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Mutations in the mitochondrial genome are associated with a wide range of neurological symptoms, but many aspects of the

basic neuronal pathology are not understood. One candidate mechanism, given the well-established role of mitochondria in

calcium buffering, is a deficit in neuronal calcium homoeostasis. We therefore examined calcium responses in the neurons

derived from various ‘cybrid’ embryonic stem cell lines carrying different mitochondrial DNA mutations. Brief (�50 ms), focal

glutamatergic stimuli induced a transient rise in intracellular calcium concentration, which was visualized by bulk loading the

cells with the calcium dye, Oregon Green BAPTA-1. Calcium entered the neurons through N-methyl-D-aspartic acid and

voltage-gated calcium channels, as has been described in many other neuronal classes. Intriguingly, while mitochondrial muta-

tions did not affect the calcium transient in response to single glutamatergic stimuli, they did alter the responses to repeated

stimuli, with each successive calcium transient decaying ever more slowly in mitochondrial mutant cell lines. A train of stimuli

thus caused intracellular calcium in these cells to be significantly elevated for many tens of seconds. These results suggest that

calcium-handling deficits are likely to contribute to the pathological phenotype seen in patients with mitochondrial DNA

mutations.
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Introduction
The pathological mechanisms underlying mitochondrial disease

are not understood, and yet there is increasing evidence of the

importance of these disorders. The prevalence of clinical disease

directly attributable to mitochondrial DNA mutations is in excess

of 1 in 10 000 adults in the UK (Schaefer et al., 2008), while

a study of 3000 sequential births showed that pathogenic mito-

chondrial DNA mutations are present at surprisingly high levels

in the general population: one mitochondrial tRNA mutation,

the m.3243A>G MTTL1 gene mutation, was present at a

frequency of 0.14% (Elliott et al., 2008). Mitochondrial patho-

logy may also be involved in Alzheimer’s disease (Bender

et al., 2008), Parkinson’s disease (Bender et al., 2006), and in

normal brain ageing (Bender et al., 2006; Kraytsberg et al.,

2006), since all are associated with strikingly similar patterns of

mitochondrial abnormalities and mitochondrial respiratory chain

deficient cells.

Neuronal dysfunction and neurodegeneration are the most

prominent and disabling features in patients with mitochondrial

disease (DiMauro and Davidzon, 2005; DiMauro and Schon,

2008). An enduring puzzle about these pathologies is the extreme

variability of presentation, ranging from focal deficits (e.g. optic

neuropathy) to more global disease such as dementia and ataxia

(McFarland et al., 2007). To address this issue, it is necessary to

understand the basic pathological mechanisms. For instance,

neuronal loss is a common feature of these pathologies (Sparaco

et al., 1993), but it is possible that mitochondrial deficits could

disrupt neuronal function even without neurodegeneration. These

different pathological processes would indicate different strategies

for treating or preventing the development of symptoms in

patients with mitochondrial disease. The pathology underlying

the various clinical presentations may thus be best served by

very different therapies.

One possible pathological mechanism may involve the

well-established role of mitochondria in regulating cytosolic Ca2+

levels. Calcium ions lie at the heart of neuronal function, trans-

ducing electrical activity into molecular signals. The specificity

of the molecular response is thought to be set by the kinetics

and localization of the Ca2+ transients (Berridge et al., 2003).

Altered cytosolic Ca2+ regulation may also cause cells to enter

into various cell death pathways. Consequently, factors which

shape the Ca2+ transients are likely to assume great importance

in normal neuronal function. A key role in this regard is played

by mitochondria. The large electrochemical gradient across

the mitochondrial inner membrane provides a powerful driving

force to absorb Ca2+ from the cytosol (Vasington and Murphy,

1962; Carafoli et al., 1964; Crompton et al., 1978; Nicholls,

1978). Agents which uncouple the mitochondrial membrane

potential (�Wm) prevent mitochondria from taking up Ca2+,

and thus alter the time course of cytosolic Ca2+ transients

(Werth and Thayer, 1994). The mitochondrial membrane potential

is generated by the electron transfer chain (Mitchell and

Moyle, 1967), but it is not known how subtle deficits in the

electron transfer chain, caused by genetic mutations, might

impact on Ca2+ homoeostasis in neurons. This information will be

critical for us to understand how such mutations cause neurological

disease.

Abnormal calcium homoeostasis has been reported in a variety

of non-neuronal cell lines with oxidative phosphorylation defects.

Fibroblasts from patients with m.3243A4G MTTL1 mutation

showed increased basal Ca2+ levels and a sustained Ca2+ elevation

in response to stimulation with 60 mM K+ compared with controls

(Moudy et al., 1995). Likewise, fibroblasts from patients with

complex I deficiency due to nuclear subunit mutations also

showed a protracted period of elevated cytosolic Ca2+ in response

to bradykinin (Visch et al., 2004, 2006; Willems et al., 2008).

Another approach to understanding how pathogenic mtDNA

mutations affect cellular Ca2+ homoeostasis has been to generate

‘cybrid’ cell lines, by fusing enucleated somatic cells harbouring

pathogenic or neutral mtDNA mutations with a cell line in which

the endogenous mtDNA had been chemically ablated (a �
�

cell

line) (Brini et al., 1999). Cybrids derived from a patient with myo-

clonic epilepsy with ragged red fibres due to the m.8356T4C

mutation showed no abnormality in cytosolic Ca2+, but did show

a smaller than normal rise in mitochondrial Ca2+ in response to

histamine (Brini et al., 1999). In contrast, cybrids from a patient

with the neuropathy, ataxia and retinitis pigmentosa m.8993T4G

mutation showed no Ca2+ abnormality. Intriguingly, in both the

cybrid and fibroblast cell lines with abnormal Ca2+ responses,

near-normal Ca2+ dynamics could be restored by inhibition of

mitochondrial sodium/calcium exchange by the benzothiopene

CGP37157 (Brini et al., 1999; Visch et al., 2004, 2006; Willems

et al., 2008). A notable feature of all these studies though is that

Ca2+ deficits in these cells are subtle.

Importantly however, there are currently no published studies of

Ca2+ deficits in neurons with mtDNA mutations, and yet the brain

is where the pathology has its major effect. Neuronal function

places unique demands on Ca2+-handling pathways, and for this

reason, fibroblast responses to G protein coupled receptor activa-

tion are likely to give only limited insights into how mtDNA muta-

tions might impact on brain function. For instance, the major

source of Ca2+ entering the cytosol in neurons is from the

extracellular space through voltage-gated Ca2+ channels [including

N-methyl-D-aspartic acid (NMDA) glutamate receptors], whereas

in non-neuronal cells, the major source is the endoplasmic reticu-

lum (Hille, 2002). Consequently, cytosolic Ca2+ in neurons can rise

extremely quickly, and there is good evidence that the kinetics of

the Ca2+ transient determine the cellular response (Nishiyama

et al., 2000). A further difference is that store operated Ca2+

channels play a key role in Ca2+ homoeostasis in many

non-neuronal cells, but not apparently in neurons. The recent

demonstration that store operated Ca2+ channels are regulated

by mitochondria in a Ca2+-dependent manner (Glitsch et al.,

2002; Parekh, 2003, 2008) suggests another way in which mito-

chondrial dysfunction may affect neuronal and non-neuronal cells

rather differently.

So far, neuronal mitochondrial studies have all used pharmaco-

logical agents to impair mitochondrial function, since fresh neuro-

nal material possessing mtDNA mutations is not readily available.

Neurosurgical biopsy is not indicated, either for diagnosis or

treatment, and attempts to generate sustainable transgenic mice

colonies carrying pathogenic mtDNA mutations have proven

2 | Brain 2010: Page 2 of 10 A. J. Trevelyan et al.



difficult (Fan et al., 2008). For this reason, we utilized the cybrid

technology to generate mouse embryonic stem cell lines possess-

ing different pathogenic and benign mtDNA mutations (Kirby

et al., 2009). We showed previously that these embryonic

stem-derived cybrids could be differentiated into mature neurons,

which readily fire action potentials and form synaptically con-

nected networks (Kirby et al., 2009). Our model system provides

the opportunity to examine Ca2+ homoeostasis in neurons, the

most clinically affected tissues in oxidative phosphorylation

disorders.

We report here that in addition to their electrophysiological

phenotype, these differentiated stem cells also show a conven-

tional, transient Ca2+ response to physiological activation by

glutamate. Surprisingly, cells possessing pathogenic mtDNA muta-

tions had a normal baseline response to glutamate. Repeated stim-

ulation, however, unveiled a progressive deficit resulting in

markedly distorted Ca2+ transients in response to later stimuli in

a train. We predict that these distorted Ca2+ transients may be

misinterpreted by the various molecular transduction pathways,

leading to a loss or change in specificity of Ca2+ signals.

Furthermore, the greatly protracted Ca2+ transients in cell lines

containing pathogenic mtDNA mutations may also increase the

risk of triggering necrotic or apoptotic cell death (Clarke et al.,

1993; Hardingham et al., 2002). Thus, pathogenic mtDNA muta-

tions can cause changes in Ca2+ regulation that can explain the

appearance of neuronal pathology with or without accompanying

neuronal cell death.

Materials and methods
Cell lines used in this study were described previously (Kirby et al.,

2009). All cybrids were derived from ES-I (CC9.3.1). Control cell lines

used for the calcium studies were the parental embryonic stem cell line

ES-I and a cybrid (Cy1-I) with a benign polymorphic variant

(m.9821Adel) in the mitochondrial transfer RNA for arginine (Mttr).

Cybrids with altered electron transfer chain function were Cy2-I and

Cy3-I. Cy2-I harbours the m.6589 T4C mutation in one of the three

mtDNA encoded complex IV subunits (Mtco1) and has a mild complex

IV deficit (�40% residual complex IV activity). Cy3-I has two muta-

tions, in different mtDNA encoded complex I subunits (m.13887Cins in

Mtnd6 and m.12273G4A in Mtnd5) and has a severe complex I

defect (510% residual complex I activity).

Differentiation into neurons
Parental embryonic stem cells and cybrids were differentiated into

neurons using the 4+/4� method (Bain et al., 1995) as described in

Kirby et al. (2009). Cultures were maintained on poly-D-lysine/laminin

coated coverslips. Calcium studies were performed on differentiated

neurons 7–9 days post-plating.

Dye loading
Cultures were bulk loaded with Oregon Green 488 BAPTA-1 (OGB1)-

acetoxymethyl ester as follows. OGB1-acetoxymethyl (50mg vial,

Molecular Probes) was mixed with 8 ml dimethyl sulphoxide and 2 ml

pluronic acid F-127 solution (10% in dimethyl sulphoxide, Molecular

Probes), and then further diluted by adding 90 ml of culture media [4:1

medium: 4:1 mixture of Neurobasal medium (Invitrogen) supple-

mented with B27 (Invitrogen)] and Dulbecco’s modified Eagle’s

medium:F12 (1:1) (Invitrogen) supplemented with modified N2 (Ying

et al., 2003). Final mixture of 12–20 ml was then added to the well

containing the culture plate bathed in 3 ml of 4:1 medium. The final

concentrations were OGB1-acetoxymethyl ester, �12mM; 0.1%

dimethyl sulphoxide; 0.002% Pluronic F-127. For the majority of

experiments, the cultures were incubated for 30–40 min at 37�C and

then transferred to 4:1 medium without OGB1-acetoxymethyl for

20 min at 37�C prior to transferring to the recording chamber. For

the control experiments using OGB2, the cultures were loaded up in

exactly the same way, only substituting OGB2-acetoxymethyl for

OGB1-acetoxymethyl.

To test the effect of changing dye concentrations, we performed

one set of experiments with variable loading times (Supplementary

Fig. S3). The coverslips, on which the cultures were grown, were

fractured using a diamond knife, and the dye was added to the

medium, and fragments of the coverslip were removed either at

30 min, or after 1–2 h loading. Imaging was performed after a

20 min wash period for both.

Imaging
The recording chamber was mounted on an upright Zeiss Axioskop FS

microscope fitted with Luigs and Neumann micromanipulators. Two

different imaging systems were used. The first used epifluorescence

illumination (standard fluorescein filter blocks), with illumination con-

trolled by a Master 8 pulse stimulator (A.M.P.I., Jerusalem, Israel)

driving a Uniblitz shutter. Images were collected at 4 Hz, using a

Hamamatsu camera connected to a Macintosh computer running

IPlab software. The second system used a spinning disc confocal

system (Visitech International, Sunderland, UK), collecting images at

up to 30 Hz using a Hamamatsu C9100/13 EM charge-coupled device

camera and Visitech software run on a Dell personal computer.

Analysis was done offline using ImageJ (NIH, Bethesda), MATLAB

(Mathworks) and Igor (Wavemetrics, Oregon) software.

Electrophysiology
In the recording chamber, the cultures were bathed in a continuously

flowing stream (1–3 ml/min) of artificial CSF (in mM: NaCl, 125;

NaHCO3, 26; glucose, 10; KCl, 3.5; CaCl2, 1.2; NaH2PO4,

1.26; MgSO4, 1). Whole cell patch clamp recordings were made

using 5–7 MX pipettes (borosilicate glass, Harvard). The pipette solu-

tion contained (in milli molar) K-methylsulphate, 125; K-Hepes, 10;

Mg-ATP, 2.5; NaCl, 6; Na-GTP, 0.3 (corrected to pH 7.3–7.35 using

KOH; 280 mOsm). Data were collected using Axopatch 1D amplifiers

(Axon Instruments), filtered at 3 kHz, digitized at 5 kHz (AD board)

and recorded on a Macintosh PowerMac computer using Axograph

software. Recordings were done at room temperature.

Glutamate application
Glutamate (1 mM in artificial CSF) was applied directly from patch

pipettes using a picospritzer pressure application system (10 ms

pulses; pressure = 20 psi). The timing of the pressure applications was

controlled using the Master 8 pulse stimulator. The pipette tip was

�10–50 mm from the cells and, unless the pipette was broken, we

never detected any movement artefact during the glutamate applica-

tions, indicating that this means of stimulating cells was relatively

atraumatic. We discarded data if the pipette was broken. We calcu-

lated that the average bolus for a 10 ms pressure application through

Mitochondrial mutations affect Ca2+ handling Brain 2010: Page 3 of 10 | 3



these pipettes was about 1.6 ml by calculating the volume of solution

extruded from the pipette over 1000 pressure pulses.

A23187 application
To assess the functional range of the Ca2+ dye, we applied the Ca2+

ionophore, A23187 (non-brominated form, also known as calcimycin;

Invitrogen) directly to the imaged cells using the same picospritz

method as for glutamate applications. External Ca2+ concentration,

as for other experiments, was 2 mM, the patch pipette A23187 con-

centration was 1 mM and 10 ms pressure pulses were applied at 10 Hz

continually until the fluorescence signal peaked (�10–20 s;

Supplementary movie 5).

Other drugs [NBQX, APV (both from Tocris, UK), NiCl2 and CdCl2
(both Sigma, UK)] were added to the entire bathing medium.

Results

Neuronal Ca2+ transients triggered by
brief glutamatergic stimuli
We examined the neuronal responses to the excitatory neuro-

transmitter glutamate in differentiated neurons derived from

embryonic stem cell lines with different mitochondrial genotypes.

Specifically, we examined Ca2+ transients in these cells, as assessed

by changes in fluorescence in cells bulk labelled with the Ca2+ dye,

OGB1. Our intention was to stimulate the cultures in a relatively

physiological way. To this end, we made brief glutamate applica-

tions at a concentration close to that found in the synaptic

cleft (�1 mM) (Clements et al., 1992). We delivered the gluta-

mate as a single, 10 ms pressure puff (singlet), or a short train

of up to 10 puffs (each 10 ms, delivered at between 1 and

0.1 Hz), giving the cells adequate time between trials to

recover to baseline fluorescence levels (�2 min for singlets, and

5–8 min for longer trains). The time course of the picospritz stim-

ulus was visualized by filling the pipette with rhodamine and ima-

ging the fluorescence change in front of the pipette (see

Supplementary movie 1). The half-width of the fluorescence

pulse was �50 ms, less than a single time frame (67 ms; imaging

speed, 15 Hz).

We recorded two distinct patterns of Ca2+ transients in response

to brief glutamate applications (Fig. 1; Supplementary Movies 2

and 3). The first pattern had slow kinetics, was very variable from

trial to trial, and consequently was not obviously time-locked to

the stimuli; cells showing this pattern were assumed to be

non-neuronal. The second, more common pattern was a rapidly

rising fluorescence that occurred simultaneously in the soma and

all the extended cellular processes (beyond the temporal resolution

of the imaging at 4 Hz). The responses were tightly locked to the

pressure pulse, and very reproducible over as many as 30 repeated

trials, indicating that this low rate of stimulation was indeed rea-

sonably physiological, producing very little, if any, deterioration in

any cell line. When these latter cells were targeted for patch clamp

recordings, they could always be driven to fire action potentials,

thus confirming their neuronal identity (Fig. 1B).

The glutamate applications induced a large inward current when

the cells were held at �70 mV (Fig. 1A). The current decayed back

to baseline with a time constant of 1.35� 0.92 s (mean� SD;

n = 5; best fit single exponential). Current clamp recordings

showed that this current strongly depolarized the cells, triggering

a barrage of action potentials riding on the crest of the

depolarization. The membrane potential also decayed slowly

(2.62� 1.84 s; best fit single exponential). Electrophysiological

responses to picospritz glutamate applications were considerably

more prolonged than estimates of individual post-synaptic current

(�psc = 1.8 ms; best fit single exponential) or post-synaptic potential

decays (�psp = 17.8 ms; both measures averages of 3; best fit single

exponential) (Kirby et al., 2009).

These different time courses provided insight into the level of

activation of glutamatergic receptors by the picospritz application.

The profile of the rhodamine visualization of the picospritz event

(Fig. 1D and Supplementary movie 1) indicates a very brief gluta-

mate concentration peak (a few tens of milliseconds), while the

neuronal response clearly extends for a much longer period, far

longer than synaptic events in these cells (Kirby et al., 2009). This

suggests that for picospritz glutamate applications, the glutama-

tergic receptors continue to be activated long after the peak

glutamate concentration occurs, when the glutamate concentra-

tion has dropped to a fraction of the peak level. We can conclude

from this that these cultured neurons are responsive to levels of

glutamate considerably lower than 1 mM (concentration of gluta-

mate within the pipette). Indeed, the uniform amplitude of the

electrophysiological events to successive stimuli (Supplementary

Fig. 1), in stark contrast to the incremental peaks in glutamate

concentration (Fig. 1F), strongly suggests that glutamatergic

receptors close to the puffer electrode were saturated, even

from the first pulse (the rhodamine visualization of picospritzing

suggests that the first pressure puff in a train produces a

smaller glutamate concentration—Fig. 1F—presumably because

of the diluting effect of diffusion of bath medium into the tip

during the period prior to the first pressure pulse, which is

very long relative to the periods prior to subsequent pulses in a

train). Saturation of glutamatergic receptors may contribute to the

low variability of responses that we utilized in the later

experiments.

The Ca2+ transient was about half an order of magnitude slower

than the current clamp responses (Table 1; best fit single expo-

nential). Pharmacological analysis of the Ca2+ transients (Fig. 2)

indicated that these relatively immature, cultured neurons had a

very conventional neuronal phenotype with regard to the source

of the increase in cytosolic Ca2+. The signal was abolished by the

removal of extracellular Ca2+, indicating that intracellular stores

make a negligible contribution to the transient signal. The signal

was greatly reduced by the selective NMDA antagonist APV

(50 mM), indicating that a substantial current passes through

NMDA glutamatergic receptors. The residual signal was then abol-

ished either by blockade of �-amino-3-hydroxyl-5-methyl-4-isoxa-

zole-propionate (AMPA)/kainate glutamatergic receptors (10 mM

NBQX), or by blockade of voltage-gated Ca2+ channels (100 mM

Ni2+/100 mM Cd2+). The fact that blockade of the voltage-gated

Ca2+ channels in isolation reduced the signal by �80% suggests

that the major source of Ca2+ was through these channels. The
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large drop caused by blockade of NMDA channels (�60%) can be

understood simply as a 2-fold effect, with a loss of Ca2+ influx

through these channels, and a reduced depolarizing drive also

leading to reduced Ca2+entry through voltage-gated Ca2+ chan-

nels. The simplest interpretation of these data is that exogenously

applied glutamate activates NMDA and AMPA/kainate receptors,

causing a large depolarization, and frequently triggering action

potentials, with Ca2+ entering through both NMDA receptors

and voltage-gated Ca2+ channels.

Subtle Ca2+ kinetic phenotype in cells
with mitochondrial mutations
In all neuronal lines, the Ca2+ response to a single brief application

of glutamate was variable from cell to cell (Fig. 3), suggestive

of heterogeneity within the populations. The Ca2+ dye acts

as a weak buffer, and this can influence the decay kinetics

(Neher and Augustine, 1992; Sabatini et al., 2002), as evidenced

by the fact that extending the dye loading time caused

Figure 1 Neuronal responses to exogenously applied glutamate. (A–C) Different recording modes showing equivalent responses of a

neuron to 1 mM glutamate delivered from a distance of about 25 mm from a patch pipette subsequent to a 10 ms pressure pulse applied to

the pipette. All three recording modes are shown at the same time scale for ease of comparison. The culture was bulk loaded with OGB1,

and the calcium response was recorded first, prior to patching (whole cell patching causes the bulk-loaded dye to be washed out); this cell

had a robust and relatively constant (55% variability) Ca2+ fluorescence response, thus allowing an appropriate correspondence with the

subsequently recorded electrophysiology. The voltage clamp response was recorded at �70 mV. The sharp event is likely to be a

breakthrough action potential. The current clamp recording was made with a small (8 pA) hyperpolarizing holding current to keep the

baseline Em at �70 mV. Note the different decay rates of the current, the membrane potential and the Ca2+ dye fluorescence signal [since

this greatly exceeds the decay in other preparations (Trevelyan et al., 2006), this is presumed to reflect the cytosolic concentration]. The

responses shown were from a cell with a severe mitochondrial deficit. (D) Photomicrograph showing a cluster of neurons loaded with the

Ca2+ dye, OGB1 (epi-fluorescence illumination and with low light transillumination). The pipette (at 7 o’clock) contains 1 mM glutamate in

artificial CSF, from which brief pulses of glutamate are delivered on to the cultured neurons. (E) The same field viewed using differential

interference microscopy, and also showing a patch pipette (5 o’clock) onto one of the OGB labelled neurons seem in D. (F) Change in

fluorescence �25 mm in front of the picospritzing pipette when filled with a dilute concentration of rhodamine. This allows a visualization

of the time course of the local glutamate concentration in these picospritzing experiments. Pulses were delivered at 2 s intervals for this

visualization, although the cell behaviour was studied using lower frequency stimuli. (G) Pulsatile Ca2+ fluorescence in response to a 0.1 Hz

train of glutamate applications.

Table 1 Kinetics of fluorescence signal in response to single transient glutamate stimuli in different cell lines

Cell lines Ca2+ dye n 10–90% rise time �decay

Mean� SD (s) Mean� SD (s)

Control

ES-I Parental line OGB1 8 1.34�0.87 7.27�1.98

ES-I Parental line OGB2 12 1.05�0.36 6.05�4.74

Cy1-I Control polymorphism OGB1 5 0.81�0.32 4.52�1.73

Mutant

Cy2-I Mild deficit OGB1 21 0.92�0.50 5.73�2.66

Cy3-I Severe deficit OGB1 11 1.06�0.56 6.04�1.81
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about a 25% increase in baseline fluorescence, and for the

transients to be significantly slower [�decay for short loading

(30mins) = 3.08� 0.20 s (avg� SEM, n = 21); long

loading (41 h) = 4.38� 0.25 s (n = 17); ts = 4.16, P50.001]

(Supplementary Fig. S3). Notably though, when the loading

protocol was standardized, the various cell lines showed no signif-

icant difference in the fluorescence kinetics in response to a single

glutamate stimulus (Fig. 3, Table 1).

Since fatigue is a well-established feature of mitochondrial dis-

ease, we therefore examined how repeated stimuli affected the

time course of the Ca2+ transients. To do this, we first imaged the

response to a single puff of glutamate, and then after a pause for

recovery of 2–5 mins, we delivered a train of glutamate puffs

(same field of view and location of puffer pipette). We limited

our analysis to cells that showed 55% variation in the response

to the initial glutamate puff (Fig. 4), and a consistent pattern of

change of responses to all subsequent puffs in the train [whether

this be steady (e.g. Fig. 4A), incremental (e.g. Fig. 4B) or decre-

mental signals]. The rationale for these tight selection criteria was

to isolate consistent progressive changes induced by repeated

stimuli.

A striking feature of the control cell lines (ES-I and Cy1-I) was

that consecutive transients in the train routinely matched the initial

transient very well (Fig. 4A). The slow decay of the transients

meant that the subsequent stimuli occur before the fluorescence

returned to baseline, and yet these cells did not show simple sum-

mation of events, but rather the response appeared to be capped

(cells which were distant from the glutamate electrode did

sometimes show summation, albeit from small and variable ampli-

tude, initial events).

Importantly, this apparent cap was not caused by saturation of

the dye, as shown by several experiments (Supplementary Figs S2

and S3). In short, the uniformity of successive fluorescence signals

in the train was also seen using OGB2 (Supplementary Fig. S2A), a

variant of OGB1 with a much higher KD (Haughland, 2005).

Moreover, increasing the OGB1 buffer concentration, by extend-

ing the loading time (41 h loading), did not alter the relative decay

rates after singlets and trains (i.e. it slowed the decays after both

patterns of stimulation equivalently; Supplementary Fig. S3). These

results also show that the apparent reproducibility of responses

was not influenced by the basal occupancy of the dye, since

this will be different for OGB1 and OGB2, or if the dye concen-

tration is increased. Furthermore, a rapid application of the calcium

Figure 3 Mitochondrial mutations do not affect the Ca2+

transient in response to isolated, brief glutamate applications.

Sample traces of OGB1 fluorescence in response to a single brief

glutamate application in a control cell line (ES-I) (A) and the cell

line with severe mitochondrial mutation (Cy3-I) (B). (C) Pooled

average responses in all four cell lines examined (n is the number

of different cells for each line).

Figure 2 Ca2+ entry through NMDA and voltage-gated Ca2+

channels. Ca2+ fluorescence in ES-I cells in response to a 3 pulse

train of glutamate picospritz pulses (0.33 Hz), normalized to

the initial control response. Pharmacology measures were

only taken for cells which had a constant control response

(510% variation over 3 repeats). The pharmacological agents

were bath applied, as described in the ‘Material and methods’

section.
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ionophore, A23187, caused the fluorescence to greatly exceed

that produced by glutamatergic stimuli (Supplementary Fig. S4;

Supplementary Movies 4 and 5). The OGB1 fluorescence signal

could also be increased beyond the apparent cap, by applying the

uncoupling agent, carbonyl cyanide-p-trifluoromethoxyphenylhy-

drazone (FCCP; data not shown), indicating a possible role for

mitochondria in capping the Ca2+ transient. Further details of

these control experiments are provided in the supplementary

figure legends. Collectively, they show that the striking feature

of the normal cybrid population, in which repeated stimuli produce

identical Ca2+ transients, is likely to reflect accurately the pattern

of cytosolic Ca2+.

In contrast with the singlet responses, there were marked

differences between the various cell lines in the responses to

trains of glutamate puffs (Figs 4 and 5). Cell lines with impaired

mitochondrial function (Cy2-I and Cy3-I) showed a progressive

deviation of the response to successive stimuli (Fig. 4B). To analyse

this further, we derived ‘residual’ traces (Fig. 4C), which represent

the difference between the decays of the nth transient in the train

and the time-shifted, singlet response. These residuals showed a

maximal deviation of the train decay from the singlet decay at

around 8–10 s after the stimulus for cell lines with both mild

(Cy2-I) and severe (Cy3-I) mitochondrial dysfunction. The deviation

of decays was extremely protracted for Cy3-I (severe mutants),

being significantly different 50 s after the final stimulus (Fig. 5B).

In other words, in cells with severe mitochondrial dysfunction, the

cytosolic Ca2+ following a train of stimuli remains significantly

above resting levels for tens of seconds after the stimulus ends.

The deficit appears to be progressive, with a steady incremental

deviation for each successive stimulus in a train (Fig. 5C).

Figure 5 Cell lines with mutant mitochondria show altered Ca2+ handling in response to repeated glutamate applications. (A) Average

‘residuals’ for the four different cell lines to show the alteration in decay kinetics when a cell with impaired mitochondrial function is

repeatedly stimulated (n is the number of different cells for each line). (B) Statistical comparisons at the two time points indicated by the

arrow heads in A. (C) The progressive change in kinetics in a mutated cell line, as measured 8 s after each successive stimulus in a train of

ten pulses. Data are shown only for the ES-I (parental control) and for the Cy3-I (severe mutant) lines (error bars are the SEM of the

residual measures for each cell; parental, n = 9; severe, n = 7).

Figure 4 Progressive distortion of the Ca2+ transient during a train of glutamate pulses, in cells with severe mitochondrial dysfunction.

(A) Overlays of the Ca2+ fluorescence in response to a single glutamate application and to a short train of applications in the parental

cell line, ES-I. The single application (‘singlet’) response is duplicated and time shifted (black trace) to overlay the final response in the train.

The final response in the train typically shows the same decay kinetics in control cell lines. These analyses were only performed for

cells which showed identical initial responses (52% variability). (B) Similar traces for Cy3-I, the cell line with a severe mitochondrial

deficit. Note the marked deviation of the decay of the train relative to that of the singlet. (C) A ‘residual’ trace is calculated simply

by subtracting the singlet response from the final response in the train. The example shows the derivation for the traces in panel B

(Cy3-I line).
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Discussion
We present here data that show a progressive Ca2+-handling def-

icit in neurons with pathogenic mtDNA mutations. To show this,

we used cybrid cell lines, which allow a direct comparison of the

effects on the cell biology of different mitochondrial genotypes

since the somatic genotype is constant. We mimicked synaptic

activation with very brief (tens of milliseconds) applications of

physiological concentrations of glutamate, and restricted our anal-

yses to cells which showed highly stable (55% difference) Ca2+

responses to the initial stimulus in a train. By making this restric-

tion, we revealed a striking feature of Ca2+ handling in the control

cell lines, which was that the initial event was exactly reproduced

following each stimulus in a train of stimuli. In contrast, cells with

mtDNA mutations showed normal responses to a single glutamate

application, but the response to subsequent applications became

increasingly distorted. We suggest that this represents a novel

form of cellular fatigue in cells with impaired oxidative

phosphorylation.

Ca2+ handling in wild-type neurons
The electrophysiological responses to glutamate are reasonably

stable when stimuli are presented at 0.1 Hz, and in control cells,

this is reflected in the normalized pattern of Ca2+ transient. The

stability of the Ca2+ transient has some noteworthy features. The

long decay means that, if stimulated at 0.1 Hz, the Ca2+ level is

still markedly raised at the start of the next transient. As such, one

might expect summation of events, and indeed this does occur if

the initial transient is small, as happens far from the glutamate

pipette. Other cells, typically close to the glutamate pipette,

show large amplitude and very stable initial responses, and in

these cells there is no summation; rather, the amplitudes of suc-

cessive peaks are constant, and since the decay is also stable, the

entire shape of the event is reproduced.

The conventional view of Ca2+ cycling in neurons is that mito-

chondria rapidly absorb most of the Ca2+ which enters the cells

when cytosolic Ca2+ concentration exceeds a threshold value of

around 0.8 mM (Nicholls, 1978). This threshold for mitochondrial

uptake is a powerful means of producing a cytosolic Ca2+ cap

because as the cytosolic Ca2+ levels rise and once the threshold

for mitochondrial uptake is surpassed, there is a great acceleration

in the rate of Ca2+ clearance from the cytosol. This will produce a

relatively stable capping effect over a range of Ca2+ influx param-

eters. Mitochondrial uptake is dependent on the large electroche-

mical potential generated across the inner mitochondrial

membrane by the electron transfer chain. Ca2+ entry rapidly dis-

sipates the electrochemical gradient, and thus diminishes the driv-

ing force for Ca2+ uptake, but also stimulates the recovery process

by activating various mitochondrial metabolic pathways. The mito-

chondria thus greatly curtail the initial cytosolic transient, but then

Ca2+ is returned to the cytosol over a much longer period as part

of the process of recycling the cation to the extracellular space

(Fierro et al., 1998).

Altered Ca2+-handling phenotype
associated with mitochondrial
mutations
In both mutant cell lines, the response to an isolated glutamate

application was no different from controls for all measures (peak

�F/F, 10–90% rise time, decay time constants). Our experimental

protocol did not permit an estimate of baseline cytosolic Ca2+

levels (which requires ratiometric imaging), but the similarity of

the ‘singlet’ response to control responses strongly suggests that

baseline Ca2+ regulation in the mutant cells was ostensibly normal.

In contrast to the normal cell lines, however, the responses to

successive stimuli were not maintained; there was a progressive

small increase in the peak fluorescence, peak on peak, and a

marked slowing of the decay. Moreover, the Ca2+-handling deficit

is more severe in those neurons showing the greatest reduction in

oxidative phosphorylation capacity, consistent with a direct causal

link between the genetic deficit and the Ca2+-handling phenotype.

It is worth considering these changes in terms of the single

compartment model of Ca2+ fluxes proposed by Neher and

Augustine (1992). In their formulation, the time constant of the

fluorescence decay, �, can be written as a function of the buffer-

ing capacities (J) of the exogenous buffer (namely the Ca2+ dye;

suffix ‘e’) and endogenous buffer (suffix ‘b’), and the plasmalem-

mal clearance rate, �, as follows:

� ¼ ð1þ Ke þ KbÞ=�

to produce the requisite change during the train of stimuli, there

would have to be either an acute increase in the buffering capa-

cities of the cell (endogenous or exogenous buffering), or an acute

reduction in the clearance rate. It is difficult to envisage though,

how a mitochondrial mutation may allow an acute increase in

buffering; if anything, the opposite might be expected. Nor is it

likely that other endogenous buffering systems could be liberated

over this acute time course, although we cannot rule this out

(a chronic increase in Ca2+ buffering capacity might be expected

as an adaptive response, although the ‘normal’ decays of the

singlet Ca2+ transients provide no evidence of such a change).

Far more likely is that the reduced oxidative phosphorylation in

these cells causes a deficit in ATP, and thereby compromises the

clearance of Ca2+ through Ca2+-ATPases. A reduced rate of clear-

ance would also be expected to cause the small upward shift in

the apparent Ca2+ cap seen in these neurons. Note though, that

this increase in the peak is still less than expected from simple

summation for events with a time constant, 6 s (expected increase

�20%) indicative that the cap still exists in these cells, albeit in a

compromised state.

Thus, our data suggest that baseline Ca2+ regulation is appar-

ently well maintained, but there is a rapid loss of the ability to

regulate cytosolic Ca2+ concentration when the system is strained,

which may have long-lasting consequences. This observation

would fit with previous studies, which show that even in the pres-

ence of a mitochondrial respiratory chain defect, ATP levels within

the cell and the mitochondrial membrane potential are maintained

under resting conditions (von Kleist-Retzow et al., 2007). ATP can

be generated by glycolysis, and this ATP may also be used to
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maintain the mitochondrial membrane potential which is seen as

essential for maintaining cell viability (Campanella et al., 2008;

Abramov et al., 2010). With repetitive stimulation, the ability to

maintain ATP levels will be impaired (Taylor et al., 1994) without

effective oxidative phosphorylation and thus be likely to result in

altered Ca2+ regulation.

The consequences of Ca2+ dysregulation
The consequences of this altered Ca2+ regulation are likely to be

manifold. Ca2+ occupies a pivotal role coordinating many different

molecular cascades in all cell types, over many different timescales

(Berridge et al., 2003). In neurons, fluxes in cytosolic Ca2+ con-

centration coordinate transmitter release, long-term potentiation

and long-term depression, dendritic spine remodelling, develop-

mental remodelling of dendritic and axonal branches, regulation

of gene expression and entry into different cell death pathways. It

is believed that the exact temporal and spatial extent of the tran-

sient Ca2+ elevation explains how this single ionic species can

coordinate these disparate pathways. For instance, both long-term

potentiation and long-term depression have been shown to

require Ca2+ entry through NMDA receptors at a dendritic spine,

but the exact timing of the entry relative to the timing of a

post-synaptic action potential and the associated Ca2+ elevation

in the dendrite adjacent to the spine determines which of these

two processes occurs. If the kinetics of the Ca2+ transient are

altered by dysfunctional mitochondria, then the specificity of the

Ca2+ signal will be affected, leading to the activation of either the

wrong molecular cascade, or of multiple cascades in multiple spa-

tial locations. These mtDNA mutations may also affect mitochon-

drial movement and distribution around the cell, with further

consequences for local Ca2+ regulation (Kang et al., 2008). The

pathological distortion of the Ca2+ signal may be expected to

affect brain function, even without ostensible neuronal loss. This

functional pathology will of course be further exacerbated by neu-

ronal cell death caused by dysregulation.

These findings are relevant to the clinical features of mtDNA

disease. In these patients, there is often development of symptoms

related to neurodegeneration later in life, which is supportive of

the relatively subtle changes seen in Ca2+ dysregulation

(McFarland et al., 2002). In addition, there is often deterioration

in patients following epileptic seizures (Okumura et al., 2008), a

situation in which intense neuronal activity is associated with

extreme cytosolic Ca2+ loading (Trevelyan et al., 2006). This

raises issues in terms of management of patients with mitochon-

drial disease, especially at times of seizures. Aborting the seizure as

quickly as possible is clearly crucial, but we should consider the

possibility of interventions that might also limit toxicity due to high

intracellular Ca2+.

In conclusion, we show here for the first time, a change in Ca2+

handling in neurons that arises as a direct consequence of muta-

tions in the mitochondrial genome. Although we are still far from

achieving a complete understanding of the consequences of such

mutations, our results give insight into many facets of mitochon-

drial disease by showing that neuronal dysfunction may only be

apparent with repetitive stimulation, and that a key feature is a

progressive distortion of Ca2+ signalling with widespread conse-

quences for neuronal development, communication and cell death.
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