also defined a notion of local

identifiability, to mean that within a neighbourhood of each set of

parameter values the likelihood differs for at least some data

points. This notion has been extended by Little et al. [5] to gradient

weak local identifiability and weak local identifiability. Little et al. [5]

defined a set of parameters to be weakly locally identifiable if the

maxima of the likelihood are isolated; they defined parameters to

be gradient weakly locally identifiable if the turning points (those for

which the likelihood derivative with respect to the parameters is

zero) are isolated. The results obtained by Little et al. [5] (Corollary

2 (ii) and the subsequent Remark (ii)), show that, subject to some

regulatory conditions, the number of locally identifiable or

(gradient) weakly locally identifiable parameter combinations is

equal to the rank of the Hessian matrix, or equivalently the rank of

the Fisher information matrix. The notions of identifiability in

stochastic models [1,2,3,5], within which framework this paper is

set, should be contrasted with the consideration of identifiablity in

non-stochastic settings considered by some [4,6,7].

Heidenreich [8] and Heidenreich et al. [9] considered parameter

identifiability in the context of the two-mutation cancer model

[10] and demonstrated that of the five biological parameters in the

model, on the basis of the cancer hazard function only three could
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be identified. [It should be noted that given extra information, for

example on numbers and sizes of intermediate cell compartment

clones, there is information on an additional parameter.]

In this paper we consider the problem of identifiability in

recently developed carcinogenesis models of Little and Wright [11]

and Little et al. [12]. These models generalize a large number of

other quasi-biological cancer models, in particular those of

Armitage and Doll [13], the two-mutation model [10], the

generalized multistage model of Little [14], and a recently

developed cancer model of Nowak et al. [15] that incorporates

genomic instability. We shall show that via a specific reparameter-

ization, in the simpler model proposed by Little and Wright [11] in

principle combinations of all but two of the model parameters are

identifiable, thereby generalizing previous results of Heidenreich

[8] and Heidenreich et al. [9] for the two-mutation cancer model.

For the more general model of Little et al. [12] combinations of all

but rz1 of the model parameters are identifiable, where r is the

number of destabilization types, thereby also generalizing all

these results. We also identify particular forms of identifiable

parameters.

Methods

Parameter Identifiability in the Context of a Stochastic
Cancer Model with Genomic Instability

We consider the problem of parameter identifiability in a

particular class of stochastic cancer models, those of Little and

Wright [11] and Little et al. [12]. The ideas used are similar to

those employed by Heidenreich et al. [9], in particular the use of

Cauchy’s method of characteristics. We shall assume throughout

this section that this model is embedded in a member of the

exponential family so that the log-likelihood is given by

L(xjh)~
Pn
l~1

xlzl{b(zl)
a(w)

zc(xl ,w)

� �
where the natural parameters

zl~zl ½(hi)
p
i~1,zl � are functions of the model parameters (hi)

p
i~1 and

some auxiliary data (zl)
n
l~1, but that the scaling parameter w is not.

We shall assume that the ml~b0(zl ½(hi)
p
i~1,zl �)~zl

:h½(hi)
p
i~1,yl �,

where h½(hi)
p
i~1,yl � is the cancer hazard function, and that the

(zl)
n
l~1 are all non-zero. This is generally the case, in particular

when cohort data are analysed using Poisson regression models, e.g.,

as in Little and Wright [11] or Little and Li [16]. By the remarks

following Corollary 2 of Little et al. [5], proving weak local

identifiability of a subset of cardinality k of the biological parameters

(hi)
p
i~1 is equivalent to showing that for this subset of parameters

rk
L2h

LhiLhj

 !p

i,j~1

2
4

3
5~k.

The model of Little et al. [12], generalizing that of Little and

Wright [11], which in turn generalizes the model of Little [14],

assumes that cells can acquire up to k successive cancer-stage

mutations, and any of r (mutually exclusive) types of destabiliza-

tion mutation(s). Cells become malignant when k cancer-stage

mutations have occurred, no matter how many destabilizing

mutations there have been. Once a cell has acquired a

Figure 1. Diagram of cancer model with kkkkk cancer-stage mutations and mmmmmmmmm destabilizing mutations, as in [12].
doi:10.1371/journal.pone.0008520.g001

Parameter Identifiability
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destabilizing mutation of type d (1ƒdƒr), it and its daughter cells

can acquire up to md{1 further destabilizing mutations of the

same type. We define r to be the multiplicity of destabilization

mutation types. It is to be expected that the more destabilizing

mutations cells acquire of each type, the higher the cancer stage

mutation rate is, but this is not intrinsic to the model. We write

(m1{m2{:::{mr) as the signature of the destabilizing mutation types.

We habitually describe this model as of type

k{r{(m1{m2{:::{mr) for short. The model is illustrated

schematically in Figures 1 and 2. Table 1 lists the biological

parameters that are used in the model, and their multiplicity.

Cells at different stages of the process are labelled by I(a,b,d),

where the first subscript, a, represents the number of cancer stage

mutations that the cell has accumulated, the second subscript, b,

represents the number of destabilizing mutations acquired, their

type being given by the third subscript, d. At all stages other than

I(0,0,0), cells are allowed to divide symmetrically or differentiate (or

undergo apoptosis) at rates G(a,b,d) and D(a,b,d), respectively.

Each cell can divide into an equivalent daughter cell and another

cell with an extra cancer stage mutation at rate M(a,b,d).
Likewise, cells can also divide into an equivalent daughter cell and

another cell with an additional destabilizing mutation of type d at

rate A(a,b,d). The model assumes that there are X (t) susceptible

stem cells at age t. Further details on derivation of the hazard

function are given in the paper of Little et al. [12].

Results

In Text S1 Section B we derive the hazard function and show that

it can be written in terms of certain combinations of the biological

parameters given in Table 1. From equations (B12)–(B16) in Text

S1 Section B it is seen that the characteristics and y are governed by

certain parameter combinations. Table 2 summarizes the maxi-

mum number of identifiable parameter combinations and their

forms associated with each cell compartment. The maximum

number of identifiable parameters associated with each destabili-

zation zone, Ia,b,d , are 4 when avk{1 and 0vbvmd ; 4 when

a~k{1 and 0vbvmd ; 3 when avk{1 and b~md and 2 when

a~k{1 and b~md . The function y is governed by at most rz1
parameter combinations. Therefore, we have shown that the hazard

function h(h) can be written as h(G1(h),G2(h),:::,GN (h)) for some

scalar functions G1(:),G2(:),:::,GN (:), where N~(k{2):(3zr)

z(3zr):1z(1zr):1z4:(k{1):
Pr

d~1

(md{1)z4:
Pr

d~1

(md{1)z3:

(k{1):rz2:r~3k{2{rz4k:
Pr

d~1

md (Table 2). Assuming that the

cancer model is embedded in a member of the exponential family

(in the sense outlined in Text S1 Section C) the same will be true of

the total log-likelihood L(xjh)~L(xjG1(h),G2(h),:::,GN (h)). By

means of the Chain Rule we obtain
L2L(xjh)
LhiLhj

~PN
l,k~1

L2L(xjG1,:::,GN )
LGlLGk

LGl

Lhi

LGk

Lhj
z
PN
l~1

LL(xjG1,:::,GN )
LGl

L2Gl

LhiLhj
, so

that the Fisher information matrix is given by

I(h)~{Eh
L2L(xjh)

LhiLhj

" #
~{E

XN

l,k~1

L2L(xjG1,:::,GN )

LGlLGk

LGl

Lhi

LGk

Lhj

" #

~{
XN

l,k~1

LGl

Lhi

E
L2L(xjG1,:::,GN )

LGlLGk

" #
LGk

Lhj

ð1Þ

which therefore has rank at most N. A similar argument shows that

if one were to reparameterise (via some invertible C2 mapping

h~f (v)) then the embedded log-likelihood L(xjf {1(h))~L(xjv)

associated with h(f {1(h))~h(v) must also have Fisher information

matrix of rank at most N. By Theorems 1 and 3 of Catchpole and

Morgan [3], for this embedded exponential family model therefore

there can be at most N irredundant parameters. Therefore, of the

theoretically available 1z2:½k{1zk:
Pr

d~1

md �zkz2:k:
Pr

d~1

md

~3k{1z4k:
Pr

d~1

md biological parameters (Table 1), at most

N~3k{2{rz4k:
Pr

d~1

md parameter combinations are identifi-

able, indicating a minimum of (rz1) parameter redundancies in

the model. Also, from the results obtained by Little et al. [5]

(Corollary 2 (ii) and the subsequent

Remark (ii)), subject to some regulatory conditions, the number of

locally identifiable or (gradient) weakly locally identifiable

parameter combinations is equal to the rank of the Fisher

Figure 2. Destabilizing-mutation planes in model, each plane
with structure of Figure 1, as in [12].
doi:10.1371/journal.pone.0008520.g002

Table 1. The number of biological parameters in a model
with k cancer stages, r7 types of GI and md (d~1, � � � ,r) levels
of destabilizations.

Model parameter
descriptions

Model
parameters

Number of such
parameters in the model

Stem cell population number X (t) 1

Growth rate A(a,b,d)(t)
k{1zk:

Pr
d~1

md

Death/differentiation rate D(a,b,d)(t)
k{1zk:

Pr
d~1

md

Cancer-stage mutation rate M(a,b,d)(t)
kzk:

Pr
d~1

md

Destabilizing mutation rate A(a,b,d)(t)
k:
Pr

d~1

md

Total
3:k{1z4:k:

Pr
d~1

md

doi:10.1371/journal.pone.0008520.t001

Parameter Identifiability
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information matrix, so ƒN. For example, in the case of the familiar

two-mutation model [10], with k~2, r~1, d~0 and md~0,

there are k:(mz1){1~2:1{1~1 G’s (namely G(1,0,0)),
k:(mz1){1~2:1{1~1 D’s (namely D(1,0,0)), k:m~2:0~0
A’s, k:(mz1)~2:1~2 M’s (namely M(0,0,0),M(1,0,0)), and a

single X , giving a total of five biological parameters. It is known

from the results of Heidenreich et al. [8,9] that for the two-mutation

model only three combinations of these are estimable, i.e., that there

are two redundancies, precisely in agreement with the result given

here for r~1. This result therefore precisely generalizes the results

and approach of Heidenreich et al. [8,9]. Unfortunately, analytical

methods for proving that precisely this number of parameters are

estimable, including some recently outlined [17], cannot be used for

the model considered here. Nevertheless, we conjecture that in

fact precisely this number of parameters are estimable, so that the

upper bound on the number of estimable parameter combinations

that we have proved above is in fact sharp. This is supported by

numerical evaluation of the Hessian in a couple of example cases,

which we now outline.

Numerical Evaluation of Hessian and Determination of Its
Rank

That there are likely to be exactly this number of estimable

parameters is supported by numerical evaluation of the Hessian matrix

of the hazard function. We make use of the solution of the system of

ordinary differential equations defining the Hessian, outlined in Text

S1 Section D. We will show in two cases that the Hessian has rank two

less than the number of biological parameters, w. By the above-

mentioned results of Catchpole and Morgan [3] and Little et al [5] this

suggests that precisely w{2 parameters are (gradient) weakly locally

identifiable. In order to show that the Hessians are of rank two less than

the number of biological parameters, w, we evaluate the eigenvalues of

the Hessian matrix, and establish that the smallest eigenvalue among

the w{2 largest eigenvalues in absolute value exceeds the likely

magnitude of the error by at least an order of magnitude. We know the

likely size of the error in numerical evaluations of each element, hij , of

the Hessian from the Boerlisch-Stoer integrator that is employed,

namely max (10{10,10{10:jhij j : 1ƒi,jƒw) (bsstep routine, Press et

al. [18], p.722). It is known that if two symmetric matrices H

and ~HH have eigenvalues l1ƒl2ƒ:::lw{1ƒlw and
~ll1ƒ

~ll2ƒ:::~llw{1ƒ
~llw then jli{~llijƒjjH{ ~HHjj2, 1ƒiƒw, where

jjHjj2~ sup½jjHxjj2=jjxjj2 : x=0� [19](p.396). Since the approxi-

mate Hessian that we calculate, ~HH , differs from the true Hessian, H, by

an amount jjH{ ~HHjj2ƒ
ffiffiffiffi
w
p :max½jhij{~hhij j : 1ƒi, jƒw�, we know

that:

jli{~llijƒ
ffiffiffiffi
w
p :max½jhij{~hhij j : 1ƒi, jƒw�ƒ

ffiffiffiffi
w
p :

max½10{10,10{10:j~hhij j : 1ƒi, jƒw�
ð2Þ

There is also the issue of numerical roundoff error in the QR algorithm

(Numerical Algorithms Group (NAG) routine F02FAF [20]) used to

compute eigenvalues. If we write now ~lli,~ll
_

i for the true and

approximate eigenvalues associated with the approximate Hessian,
~HH , this is known to be bounded by:

j~lli{~ll
_

ijƒc(w):e:jj ~HHjj2ƒc(w):e:
ffiffiffiffi
w
p :max½j~hhij j : 1ƒi, jƒw�, 1ƒiƒwð3Þ

where c(w) is a modestly increasing function of the dimension, w, of the

approximate Hessian ~HH and e is the machine precision [19](Chapter 8).

Since the machine precision (in double precision) is of the order 10{15

this expression (3) will be dominated by the error associated with the

approximation to the Hessian, given by expression (2).

Table 2. Parameter combinations associated with each cell compartment. The forms of these combinations are extracted from
equations (B12)–(B16) in Text S1.

Compartment Ia,b,dd

Number of such
compartments

Forms of identifiable
parameter combinations

Maximum number of
identifiable parameter
combinations

Total maximum number of
identifiable parameter
combinations

Principal axis (non-destabilization) Ia,0,0 (a~0, . . . ,k{1, b~d~0Þ

0vavk{1 (k{2) G(a,0,0), D(a,0,0){G(a,0,0),

M(a,0,0)
G(az1,0,0)

,
A(a,0,d 0)
G(a,1,d 0)

� �
d 0~1

r

3zr (k{2):(3zr)

a~k{1 1 G(a,0,0), D(a,0,0){G(a,0,0)zM(a,0,0),

M(a,0,0),
A(a,0,d 0)
G(a,1,d 0)

� �
d 0~1

r

3zr 3zr

y (a~b~d~0) 1 X :M(0,0,0)
G(1,0,0)

,
X :A(0,0,d 0)

G(0,1,d 0)

� �
d 0~1

r 1zr 1zr

r destabilization zones (0ƒaƒk{1, 1ƒbƒmd , 1ƒdƒrÞ
avk{1, 1ƒbvmd (k{1):

Pr
d~1

(md{1)
G(a,b,d), D(a,b,d){G(a,b,d),

A(a,b,d)
G(a,bz1,d)

,
M(a,b,d)

G(a,bz1,d)

4
4:(k{1):

Pr
d~1

(md{1)

a~k{1, 1ƒbvmd Pr
d~1

(md{1)
G(a,b,d), M(a,b,d),

D(a,b,d){G(a,b,d)zM(a,b,d),
A(a,b,d)

G(a,bz1,d)

4
4:
Pr

d~1

(md{1)

avk{1, b~md (k{1):r M(a,b,d)
G(az1,b,d)

, D(a,b,d){G(a,b,d), G(a,b,d) 3 3:(k{1):r

a~k{1, b~md r D(a,md ,d){G(a,md ,d)zM(a,md ,d),
G(a,md ,d):M(a,md ,d)

2 2:r

Total
3k{2{rz4k:

Pr
d~1

md

doi:10.1371/journal.pone.0008520.t002
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We evaluated the Hessian matrix for a model with three cancer-

stage mutations and one destabilizing mutation, and a model with

two cancer-stage mutations and one destabilizing mutation; log-

normal perturbations of all parameters were performed, assuming

a geometric standard deviation (GSD) of 4, centred on models

with cancer-stage mutation rates of 4.061023 year21, destabilizing

mutation rates of 3.061023 year21, intermediate cell proliferation

rates of 1.061021 year21, and intermediate cell death rates of

5.061021 year21. For each of 1000 random sets of parameters we

evaluated the Hessian by numerical integration, as outlined in

Text S1 Section D. We calculated the eigenvalues of the Hessian

using the QR algorithm, specifically the NAG FORTRAN

subroutine F02FAF [20]. For each model we selected the set of

random parameters for which the ratio of minimum to maximum

among the w{2 largest eigenvalues (w being the number of

biological parameters) in absolute value was greatest. These are

given in Tables 3 and 4, for the three-stage and two-stage models,

respectively. The associated eigenvalues are given in Table 5. The

absolute value of the w{2th smallest eigenvalue associated with

each set exceeds the error bound (2) by at least an order of

magnitude in each case. This strongly suggests that the Hessians

calculated for these two examples really are of rank w{2 for each

model.

Discussion

We have shown that in the class of stochastic cancer models

incorporating genomic instability developed by Little and Wright

[11] the number of identifiable combinations of parameters is at

most two less than the number of biological parameters, thereby

generalizing previous results of Heidenreich et al. [8,9] and Hanin

et al. [21,22] for the two-mutation model, a special case of this

model. For the more general genomic-instability cancer model of

Little et al. [12] the number of identifiable combinations of

parameters is at most rz1 less than the number of biological

parameters, where r is the number of destabilization types, thereby

Table 3. Example coefficients of model with three cancer
stage mutations and one destabilizing mutation.

Coefficient Value

G(1,0,0) 8.6471433594769461022

G(2,0,0) 1.0618895076427661023

D(1,0,0) 4.2555677973606261022

D(2,0,0) 2.6897590921801961021

M(0,0,0) 1.3316738092858861022

M(1,0,0) 1.088415032405026100

M(2,0,0) 9.7909368933540761022

A(0,0,1) 1.3353758065596061021

A(1,0,1) 7.6578902906148361022

A(2,0,1) 3.7374290299713761022

G(0,1,1) 5.3104425571308861021

G(1,1,1) 1.324182278107106101

G(2,1,1) 6.8886370988459461022

D(0,1,1) 1.1411819497673061022

D(1,1,1) 2.9964403533277161021

D(2,1,1) 8.9215517810144961021

M(0,1,1) 7.557119809170156100

M(1,1,1) 6.583045465854786100

M(2,1,1) 4.3363625639321561023

X 4.069933056458606100

doi:10.1371/journal.pone.0008520.t003

Table 4. Example coefficients of model with two cancer stage
mutations and one destabilizing mutation.

Coefficient Value

G(1,0,0) 2.2209588569982261023

D(1,0,0) 1.3137873961314161026

M(0,0,0) 8.1202202977544761024

M(1,0,0) 1.4067401036509761025

A(0,0,1) 2.0666810866092361021

A(1,0,1) 4.5721497032665861023

G(0,1,1) 1.5664483566401061022

G(1,1,1) 3.1637914599104861024

D(0,1,1) 1.299177056795546100

D(1,1,1) 1.9296973753641361021

M(0,1,1) 9.581731331726976100

M(1,1,1) 2.2633922470254561021

X 2.7814110565053961021

doi:10.1371/journal.pone.0008520.t004

Table 5. Eigenvalues in ascending order of Hessian matrix
associated with a model with three cancer stage mutations
and one destabilizing mutation (as in Table 3), and with a
model with two cancer stage mutations and one destabilizing
mutation (as in Table 4).

Number Eigenvalues (Table 3) Eigenvalues (Table 4)

1 21.207264152064906101 21.458103467781896100

2 24.924875587150606100 27.7774144188135561021

3 21.116489800886016100 22.7712718925930161021

4 22.4471197627277761021 26.6624351853232561023

5 29.8428825008677261022 23.5320977768286761024

6 21.2381458970635861022 22.8647110238826761024

7 22.9552232959847461023 29.2593040956287761026

8 21.5366987633194761023 21.78637642487767610211

9 29.8013903210741361025 2.7434290875763661024

10 23.3623812934187261025 4.9869752456366061024

11 22.1410577138167761026 1.1121573104936861022

12 21.8696729905405861027 8.1842650723382661021

13 5.01559183858810610212 1.451957032918536100

14 9.4404482009488161027 -

15 4.0566181896260561024 -

16 1.9222011961433461023 -

17 1.1104261735245961022 -

18 1.0327710243219161021 -

19 1.126677029440036100 -

20 1.082489915107356101 -

Non-significant eigenvalues are underlined in bold.
doi:10.1371/journal.pone.0008520.t005
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also generalizing all these results. Numerical evaluations in two

special cases (with r~1) suggest that this bound is tight: a

combination of parameters with cardinality two less than the

number of biological parameters is of full rank, and so is not

redundant.

A weakness of the paper is that one cannot be absolutely sure

(because of the uncertainty implicit in any numerical evaluation)

that the bound demonstrated by the mathematics of section 3 and

Text S1 Section B is sharp. Nevertheless, we have clearly

established a maximum number of identifiable parameter

combinations. We have also specified particular combinations of

identifiable parameters, and these should be used in model fitting

to avoid obvious numerical problems, of lack of convergence and

absence of a unique set of parameters maximizing the likelihood.

These results have obvious implications for the large number of

other quasi-biological cancer models that are special cases of these

models, in particular those of Armitage and Doll [13], the two-

mutation model [10], the generalized multistage model of Little

[14], and a recently developed cancer model of Nowak et al. [15]

that incorporates genomic instability. It should be noted that the

results given here are for the fully stochastic solution of the model,

and would not be applicable, for example, to the deterministic

approximation of the multistage model of Armitage and Doll [13]

that is often employed in applications.

Our results imply that for the general class of cancer models

considered here, only certain specific parameter combinations

should be estimated in principle, and this is the case whatever the

size of the dataset being considered. Whether for complex models

for even this theoretically available number of parameters there is

useful information is of course uncertain, and may well depend on

the particular dataset and on the likely size of the parameters to be

estimated. However, fits to a large population-based registry of

colon cancer, as recently analysed by Little and Li [16], suggests

that, for example, the model with two cancer-stage and one

destabilizing mutations can be fitted to the dataset and yields

stable parameter estimates for certain combinations of 11

parameters, in accordance with the results of this paper.

Supporting Information

Text S1 Text S1

Found at: doi:10.1371/journal.pone.0008520.s001 (0.42 MB

DOC)
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